practica de transformadores 1

33
NOMBRES:___________________________________No._____ NOMBRES:___________________________________No._____ ________ ________ INSTITUTO TECNOLÓGICO DE TLALNEPANTLA SUBDIRECCIÓN ACADEMICA DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ELECRTRÓNICA Luis Fernando Marín Ramírez 10251136 CARRERA CARRERA (1) (1) PLAN DE PLAN DE ESTUDIOS ESTUDIOS (2) (2) NOMBRE DE LA NOMBRE DE LA ASIGNATURA ASIGNATURA (3) (3) CLAVE DE LA CLAVE DE LA ASIGNATURA ASIGNATURA (4) (4) ING. ELECTRICA SATCA TRANSFORMADORES ELF-1027 ´ PRÁCTICA PRÁCTICA No. No. (5) (5) LABORATORIO LABORATORIO DE DE (6) (6) NOMBRE DE LA NOMBRE DE LA PRÁCTICA PRÁCTICA (7) (7) DURACIÓN DURACIÓN (8) (8) ELECTRICO PLACA DE DATOS DE UN TRANSFORMADOR. I. Marco Teórico I. Marco Teórico (9) (9) El primer transformador fue, de hecho, construido por Faraday cuando realizó los experimentos en los que descubrió la inducción electromagnética. El aparato que usó fueron dos bobinas enrolladas una encima de la otra. Al variar la corriente que circulaba por una de ellas, cerrando o abriendo el interruptor, el flujo magnético a través de la otra Profesor; Ing. José Luis Cepeda Atristain Profesor; Ing. José Luis Cepeda Atristain

Upload: ing-electrica-ittla-lagartos

Post on 31-Jul-2015

86 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Practica de Transformadores 1

NOMBRES:___________________________________No.___________NOMBRES:___________________________________No._______________

INSTITUTO TECNOLÓGICO DE TLALNEPANTLASUBDIRECCIÓN ACADEMICA

DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ELECRTRÓNICA

Luis Fernando Marín Ramírez 10251136

CARRERA CARRERA (1)(1)

PLAN DEPLAN DE ESTUDIOESTUDIOSS (2)(2)

NOMBRE DE LA NOMBRE DE LA ASIGNATURA ASIGNATURA (3)(3)

CLAVE DE LACLAVE DE LA ASIGNATURASIGNATURAA(4)(4)

ING. ELECTRICA

SATCA TRANSFORMADORES

ELF-1027

´

PRÁCTICPRÁCTICA No. A No. (5)(5)

LABORATORILABORATORIO DEO DE(6)(6)

NOMBRE DE LA NOMBRE DE LA PRÁCTICA PRÁCTICA (7)(7)

DURACIÓDURACIÓNN(8)(8)

ELECTRICO PLACA DE DATOS DE UN TRANSFORMADOR.

I. Marco TeóricoI. Marco Teórico (9) (9)

El primer transformador fue, de hecho, construido por Faraday cuando realizó los experimentos en los que descubrió la inducción electromagnética. El aparato que usó fueron dos bobinas enrolladas una encima de la otra. Al variar la corriente que circulaba por una de ellas, cerrando o abriendo el interruptor, el flujo magnético a través de la otra bobina variaba y se inducía una corriente eléctrica en la segunda bobina. Pues bien, este dispositivo es precisamente un transformador. Faraday no puso mayor atención en este

Profesor; Ing. José Luis Cepeda Atristain Profesor; Ing. José Luis Cepeda Atristain

Page 2: Practica de Transformadores 1

INSTITUTO TECNOLÓGICO DE TLALNEPANTLASUBDIRECCIÓN ACADEMICA

DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ELECRTRÓNICA

aparato ya que estaba interesado en otras cuestiones. En el transcurso de los años varios experimentadores trabajaron con diferentes versiones de transformadores.Un transformador funciona de la siguiente forma: supongamos que se construye un núcleo de hierro. Si en un extremo del núcleo se enrolla un cable para formar una bobina A, y por ésta circula una corriente eléctrica, entonces resulta que el campo magnético producido por esta corriente (según la ley de Ampère) queda confinado dentro del núcleo de hierro; prácticamente no hay campo fuera del núcleo. Esto ocurre si el núcleo está construido de sustancias llamadas ferromagnéticas, como el hierro, cobalto, etc. Ahora bien, si la corriente que circula por la bobina varía con el tiempo, entonces el campo magnético producido también variará, y por tanto también cambiará el flujo de este campo a través del núcleo. Si ahora se enrolla otra bobina, la B, en otra parte del núcleo, entonces, de acuerdo con la ley de inducción electromagnética de Faraday sabemos que se inducirá una corriente a lo largo de la segunda bobina. A la bobina A se le llama el primario y a la B el secundario. Las características de la corriente inducida en B dependen del número de espiras que hay en cada una de las bobinas. Mientras mayor sea el número de espiras en el secundario, mayor será el voltaje inducido en él.

