que es un capacitor

11
QUE ES UN CAPACITOR En electricidad y electrónica, un condensador o capacitor es un dispositivo formado por dos conductores o armaduras, generalmente en forma de placas o láminas, separados por un material dieléctrico (siendo este utilizado en un condensador para disminuir el campo eléctrico, ya que actúa como aislante) o por el vacío, que, sometidos a una diferencia de potencial (d.d.p.) adquieren una determinada carga eléctrica. A esta propiedad de almacenamiento de carga se le denomina capacidad o capacitancia. En el Sistema internacional de unidades se mide en Faradios (F), siendo 1 faradio la capacidad de un condensador en el que, sometidas sus armaduras a una d.d.p. de 1 voltio, éstas adquieren una carga elé. El capacitor es un dispositivo que almacena energía en un campo electrostático. Una lámpara de destello o de luz relámpago, por ejemplo, requiere una breve emisión de energía eléctrica, un poco mayor de lo que generalmente puede proporcionar una batería. Podemos sacar energía con relativa lentitud (más de varios segundos) de la batería al capacitor, el cual libera rápidamente (en cuestión de milisengundos) la energía que pasa al foco. Otros capacitores mucho más grandes se emplean para proveer intensas pulsaciones de láser con el fin de inducir una fusión termonuclear en pequeñas bolitas de hidrógeno. Los capacitores se usan también para producir campos eléctricos como es el caso del dispositivo de placas paralelas que desvía los haces de partículas cargadas. Los capacitores tienen otras funciones importantes en los circuitos electrónicos, especialmente para voltajes y corrientes variables con el tiempo. La propiedad para almacenar energía eléctrica es una característica importante del dispositivo eléctrico llamado Capacitor. Se dice que un capacitor está cargado, o sea cuando el capacitor almacena energía, cuando existe carga eléctrica en sus placas o cuando existe una diferencia de potencial entre ellas. La forma más común para almacenar energía en un capacitor es cargar uno mediante una fuente de fuerza electromotriz fem; de ésta forma y después de un tiempo relativamente corto, el capacitor adquiere

Upload: carlos-alberto-guanuco

Post on 21-Jan-2015

22.343 views

Category:

Education


7 download

DESCRIPTION

celulares

TRANSCRIPT

Page 1: Que es un capacitor

QUE ES UN CAPACITOR

En electricidad y electrónica, un condensador o capacitor es un dispositivo formado por dos conductores o armaduras, generalmente en forma de placas o láminas, separados por un material dieléctrico (siendo este utilizado en un condensador para disminuir el campo eléctrico, ya que actúa como aislante) o por el vacío, que, sometidos a una diferencia de potencial (d.d.p.) adquieren una determinada carga eléctrica.

A esta propiedad de almacenamiento de carga se le denomina capacidad o capacitancia. En el Sistema internacional de unidades se mide en Faradios (F), siendo 1 faradio la capacidad de un condensador en el que, sometidas sus armaduras a una d.d.p. de 1 voltio, éstas adquieren una carga elé. El capacitor es un dispositivo que almacena energía en un campo electrostático. Una lámpara de destello o de luz relámpago, por ejemplo, requiere una breve emisión de energía eléctrica, un poco mayor de lo que generalmente puede proporcionar una batería. Podemos sacar energía con relativa lentitud (más de varios segundos) de la batería al capacitor, el cual libera rápidamente (en cuestión de milisengundos) la energía que pasa al foco. Otros capacitores mucho más grandes se emplean para proveer intensas pulsaciones de láser con el fin de inducir una fusión termonuclear en pequeñas bolitas de hidrógeno. Los capacitores se usan también para producir campos eléctricos como es el caso del dispositivo de placas paralelas que desvía los haces de partículas cargadas. Los capacitores tienen otras funciones importantes en los circuitos electrónicos, especialmente para voltajes y corrientes variables con el tiempo. La propiedad para almacenar energía eléctrica es una característica importante del dispositivo eléctrico llamado Capacitor. Se dice que un capacitor está cargado, o sea cuando el capacitor almacena energía, cuando existe carga eléctrica en sus placas o cuando existe una diferencia de potencial entre ellas. La forma más común para almacenar energía en un capacitor es cargar uno mediante una fuente de fuerza electromotriz fem; de ésta forma y después de un tiempo relativamente corto, el capacitor adquiere una carga eléctrica Qo y por lo mismo tendrá una diferencia de potencial Vo entre sus placas.

Fuente(s):ctrica de 1 culombio.

QUE ES UNA RESISTENCIA

Concepto, unidades de una resistencia

Una resistencia o resistor es un elemento que causa oposición al paso de la corriente, causando que en sus terminales aparezca una diferencia de tensión (un voltaje).

