revista

7
8/6/2015 NTICS | Paul Gavilanes EDITORIAL 1 INNOVACIONES DE LA INGENIERÍA MECÁNICA.

Upload: daniel-alban

Post on 22-Jul-2016

216 views

Category:

Documents


0 download

DESCRIPTION

TAREA

TRANSCRIPT

8/6/2015

NTIC’S | Paul Gavilanes

EDITORIAL

1 INNOVACIONES DE LA INGENIERÍA MECÁNICA.

Contenido

Desarrollan un engranaje magnético levitante ...................... 0

Un robot bola surca los campos de cultivo .......................................... 2

Pisando a fondo el acelerador hacia el subsuelo….………………….5

Desarrollan un

engranaje

magnético

levitante

n nuevo mecanismo de transmisión entre piezas que no llegan a contactar gracias

a fuerzas magnéticas ha sido desarrollado por investigadores de la Universidad Carlos III de Madrid (UC3M). El sistema evita la fricción y el desgaste y hace innecesaria la lubricación. El avance se enmarca en MAGDRIVE, un proyecto de investigación europeo coordinado por el profesor José Luis Pérez Díaz del Instituto Pedro San Juan de Lastanosa de la UC3M y en el que participan siete entidades europeas.

Entre sus principales ventajas figura el nulo desgaste entre las piezas, que hace innecesaria la lubricación. Por tanto, “la vida operativa de estos dispositivos puede ser muchísimo mayor que la de una reductora convencional de dientes, pudiendo funcionar incluso en temperaturas criogénicas”, comenta uno de los investigadores, Efrén Díez Jiménez, también del departamento de Ingeniería Mecánica de la UC3M. Incluso es capaz de seguir funcionando en caso de

sobrecarga. Si se bloquea el eje, “las partes simplemente se deslizan entre sí, pero nada se rompe”. Además, también produce menos ruido, se reduce la vibración, y tiene la capacidad de transmitir movimiento a través de las paredes.

"Es la primera vez que los ejes de entrada y salida de una reductora flotan sin ningún tipo de contacto" Además de hacer la transmisión sin contacto, los ejes se han sujetado igualmente sin contacto. “Es la primera vez en la historia que tanto el eje de entrada como el de salida de una reductora están flotando sin ningún tipo de contacto, sobre todo cuando mantiene girando, a 3000 revoluciones por minuto, un mecanismo en el que no hay nada más”, comenta el investigador principal del proyecto, José Luis Pérez Díaz. Aunque el objetivo primario del proyecto MAGDRIVE era construir un prototipo que se pudiera utilizar en las condiciones extremas del espacio, también han desarrollado otro que se puede emplear a temperatura ambiente.

Para el espacio han desarrollado el prototipo criogénico, que mantiene los ejes flotando y que puede trabajar a temperaturas de 210 grados bajo cero y en vacío. El mecanismo integra en su estructura cojinetes levitantes superconductores que generan fuerzas de repulsión estables. Esto permite que gire y, además, lo estabiliza frente a movimientos de oscilación o posibles desequilibrios. Es la primera máquina en la historia que no tiene ningún tipo de fricción.

Sus aplicaciones en el espacio son variadas, “desde brazos robóticos o posicionadores de antenas, donde se

U

necesitan movimientos de alta precisión o no se quiere que haya contaminación por lubricantes; hasta en vehículos que, por temperatura o por las condiciones extremas de ausencia de presión, hacen que los mecanismos convencionales no tengan una vida larga, como ocurre en las ruedas de un rover que hay que poner en Marte”.

Adaptación a condiciones terrestres

El segundo prototipo que han desarrollado se puede utilizar a temperatura ambiente. La reductora magnética “sustituye los dientes de los engranajes por imanes permanentes que se repelen y se atraen entre sí”, de forma que logra “la transmisión de pares y fuerzas entre las partes móviles sin contacto”, explica Efrén Díez Jiménez. Aunque el prototipo criogénico era el objetivo global del proyecto porque resolvía el problema planteado por la Agencia Espacial Europea (ESA), “sin duda el prototipo de temperatura ambiente es el que puede tener mayor impacto y aplicación industrial”, concluyen.

Sus aplicaciones se pueden trasladar a cualquier campo donde se utilicen reductoras convencionales mecánicas como en la automoción, el sector del ferrocarril, la industria petrolera o en mecánica y fabricación en general, enumeran los investigadores. Gracias a la ausencia de lubricación y aceites, también encuentra aplicación en industrias como la farmacéutica, la biomédica, o la de la alimentación, donde los requerimientos de limpieza son muy exigentes.

