transformaciones en el plano -...

20
Carrera- Diseño de Interiores y Mobiliario- Asignatura: MATEMÁTICA Prof. Alicia IturbeProf. Cecilia Ariagno 1 TRANSFORMACIONES EN EL PLANO Conceptos teóricos Una transformación del plano es una aplicación del plano en el mismo. Esto significa que es un procedimiento que, a todo punto M del plano, asocia un punto M’ y uno solo. Se dice que M’ es la imagen de M por la transformación. Estudiaremos aquí algunas transformaciones del plano y más particularmente las simetrías axiales y centrales. Para cada una de ellas daremos una definición “ingenua” ( y en general útil para reconocer si dos figuras se deducen una de la otra por esta transformación ) , una definición matemática y también sus propiedades. 1- La simetría axial (o simetría ortogonal en relación a una recta ) 1.1 Definición “ingenua” Una figura (F’) es la simétrica de una figura (F) con relación a una recta (D) si cuando se pliega la hoja por (D), (F) y (F’) se superponen (por ejemplo por transparencia). 1.2 Definición matemática El simétrico de un punto M en relación a una recta (D) es: el punto M’ tal que (D) sea la mediatriz de [MM’] , si M no pertenece a (D); el mismo punto M si M pertenece a (D). M es también el simétrico de M’ en relación a (D). Se dice que M y M’ son simétricos. Se habla igualmente de figuras simétricas. Todos los puntos del eje de simetría son su propia imagen; se dice que son invariantes.

Upload: vuanh

Post on 07-Mar-2018

231 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: TRANSFORMACIONES EN EL PLANO - unrn.edu.arunrn.edu.ar/blogs/disinte-matematica-1/files/2014/05/Transforma... · cada uno de los vértices del polígono y luego unir los puntos obtenidos

Carrera- Diseño de Interiores y Mobiliario- Asignatura: MATEMÁTICA Prof. Alicia Iturbe– Prof. Cecilia Ariagno

1

TRANSFORMACIONES EN EL PLANO

Conceptos teóricos Una transformación del plano es una aplicación del plano en el mismo. Esto significa que es un

procedimiento que, a todo punto M del plano, asocia un punto M’ y uno solo. Se dice que M’ es la

imagen de M por la transformación.

Estudiaremos aquí algunas transformaciones del plano y más particularmente las simetrías

axiales y centrales. Para cada una de ellas daremos una definición “ingenua” ( y en general útil para

reconocer si dos figuras se deducen una de la otra por esta transformación ) , una definición matemática

y también sus propiedades.

1- La simetría axial (o simetría ortogonal en relación a una recta ) 1.1 Definición “ingenua”

Una figura (F’) es la simétrica de una figura (F)

con relación a una recta (D) si cuando se

pliega la hoja por (D), (F) y (F’) se superponen

(por ejemplo por transparencia).

1.2 Definición matemática

El simétrico de un punto M en relación a una recta (D) es:

el punto M’ tal que (D) sea la mediatriz de [MM’] , si M no pertenece a (D);

el mismo punto M si M pertenece a (D).

M es también el simétrico de M’ en relación a (D). Se dice que M y M’ son simétricos. Se habla igualmente de figuras simétricas. Todos los puntos del eje de simetría son su propia imagen; se dice que son invariantes.

Page 2: TRANSFORMACIONES EN EL PLANO - unrn.edu.arunrn.edu.ar/blogs/disinte-matematica-1/files/2014/05/Transforma... · cada uno de los vértices del polígono y luego unir los puntos obtenidos

Carrera- Diseño de Interiores y Mobiliario- Asignatura: MATEMÁTICA Prof. Alicia Iturbe– Prof. Cecilia Ariagno

2

1.3 Métodos de trazado del simétrico de un punto en relación a una recta. Hay dos métodos que corresponden a dos métodos de trazado de la mediatriz de un segmento.

