uni fiee rt sesion 01 intro protocolos

95
Redes Telemáticas - IT524M - Facultad de Ingeniería Eléctrica y Electrónica Ingeniería de Telecomunicaciones Semana: 1 Introducción a los protocolos Prof. MSc. Ing. José C. Benítez P.

Upload: jcbpperu

Post on 11-Aug-2015

3.371 views

Category:

Documents


0 download

TRANSCRIPT

Redes Telemáticas - IT524M -

Facultad de Ingeniería Eléctrica y ElectrónicaIngeniería de Telecomunicaciones

Semana: 1Introducción a los protocolos

Prof. MSc. Ing. José C. Benítez P.

2

Sesión I. Introducción a los protocolos

1. Modelo para las comunicaciones.

2. Conceptos y definiciones de una red.

3. ¿Que es una red telemática?.

4. ¿Para que una red telemática?.

5. Técnicas de conmutación.

6. Ancho de banda digital.

7. Organismos de estandarización

8. Protocolo y arquitectura.

9. RM – OSI

10. Modelo TCP/IP

3

1. Modelo para las comunicaciones

Sistema de Comunicación Básico

emisor

canal

receptor

<Mensaje>

4

1. Modelo para las comunicaciones

Sistema de Telecomunicación

5

1. Modelo para las comunicaciones

Sistema de Telecomunicación

Emisor: es el elemento Terminal de la comunicación que se encarga de

proporcionar la información.

Receptor: es el elemento Terminal de la comunicación que recibe la información procedente de un emisor.

En ocasiones no es fácil distinguir claramente entre emisor y receptor

porque con frecuencia ambos terminales intercambian sus papeles

alternativamente en orden a producir un diálogo.

6

1. Modelo para las comunicaciones

Sistema de Telecomunicación: Emisor - Receptor

Casos:a. Un receptor y múltiples emisores

b. Un emisor y múltiples receptores

c. Múltiples emisores con múltiples receptores

Ejemplosa. En una agencia de noticias hay sólo un receptor de noticias y

múltiples emisores de las mismas distribuidos por todo el mundo.

b. Los sistemas de radio/televisión consisten en una estación

emisora desde la que se distribuye la señal electromagnética a

múltiples receptores.

c. Los dispositivos utilizados en las redes de comunicación entre

computadores.

Es inseparable cada emisor de su receptor. No se concibe un concepto sin el otro.

7

1. Modelo para las comunicaciones

Sistema de Comunicación: Canal

El canal:• Es el elemento que se encarga del transporte de la señal.

• Es el elemento sobre la que viaja la información que emisor

y receptor pretenden intercambiar.

Nota:• Cada canal de transmisión es adecuado para algunas

señales concretas.

• No todos los canales sirven para todos los tipos de señales.

Ejemplo:La señal eléctrica se propaga bien por canales metálicos,

buenos conductores de la electricidad, pero no así la señal

luminosa.

8

1. Modelo para las comunicaciones

Sistema de Comunicación: Canal

1. naturaleza de la señal que es capaz de transmitir 2. velocidad de transmisión 3. capacidad de transmisión 4. ancho de banda 5. nivel de ruido que genera 6. longitud 7. modo de inserción de emisores y receptores

Un canal viene definido desde el punto de vista telemático por sus

propiedades físicas:

9

1. Modelo para las comunicaciones

Sistema de Comunicación: Canal

Ejemplos:

• Para señales audibles. el ejemplo más común de

canal acústico es la atmósfera.

• Para señales electromagnéticas se pueden utilizar

multitud de canales, dependiendo de la frecuencia de

las señales transmitidas: cables, el vacío, satélites, la propia atmósfera, etc.

• Un caso particular de canal electromagnético son las

fibras ópticas, especializadas en transmisiones luminosas, extraordinariamente rápidas e insensibles

al ruido eléctrico.

10

1. Modelo para las comunicaciones

Sistema de Comunicación: Transductor

Un transductor

• Es un dispositivo encargado de transformar la naturaleza

de la señal.

¿Cuales son las señales que mas se usa en telemática?

• En primer lugar es la señal eléctrica; debido a su

facilidad de transporte, gobierno y transformación,

• La otra señal es la luz debido a la rapidez de transporte

(velocidad de la luz).

11

1. Modelo para las comunicaciones

Sistema de Comunicación: Transductor

Ejemplos de transductores

• Una bombilla o un diodo LED. Transductor que convierte a

la señal eléctrica en luminosa. Así, cuando deja pasar

corriente eléctrica a través suyo emite radiación luminosa.

• Un fotodiodo o una célula fotoeléctrica. Transductor

inverso al anterior que genera corriente eléctrica cuando es

estimulada por la luz.

• Un micrófono. Transductor para el caso de conversión entre

señales acústicas -mecánicas- y eléctricas.

• Un altavoz (parlante). Transductor para el caso de

conversión entre señales eléctricas y acústicas -mecánicas.

12

1. Modelo para las comunicaciones

Sistema de Comunicación:

Los emisores/receptores en Telecomunicaciones e Informática:

• En telecomunicaciones se utiliza con precisión el término ETD(Equipo Terminal de Datos), en informática es más frecuente

hablar simplemente de Terminal, entendido como un dispositivo

capaz de constituirse en emisor o receptor de una

comunicación.

• Los Terminales o ETD se conectan a través de Líneas de Transmisión mediante los ECD (Equipo Terminal del Circuito de datos) formando lo que se llama Circuitos de Datos (CD)

¿Cuánto tipos de terminales existen?

• Hay muchos tipos de terminales, estando una buena parte de

ellos en constante evolución.