Page 2: Que es un capacitor

En el gráfico más abajo tenemos un bombillo / foco en el paso de la corriente que sale del terminal positivo de la batería y regresa al terminal negativo.

Símbolo de la resistencia

Este bombillo / foco que todos tenemos en nuestros hogares es una resistencia. Las resistencias se representan con la letra R y el valor de éstas se mide en Ohmios (Ω).

Las resistencias o resistores son fabricadas en una amplia variedad de valores. Hay resistencias con valores de Kilohmios (KΩ), Megaohmios (MΩ).

Estás dos últimas unidades se utilizan para representar resistencias muy grandes. A continuación se puede ver algunas equivalencias entre ellas:

1 Kilohmio (KΩ) = 1,000 Ohmios (Ω)1 Megaohmio (MΩ) = 1,000,000 Ohmios (Ω)1 Megaohmio (MΩ) = 1,000 Kilohmios (KΩ)

Para poder saber el valor de las resistencias sin tener que medirlas, existe un código de colores de las resistencia que nos ayuda a obtener con facilidad este valor con sólo verlas.

Para obtener la resistencia de cualquier elemento de un material específico, es necesario conocer algunos datos propios de éste, como son: su longitud, área transversal, resistencia específica o resistividad del material con que está fabricada.

QUE ES UN TRANSISTOR

Un transistor es un aparato que funciona a base de un dispositivo semiconductor que cuenta con tres terminales, los que son utilizados como amplificador e interruptor. Una pequeña corriente eléctrica, que es aplicada a uno de los terminales, logra controlar la corriente entre los dos terminales.

Los transistores se comportan como parte fundamental de los aparatos electrónicos, análogos y digitales. Específicamente, en los aparatos electrónicos digitales, un transistor se utiliza como interruptor, pero también se les da otros usos que guardan relación con memorias RAM y puertas lógicas. Por otra parte, en cuanto a los aparatos análogos, se utilizan, por lo general, como amplificadores.

El transistor debe su nombre a su capacidad de transformar la resistencia de la corriente eléctrica que pasa entre el receptor y el emisor, y fue inventado por Jahn Bardeen, William Shockley y Walter Brattain.

Page 3: Que es un capacitor

Como ya se mencionaba, un transistor está conformado por tres partes. Una de ellas es la que se encarga de emitir electrones, por lo tanto, es el emisor. Una segunda parte es la que los recibe, el denominado colector, y por último, una tercera parte que opera como un modulador del paso de los electrones.

Existen varios tipos de transistores, entre los que encontramos los transistores bipolares y los transistores de efecto de campo. Los primeros, los bipolares, surgen a partir de la unión de tres cristales de material semiconductor. Este tipo de transistores son generalmente utilizados en aparatos electrónicos analógicos y en ciertos aparatos digitales.

Los transistores de efecto de campo, también llamados JFET o Junction Field Effect Transistor, MOSFET o Metal Oxide Semiconductor FET, o bien, MISFET o Metal Insulator Semiconductor FET. Este tipo de transistores, en la actualidad se encuentran en múltiples aparatos de diversos usos, como calculadoras, radios, televisores, videos, grabadoras, reproductores de mp3, celulares, automóviles, relojes, computadores, refrigeradores, alarmas microondas, lavadoras, equipos de rayos x, ecógrafos, tomógrafos, etc.

Dispositivo semiconductor que permite el control y la regulación de una corriente grande mediante una señal muy pequeña. Existe una gran variedad de transistores. En principio, se explicarán los bipolares. Los símbolos que corresponden a este tipo de transistor son los siguientes:

Transistor NPN Estructura de un transistor NPN Transistor PNP Estructura de un transistor PNP

Veremos mas adelante como un circuito con un transistor NPN se puede adaptar a PNP. El nombre de estos hace referencia a su construcción como semiconductor.

1. FUNCIONAMIENTO BASICO

Cuando el interruptor SW1 está abierto no circula intensidad por la Base del transistor por lo que la lámpara no se encenderá, ya que, toda la tensión se encuentra entre Colector y Emisor. (Figura 1).

Figura 1 Figura 2

Cuando se cierra el interruptor SW1, una intensidad muy pequeña circulará por la Base. Así el transistor disminuirá su resistencia entre Colector y Emisor por lo que pasará una intensidad muy grande, haciendo que se encienda la lámpara. (Figura 2).

En general: IE < IC < IB ; IE = IB + IC ; VCE = VCB + VBE

2. POLARIZACIÓN DE UN TRANSISTOR

Page 4: Que es un capacitor

Una polarización correcta permite el funcionamiento de este componente. No es lo mismo polarizar un transistor NPN que PNP.