Primer método : Con regla y escuadra

Se traza la perpendicular a (D) que pasa por

M. Ella corta a (D) en H.

Se ubica el punto M’ sobre esta perpendicular

tal que MH=M’H

Segundo método: Sólo con compás

Se ubican dos puntos sobre (D)

Se trazan dos arcos de circunferencias con

centros en estos puntos y pasando por M. El

segundo punto común de estos dos arcos es el

simétrico de M.

1.4 Propiedades de la simetría axial Se admite que:

La imagen de una recta por una simetría axial es una recta. Se dice que la simetría axial conserva la alineación. Consecuencia: si un punto pertenece a una recta, su simétrico pertenece a la simétrica de la recta. Pero atención, la imagen de una recta en una simetría axial no es , en general , una recta paralela, contrariamente a lo que sucede en una simetría central.

La imagen de un segmento por una simetría axial es un segmento de la misma longitud. Se dice que la simetría axial conserva las longitudes.

La imagen de un ángulo por una simetría axial es un ángulo de igual amplitud. Se dice que la simetría axial conserva los ángulos.

La imagen del medio de un segmento por una simetría axial es el medio de la imagen de ese segmento. Se dice que la simetría axial conserva el medio.

Ejercicio 1: Verificar estas propiedades en ejemplos Estas propiedades permiten construir el simétrico de un polígono. Es suficiente trazar el simétrico de cada uno de los vértices del polígono y luego unir los puntos obtenidos ( en el mismo orden! ) Permiten también decir que el simétrico de un círculo es un círculo de igual radio cuyo centro es el simétrico del centro dado.

Page 3: TRANSFORMACIONES EN EL PLANO - unrn.edu.arunrn.edu.ar/blogs/disinte-matematica-1/files/2014/05/Transforma... · cada uno de los vértices del polígono y luego unir los puntos obtenidos

Carrera- Diseño de Interiores y Mobiliario- Asignatura: MATEMÁTICA Prof. Alicia Iturbe– Prof. Cecilia Ariagno

3

1.5 Eje de simetría Una figura (F) admite un eje de simetría (D) si el simétrico de todo punto de (F) pertenece a (F) Ejemplo:

(D) es un eje de simetría de la figura (F)

2- La simetría central (o simetría en relación a un punto) 2.1.Definición “ingenua”

Una figura (F’) es la simétrica de una figura (F)

en relación a un punto si se obtiene (F’)

haciendo rotar (F) alrededor de C un ángulo

de 180 grados.

2.2 Definición matemática

El simétrico de un punto M en relación a un punto C es:

el punto M’ tal que C es el medio de [MM’], si M es distinto de C,

el punto M si M y C son el mismo punto

Se dice que M y M’son simétricos en relación a C. Se habla igualmente de figuras simétricas.

Para encontrar el eje de simetría se puede utilizar la definición 1.1 plegando mentalmente la figura. Si se piensa que una recta es un eje de simetría, se la puede trazar con precisión tomando dos puntos M y M’ de la figura, que se distinguen como simétricos, y trazar la mediatriz de [MM’]. Una figura puede tener más de un eje de

simetría

Page 4: TRANSFORMACIONES EN EL PLANO - unrn.edu.arunrn.edu.ar/blogs/disinte-matematica-1/files/2014/05/Transforma... · cada uno de los vértices del polígono y luego unir los puntos obtenidos

Carrera- Diseño de Interiores y Mobiliario- Asignatura: MATEMÁTICA Prof. Alicia Iturbe– Prof. Cecilia Ariagno

4

2.3 Métodos de trazado del simétrico de un punto en relación a un punto.

Un único método: Con regla y compás ( o

regla graduada)

Se traza la semirrecta [MC)

Se ubica el punto M’ sobre esta semirrecta

tal que MC=M’C

2.4. Propiedades de la simetría central Si uno se refiere a la definición ingenua, sus propiedades son evidentes. Se admite que:

La imagen de una recta por una simetría central es una recta. Se dice que la simetría central conserva la alineación. Contrariamente a lo que sucede en una simetría axial, la simetría central transforma una recta en otra paralela.