13

1. Modelo para las comunicaciones

Sistema de Comunicación:

La transmisión se refiere al transporte de las señales físicasnecesarias para que se produzca un fenómeno telemático, mientras

que la comunicación se refiere más bien al transporte de la información, de los datos que significan algo concreto tanto en el

emisor como en el receptor, independientemente de las señales

utilizadas para su transmisión.

14

2. Conceptos y definiciones de una red

Sistema de Comunicación : Circuito de datos:

Para elaborar una comunicación entre terminales se necesita:

• Dos equipos terminales de datos o ETDs.

• Dos equipos terminales de circuito de datos o ECDs.

• Líneas de comunicación.

15

2. Conceptos y definiciones de una red

Sistema de Comunicación : Circuito de datos:

Equipo Terminal de Datos (ETD):

• Estos dispositivos han de tener cierta inteligencia para realizar algo.

• Funcionan de ETD el equipo emisor y el equipo receptor, siempre

equipos terminales (respecto a la comunicación) .

• Lo que define a un ETD no es su grado de inteligencia, puesto que

se pueden considerar tanto ETD a un mainframe (gran computador)

como también una impresora; si es necesario que tenga inteligencia.

• Si no que debemos definir a un ETD por la función que realiza, ser origen y destino de una comunicación.

16

2. Conceptos y definiciones de una red

Sistema de Comunicación : Circuito de datos:

Equipo Terminal de Circuito de Datos o ECD:

• Estos son los dispositivos que se encargan de adecuar la

información recibida por el ETD a un tipo de señal o magnitud

física capaz de viajar por el canal.

• También se encarga del proceso contrario, una vez que recibe

unas señales por el canal de comunicación el ECD las adecuapara que puedan ser procesadas por el ETD.

Ejemplo: El ETD (computador) envía la información procesada

al ECD (MODEM), la información enviada por el ETD al ECD se

encuentra en sistema digital, el ECD se encarga de adecuar ese

sistema digital o convertirlo a un sistema analógico paralelo, para

así poder enviar esa información por la red telefónica capaz de

enviar solo señales analógicas.

17

2. Conceptos y definiciones de una red

Sistema de Comunicación : Circuito de datos:

Linea de Comunicación, línea de datos o Linea de un Circuito de Datos (LCD):

• Es la línea o canal que une a los dos ECD, las líneas de datos

han de ir en función de el trafico de información, con lo que no

podemos establecer una línea de datos para poco trafico

sabiendo que la información de la comunicación va a ser grande.

• La calidad de las líneas de datos están reguladas por las normas

internacionales.

El Enlace de Datos (ED):

Es el conjunto que alberga los ECD y la línea de circuitos de datos.

El circuito de datos (CD):

Es el conjunto formado por los ETD, ECD y línea de circuito de

datos.

18

2. Conceptos y definiciones de una red

Sistema Informático:

Sistema informático: está constituido por un conjunto de elementos

de hardware y software, capaces de realizar conjuntamente, una

determinada función orientada hacia la resolución de un problema

objeto.

Elementos de un sistema informático:

- Tareas (programas) y

- Recursos (archivos, periféricos, etc.).

19

2. Conceptos y definiciones de una red

Sistema Informático:

Relaciones entre los elementos de un sistema informático:

Por ejemplo:

• Comunicaciones entre tareas con el objetivo de intercambiar

información para la cooperación en la resolución de una

determinada función;

• Comunicaciones entre tareas y recursos con el objetivo de que

las tareas utilicen los servicios de los recursos.

20

2. Conceptos y definiciones de una red

Sistema Informático: Clasificación

Los SI se subdividen en:

• Sistemas Centralizados y

• Sistemas Distribuidos.

21

2. Conceptos y definiciones de una red

Sistema Informático Distribuido (SID):

• Está constituido por un conjunto de elementos

entre los cuáles se establecen relaciones. La

particularidad consistirá en que los elementos

que se comunican están ubicados en

máquinas diferentes y distribuidas.

• Es evidente que el mecanismo que hace

posibles dichas relaciones debe estar

distribuido entre los diferentes componentes

que constituyan el sistema.

• Dicho mecanismo está formado por:

• un conjunto de elementos de SW (programas), residentes en las máquinas

distribuidas, a los que se les denomina Sistema Operativo Distribuido, y además

• un conjunto de elementos de HW y/o SW lo que constituye el Mecanismo de

Comunicación e Interconexión entre los elementos de tratamiento de la

información.

22

2. Conceptos y definiciones de una red

Sistema Informático Distribuido:

Concepto. Un SID es un SI en el que la

potencia del tratamiento de la información se

encuentra repartido (distribuido) en el

espacio, entre todos los Elementos de Tratamiento de la Información (ETI) a

través de un Mecanismo de Comunicación e Interconexión (MCI).

23

2. Conceptos y definiciones de una red

La Telemática

Telecomunicaciones Informática

TelemáticaTelemática: ciencia que utiliza las telecomunicaciones para

potenciar las posibilidades y aplicaciones de la informática

� Del prefijo griego tele, "distancia" y del

latín communicare que significa

comunicación.

� "comunicación a distancia"

� Es una técnica consistente en transmitir

un mensaje desde un punto a otro de

modo bidireccional.

� Cubre todas las formas de comunicación

a distancia: radio, telegrafía, televisión,

telefonía, transmisión de datos e

interconexión de computadores.

� Es la ciencia aplicada que

abarca el estudio y aplicación

del tratamiento automático de

la información, utilizando

dispositivos electrónicos y

sistemas computacionales.

� El procesamiento automático

de la información.

24

2. Conceptos y definiciones de una red

Sistema Informático Distribuido:

Clasificación(escala: distancias entre los ETIs).