Polarización de un transistor NPN Polarización de un transistor PNP

Generalmente podemos decir que la unión base - emisor se polariza directamente y la unión base - colector inversamente.

3. ZONAS DE TRABAJO

CORTE.- No circula intensidad por la Base, por lo que, la intensidad de Colector y Emisor también es nula. La tensión entre Colector y Emisor es la de la batería. El transistor, entre Colector y Emisor se comporta como un interruptor abierto.

IB = IC = IE = 0; VCE = Vbat

SATURACION.- Cuando por la Base circula una intensidad, se aprecia un incremento de la corriente de colector considerable. En este caso el transistor entre Colector y Emisor se comporta como un interruptor cerrado. De esta forma, se puede decir que la tensión de la batería se encuentra en la carga conectada en el Colector.

ACTIVA.- Actúa como amplificador. Puede dejar pasar más o menos corriente.

Cuando trabaja en la zona de corte y la de saturación se dice que trabaja en conmutación. En definitiva, como si fuera un interruptor.

La ganancia de corriente es un parámetro también importante para los transistores ya que relaciona la variación que sufre la corriente de colector para una variación de la corriente de base. Los fabricantes suelen especificarlo en sus hojas de características, también aparece con la denominación hFE. Se expresa de la siguiente manera:

ß = IC / IB

En resumen:

Saturación Corte Activa

VCE ~ 0 ~ VCC Variable

VRC ~ VCC ~ 0 Variable

IC Máxima = ICEO lang=EN-GB~ 0 Variable

Page 5: Que es un capacitor

IB Variable = 0 Variable

VBE ~ 0,8v < 0,7v ~ 0,7v

Los encapsulados en los transistores dependen de la función que realicen y la potencia que disipen, así nos encontramos con que los transistores de pequeña señal tienen un encapsulado de plástico, normalmente son los más pequeños ( TO- 18, TO-39, TO-92, TO-226 ... ); los de mediana potencia, son algo mayores y tienen en la parte trasera una chapa metálica que sirve para evacuar el calor disipado convenientemente refrigerado mediante radiador (TO-220, TO-218, TO-247...) ; los de gran potencia, son los que poseen una mayor dimensión siendo el encapsulado enteramente metálico . Esto, favorece, en gran medida, la evacuación del calor a través del mismo y un radiador (TO-3, TO-66, TO-123, TO-213...).

Que es un circuito integrado

Un circuito integrado (CI), también conocido como chip o microchip, es una pastilla pequeña de material semiconductor, de algunos milímetros cuadrados de área, sobre la que se fabrican circuitos electrónicos generalmente mediante fotolitografía y que está protegida dentro de un encapsulado de plástico o cerámica. El encapsulado posee conductores metálicos apropiados para hacer conexión entre la pastilla y un circuito impreso.

Existen al menos tres tipos de circuitos integrados:

1) Circuitos monolíticos: Están fabricados en un solo monocristal, habitualmente de silicio, pero también existen en germanio, arseniuro de galio, silicio-germanio, etc.

2) Circuitos híbridos de capa fina: Son muy similares a los circuitos monolíticos, pero, además, contienen componentes difíciles de fabricar con tecnología monolítica. Muchos conversores A/D y conversores D/A se fabricaron en tecnología híbrida hasta que los progresos en la tecnología permitieron fabricar resistores precisos.

3) Circuitos híbridos de capa gruesa: Se apartan bastante de los circuitos monolíticos. De hecho suelen contener circuitos monolíticos sin cápsula, transistores, diodos, etc, sobre un sustrato dieléctrico, interconectados con pistas conductoras. Los resistores se depositan por serigrafía y se ajustan haciéndoles cortes con láser. Todo ello se encapsula, en cápsulas plásticas o metálicas, dependiendo de la disipación de energía calórica requerida. En muchos casos, la cápsula no está "moldeada", sino que simplemente se cubre el circuito con una resina epoxi para protegerlo. En el mercado se encuentran circuitos híbridos para aplicaciones en módulos de radio frecuencia (RF), fuentes de alimentación, circuitos de encendido para automóvil, etc.

Page 6: Que es un capacitor

Clasificación

Atendiendo al nivel de integración -número de componentes- los circuitos integrados se pueden clasificar en:

SSI (Small Scale Integration) pequeño nivel: de 10 a 100 transistores

MSI (Medium Scale Integration) medio: 101 a 1.000 transistores

LSI (Large Scale Integration) grande: 1.001 a 10.000 transistores

VLSI (Very Large Scale Integration) muy grande: 10.001 a 100.000 transistores

ULSI (Ultra Large Scale Integration) ultra grande: 100.001 a 1.000.000 transistores

GLSI (Giga Large Scale Integration) giga grande: más de un millón de transistores

En cuanto a las funciones integradas, los circuitos se clasifican en dos grandes grupos:

- Circuitos integrados analógicos.