La imagen de un segmento por una simetría central es un segmento de la misma longitud. Se dice que la simetría central conserva las longitudes.

La imagen de un ángulo por una simetría central es un ángulo de igual amplitud. Se dice que la simetría central conserva los ángulos.

La imagen del medio de un segmento por una simetría central es el medio de la imagen de ese segmento. Se dice que la simetría central conserva el medio.

Ejercicio 2: Verificar estas propiedades en ejemplos Estas propiedades permiten construir el simétrico de un polígono. Es suficiente trazar el simétrico de cada uno de los vértices del polígono y luego unir los puntos obtenidos ( en el mismo orden! ) Permiten también decir que el simétrico de un círculo es un círculo de igual radio cuyo centro es el simétrico del centro dado. 2.5. Centro de simetría Una figura (F) admite un centro de simetría C si el simétrico de todo punto de (F) pertenece a (F).

Se puede utilizar la definición 2.1 imaginando pivotear 180º la

figura alrededor de un punto y verificar mentalmente que ella se

superpone con la figura en la posición de partida. Se puede

trazar con precisión el centro de simetría, si existe, tomando dos

puntos de la figura que se consideran simétricos y determinando

el medio del segmento que determinan. Hay que verificar luego

que este punto es el centro de simetría de la figura.

Si una figura, con segmentos en algunos de sus lados, admite un

centro de simetría, entonces estos segmentos son paralelos dos a

dos. Por lo tanto si un polígono no tiene lados paralelos dos a dos

no tiene centro de simetría.

Page 5: TRANSFORMACIONES EN EL PLANO - unrn.edu.arunrn.edu.ar/blogs/disinte-matematica-1/files/2014/05/Transforma... · cada uno de los vértices del polígono y luego unir los puntos obtenidos

Carrera- Diseño de Interiores y Mobiliario- Asignatura: MATEMÁTICA Prof. Alicia Iturbe– Prof. Cecilia Ariagno

5

3- La rotación Una rotación es una transformación que asocia a cada punto del plano una imagen de acuerdo a un punto llamado centro de rotación y a un ángulo que podemos llamar ángulo de giro. Definir una rotación necesita en principio definir su “sentido” . Se habla de sentido directo si se gira o rota en el sentido inverso al movimiento de las agujas de un reloj. La medida de un ángulo de sentido directo es positivo y la de un ángulo de sentido indirecto es negativo. Se habla de un ángulo de + 45 grados ( o simplemente 45 grados ) o – 45 grados.

R(O, α)

Rotaciones horarias o negativas

Rotaciones antihorarias o positivas Ángulos positivos

Ángulos Negativos 3.1 Definición “ingenua”

Una figura (F’) es la imagen de una figura (F)

por una rotación de centro C y de ángulo α de

sentido directo ( o indirecto) si cuando se hace

rotar la figura (F) un ángulo α de sentido

directo ( o indirecto) alrededor de C , ella se

superpone con (F’).

El triángulo A´B´C´es la imagen del triángulo

ABC por una rotación de centro “O” y ángulo

α.R(O,α)

Page 6: TRANSFORMACIONES EN EL PLANO - unrn.edu.arunrn.edu.ar/blogs/disinte-matematica-1/files/2014/05/Transforma... · cada uno de los vértices del polígono y luego unir los puntos obtenidos

Carrera- Diseño de Interiores y Mobiliario- Asignatura: MATEMÁTICA Prof. Alicia Iturbe– Prof. Cecilia Ariagno

6

3.2 Definición matemática

Dado un ángulo α (de sentido directo o indirecto) y un punto C, la imagen del punto M por la

rotación de centro C y ángulo α es : el punto M’tal que CM’=CM y el ángulo ( CM,CM’)=α ( de

sentido directo o indirecto) , si M es distinto a C, el punto M si M es C.

La rotación de centro C y de ángulo & se designa R (C, α).