• Redes de Computadoras.

• Redes Locales de Computadoras

• Sistemas multicomputadoras

• Sistemas multiprocesadores

25

2. Conceptos y definiciones de una red

26

2. Conceptos y definiciones de una red

Calidad de Servicio (QoS)

La Calidad de Servicio (QoS, Quality of Service) consiste en fijar unos valores límite para un conjunto de parámetros, asegurando así que la red no se va a congestionar.

Por ejemplo:

• Throughput o ancho de banda: ≥ 256 Kb/s

• Retardo o latencia: ≤ 200 ms

• Fluctuación del retardo, o jitter: ≤ 100 ms

• Disponibilidad: ≥ 99,95 % (21 min/mes fuera de servicio)

Podemos ver la QoS como el ‘contrato’ usuario-proveedor.

27

3. ¿Que es una red telemática?

Una red es un SID.Una red es un conjunto de sistemas (equipos) informáticos

interconectados entre si entre las que se desarrollan comunicaciones.

28

4. ¿Para que una red telemática?

1. Para la comunicación,

2. Para compartir información

(datos, archivos, directorios, etc.),

3. Para compartir recursos: tanto de

software como de hardware.

Objetivostradicionales

Objetivos de una red :

29

4. ¿Para que una red telemática?

Objetivos de una red :

4. Access to remote information

5. Person-to-person communication

6. Interactive trainning/entertainment

7. Electronic commerce

Objetivosactuales(1,2,3 +

30

5. Técnicas de conmutación

• Conmutación de circuitos

• Conmutación de mensajes

• Conmutación de paquetes

• Conmutación de celdas

• Conmutación de etiquetas

31

5. Técnicas de conmutación

Conmutación de circuitos.

• La conexión sólo se establece cuando se necesita, pero mientras hay conexión el caudal está reservado al usuario tanto si lo usa como si no.

• En la conmutación de circuitos se establece un canal de comunicaciones dedicado entre dos estaciones, en donde, se reservan recursos de transmisión y de conmutación de la red para su uso exclusivo en el circuito durante la conexión..

• La transmisión es transparente, ya que, una vez establecida la estuviesen directamente conectados. conexión parece como si los dispositivos .

32

5. Técnicas de conmutación

Conmutación de circuitos.

• Se desarrolló para tráfico de voz aunque también puede gestionar tráfico datos de forma no muy eficiente.

• Se aprovecha mejor la infraestructura.

• La conmutación de circuitos se usa en redes telefónicas públicas: Red Telefónica Conmutada (RTC)

• RTB (Red Telefónica Básica): hasta 56/33,6 Kbps(asimétrico)

• RDSI (o ISDN): canales de 64 Kbps

• GSM: 9,6 Kbps

• Costo proporcional al tiempo de conexión (y a la distancia)

33

5. Técnicas de conmutación

Conmutación de circuitos. Historia

• Con la invención del telégrafo nacen las telecomunicaciones, pero presentaba varios inconvenientes:

• No estaba disponible para usuarios finales.

• Las líneas de telégrafo solo podía enviar un mensaje a la vez.

• No servía para mensajes urgentes.

• Debido a estos problemas y con la finalidad de aumentar el ancho de banda de las líneas telegráficas, Alexander Graham Bell, consigue el ancho de banda suficiente para pasar el espectro de voz humana.

• Así aparecen los primeros teléfonos que permitían la comunicación punto a punto.

34

5. Técnicas de conmutación

Conmutación de circuitos. Historia

• Esto se convierte en un problema cuando todos quieren tener un teléfono.

N*(N-1)/2

Para N = 4 necesitamos 6 enlaces.Para N = 100 necesitamos 4950 enlaces.

35

5. Técnicas de conmutación

Conmutación de circuitos. Historia

• La solución al enorme incremento de enlaces de comunicación fue la aparición de las centrales locales, que usaban un panel de

conmutación.

• La CC es aplicado a la telefonía, opera a nivel físico de OSI.

36

5. Técnicas de conmutación

Conmutación de circuitos. Centrales de conmutación

Central manual Central paso a paso

37

5. Técnicas de conmutaciónConmutación de circuitos. Ventajas

• La transmisión se realiza en tiempo real, siendo adecuado paracomunicación de voz y video.

• Acaparamiento de recursos. Los nodos que intervienen en lacomunicación disponen en exclusiva del circuito establecido mientrasdura la sesión.

• No hay contención. Una vez que se ha establecido el circuito las partespueden comunicarse a la máxima velocidad que permita el medio, sincompartir el ancho de banda ni el tiempo de uso.

• El circuito es fijo. Dado que se dedica un circuito físico específicamentepara esa sesión de comunicación, una vez establecido el circuito no haypérdidas de tiempo calculando y tomando decisiones deencaminamiento en los nodos intermedios. Cada nodo intermedio tieneuna sola ruta para los paquetes entrantes y salientes que pertenecen auna sesión específica.

• Simplicidad en la gestión de los nodos intermedios. Una vez que se haestablecido el circuito físico, no hay que tomar más decisiones paraencaminar los datos entre el origen y el destino.

38

5. Técnicas de conmutación

Conmutación de circuitos. Desventajas

• Retraso en el inicio de la comunicación. Se necesita un tiempo pararealizar la conexión, lo que conlleva un retraso en la transmisión de lainformación.

• Acaparamiento (bloqueo) de recursos. No se aprovecha el circuito en losinstantes de tiempo en que no hay transmisión entre las partes. Sedesperdicia ancho de banda mientras las partes no estáncomunicándose.

