trabajo

14
| 1. COMPENSACION DEL FACTOR DE POTENCIA La finalidad de corregir el factor de potencia es reducir o aún eliminar el costo de energía reactiva en la factura de electricidad. Para lograr esto, es necesario distribuir las unidades capacitivas, dependiendo de su utilización, en el lado del usuario del medidor de potencia. Existen varios métodos para corregir o mejorar el factor de potencia, entre los que destacan la instalación de capacitores eléctricos o bien, la aplicación de motores sincrónicos que finalmente actúan como capacitores. Compensación individual en motores Compensación por grupo de cargas Compensación centralizada Compensación combinada Las pérdidas de energía en las líneas de transporte de energía eléctrica aumentan con el incremento de la intensidad. Como se ha comprobado, cuanto más bajo sea el factor de potencia de una carga, se requiere más corriente para conseguir la misma cantidad de energía útil. Por tanto, como ya se ha comentado, las compañías suministradoras de electricidad, para conseguir una mayor eficiencia de su red, requieren que los usuarios, especialmente aquellos que utilizan grandes potencias, mantengan los factores de potencia de sus respectivas cargas dentro de límites especificados. 1

Upload: alejandro-villacorta

Post on 13-Apr-2017

279 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Trabajo

|

1. COMPENSACION DEL FACTOR DE POTENCIA

La finalidad de corregir el factor de potencia es reducir o aún eliminar el costo de energía reactiva en la factura

de electricidad. Para lograr esto, es necesario distribuir las unidades capacitivas, dependiendo de su utilización,

en el lado del usuario del medidor de potencia. Existen varios métodos para corregir o mejorar el factor de

potencia, entre los que destacan la instalación de capacitores eléctricos o bien, la aplicación de motores

sincrónicos que finalmente actúan como capacitores.

Compensación individual en motores

Compensación por grupo de cargas

Compensación centralizada

Compensación combinada

Las pérdidas de energía en las líneas de transporte de energía eléctrica aumentan con el incremento de la intensi -

dad. Como se ha comprobado, cuanto más bajo sea el factor de potencia de una carga, se requiere más corriente

para conseguir la misma cantidad de energía útil. Por tanto, como ya se ha comentado, las compañías suministra-

doras de electricidad, para conseguir una mayor eficiencia de su red, requieren que los usuarios, especialmente

aquellos que utilizan grandes potencias, mantengan los factores de potencia de sus respectivas cargas dentro de

límites especificados.

Los capacitores eléctricos o bancos de capacitores, pueden ser instalados en varios puntos en la red de

distribución en una planta, y pueden distinguirse cuatro tipos principales de instalación de capacitores para

compensar la potencia reactiva (figura 1.2). Cada una de las instalaciones observadas en la figura 1.2

corresponden a una aplicación específica, no obstante, es importante mencionar que antes de instalar capacitores

eléctricos, se deben tomar en cuenta los siguientes factores: tipos de cargas eléctricas, variación y distribución de

las mismas, factor de carga, disposición y longitud de los circuitos, tensión de las líneas de distribución, entre

otros.

1

Page 2: Trabajo

|

Figura 1.2 Tipos de instalaciones de capacitores para corregir el factor de potencia

1.1 COMPENSACIÓN INDIVIDUAL

La compensación individual se refiere a que cada consumidor de carga inductiva se le asigna un capacitor que

suministre potencia reactiva para su compensación. La compensación individual es empleada principalmente en

equipos que tienen una operación continua y cuyo consumo de la carga inductiva es representativo. A

continuación se describen dos métodos de compensación individual:

Compensación individual en motores eléctricos

El método de compensación individual es el tipo de compensación más efectivo ya que el capacitor se instala en

cada una de las cargas inductivas a corregir, de manera que la potencia reactiva circule únicamente por los

conductores cortos entre el motor y el capacitor. La compensación individual presenta las siguientes ventajas:

Los capacitores son instalados cerca de la carga inductiva, la potencia reactiva es confinada al segmento

más pequeño posible de la red.