Si M’ es la imagen de M por R(C,α), se escribe : M’ = R(C,α) (M). En particular cuando α es 180 grados se trata de una simetría de centro C y en este caso la precisión del sentido de rotación no tiene importancia. 3.3 Métodos de trazado de la imagen de un punto por una rotación de centro C y ángulo α.

1-Se traza la semirrecta [C,x), tal que

(CM,Cx)=α

2-Se ubica el punto M’ sobre [Cx) tal que

CM=CM’

Observación: Si M’ es la imagen de M por una

rotación de centro C, entonces C pertenece a

la mediatriz [MM’] porque CM=CM’

(propiedad de la mediatriz)

3.4 Propiedades de las rotaciones La rotación transforma una recta en una recta, conserva las distancias, los ángulos y los medios. La imagen de un círculo es un círculo del mismo radio cuyo centro es la imagen del centro. Ejercicio 3: Verificar estas propiedades sobre ejemplos.

4 La traslación Noción de vector Un vector se caracteriza por su sentido, dirección y longitud (se trata de una definición ingenua) Este dibujo representa al vector AB B Su longitud es la del segmento [AB] Su dirección es la de la recta (AB) Su sentido es de A hacia B. A Dos vectores son iguales si tienen la misma longitud, sentido y dirección B F E G A D I C J H

Page 7: TRANSFORMACIONES EN EL PLANO - unrn.edu.arunrn.edu.ar/blogs/disinte-matematica-1/files/2014/05/Transforma... · cada uno de los vértices del polígono y luego unir los puntos obtenidos

Carrera- Diseño de Interiores y Mobiliario- Asignatura: MATEMÁTICA Prof. Alicia Iturbe– Prof. Cecilia Ariagno

7

Conclusiones: AB= CD AB EF Porque tienen igual dirección y sentido pero distinta longitud AB IJ Porque tienen igual dirección y longitud pero distinto sentido AB GH Porque tienen distinta dirección aunque su longitud sea la misma

Dos vectores AB y CD son iguales si ABDC ( cuidado con el orden de las letras!) es un paralelogramo y recíprocamente. Esto otorga un método suplementario para demostrar que un cuadrilátero es un paralelogramo. B D A C 4.1 Definición “ingenua”

Una figura (F’) es la imagen de una figura (F)

por una traslación si es posible desplazar (F)

sin hacerla rotar ( por ejemplo con un papel

de calcar ) y lograr que coincida con (F’)

La figura (2) es la imagen de la figura (1) por la

traslación del vector

4.2 Definición matemática

Dado un vector , la imagen de un punto M por la traslación del vector

es el punto M’ . La traslación de vector

4.3 Métodos de trazado

1er método

- Se traza la recta por M paralela a (AB)

- Se ubica el punto M’ sobre esta recta tal que

Page 8: TRANSFORMACIONES EN EL PLANO - unrn.edu.arunrn.edu.ar/blogs/disinte-matematica-1/files/2014/05/Transforma... · cada uno de los vértices del polígono y luego unir los puntos obtenidos

Carrera- Diseño de Interiores y Mobiliario- Asignatura: MATEMÁTICA Prof. Alicia Iturbe– Prof. Cecilia Ariagno

8

2do método (trazando los vértices del

paralelogramo ABM’M)

Se traza un arco de circunferencia de centro B

y radio [AM]

Se traza un arco de circunferencia de centro M

y de radio [AB]

Estos dos arcos se cortan en M’

4.4 Propiedades de la traslación La traslación conserva la alineación, las longitudes, los ángulos y los medios. La imagen de una recta es una recta paralela a ella. La imagen de un círculo es un círculo de igual radio cuyo centro es la imagen del centro.

5- La proyección ortogonal

5.1 Definición matemática

Dada una recta (D), la proyección ortogonal

sobre (D) es la transformación que a todo

punto M asocia el punto M’ tal que M’ es la

intersección de (D) y de la perpendicular a (D)

que pasa por M.