• El circuito es fijo. No se reajusta la ruta de comunicación, adaptándola encada posible instante al camino de menor costo entre los nodos. Una vezque se ha establecido el circuito, no se aprovechan los posibles caminosalternativos con menor coste que puedan surgir durante la sesión.

• Poco tolerante a fallos. Si un nodo intermedio falla, todo el circuito se

viene abajo. Hay que volver a establecer conexiones desde el principio.

39

5. Técnicas de conmutación

Conmutación de mensajes. Definición

• La conmutación de mensajes se basa en el envío de mensaje que el terminal emisor desea transmitir al terminal receptor aun nodo o centro de conmutación en el que el mensaje es almacenado y posteriormente enviado al terminal receptor o a otro nodo de conmutación intermedio, si es necesario.

• Este tipo de conmutación siempre conlleva el almacenamiento y posterior envío del mensaje lo que origina que sea imposible transmitir el mensaje al nodo siguiente hasta la completa recepción del mismo en el nodo precedente.

40

5. Técnicas de conmutación

Conmutación de mensajes. Definición

El mensaje es una unidad lógica de datos de usuario, de datos decontrol o de ambos que el terminal emisor envía al receptor.

El mensaje consta de los siguientes elementos llamados campos:

• Datos del usuario. Depositados por el interesado. • Caracteres SYN. (Caracteres de Sincronía). • Campos de dirección. Indican el destinatario de la

información. • Caracteres de control de comunicación. • Caracteres de control de errores.

Además de los campos citados, el mensaje puede contener una cabecera que ayuda a la identificación de sus parámetros (dirección de destino, origen, canal a usar, etc.).

41

5. Técnicas de conmutación

Conmutación de mensajes. Definición

• El tipo de funcionamiento hace necesaria las existencias de memorias de masas intermedias en los nodos de conmutación para almacenar la información hasta que ésta sea transferida al siguiente nodo.

• Así mismo se incorpora los medios necesarios para la detección de mensajes erróneos y para solicitar la repetición de los mismos al nodo precedente.

42

5. Técnicas de conmutación

Conmutación de mensajes. Esquema

43

5. Técnicas de conmutación

Conmutación de mensajes. Uso principal

Este método era el usado por los sistemas telegráficos, siendo elmás antiguo que existe.

Para transmitir un mensaje a un receptor, el emisor debe enviarprimero el mensaje completo a un nodo intermedio el cual loencola en la cola donde almacena los mensajes que le sonenviados por otros nodos. Luego, cuando llega su turno, loreenviará a otro y éste a otro y así las veces que sean necesariasantes de llegar al receptor. El mensaje deberá ser almacenadopor completo y de forma temporal en el nodo intermedio antesde poder ser reenviado al siguiente, por lo que los nodostemporales deben tener una gran capacidad de almacenamiento.

44

5. Técnicas de conmutación

Conmutación de mensajes. Ventajas

• Se multiplexan mensajes de varios procesos hacia un

mismo destino, y viceversa, sin que los solicitantes debanesperar a que se libere el circuito

• El canal se libera mucho antes que en la conmutación de

circuitos, lo que reduce el tiempo de espera necesario paraque otro remitente envíe mensajes.

• No hay circuitos ocupados que estén inactivos. Mejoraprovechamiento del canal.

• Si hay error de comunicación se retransmite una menor

cantidad de datos.

45

5. Técnicas de conmutación

Conmutación de mensajes. Desventajas

• Se añade información extra de encaminamiento (cabeceradel mensaje) a la comunicación. Si esta informaciónrepresenta un porcentaje apreciable del tamaño delmensaje el rendimiento del canal (informaciónútil/información transmitida) disminuye.

• Mayor complejidad en los nodos intermedios:

� Ahora necesitan inspeccionar la cabecera de cadamensaje para tomar decisiones de encaminamiento.

� También deben examinar los datos del mensaje paracomprobar que se ha recibido sin errores.

� También necesitan disponer de memoria (discos duros)y capacidad de procesamiento para almacenar, verificary retransmitir el mensaje completo.

46

5. Técnicas de conmutación

Conmutación de mensajes. Desventajas

• Sigue sin ser viable la comunicación interactiva entre los

terminales.

• Si la capacidad de almacenamiento se llena y llega unnuevo mensaje, no puede ser almacenado y se perderádefinitivamente.

• Un mensaje puede acaparar una conexión de un nodo aotro mientras transmite un mensaje, lo que lo incapacitapara poder ser usado por otros nodos.

47

5. Técnicas de conmutación

Conmutación de paquetes

• La estación divide los mensajes largos en varios paquetes. Tiene mucha importancia en cálculos de CIR etc.

• La estación los envía secuencialmente• El ancho de banda no está reservado: El BW disponible es

compartido por diversos circuitos, de forma que se multiplexa tráfico de diferentes usuarios

• La infraestructura se aprovecha de manera óptima.

• Los paquetes se tratan de dos maneras:� Datagramas� Circuitos Virtuales

48

5. Técnicas de conmutación

Conmutación de paquetes. Datagrama

• Un datagrama es un fragmento de paquete que es enviadocon la suficiente información como para que la red puedasimplemente encaminar el fragmento hacia el EquipoTerminal de Datos (ETD) receptor, de maneraindependiente a los fragmentos restantes.

• Esto no garantiza que los paquetes lleguen en el ordenadecuado o que todos lleguen a destino.

• Protocolos basados en datagramas: IPX, UDP, IPoAC, CL.

• Los datagramas tienen cabida en los servicios de red noorientados a la conexión (como por ejemplo UDP oProtocolo de Datagrama de Usuario).

49

5. Técnicas de conmutación

Conmutación de paquetes. Datagrama

• El datagrama es una agrupación lógica de información quese envía como una unidad de capa de red a través de unmedio de transmisión sin establecer con anterioridad uncircuito virtual.