Pueden constar desde simples transistores encapsulados juntos, sin unión entre ellos, hasta circuitos completos y funcionales, como amplificadores, osciladores o incluso receptores de radio completos.

- Circuitos integrados digitales.

Pueden ser desde básicas puertas lógicas (AND, OR, NOT) hasta los más complicados microprocesadores o microcontroladores.

Algunos son diseñados y fabricados para cumplir una función específica dentro de un sistema mayor y más complejo.

En general, la fabricación de los CI es compleja ya que tienen una alta integración de componentes en un espacio muy reducido, de forma que llegan a ser microscópicos. Sin embargo, permiten grandes simplificaciones con respecto los antiguos circuitos, además de un montaje más eficaz y rápido.

- Limitaciones de los circuitos integrados

Existen ciertos límites físicos y económicos al desarrollo de los circuitos integrados. Básicamente, son barreras que se van alejando al mejorar la tecnología, pero no desaparecen. Las principales son:

- Disipación de potencia

Los circuitos eléctricos disipan potencia. Cuando el número de componentes integrados en un volumen dado crece, las exigencias en cuanto a disipación de esta potencia, también crecen, calentando el sustrato y degradando el comportamiento del dispositivo.

Page 7: Que es un capacitor

Además, en muchos casos es un sistema de realimentación positiva, de modo que cuanto mayor sea la temperatura, más corriente conducen, fenómeno que se suele llamar "embalamiento térmico" y, que si no se evita, llega a destruir el dispositivo. Los amplificadores de audio y los reguladores de tensión son proclives a este fenómeno, por lo que suelen incorporar protecciones térmicas.

Los circuitos de potencia, evidentemente, son los que más energía deben disipar. Para ello su cápsula contiene partes metálicas, en contacto con la parte inferior del chip, que sirven de conducto térmico para transferir el calor del chip al disipador o al ambiente. La reducción de resistividad térmica de este conducto, así como de las nuevas cápsulas de compuestos de silicona, permiten mayores disipaciones con cápsulas más pequeñas.

Los circuitos digitales resuelven el problema reduciendo la tensión de alimentación y utilizando tecnologías de bajo consumo, como CMOS. Aun así en los circuitos con más densidad de integración y elevadas velocidades, la disipación es uno de los mayores problemas, llegándose a utilizar experimentalmente ciertos tipos de criostatos. Precisamente la alta resistividad térmica del arseniuro de galio es su talón de Aquiles para realizar circuitos digitales con él.

- Capacidades y autoinducciones parásitas

Este efecto se refiere principalmente a las conexiones eléctricas entre el chip, la cápsula y el circuito donde va montada, limitando su frecuencia de funcionamiento. Con pastillas más pequeñas se reduce la capacidad y la autoinducción de ellas. En los circuitos digitales excitadores de buses, generadores de reloj, etc, es importante mantener la impedancia de las líneas y, todavía más, en los circuitos de radio y de microondas.

- Límites en los componentes

Los componentes disponibles para integrar tienen ciertas limitaciones, que difieren de las de sus contrapartidas discretas.

Resistores. Son indeseables por necesitar una gran cantidad de superficie. Por ello sólo se usan valores reducidos y en tecnologías MOS se eliminan casi totalmente.

Condensadores. Sólo son posibles valores muy reducidos y a costa de mucha superficie. Como ejemplo, en el amplificador operacional μA741, el condensador de estabilización viene a ocupar un cuarto del chip.

Inductores. Se usan comúnmente en circuitos de radiofrecuencia, siendo híbridos muchas veces. En general no se integran.

- Densidad de integración

Durante el proceso de fabricación de los circuitos integrados se van acumulando los defectos, de modo que cierto número de componentes del circuito final no funcionan correctamente. Cuando el chip integra un número mayor de componentes, estos componentes defectuosos disminuyen la proporción de chips funcionales. Es por ello que

Page 8: Que es un capacitor

en circuitos de memorias, por ejemplo, donde existen millones de transistores, se fabrican más de los necesarios, de manera que se puede variar la interconexión final para obtener la organización especificada.

Véase también

Transistor

La inserción de circuitos integrados en etiquetas

Complementary metal oxide semiconductor

Transistor de unión bipolar

Referencias

↑ a b «Circuito integrado». Ingeniatic, (c)2011.

↑ «Jack Kilby - Biografía». Universidad de Murcia.

↑ Historia del circuito integrado en la página oficial de los Premios Nobel

↑ «The History of the Integrated Circuit». Nobelprize.org.

↑ «International Technology Roadmap for Semiconductors». ITRS.

↑ «Revolución digital». Universidad de Málaga.