Si M pertenece a (D) él es su propia imagen (

es decir invariante)

5.2 Propiedades La proyección no conserva las longitudes, pero sí los medios y también la alineación.

Page 9: TRANSFORMACIONES EN EL PLANO - unrn.edu.arunrn.edu.ar/blogs/disinte-matematica-1/files/2014/05/Transforma... · cada uno de los vértices del polígono y luego unir los puntos obtenidos

Carrera- Diseño de Interiores y Mobiliario- Asignatura: MATEMÁTICA Prof. Alicia Iturbe– Prof. Cecilia Ariagno

9

Ejercicio 1

Ejercicio 2 Aplica al triángulo ABC una R(0, + 100º). Demuestra que ABC

Ejercicio 3

Page 10: TRANSFORMACIONES EN EL PLANO - unrn.edu.arunrn.edu.ar/blogs/disinte-matematica-1/files/2014/05/Transforma... · cada uno de los vértices del polígono y luego unir los puntos obtenidos

Carrera- Diseño de Interiores y Mobiliario- Asignatura: MATEMÁTICA Prof. Alicia Iturbe– Prof. Cecilia Ariagno

10

Ejercicio 4

Ejercicio 5 La siguiente figura está formada por octágonos y cuadrados.

¿Cuál(es) de las siguientes afirmaciones es (son) verdadera(s) con respecto a la figura?

I. Tiene simetría central. II. Tiene simetría axial. III. Tiene cuatro ejes de simetría.

Page 11: TRANSFORMACIONES EN EL PLANO - unrn.edu.arunrn.edu.ar/blogs/disinte-matematica-1/files/2014/05/Transforma... · cada uno de los vértices del polígono y luego unir los puntos obtenidos

Carrera- Diseño de Interiores y Mobiliario- Asignatura: MATEMÁTICA Prof. Alicia Iturbe– Prof. Cecilia Ariagno

11

Ejercicio 6 Identifica todas las simetrías axiales (indicando ejes) y centrales (indicando centros) en cada figura.

Ejercicio 7 El triángulo ABC de la figura se ha reflejado en torno a la recta L, transformándose en el triángulo DEF.

¿Cuál(es) de las siguientes afirmaciones es (son) siempre

verdadera(s)?

I. BD = AE. II. BF = CE. III.

a

h g

e

d

c b

k

f

j

l m

j

Page 12: TRANSFORMACIONES EN EL PLANO - unrn.edu.arunrn.edu.ar/blogs/disinte-matematica-1/files/2014/05/Transforma... · cada uno de los vértices del polígono y luego unir los puntos obtenidos

Carrera- Diseño de Interiores y Mobiliario- Asignatura: MATEMÁTICA Prof. Alicia Iturbe– Prof. Cecilia Ariagno

12

Ejercicio 8 Un punto A se gira en 90º en torno a un punto P, transformándose en el punto

B. Si M es el punto medio de ¿cuál(es) de las siguientes afirmaciones es (son) verdadera(s)?

I. AMP = 2 ABP II. MBP = MPB III. MB = MP

Ejercicio 9 El polígono de la figura es un hexágono regular y O es su centro.

¿Cuál(es) de las siguientes afirmaciones es (son) verdadera(s)? I. Si el DABO se traslada en la

dirección queda en la posición del DOCD.

II. Si el DABO se refleja en torno a queda en la posición del DDOE.

III. Si FODE se refleja en torno al punto O se transforma en el cuadrilátero BODC.

Ejercicio 10 ¿Cuál(es) de las siguientes transformaciones se debe aplicar a una de las figuras para que resulte la otra?