• Los datagramas IP son las unidades principales deinformación de Internet.

• Los términos trama, mensaje, paquete de red y segmentotambién se usan para describir las agrupaciones deinformación lógica en las diversas capas del modelo dereferencia OSI y en los diversos círculos tecnológicos.

50

5. Técnicas de conmutación

Conmutación de paquetes. Datagrama. Funcionamiento

• El servicio de datagramas ofrece una conexión no estableentre una máquina y otra. Los paquetes de datos sonsimplemente enviados o difundidos (broadcasting) de unamáquina a otra, sin considerar el orden en que estos lleganal destino, o si han llegado todos.

• El uso de datagramas no incrementa tanto el trafico de lared como el uso de sesiones, aunque pueden echar abajouna red si se usan indebidamente.

• Los datagramas, por tanto, son empleados para enviarrápidamente sencillos bloques de datos a una o másmáquinas. El servicio de datagramas comunica usando lasprimitivas simples mostradas en la siguiente tabla.

51

5. Técnicas de conmutación

Conmutación de paquetes. Datagrama. Características

• Cada paquete es tratado independientemente.

• Los paquetes pueden tomar cualquier ruta.

• Los paquetes pueden llegar desordenados.

• Algún paquete puede perderse.

• El nodo destino debe reordenar paquetes y solicitarpaquetes perdidos (si la red ofrece servicio orientado aconexión).

• Se gestiona por colas.

52

5. Técnicas de conmutación

Conmutación de paquetes. Primitivas del servicio de Datagrama

Primitiva Descripción

Send Datagram Envía paquete datagrama a máquina o grupos de máquinas.

Send Broadcast Datagram

Difunde (broadcast) datagrama a cualquier máquina, esperando un datagrama de acuse de recibo.

Receive Datagram Recibe un datagrama de una máquina.

Receive Broadcast Datagram

Espera por un datagrama de difusión.

53

5. Técnicas de conmutación

Conmutación de paquetes. Circuito virtual

• Un circuito virtual (VC por sus siglas en inglés) es un sistemade comunicación por el cual los datos de un usuario origenpueden ser transmitidos a otro usuario destino a través demás de un circuito de comunicaciones real durante uncierto periodo de tiempo, pero en el que la conmutación estransparente para el usuario.

• Un ejemplo de protocolo de circuito virtual es elampliamente utilizado TCP (Protocolo de Control deTransmisión).

54

5. Técnicas de conmutación

Conmutación de paquetes. Características

• Se establece una ruta fija antes de enviar cualquier paquete.• Paquetes de llamada y aceptación establecen la conexión.• Cada paquete contiene un identificador de circuito virtual

en vez de una dirección destino.• No se toman decisiones de enrutado para cada paquete. En

datagramas sí.• Un paquete de liberación libera el camino.• No son rutas dedicadas pues se siguen utilizando colas. La

misma ruta la pueden establecer distintos Circuitos Virtuales. Puede haber varios circuitos virtuales entre un mismo origen y destino.

• Se gestiona por tablas.

55

5. Técnicas de conmutaciónConmutación de paquetes. Circuito virtual. CONS (Connected Oriented Network Services)

DTE

DTE: Data Terminal EquipmentDCE: Data Communications Equipment

Línea punto a punto

Switch

SwitchSwitch

DCE

Host

DTE

DTE

DCE

DCE

DCE

DCE

DCE

Host

DTE

Router

Switch Switch

Switch

Host

Host

Host

Circuito virtual

56

5. Técnicas de conmutación

Conmutación de paquetes. Circuito virtual. Ventajas respecto a la conmutación de circuitos

• Eficiencia de la línea. Se comparten enlaces formando colas. Los enlaces entre nodos pueden usarse continuamente.

• Cada nodo se conecta a la red a su propia velocidad.

• Los paquetes son aceptados incluso cuando la red está ocupada. Técnicas de buffering o de colas.

• Se pueden utilizar prioridades (a mas prioridad, menos retardo).

57

5. Técnicas de conmutación

Conmutación de paquetes. Circuito virtual. Ejemplos

• Redes de conmutación de paquetes CONS:– X.25: primer estándar de red pública de conmutación de

circuitos. Hoy en día poco interesante.– Frame Relay (conmutación de tramas): versión aligerada de

X.25. – ATM (conmutación de celdas): servicio moderno– Posibilidad de crear circuitos virtuales de dos tipos:

� Temporales: SVCs (Switched Virtual Circuits). Se crean y destruyen dinámicamente cuando se necesitan.

� Permanentes: PVCs (Permanent Virtual Circuits). Se configuran manualmente en los equipos para que estén siempre activos

• Las redes públicas X.25 permiten SVCs y PVCs.

• Las redes públicas Frame Relay y ATM solo permiten PVCs

58

5. Técnicas de conmutación

Conmutación de paquetes. Circuito virtual. Ventajas

• Si hay error de comunicación se retransmite una cantidadde datos aun menor que en el caso de mensajes.

• En caso de error en un paquete solo se reenvía esepaquete, sin afectar a los demás que llegaron sin error.

• Comunicación interactiva. Al limitar el tamaño máximo delpaquete, se asegura que ningún usuario puedamonopolizar una línea de transmisión durante muchotiempo (microsegundos), por lo que las redes deconmutación de paquetes pueden manejar tráficointeractivo.

59

5. Técnicas de conmutación

Conmutación de paquetes. Circuito virtual. Ventajas

Aumenta la flexibilidad y rentabilidad de la red.• Se puede alterar sobre la marcha el camino seguido

por una comunicación (p.ej. en caso de avería de uno o más enrutadores).

