pradeep indrakanti presentation

Upload: recsco2

Post on 07-Apr-2018

222 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/6/2019 Pradeep Indrakanti Presentation

    1/12

    6/13/11

    1

    Comparative Evaluation of

    Post-Combustion CO2

    Capture Technologies

    Methodology to Evaluate The Performance of

    CO2

    Separation Technologies

    - Solvents & Sorbents

    -Pradeep Indrakanti

    16/13/11

    Acknowledgments

    RECS, DOE-HQ and NETL LTI

    Christopher Munson, Vince Brisini, John Huston,Scott (Shiaoguo) Chen, Rick Noceti

    JMEnergy Consulting John Marano

    Disclaimer

    Reference in this presentation to any specific commercial product, process, or service by

    trade name, trademark, manufacturer, or otherwise does not necessarily constitute orimply its endorsement, recommendation, or favoring by the United States

    Government or any agency thereof. The views and opinions of author expressed in

    this presentation are his own, do not necessarily state or reflect those of the United

    States Government or any agency thereof.

    26/13/11

  • 8/6/2019 Pradeep Indrakanti Presentation

    2/12

    6/13/11

    2

    Outline

    Introduction to cost/performance analysesChallengesCostsExamples of rigorous comparative analyses

    Methodology to compare the performance ofsolvents, sorbents (not across categories)

    Aqueous solventsSorbents

    6/13/11 3

    Post-Combustion CO2

    Capture

    6/13/11 4

    Source: DOE/NETL Advanced carbon dioxide

    capture R&D program: Technology update: May

    2011

    INTRODUCTION EXAMPLES SOLVENTS SORBENTS Q&A

  • 8/6/2019 Pradeep Indrakanti Presentation

    3/12

    6/13/11

    3

    Technical Challenges

    6/13/11 5

    Adapted from DOE/NETLAdvanced carbon dioxide

    capture R&D program:

    Technology update: May

    2011

    INTRODUCTION EXAMPLES SOLVENTS SORBENTS Q&A

    Costs

    Levelized Cost of Electricty (LCOE) Capital Operations & Maintenance (O&M)

    Fixed, Variable Fuel

    f(energy efficiency or energy penalty of the overall plant) Transportation, Storage and Monitoring (TS&M)

    Goal DOE cost goal: 35% LCOE increase over a (PC) plant

    without CCS @ 90% capture (same net power)

    6/13/11 6

    INTRODUCTION EXAMPLES SOLVENTS SORBENTS Q&A

  • 8/6/2019 Pradeep Indrakanti Presentation

    4/12

    6/13/11

    4

    Advantages & Challenges

    Solvents

    Fast kinetics Good heat

    integration

    Experience High energy

    (steam) load

    Non-reactivecarrier fluid

    heating

    Sorbents

    Fast kinetics, largecapacities

    Lower heatrequirement

    (solvents)

    Heat requirement Heat transfer,

    pressure drop

    issues

    Sorbent attrition6/13/11 7Source: DOE/NETL Advanced carbon dioxide capture R&D

    program: Technology update: May 2011

    INTRODUCTION EXAMPLES SOLVENTS SORBENTS Q&A

    Membranes

    No steam load No chemicals Flue gas

    compression

    % recovery vs.recovery rate

    tradeoff

    Multiple stages,recycle streams

    Where is this type of

    analysis relevant?

    6/13/11 8

    PreliminaryAssessment

    (solvent/processscreening or

    evaluation)

    PC plant simulation +Simple

    CO2 capture models

    Lab-, bench-scalestudies on new

    solvents, sorbents,membranes

    PC plant simulation +CFD CO2 capture

    models (co-simulation)

    Pilot plant/

    Slipstream studies

    Estimatesmay vary

    as muchas 35%

    INTRODUCTION EXAMPLES SOLVENTS SORBENTS Q&A

  • 8/6/2019 Pradeep Indrakanti Presentation

    5/12

    6/13/11

    5

    Example of a bottom-up cost analysis(Data from NETL/DOE post-combustion capture pathway study, preliminary

    results, DOE/NETL Advanced carbon dioxide capture R&D program: Technologyupdate: May 2011)