2

Page 3: Trabajo

|

El arrancador para el motor puede también servir como un interruptor para el capacitor eliminando así el costo de un dispositivo de control del capacitor solo.

El uso de un arrancador proporciona control semiautomático para los capacitores, por lo que no son necesarios

controles complementarios. Todas las líneas quedan descargadas de la potencia reactiva. No obstante, este

método presenta las siguientes desventajas:

El costo de varios capacitores por separado es mayor que el de un capacitor individual de valor

equivalente.

Existe subutilización para aquellos capacitores que no son usados con frecuencia.

Es importante mencionar que para no incurrir en una sobre compensación en la carga inductiva que provoque

alteraciones en el voltaje que puedan dañar la instalación eléctrica, la potencia del banco de capacitores deberá

limitarse al 90% de la potencia reactiva del motor en vacío.

1.2 COMPENSACIÓN INDIVIDUAL EN TRANSFORMADORES DE DISTRIBUCIÓN

Otro método para corregir el factor de potencia es compensar la potencia reactiva en los transformadores de

distribución. La potencia total del banco de capacitores se calcula para compensar la potencia reactiva absorbida

por el transformador en vacío, que es del orden del 5 al 10% de la potencia nominal.

De acuerdo con las normas técnicas para instalaciones eléctricas, con el fin de evitar fenómenos de resonancia y

sobretensión en vacío, la potencia total del banco de capacitores no debe exceder el 10% de la potencia nominal

(en VA) del transformador.

1.3 COMPENSACIÓN EN GRUPO

Es aconsejable compensar la potencia inductiva de un grupo de cargas, cuando éstas se conectan

simultáneamente y demandan potencia reactiva constante, o bien cuando se tienen diversos grupos de cargas

situados en puntos distintos.

3

Page 4: Trabajo

|

La compensación en grupo presenta las siguientes ventajas:

Se conforman grupos de cargas de diferente potencia pero con un tiempo de operación similar, para que la

compensación se realice por medio de un banco de capacitores común con su propio interruptor. Los bancos de

capacitores pueden ser instalados en el centro de control de motores. El banco de capacitores se utilizan

únicamente cuando las cargas están en uso. Se reducen costos de inversión para la adquisición de bancos de

capacitores. Es posible descargar de potencia reactiva las diferentes líneas de distribución de energía eléctrica.

En las líneas de alimentación principal se presenta la desventaja de que la sobrecarga de potencia reactiva no se

reduce, es decir, que seguirá circulando energía reactiva entre el centro de control de motores y los motores.

1.4 COMPENSACIÓN CENTRAL CON BANCO AUTOMÁTICO

Este tipo de compensación ofrece una solución generalizada para corregir el factor de potencia ya que la

potencia total del banco de capacitores se instala en la acometida, cerca de los tableros de distribución de

energía, los cuales, suministran la potencia reactiva demandada por diversos equipos con diferentes potencias y

tiempos de operación.

La potencia total del banco de capacitores se divide en varios bloques que están conectados a un regulador

automático de energía reactiva, que conecta y desconecta los bloques que sean necesarios para obtener el factor

de potencia previamente programado en dicho regulador.

La compensación centralizada presenta las siguientes ventajas:

Mejor utilización de la capacidad de los bancos de capacitores.

Se tiene una mejora en la regulación del voltaje en sistema eléctrico. Suministro de potencia reactiva según los requerimientos del momento.

Es de fácil supervisión.

La desventaja de corregir el factor de potencia mediante la compensación centralizada, es que las diversas

líneas de distribución no son descargadas de la potencia reactiva, además, se requiere de un regulador

automático el banco de capacitores para compensar la potencia reactiva, según las necesidades de cada

momento.

4

Page 5: Trabajo

|

1.5 IMPORTANCIA DE UN CORRECTOR DE FACTOR DE POTENCIA.

La compensación del factor de potencia trae como consecuencia los siguientes beneficios energéticos y

económicos:

a) Eliminación del cargo por factor de potencia

b) Bonificación por parte de la compañía suministradora

c) Disminución de la caída de tensión en cables

2. PENALIZACIÓN DEL FACTOR DE POTENCIA

TÉRMINOS Y CONDICIONES GENERALES AL CONSUMIDOR FINAL, DEL PLIEGO TARIFARIO DEL AÑO 2013.