• Se pueden asignar prioridades a los paquetes de una determinada comunicación. Así, un nodo puede seleccionar de su cola de paquetes en espera de ser transmitidos aquellos que tienen mayor prioridad.

60

5. Técnicas de conmutación

Conmutación de paquetes. Circuito virtual. Desventajas

• Mayor complejidad en los equipos de conmutación

intermedios, que necesitan mayor velocidad y capacidad de cálculo para determinar la ruta adecuada en cada paquete.

• Duplicidad de paquetes. Si un paquete tarda demasiado en llegar a su destino, el host receptor(destino) no enviara el acuse de recibo al emisor, por el cual el host emisor al no recibir un acuse de recibo por parte del receptor este volverá a retransmitir los últimos paquetes del cual no recibió el acuse, pudiendo haber redundancia de datos.

• Si los cálculos de encaminamiento representan un porcentaje apreciable del tiempo de transmisión, el rendimiento del canal (información útil/información transmitida) disminuye.

61

5. Técnicas de conmutación

Conmutación de paquetes. Datagrama - Circuito virtual

Circuitos Virtuales:• La red proporciona secuenciamiento y control de errores.• Los paquetes se reenvían mas rápidamente (no es

necesario un procesamiento de rutas).• Menos fiable (si un nodo falla, fallan todos los CV de ese

nodo).Datagramas:

• No hay fase de establecimiento.• Mas flexible.

62

5. Técnicas de conmutación

Conmutación de celdas

• En los servicios de conmutación de celdas, la unidad mínima de datos conmutados es una "celda" de tamaño fijo, es vez de un paquete de longitud variable.

• La tecnología basada en celdas permite que la conmutación sea realizada en hardware sin la complejidad y el consumo de tiempo de cálculo frame por frame.

• Esto hace que la conmutación por medio de celdas más rápida y barata.

63

5. Técnicas de conmutación

Conmutación de celdas. Servicios más conocidos:

ATM (Asynchronous Transfer Mode)

• ATM es un método de transmisión de celdas de tamaño fijo (15% bytes) utilizada en redes de banda ancha.

• ATM puede transferir datos a tasas desde 25 Mbps hasta 622 Mbps y tiene el potencial de transferir datos a velocidades de datos medidas en Gigabits por segundo.

• Muchos proveedores de servicios ofrecen servicios ATM, pero la gran mayoría lo tienen planeado para un futuro muy cercano ya que su implementación es muy cara.

64

5. Técnicas de conmutación

Conmutación de celdas. Servicios más conocidos:

• UNI = User-to-Network Interface

• NNI = Network-to-Network Interface

TokenRing

UNI

NNI

NNIRed ATM

65

5. Técnicas de conmutación

Conmutación de celdas. Servicios más conocidos:

SMDS (Switched Multimegabit Data Service)

• Como ATM, SMDS es otro servicio basado en celdas de longitud fija proveído por algunos carriers en Estados Unidos pero que no está disponible en México.

• SMDS usa conmutación de celdas y provee servicios tales como tarificación basada en uso y administración de red.

• El rango de las velocidades de transmisión van desde 1 Mbps hasta los 34 Mbps con una conectividad de muchos a muchos.

66

5. Técnicas de conmutación

Conmutación de etiquetas

• En los servicios de conmutación de etiquetas, a las unidades de datos conmutados se les agrega una “etiquetas“ de longitud fija que se utilizará para la conmutación.

• Mecanismo para manejar el flujo de tráfico de tamaños variados (Flow Management)

• Es independiente de protocolos de capa 2 y 3• Mapea direcciones IP a rótulos de largo fijo• Interconecta a protocolos de existentes (RSVP, OSPF)• Soporta ATM, Frame-Relay y Ethernet

67

5. Técnicas de conmutación

Conmutación de etiquetas. Esquema

68

6. Ancho de banda digital

Frecuencia de una señal:

Es el número de ondas sinusoidales completas por segundo.

Es medido en ciclos por segundos o hertzios.

Banda de paso (BP) de un canal, es el rango de frecuencias

que pueden ser transportadas por ese canal.

Ancho de banda (BW), es la anchura de la banda de paso.

Ejemplo:

Canal 1 de TV usa entre 470.5 y 476.5 Mhz de BP,

Canal 2 de TV usa entre 800 y 806 Mhz de BP.

Ambos canales tienes una BW de 6Mhz.

Banda de Paso (BP) y Ancho de Banda (BW):

69

6. Ancho de banda digital

El factor humano

La voz humana puede emitir sonidos

en el rango de frecuencias de 30 a

10,000hz (BP) y tiene un BW de

9.97Khz.

Banda de Paso (BP) y Ancho de Banda (BW):

El oído humano puede

escuchar sonidos en el

rango de frecuencias de 20

a 20,000hz (BP) y tiene un

BW de 19.98Khz.

70

7. Organismos de estandarización

• Hace 168 años (24 May 1844), Samuel Morseenvió su primer mensaje publico a través de una línea telegráfica entre Washington y Baltimore, y a través de este simple acto, comenzó la Era de las Telecomunicaciones.

• El 17 de mayo de cada año se celebra el Día Mundial de las Telecomunicaciones.

• 1920, comienzo de la difusión de sonidos en los estudios de Marconi Company

• La CCIF (International Telephone ConsultativeCommittee), se estableció en 1924.

• La CCIT (International Telegraph ConsultativeCommittee), se estableció en 1925.