    6/13/11 9

    31.7

    59.6 56.1 55 50.4 46.9 42.9

    8

    1312.3 12.2

    11.210.6

    9.85

    8.78.3 8.6

    7.67.1

    8.414.2

    19.618.8 18.4

    16.715.1

    15.4

    5.65.2 5.2

    54.8

    4.8

    20%

    25%

    30%

    35%

    40%

    0

    20

    40

    60

    80

    100

    120

    SCPC

    SCPC

    ,FluorE

    conamin

    e

    SCPC,Fluor

    Econam

    ine,enh

    anced

    SCPC,M

    HIKS-1

    USCPC,

    MHIKS

    -1

    Advance

    dmemb

    rane,shockw

    avecom

    pression

    Advance

    dadsorber,sh

    ockwave

    compres

    sion

    Efficiency,

    HHV

    FirstyearCOE,

    $/MWh

    (mills/kWh)

    Capital Fixed O&M Variable O&M Fuel

    TS&M COE goal %HHV

    TakeawayCapital cost

    Fuel costFixed O&M

    SCPC:

    Supercritical

    pulverized

    coal powerplant

    INTRODUCTION EXAMPLES SOLVENTS SORBENTS Q&A

    Comparison of Various PC CCS

    AnalysesIEAGHG Cost and Performance of CO2Capture from Power Generation, IEAWorking Paper, Finkenrath

    6/13/11 10

    INTRODUCTION EXAMPLES SOLVENTS SORBENTS Q&A

    Note correlation between increased LCOE and efficiencydecrease

  • 8/6/2019 Pradeep Indrakanti Presentation

    6/12

    6/13/11

    6

    Credits:The Far Side

    Gallery 4

    by Gary Larsen

    6/13/11 11

    A Simplified Case for Aqueous

    Solvents

    6/13/11 12

    Sensibleheat

    Heat of CO2desorption,

    Latent heatof waterevaporation

    INTRODUCTION EXAMPLES SOLVENTS SORBENTS Q&A

    Flue gas fromdirect-contact

    cooler

    Flue gas, 90%CO2 removed

    Absorptioncolumn

    Strippercolumn

    Reboiler

    CO2 tocompression

    Steam

    CO2 + H2O

    T

    Lean-richheat

    exchanger

    Leansolution

    Richsolution

  • 8/6/2019 Pradeep Indrakanti Presentation

    7/12

    6/13/11

    7

    6/13/11 13

    Econamine FG Plus flow

    diagram

    Source: Bituminous coal baseline,DOE/NETL-2010/1397

    INTRODUCTION EXAMPLES SOLVENTS SORBENTS Q&A

    Solvents: Energy Requirement

    Qrxn : Heat required to drive CO2 out of solution (break solvent-CO2 bonds, heat of mixing, heat of solution) Hrxn

    Qsensible : Heating the solvent without phase change Mass of solution/kg CO2*specific heat of solution*change in temperature

    Cp*TLean-Rich HX/Cw , where Cw is the solution working capacity Cw = *xsolvent*MCO2/Msolution

    Qwater_evap : Amount of water evaporated/kg CO2 * Latent heat ofvaporization

    pH2O/(Pstripper ovhd- pH2O)*Hvap(H2O) [ Assumed pH

    2O vapor pressure ]

    Electrical equivalent of thermal energy (Weqregen)

    6/13/11 140.75)*)/(M/PR.T.ln(P+.Q)T

    T-0.75.(1=W

    2COdesseq

    th

    regensteam

    condeq

    regen

    Qthregen

    INTRODUCTION EXAMPLES SOLVENTS SORBENTS Q&A

    Electrical Energy = Electrical energy equivalent of steam used forCO2 Capture + Compression Work

  • 8/6/2019 Pradeep Indrakanti Presentation

    8/12

    6/13/11

    8

    Recap: Parameters Required

    Solvent/solution properties Heat of reaction Hrxn, Specific heat capacity Cp, Solution working capacity Cw

    (difference of rich and lean loadings, molecular weight of solution, mole fraction of solvent) Other

    TLean-Rich HX, Stripper overhead pressure, temperature, Steam temperature, condenser water temperature