Page 13: TRANSFORMACIONES EN EL PLANO - unrn.edu.arunrn.edu.ar/blogs/disinte-matematica-1/files/2014/05/Transforma... · cada uno de los vértices del polígono y luego unir los puntos obtenidos

Carrera- Diseño de Interiores y Mobiliario- Asignatura: MATEMÁTICA Prof. Alicia Iturbe– Prof. Cecilia Ariagno

13

I. Una reflexión en torno a un punto.

II. Un giro en 90º y después una traslación.

III. Una traslación y después una reflexión en torno a una recta.

Ejercicio 11

Ejercicio 12

Page 14: TRANSFORMACIONES EN EL PLANO - unrn.edu.arunrn.edu.ar/blogs/disinte-matematica-1/files/2014/05/Transforma... · cada uno de los vértices del polígono y luego unir los puntos obtenidos

Carrera- Diseño de Interiores y Mobiliario- Asignatura: MATEMÁTICA Prof. Alicia Iturbe– Prof. Cecilia Ariagno

14

Ejercicio 13

Ejercicio 14 Indica la trasformación aplicada al cuadrado abcd, para pasar a ser a´b´c´d

Bibliografía

Texto: Preparation á l’épreuve de mathématiques du concours de professeur des écoles. Tome 1Autores: Roland Charnay y Michel Mante- Hatier Paris 1995 Capítulo 9

Ejercitación Variada:

Ejercicio 15 Dibujen el triángulo simétrico del triángulo abc de vértices: a= (5;1), b= (-2;2) y c= (4;0). a) Respecto del eje x. b) Respecto deleje y.

Page 15: TRANSFORMACIONES EN EL PLANO - unrn.edu.arunrn.edu.ar/blogs/disinte-matematica-1/files/2014/05/Transforma... · cada uno de los vértices del polígono y luego unir los puntos obtenidos

Carrera- Diseño de Interiores y Mobiliario- Asignatura: MATEMÁTICA Prof. Alicia Iturbe– Prof. Cecilia Ariagno

15

Ejercicio 16 Al segmento se le aplico una simetría de centro o y se obtuvo como

imagen y a este último se le aplicó una simetría de eje y se obtuvo como segmento , siendo b’’ coincidente con b’.

Encuentren el punto o y el eje E que se pudieron usar.

Ejercicio 17 a) Dibujar una recta y aplicarle una simetría central, considerando como centro de esa simetría un punto o que no pertenezca a R.

b) ¿Resultan paralelas R y su simetría respecto del punto o.?

c) En una simetría central, ¿se transforma toda recta en otra recta paralela?

Ejercicio 18 Dibuja las transformadas de las siguientes figuras mediante las simetrías axiales indicadas.

Ejercicio 19 Di cuales de estas figuras son simétricas respecto de un punto

Page 16: TRANSFORMACIONES EN EL PLANO - unrn.edu.arunrn.edu.ar/blogs/disinte-matematica-1/files/2014/05/Transforma... · cada uno de los vértices del polígono y luego unir los puntos obtenidos

Carrera- Diseño de Interiores y Mobiliario- Asignatura: MATEMÁTICA Prof. Alicia Iturbe– Prof. Cecilia Ariagno

16

Ejercicio 20 -Encuentra las coordenadas del segmento transformado de , siendo : A(-2, 3) y B (3, 1), mediante los siguientes movimientos:

(a) Una simetría de centro el origen de coordenadas (b) Una simetría axial respecto del eje horizontal (c) Una simetría axial respecto del eje vertical

Ejercicio 21 Halla todos los ejes de simetría de las siguientes figuras:

Ejercicio 22 El triangulo abc, cuyos vértices son a= (2;2), b=(5;5) y C=(7;1), se ha trasladado

según el vector = (7;2) y así se obtuvo el triángulo a’b’c’. a) Indiquen las coordenadas de a’b’c’.

b) Apliquen a una traslación del vector = (1;1).

Ejercicio 23 En un sistema de ejes cartesianos dibujen la figura F y apliquen a esa figura las siguientes rotaciones.

a) b) c) d)

Page 17: TRANSFORMACIONES EN EL PLANO - unrn.edu.arunrn.edu.ar/blogs/disinte-matematica-1/files/2014/05/Transforma... · cada uno de los vértices del polígono y luego unir los puntos obtenidos

Carrera- Diseño de Interiores y Mobiliario- Asignatura: MATEMÁTICA Prof. Alicia Iturbe– Prof. Cecilia Ariagno

17

Ejercicio 24 Los siguientes dibujos se obtuvieron, en cada caso, girando sucesivamente la figura azul con centro en o hasta llegar a la figura inicial. Indiquen, en cada caso, el ángulo que gira la figura azul para pasar de una posición a la siguiente.