Historia

71

7. Organismos de estandarización

• La CCIR (International Radio Consultative Committee) fue establecida el año 1927 en una conferencia en Washington D.C. y el CCIR se responsabilizó de la coordinación de estudios técnicos, pruebas y mediciones llevadas a cabo en varios campos de las

telecomunicaciones, así como el diseño de estándares internacionales.

• En 1956, la CCIT y la CCIF fueron fusionados para formar theInternational Telephone and Telegraph Consultative Committee(CCITT), para responder mas efectivamente a los requerimientos generados por el desarrollo de esos dos tipos de comunicaciones.

• En 1992 la CCITT se convirtió en ITU (International Telecommunication Union) Union Internacional de Telecomunicaciones.

Historia

72

7. Organismos de estandarización

� CCITT son las siglas de Comité Consultivo Internacional Telegráfico y Telefónico –

� CCITT - Comite Consultatif International Telegraphique et Telephonique –

� CCITT - Consultative Committee for International Telegraphy and Telephony.

� CCITT, es el antiguo nombre del comité de normalización de las telecomunicaciones dentro de la UIT ahora conocido como UIT-T.

- CCITT -Comité Consultivo Internacional Telegráfico y Telefónico

73

7. Organismos de estandarización

- UIT -Unión Internacional de Telecomunicaciones

ITU: International Telecommunication Union o

Unión Internacional de Telecomunicaciones (UIT)

Web: www.iut.int

¿Qué es la ITU?

Es el organismo especializado de las NNUU (www.un.org) encargado de regular las telecomunicaciones, a nivel internacional, entre las distintas Administraciones y Empresas Operadoras.

74

7. Organismos de estandarización

Perú: 31 octubre 1945

Segunda guerra mundial: 1939 – Setiembre 1945

75

7. Organismos de estandarización

- UIT -Unión Internacional de Telecomunicaciones

Está compuesta por tres sectores:

1. UIT-T:

Sector de Normalización de las Telecomunicaciones

(antes CCITT).

2. UIT-R:

Sector de Normalización de las Radiocomunicaciones

(antes CCIR).

3. UIT-D:

Sector de Desarrollo de las Telecomunicaciones.

76

7. Organismos de estandarización

• La sede de la UIT se encuentra en Ginebra (Suiza).

• En general la normativa generada por la UIT está contenida en un amplio conjunto de documentos denominados Recomendaciones, agrupados por Series.

• Cada serie está compuesta por las Recomendaciones

correspondientes a un mismo tema, por ejemplo Tarificación, Mantenimiento, etc.

• Aplicación: Aunque en las Recomendaciones nunca se "ordena", solo se "recomienda", su contenido, a nivel de relaciones internacionales, es considerado como ley por las Administraciones y Empresas Operadoras.

- UIT -Unión Internacional de Telecomunicaciones

77

7. Organismos de estandarización

Series de las Recomendaciones UIT-T:

Serie A Organización del trabajo del UIT-T.

Serie B Medios de expresión: definiciones, símbolos, clasificación.

Serie C Estadísticas generales de telecomunicaciones.

Serie D Principios generales de tarificación.

Serie E Explotación general de la red, servicio telefónico, explotación del servicio y factores humanos.

Serie F Servicios de telecomunicación no telefónicos.

Serie G Sistemas y medios de transmisión, sistemas y redes digitales

Serie H Sistemas audiovisuales y multimedia.

- UIT -Unión Internacional de Telecomunicaciones

78

7. Organismos de estandarización

Serie I Red digital de servicios integrados (RDSI).

Serie J Transmisiones de señales radiofónicas, de televisión y de otras señales multimedios.

Serie K Protección contra las interferencias.

Serie L Construcción, instalación y protección de los cables y otros elementos de planta exterior.

Serie MRed de Gestión de las Telecomunicaciones (RGT) y mantenimiento de redes: sistemas de transmisión, circuitos telefónicos, telegrafía, facsímil y circuitos arrendados internacionales.

Serie N Mantenimiento: circuitos internacionales para transmisiones radiofónicas y de televisión.

Serie O Especificaciones de los aparatos de medida.

- UIT -Unión Internacional de Telecomunicaciones

79

7. Organismos de estandarización

Serie P Calidad de transmisión telefónica, instalaciones telefónicas y redes locales.

Serie Q Conmutación y señalización.

Serie R Transmisión telegráfica. Serie S Equipos terminales para servicios de telegrafía. Serie T Terminales para servicios de telemática.

Serie U Conmutación telegráfica. Serie V Comunicación de datos por la red telefónica.

Serie X Redes de datos y comunicación entre sistemas

abiertos y seguridad.

Serie Y Infraestructura mundial de la información,

aspectos del protocolo Internet y Redes de la

próxima generación.

Serie Z Lenguajes y aspectos generales de soporte lógico para sistemas de telecomunicación.

- UIT -Unión Internacional de Telecomunicaciones

80

7. Organismos de estandarizaciónInternet Engineering Task Force (IETF)

(Grupo de Trabajo de Ingeniería de Internet)

• Es una organización internacional abierta de normalización, que tiene como objetivos el contribuir a la ingeniería de Internet, actuando en diversas áreas, como transporte, encaminamiento, seguridad.

• Fue creada en EE. UU. en 1986.

• El IETF es mundialmente conocido por ser la entidad que regula las propuestas y los estándares de Internet, conocidos como RFC.

81

7. Organismos de estandarizaciónInternet Engineering Task Force (IETF)

(Grupo de Trabajo de Ingeniería de Internet)

• Es una institución sin fines de lucro y abierta a la participación de cualquier persona, cuyo objetivo es velar para que la arquitectura de Internet y los protocolos que la conforman funcionen correctamente.

• Se la considera como la organización con más autoridad para establecer modificaciones de los parámetros técnicos bajo los que funciona la red.