I. DERECHOS Y OBLIGACIONES

Art. 51.- Los contratos de suministro deberán incluir recargos cuando el factor de potencia (FP) inductivo sea inferior a 0.90. Cuando el contrato de suministro no contemple lo anterior, o el suministro se realice de conformidad con el presente pliego tarifario, el Distribuidor podrá aplicar los recargos siguientes:

1) Si el FP es igual o mayor que 0.75 y menor que 0.90, el cargo por energía será aumentado en 1% por cada centésima que el FP sea inferior a 0.90;

2) Si el FP es igual o mayor que 0.60 y menor que 0.75, el cargo por energía será aumentado en 15% más el 2% por cada centésima que el FP sea inferior a 0.75; y,

3) Si el FP fuese inferior a 0.60, el Distribuidor podrá suspender el suministro hasta tanto el usuario final adecúe sus instalaciones a fin de superar dicho valor límite.

La medición de factor de potencia se deberá realizar con conocimiento del usuario final, quien deberá ser informado de los resultados en la factura.

El Distribuidor deberá reiniciar el registro de factor de potencia cada vez que realice el correspondiente ciclo mensual de lectura de los medidores de energía eléctrica, y en ningún momento podrá facturar un factor de potencia que no haya sido reiniciado mensualmente.

En los casos que el factor de potencia sea inferior a 0.90, el Distribuidor deberá notificar al usuario final sobre la situación anómala y hacer de su conocimiento que si no corrige dicha condición en un plazo de 90 días consecutivos contados a partir de la notificación, podría proceder a cobrar el recargo por bajo factor de potencia correspondiente, desde el momento en que fue notificado. Adicionalmente, deberá comunicarle que dicho recargo dejará de aplicarse en cuanto el factor de potencia sea igual o mayor a 0.90.

En todo caso el Distribuidor sólo podrá aplicar esta disposición cuando se realice el correspondiente ciclo de lectura después de transcurridos los 90 días y se confirme que la condición persiste.

5

Page 6: Trabajo

|

3. FUNCIONAMIENTO DEL MOTOR SÍNCRONO

Una máquina sincrónica es una máquina de corriente alterna cuya velocidad bajo condiciones de estado estable

es proporcional a la frecuencia de la corriente en su armadura. El campo magnético que crean las corrientes de

armadura gira a la misma velocidad que el que crea la corriente del campo en el rotor (que gira a la velocidad

sincrónica), y se produce un par estacionario.

Los polos del rotor están sometidos ahora a atracciones y repulsiones, en breves periodos de tiempo, por parte de

los polos del estator, pero el rotor no consigue girar, entonces vibrará. Pero si llevamos el rotor a la velocidad de

sincronismo, haciéndole girar mediante un motor auxiliar, al enfrentarse polos de signo opuestos se establece un

enganche magnético que les obliga a seguir girando juntos, pudiéndose retirar el motor auxiliar.

Figura1 funcionamiento motor síncrono

6

Page 7: Trabajo

|

Circuito magnético

Estator: Parte fija.

Rotor: Parte móvil que gira dentro del estator.

Entrehierro: Espacio de aire que separa el estator del rotor y que permite que pueda existir movimiento.

Debe ser lo más reducido posible.

 

Dos circuitos eléctricos, uno en el rotor y otro en el estator

Arrollamiento o devanado de excitación o inductor: Uno de los devanados, al ser recorrido por una co-

rriente eléctrica produce una fuerza magnetomotriz que crea un flujo magnético.

Inducido: El otro devanado, en el que se induce una f.e.m. que da lugar a un par motor.

En el estator se alojan tres bobinas, desfasadas entre si 120º. Cada una de las bobinas se conecta a una de las fa-

ses de un sistema trifásico y dan lugar a un campo magnético rotante

La velocidad del campo magnético rotante se denomina velocidad síncrona (*s) y depende de la frecuencia de la

red eléctrica a la que esté conectado el motor.