Ejercicio 25 Las siguientes figuras son transformaciones de la figura A. indica a qué tipo de transformación corresponde cada una de ellas.

Figura A

Composición de movimientos rígidos

Ejercicio 26 Halla el transformado del rombo abcd de la figura mediante la

composición: TvoSE.

Indica el vector traslación que neutraliza a la composición realizada, es decir, la traslación que al aplicarla a la imagen obtenida nos permite obtener el rombo abcd.

Page 18: TRANSFORMACIONES EN EL PLANO - unrn.edu.arunrn.edu.ar/blogs/disinte-matematica-1/files/2014/05/Transforma... · cada uno de los vértices del polígono y luego unir los puntos obtenidos

Carrera- Diseño de Interiores y Mobiliario- Asignatura: MATEMÁTICA Prof. Alicia Iturbe– Prof. Cecilia Ariagno

18

Ejercicio 27 Halla el transformado del rombo abcd de la figura mediante la

composición: SEoTv

Indica el vector traslación que neutraliza a la composición realizada, es decir, la traslación que al aplicarla a la imagen obtenida nos permite obtener el rombo abcd.

Ejercicio 28 Halla el transformado del rombo abcd de la figura mediante la

composición: SEoTv

Indica el vector traslación que neutraliza a la composición realizada, es decir , la traslación que al aplicarla a la imagen obtenida nos permite obtener el rombo abcd.

Ejercicio 29 Halla la imagen transformada de la figura dada

mediante la composición: SEoTv

Indica el vector traslación que neutraliza a la composición realizada, es decir , la traslación que al aplicarla a la imagen obtenida nos permite obtener la figura inicial.

Page 19: TRANSFORMACIONES EN EL PLANO - unrn.edu.arunrn.edu.ar/blogs/disinte-matematica-1/files/2014/05/Transforma... · cada uno de los vértices del polígono y luego unir los puntos obtenidos

Carrera- Diseño de Interiores y Mobiliario- Asignatura: MATEMÁTICA Prof. Alicia Iturbe– Prof. Cecilia Ariagno

19

Ejercicio 30 Halla el transformado del rombo abcd de la figura mediante la

composición: SEo . Indica el vector traslación que neutraliza a la composición realizada, es

decir , la traslación que al aplicarla a la imagen obtenida nos permite obtener el rombo abcd.

Ejercicio 31 Halla el transformado del hexágono abcdef, de la figura, mediante cada una de las siguientes composiciones: Indica el vector traslación que neutraliza a la composición realizada, es decir , la traslación que al aplicarla a la imagen obtenida nos permite obtener el hexágono abcdef.

a) R(c; 90°)o .

b) R(b;-180°)o .

c) R(d;- 90°)o .

Page 20: TRANSFORMACIONES EN EL PLANO - unrn.edu.arunrn.edu.ar/blogs/disinte-matematica-1/files/2014/05/Transforma... · cada uno de los vértices del polígono y luego unir los puntos obtenidos

Carrera- Diseño de Interiores y Mobiliario- Asignatura: MATEMÁTICA Prof. Alicia Iturbe– Prof. Cecilia Ariagno

20

Ejercicio 32 Halla la transformada de la letra V , de la figura, mediante la composición: SE2oSE1. Los ejes son perpendiculares. Indica el vector traslación que neutraliza a la composición realizada, es decir , la traslación que al

aplicarla a la imagen obtenida nos permite obtener la letra V inicial.

Ejercicio 33 Halla el transformado del triángulo abc, de la figura, mediante la

composición: o R(0; 90°)

Indica el vector traslación que neutraliza a la composición realizada, es decir , la traslación que al aplicarla a la imagen obtenida nos permite obtener el triángulo abc