    Caveat: Parameters are not independent of each other

    Ex: Lower solvent working capacity (or higher lean loading)

    lower heat exchangerT

    Capex, opex increased L/G ratio

    6/13/11 15

    INTRODUCTION EXAMPLES SOLVENTS SORBENTS Q&A

    30 wt% aq. MEA (7m)

    Rich solvent loading, mole CO2/mole MEA 0.484

    Lean solvent loading, mole CO2/mole MEA 0.242

    Net solvent loading, () mol CO2/mol MEA 0.242

    Solvent Cp, kJ/(kg-K)* 3.7

    Mole fraction of solvent in solution (Xsolvent)* 0.11

    Molecular weight of solution (Msolution), kg/kg-mole* 22.83

    Solvent working capacity, kg CO2/kg solventCw = *xsolvent*MCO2/Msolution

    0.05 (0.242*0.11*44/22.83)

    T (lean-rich HX), C 10

    Hrxn, kJ/g-mol CO2 82

    Tabsorber, C 40

    Tstripper overhead, C 95

    Tstripper bottom, C 120

    Pstripper overhead, atm 1.8

    Hvap, H2O, kJ/g-mol H2O 41

    Solvents: Base Case

    *: Used tocalculatesolvent

    workingcapacity

    16

    INTRODUCTION EXAMPLES SOLVENTS SORBENTS Q&A

  • 8/6/2019 Pradeep Indrakanti Presentation

    9/12

    6/13/11

    9

    MEA Energy Penalty

    Qthregen : 3237 kJ/kg CO2 NETL bituminous coal

    baseline comparison:

    3556 kJ/kg CO2

    Breakdown (kJ/kg CO2) Qrxn : 1864 Qsensible : 707 Qstripping :666

    Energy penalty: 24% < 30% because 130 C steam

    (~3 bar)

    210 C: ~31% energy penalty. Electrical equivalent of work

    0.248 kWh/kg CO2 Reboiler steam at 130 C (266

    F)

    6/13/11 17

    INTRODUCTION EXAMPLES SOLVENTS SORBENTS Q&A

    30 wt%MEA

    30% MEA,Hi T(HX)

    MEA Case1

    MEA Case2

    MEA Case3

    (rich-lean gas molar loading), mole CO2/

    mole solvent0.242 0.242 0.257 0.121 0.12

    Cp solvent, kJ/kg/K 3.7

    -Same as base case-Xsolvent, mole solvent/mole solution 0.11

    Molecular weight of solution, kg/kg-mole 22.83

    Solvent Working Capacity, Cw, kg CO2/kgsolvent

    0.052 0.052 0.056 0.026 0.0268

    T, lean-rich HX, K 10 20 10 5 5

    Hrxn, kJ/mol CO2 82 -Same as base case-

    CO2 absorpt ion T, C 40

    -Same as base case-Tstripper, top, C 95

    Tstripper, bottom (reboiler), C 120

    Overhead pressure, atm 1.8 1.8 1.6 1.6 1.6

    pH2O, overhead, atm 0.75 -Same as base case-

    kg H2O/kg CO2

    Hvap (H2O), kJ/kg H2O 41 41 41 41 41

    Qrxn, kJ/kg CO2 1864 1864 1864 1864 1864

    Qsensible, kJ/kg CO2 707 1415 666 707 690

    Qwaterevap, kJ/kg CO2 666 666 823 823 823

    Total heat consumption/stripping heat, QreboilerkJ/kg CO2

    3237 3945 3353 3394 3377

    Electricity equivalent of heat, WE, kJ/kg CO2 543 662 562 569 566

    Compression Work, WC @75%, kJ/kg CO2 349 349 358 358 358

    Total stripping+comp work, kWhe/kg CO2 0.2477 0.2807 0.2557 0.2576 0.2568

    Auxiliary loads 3% 3% 3% 3% 3%

    Total energy penalty 23.9% 26.7% 24.6% 24.8% 24.7%

    6/13/11 18

    INTRODUCTION EXAMPLES SOLVENTS SORBENTS Q&A

  • 8/6/2019 Pradeep Indrakanti Presentation

    10/12

    6/13/11

    10

    Adsorbent CO2 Capture

    19

    INTRODUCTION EXAMPLES SOLVENTS SORBENTS Q&A

    Source: NETL In-House Postcombustion Sorbent-Based Carbon Dioxide Capture

    Research, Pennline et al., Annual IEP Contractors Meeting, March 24, 2009

    Moving Bed

    CO2 adsorber

    Fluegas

    tostack

    Flue gasto

    adsorber CW

    Rich

    sorbent to

    regenerati

    on

    (stripping)