Por ejemplo, si el voltaje en el primario es de 125 V, y en el primario hay 100 espiras, mientras que en el secundario hay 2 000 espiras, entonces la relación es:

espiras en el secundario 2 000________________ = ________= 20espiras en el primario 100

Por lo tanto, el voltaje inducido en el secundario será 20 veces el voltaje del primario, o sea 20 x 125 V = 2 500 V.

Por otro lado, a medida que el voltaje aumenta en el secundario, la corriente que circula en él disminuye en el misma proporción. Si, en nuestro ejemplo, por el primario circula una corriente de 3 amperes, entonces por el secundario circulará una corriente 20 veces menor, o sea,

Profesor; Ing. José Luis Cepeda Atristain Profesor; Ing. José Luis Cepeda Atristain

Page 3: Practica de Transformadores 1

INSTITUTO TECNOLÓGICO DE TLALNEPANTLASUBDIRECCIÓN ACADEMICA

DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ELECRTRÓNICA

3/20 = 0.15 amperes.Este ejemplo nos ilustra las características de un transformador: si el voltaje inducido aumenta en el secundario entonces la corriente inducida disminuye en la misma proporción, e inversamente, si el voltaje disminuye, la corriente aumenta en la misma proporción.Un dato muy importante es que un transformador solamente funciona con corrientes que varían con el tiempo, pues es en estas circunstancias que el flujo magnético cambia y se puede inducir una corriente en el secundario. Por tanto, con corriente directa no funciona el transformador.

Entre los visitantes a sus exposiciones estuvieron tres húngaros: Otto T. Bláthy, Max Déri y Karl Zipernowski. Ellos mejoraron el diseño del transformador y en mayo de 1885, en la Exposición Nacional Húngara en Budapest presentaron lo que resultó ser el prototipo del sistema de iluminación que se utiliza hasta hoy en día. Su sistema tenía 75 transformadores conectados en paralelo que alimentaban 1 067 lámparas incandescentes del tipo de Edison, todo esto alimentado por un generador de corriente alterna que proveía un voltaje de 1 350 V. Los transformadores que usaron los húngaros proveían voltajes bajos y eran muy eficientes, pero su construcción resultaba muy laboriosa y por tanto, muy cara. Sin embargo,

Lograron su objetivo: operar un sistema de lámparas a bajo voltaje a partir de un tema de distribución de corriente operado a alto voltaje.Fue Bláthy primero en usar la palabra "transformador".Otra persona que también presenció la demostración de Gaulard y Gibbs en Italia fue el estadunidense George Westinghouse (1846-1914). Éste era un industrial que conocía el sistema construido por Edison en Nueva York, del cual no era partidario, ya que estaba consciente de sus desventajas. En 1884 Westinghouse contrató a un joven ingeniero eléctrico, William Stanley, quien tenía algunas ideas para utilizar el transformador. Hacia 1885 Stanley ya había diseñado varios tipos de transformadores superiores a los de los científicos húngaros. Con ayuda de otros ingenieros, Oliver B. Sehallenberger y Albert Schmid, construyeron transformadores como el que se muestra en la

Profesor; Ing. José Luis Cepeda Atristain Profesor; Ing. José Luis Cepeda Atristain

Page 4: Practica de Transformadores 1

INSTITUTO TECNOLÓGICO DE TLALNEPANTLASUBDIRECCIÓN ACADEMICA

DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ELECRTRÓNICA

figura 12, con laminillas de hierro que evitaban las pérdidas de energía. En marzo de 1886 entró en operación una planta construida bajo la dirección de Stanley en el pueblo de Great Barrington, Masachusetts. Esta planta operó con corriente alterna, con un generador que produjo una corriente de 500 V y que aumentó un conjunto de lámparas a una distancia de alrededor de 2 km. Por medio de transformadores redujeron el voltaje a 100 volts, que es el valor que se requiere para hacer funcionar las lámparas.