• El IETF se compone de técnicos y profesionales en el área de redes, tales como investigadores, integradores, diseñadores de red, administradores, vendedores, entre otros.

• Dado que la organización abarca varias áreas, se utiliza una metodología de división en grupos de trabajo, cada uno de los cuales trabaja sobre un tema concreto con el objetivo de concentrar los esfuerzos.

82

8. Protocolos y arquitectura

Ver diapositiva:

Cap. 2

Arquitectura de Protocolos

William Stallings

Del profesor Herman García(revisar el Blog del curso)

9. RM-OSI

• 60-70: Borroughs, DEC, Honeywell e IBM definieron protocolos de comunicaciones de red para sus productos de computadoras.

• Debido a la naturaleza propietaria de los protocolos, la interconexión de computadoras de diferentes fabricantes o incluso entre líneas de productos diferentes de un mismo fabricante, era muy difícil.

• Finales 70: La ISO (Organización Internacional de Estandarización) desarrolló el Modelo de Referencia para Interconexión de Sistemas Abiertos

(RM-OSI).

• OSI, significa el intercambio de información entre terminales, computadoras, redes, procesos, personas, etc.

• El RM-OSI, define donde se han de efectuar las tareas, pero no cómo se

han de efectuar. No especifica servicios ni protocolos, pero si proporciona una base común para coordinar el desarrollo de estándares dirigidos a la conexión entre sistemas.

9. RM-OSI

• El RM-OSI: Arquitectura de siete niveles, que es la base para los sistemas de red abiertos, y permite a las computadoras de cualquier fabricante comunicar con los de otro.

• Los objetivos del RM-OSI son:

– Agilizar la comunicación entre equipos construidos por diferentes fabricantes.

– La estratificación del modelo OSI proporciona transparencia, es decir, es decir, la operación de una capa del modelo es independiente de las otras capas.

9. RM-OSI

Justificación:

• La razón por la que se incluye en este curso el RM-OSI

es que proporciona una excelente referencia con la cual comparar y contrastar diferentes protocolos y funcionalidades.

• El modelo OSI es poco implementado, sin embargo el modelo TPC/IP es el mejor implementado hasta el momento entre un conjunto de protocolos de sistemas abiertos.

9. RM-OSI

� L1: Capa física.

� L2: Capa de enlace de red.

� L3: Capa de red.

� L4: Capa de transporte.

� L5: Capa de sesión.

� L6: Capa de presentación.

� L7: Capa de aplicación.

9. RM-OSI

• L1: Capa Física.

– Especifica las características eléctricas y mecánicas del protocolo usado para transferir bits entre dispositivos adyacentes en la red.

Ejemplos.

– EIA-232-E(RS232C),

– El interfaz serie de alta velocidad (HSSI),

– Ethernet,

– Fibra Óptica,

– etc.

9. RM-OSI

• L2: Capa de enlace de datos.

– Especifica el protocolo para comunicaciones libres de errores entre los dispositivos adyacentes a través de un enlace físico.

Ejemplos.

– EL protocolo de control de enlace síncrono (SDLC),

– El protocolo de control de enlace de alto nivel para ISO (HDLC),

– El protocolo de acceso al enlace balanceado de la ITU-T (LAPB),

– El protocolo de acceso al enlace por el canal D (LAPD),

– El protocolo de acceso al enlace para servicios portadores en modo trama (LAPF),

– etc.

9. RM-OSI

• L3: Capa de red.

– Especifica los protocolos para funciones como encaminamiento, control de

congestión, facturación, establecimiento y

terminación de llamadas y comunicación

usuario-red.

Ejemplos.

– El protocolo IP,

– El protocolo connectionless de ISO (CLNP),

– El protocolo de control de llamada RDSI (Q.931 y Q.2.931),

– etc.

9. RM-OSI

• L4: Capa de transporte.

– Especifica las funciones y clases de servicio para comunicación libre de error entre los host a través de la subred.

Ejemplos.

– El protocolo TCP,

– el protocolo de transporte de red de ISO (TP),

– etc.

9. RM-OSI

• L5: Capa de Sesión.

– Especifica la comunicación proceso a proceso, recuperación de errores y sincronización de la sesión.

9. RM-OSI

• L6: Capa de Presentación.

Un conjunto general de servicios

de usuario de aplicación no

específica, como encriptación, autenticación, y compresión de texto.

9. RM-OSI

• L7: Capa de aplicación.

Especifica el UI hacia la red y un conjunto

de aplicaciones de usuario específicas.

Ejemplos. El protocolo…

– de transferencia de correo unificado de TCP/IP (SMTP)

– para el email de la ITU-T (X.400),

– para los servicios de directorio (X.500),

– telnet de TCP/IP,

– de ISO para los logins remotos y los terminales virtuales (VT),

– de transferencia de archivos de TCP/IP (FTP),

– de transferencia de archivos de la ISO (FTAM),

– de gestión de red unificado de TCP/IP (SNMP),

– de información de gestión común de ISO (CMIP),

– de transferencia de hipertexto para la web (HTTP), etc.

10. Modelo TCP/IP

Aplicación

Presentación

Sesión

Transporte

Red

Enlace

Física

Aplicación

Transporte

Internet

Host-red

L5: Aplicación

L4: Transporte

L3: Red

L2:

Enlace

LLC

MAC

L1: Física

Ha

rdw

are

Fir

mw

are S

oft

wa

re

Sis

t. O

pe

rati

vo

Pro

gr.

de

usu

ari

o

Comparación de los Modelos OSI, TCP/IP e Hibrido:

WAN LAN

95

Sesión 1. Introducción a los protocolos