    Lean sorbentto adsorber

    Steam In

    CO2 to(compression/

    recovery)

    Sorbents:

    Theoretical Regeneration Energy

    0.75)*)/(M/PR.T.ln(P+.Q)TT-0.75.(1=W

    2COdesseq

    th

    regensteam

    condeq

    regen

    20

    sorbent

    CO2

    water

    }.TCp.TCp+H{O/wtCOwtH

    +.TCp.TCp+H

    +C)T-(TCp

    =Q

    adssorbdessteamdesO,H22

    adssorbdesCOdes,CO

    w

    adsdessorb

    regen

    2

    22

    -

    -

    INTRODUCTION EXAMPLES SOLVENTS SORBENTS Q&A

    Thermal Regeneration EnergyHeating sorbent, desorbing CO2, heating CO2,

    desorbing & heating water

  • 8/6/2019 Pradeep Indrakanti Presentation

    11/12

    6/13/11

    11

    Adsorbents: Base Case & ParameterVariations

    Base Case Sorbent CO2 capacity: 1.7 g-mol

    CO2/kg sorbent (7.5 wt%)

    Enthalpy of CO2 desorption: 650BTU/lb CO2 (66.5 kJ/g-mol CO2)

    CO2 adsorber temperature: 333K**

    Desorption temperature: 378 K** Auxiliary Power: 3% of gross

    power

    Steam temperature: 388 K Enthalpy of water desorption: 40kJ/g-mol H2O Mass H2Odesorbed/Mass CO2 :

    0.05

    Parameters Varied

    Enthalpy of CO2desorption: 650, 450

    BTU/lb CO2 (66.5 to 46.1

    kJ/g-mol CO2)

    Sorbent CO2 capacity:1.7,3.0 g-mol CO2/kg

    sorbent (7.5 to 13 wt%)

    6/13/11 21

    **: Factors in Reactor Design for Carbon Dioxide Capture with Solid, Regenerable Sorbents, Hoffman et al. and field-scale testing (ADA).

    : Lowest heat of adsorption measured for diamine-silica (SBA-15) : -48 kJ/mol

    Cumulative Reduction in Energy PenaltyEffects of sorbent capacity and heat of CO2 adsorption

    HH2O = 40 kJ/g-mole, mass H2O/CO2 = 0.05

    46.1 kJ/molCO2, 13% Cw,

    -2.68%

    59.4 kJ/mol

    CO2, 13% Cw,-1.66%

    66.7 kJ/molCO2, 13% Cw,

    -1.11%

    59.4 kJ/molCO2, 7.5% Cw,

    -0.55%

    MEA @ 3.2 GJth/T

    CO2, 10 K T

    12%

    14%

    16%

    18%

    20%

    22%

    24%

    Ene

    rgyPenalty%

    Base: 66.5 kJ/g-mol CO2, 7.5 wt% Cw, 20.16% penalty

    Enthalpy of CO2desorption

    CO2Carrying Capacity

    46.1kJ/mol

    CO2,

    13%

    Cw

    22

    INTRODUCTION EXAMPLES SOLVENTS SORBENTS Q&A

  • 8/6/2019 Pradeep Indrakanti Presentation

    12/12

    6/13/11

    12

    Discussion & Conclusions

    Comparative Analyses LCOE = f( Capital Costs, O&M, Fuel Cost..) Fuel Cost = f(Energy Penalty, Type of Boiler..) Energy Penalty = CO2 Separation + Compression +

    Auxiliary Work

    Going forward Correlation between COE and energy penalty not

    always positive What parameter combination results in lowest

    COE?

    6/13/11 23

    INTRODUCTION EXAMPLES SOLVENTS SORBENTS Q&A

    Questions

    6/13/11 24

    INTRODUCTION EXAMPLES SOLVENTS SORBENTS Q&A