El Rotor: Desde el punto de vista constructivo se pueden distinguir dos formas típicas de rotor:

Rotor de jaula de ardilla: Está constituido por barras de cobre o de aluminio y unidas en sus extremos a

dos anillos del mismo material.

7

Page 8: Trabajo

|

Rotor bobinado o de anillos rozantes: El rotor está constituido por tres devanados de hilo de cobre co-

nectados en un punto común. Los extremos pueden estar conectados a tres anillos de cobre que giran so -

lidariamente con el eje (anillos rozantes). Haciendo contacto con estos tres anillos se encuentran unas es -

cobillas que permiten conectar a estos devanados unas resistencias que permiten regular la velocidad de

giro del motor. Son más caros y necesitan un mayor mantenimiento.

Motor en vacío

Si a un alternador trifásico se le retira la máquina motriz y se alimenta su estator mediante un sistema trifásico de

C. A. se genera en el estator un campo magnético giratorio, cuya velocidad sabemos que es N =  60 f/p. Si en es-

tas circunstancias, con el rotor parado se alimenta el devanado del mismo con C. C. se produce un campo mag-

nético rotórico fijo, delante del cual pasa el campo magnético del estator. Los polos del rotor están sometidos

ahora a atracciones y repulsiones, en breves periodos de tiempo, por parte de los polos del estator, pero el rotor

no consigue girar , a lo sumo vibrará. Pero si llevamos el rotor a la velocidad de sincronismo, haciéndole girar

mediante un motor auxiliar, al enfrentarse polos de signo opuestos se establece un enganche magnético que les

obliga a seguir girando juntos, pudiéndose retirar el motor auxiliar.

Figura 2 motor en vacio

Motor en carga

 Una vez que se produzca la conexión del motor a la red, se produce un desplazamiento (d/p) del eje de los polos

del rotor respecto de los polos ficticios del estator, que aumenta con la carga del motor, y tal que si este despla-

zamiento supera un límite el motor se para (ver más debajo "estabilidad del motor")

8

Page 9: Trabajo

|

Figura 3 motor en carga

Potencia y par del motor síncrono

La potencia de una maquina síncrono por fase viene dada por:

9

Page 10: Trabajo

|

CONCLUSION

El factor de potencia se puede definir como la relación que existe entre la potencia activa (KW) y la potencia

aparente (KVA) y es indicativo de la eficiencia con que se está utilizando la energía eléctrica para producir un

trabajo útil. El bajo factor de potencia es una de las razones por las que algunos sistemas eléctricos funcionan

desventajosamente (o sea  sujeto a sanciones económicas). El factor de potencia de una carga es, por definición,

la razón de los watts de ésta al producto de los volts y amperes medidos en ella.

Su valor se expresa con frecuencia como porcentaje.  Siempre que esa razón sea menor que la unidad o que

100%, la carga está tomando una corriente mayor que la necesaria para efectuar el mismo trabajo con factor de

potencia =1. Tal corriente de mayor intensidad produce más caída de potencial en los circuitos alimentadores, así

como mayores pérdidas térmicas en alimentadores, transformadores, y otros.  Estos elementos tendrían que ser

de mayor capacidad para evitar recalentamiento. Por supuesto, algunos tipos de cargas, particularmente las in -

ductivas, tienen su propia naturaleza, un factor de potencia menor que la unidad pero muchas de ellas funcionan

con un factor menor que el normal. La mayoría de los casos de bajo factor de potencia. Pueden ser corregidos

con provecho para el sistema y la cuenta de gastos. 

10

Page 11: Trabajo

|

BIBLIOGRAFIA

http://www.siget.gob.sv/attachments/1455_Terminos%20y%20Condiciones%202011.pdf

http://www.monografias.com/trabajos22/motor-sincrono/motor-sincrono.shtml

http://catarina.udlap.mx/u_dl_a/tales/documentos/lep/mendez_s_j/capitulo1.pdf

11