Los resultados finales del proyecto MAGDRIVE han sido presentados en diferentes congresos, conferencias y

reuniones organizadas por la ESA, la NASA y la ASME generando un gran interés entre los asistentes. Los investigadores han publicado parte de sus resultados en la revista EngineeringTribology, entre otras. Actualmente se encuentran analizando la implantación de este tipo de sistemas en diversas áreas de industriales. Además, las últimas novedades, que ya han sido aceptadas, serán publicadas por la revista AerospaceScience and Technology.

El proyecto MAGDRIVE es un proyecto europeo, del área Espacio del 7PM, coordinado por la Universidad Carlos III de Madrid (UC3M) y con la participación del Consejo Nacional de la Investigación (CNR-SPIN) de Génova y la Universidad de Cassino (ambos en Italia), la Fundación de la facultad de ciencias de la Universidad de Lisboa (Portugal) y tres empresas: BPE de Alemania, la española LIDAX y CAN Superconductors, de República Checa. Además, ha dado lugar a la creación de la empresa MAG SOAR como spin-off de este proyecto.

Un robot bola

surca los campos

de cultivo

no de los intereses del Grupo de Robótica y

Cibernética de la Universidad Politécnica de Madrid es desarrollar robots capaces de desenvolverse en entornos donde la locomoción puede verse dificultada por las irregularidades del terreno que comprometen su estabilidad.

Ahora, los investigadores han abordado el estudio, diseño y construcción de un vehículo móvil terrestre que cuenta con un sistema no convencional de

movimiento: un 'robot bola'.

Se trata de Rosphere, que carece de ruedas, orugas o patas. Se limita a un único cuerpo esférico que, literalmente, rueda sobre sí mismo para realizar sus diferentes misiones, siendo por ello intrínsecamente estable. En las distintas pruebas de evaluación realizadas, el robot ha demostrado su potencial para diversas aplicaciones.

¿Cómo logra una simple bola o cuerpo esférico moverse aparentemente sin ninguna fuerza externa? Aunque existen diferentes técnicas, en este caso el funcionamiento está basado en un principio de relativa simplicidad que involucra el entendimiento de un concepto físico fundamental: el centro de masa.

El funcionamiento del 'robot bola' puede compararse con el de una bola de juegos de un hámster. Allí, lo que realmente ocurre es que a medida que el hámster se mueve, éste cambia la ubicación del centro de masa del sistema desestabilizando el cuerpo esférico y, en consecuencia, generando movimiento.

En general los diferentes sistemas de locomoción de los robots esféricos pueden entenderse como

U

modos alternativos de reemplazar al pequeño animal por un sistema mecánico complementado por instrumentos electrónicos y programas, de modo que, en conjunto, el sistema 'mecatrónico' puede inducir movimientos en una bola de manera controlada.

Rosphere cuenta con un sistema pendular con capacidad de dos movimientos independientes (o dos grados de libertad). Con este mecanismo interno, el robot puede realizar movimientos rectos y curvilíneos similares a los de un coche.

Una parte importante del tiempoINVERTIDO en esta investigación ha estado relacionado con el desarrollo 'mecatrónico' del robot, es decir, todo lo que involucra su mecánica y electrónica de control, comunicaciones y programación, generándose dos versiones en las que se han probado diferentes evoluciones del sistema pendular y su accionamiento.

Tras el desarrollo de la plataforma de pruebas y la validación de sus sistemas de control, el robot ha sido puesto en diferentes escenarios para evaluar sus

aplicaciones reales más allá de su particular forma de desplazarse.

En el primero se ha utilizado el robot para realizar mediciones in situ de variables ambientales en los surcos de los cultivos, donde la forma esférica resulta ideal para que éste no afecte los mismos, realizando recorridos y recolectando información que pueda ser utilizada para la monitorización y aplicación de técnicas de agricultura de precisión.

Otro escenario ensayado ha sido la monitorización de espacios compartidos con personas, en donde se pretende verificar que este tipo de robot puede interactuar de manera segura sin que represente una amenaza para las personas. Como escenario prototipo se ha escogido el parque del Retiro de Madrid.Aunque aún es un sistema en desarrollo, Rosphere ha demostrado en sus pruebas preliminares el potencial para diferentes aplicaciones. Aspectos como las mejoras en su navegación autónoma o en su robustez mecánica aumentarán sus campos de aplicación.

Pisando a fondo el acelerador hacia el

subsuelo.

Un techo de diamante mantiene a los actuales equipos de sondeo geotécnico perforando al mismo ritmo que los 'clásicos' de hace más de medio siglo.

Para actualizar los métodos de trabajo en el sector, la empresa asturiana ATSG trabaja en un desarrollo experimental que permitiría multiplicar el avance y dividir los costes, imprevistos y tiempo.