Para demostrar que se podía transmitir la electricidad a distancias mayores por medio de un transformador elevaron el voltaje a un valor de 3 000 volts, y luego lo redujeron a 100 volts. El resultado fue un gran éxito y de inmediato Westinghouse inició la manufactura y venta de equipos para distribuir electricidad por medio de corriente alterna. Al mismo tiempo Schallenberger inventó un medidor de energía eléctrica consumida, para poder cobrarla en forma precisa. Todo esto, aunado al hecho de que el costo de la transmisión era relativamente

barato, dio inicio a la utilización de la energía eléctrica por medio de corriente alterna, sistemas que aún utilizamos en la época actual.Edison y sus asociados pelearon contra la utilización de la comente alterna tanto en la prensa como en los tribunales. Sin embargo, su lucha estaba perdida. Muy pronto la corriente directa cedió su lugar a la alterna debido a su flexibilidad, conveniencia y bajo costo. Tres años después del éxito con su planta Edison quedó desplazado.En la década de 1890 el crecimiento de los sistemas de corriente alterna fue muy vertiginoso. En las cataratas del Niágara, EUA, se instalaron generadores inmensos que iniciaron su servicio en 1895 y alimentaron de electricidad a lugares bastante lejanos, algunos situados a centenares de kilómetros. De esta manera muy pronto se establecieron sistemas de transmisión en muchos países, tendencia que continúa hasta la fecha.

En el transcurso del presente siglo ha habido una gran actividad de trabajo científico y desarrollo tecnológico para

Profesor; Ing. José Luis Cepeda Atristain Profesor; Ing. José Luis Cepeda Atristain

Page 5: Practica de Transformadores 1

INSTITUTO TECNOLÓGICO DE TLALNEPANTLASUBDIRECCIÓN ACADEMICA

DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ELECRTRÓNICA

mejorar la eficiencia del funcionamiento de los transformadores. Este trabajo ha estado centrado en desarrollar mejores materiales para los núcleos, a fin de evitar pérdidas de energía que ocasionan el calentamiento del transformador. Ahora bien, al aumentar la temperatura las características del material ferromagnético cambian y a la larga deja de ser ferromagnético, con lo que el núcleo del transformador ya no funciona eficientemente. Es por esto que se hizo un gran esfuerzo científico y técnico para evitar este calentamiento, lo cual se logró al sumergirlo en un líquido, por ejemplo, aceite. Por falta de espacio no entraremos en la descripción de estos interesantes detalles del funcionamiento de los transformadores.

El transformador:Se denomina transformador a una maquina eléctrica que permite aumentar o disminuir el voltaje o tensión en un circuito eléctrico de corriente alterna, manteniendo la frecuencia. La potencia que ingresa al equipo, en el caso de un transformador ideal, esto es, sin pérdidas, es igual a la que se obtiene a la salida. Las máquinas reales presentan un pequeño porcentaje de pérdidas, dependiendo de su diseño, tamaño, etc.

Si suponemos un equipo ideal y consideramos, simplificando, la potencia como el producto del voltaje o tensión por la intensidad, ésta debe permanecer constante (ya que la potencia a la entrada tiene que ser igual a la potencia a la salida).

Los transformadores son dispositivos basados en el fenómeno de la inducción electromagnética y están constituidos, en su forma más simple, por dos bobinas devanadas sobre un núcleo cerrado de hierro dulce o hierro silicio. Las bobinas o devanados se denominan primarios y secundarios según correspondan a la entrada o salida del sistema en cuestión, respectivamente. También existen transformadores con más devanados, en este caso puede

Profesor; Ing. José Luis Cepeda Atristain Profesor; Ing. José Luis Cepeda Atristain

Page 6: Practica de Transformadores 1

INSTITUTO TECNOLÓGICO DE TLALNEPANTLASUBDIRECCIÓN ACADEMICA

DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ELECRTRÓNICA

existir un devanado "terciario", de menor tensión que el secundario.

Tipos de transformadores:

Transformadores De Potencia:

Descripción: Se utilizan para subtransmisión y transmisión de energía eléctrica en alta y media tensión. Son de aplicación en subestaciones transformadoras, centrales de generación y en grandes usuarios. Características Generales: Se construyen en potencias normalizadas desde 1.25 hasta 20 MVA, en tensiones de 13.2, 33, 66 y 132 kv. y frecuencias de 50 y 60 Hz.

TRANSFORMADOR DE DISTRIBUCIONSe denomina transformadores de distribución, generalmente los transformadores de potencias iguales o inferiores a 500 kVA y de tensiones iguales o inferiores a 67 000 V, tanto monofásicos como trifásicos. Aunque la mayoría de tales unidades están proyectadas para montaje sobre postes, algunos de los tamaños de potencia superiores, por encima de las clases de 18 kV, se construyen para montaje en estaciones o en plataformas. Las aplicaciones típicas son para alimentar a granjas, residencias, edificios o almacenes públicos, talleres y centros comerciales.

A continuación se detallan algunos tipos de transformadores de distribución.Descripción: Se utilizan en intemperie o interior para distribución de energía eléctrica en media tensión. Son de aplicación en zonas urbanas, industrias, minería, explotaciones petroleras, grandes centros comerciales y toda actividad que requiera la utilización intensiva de energía eléctrica.

Profesor; Ing. José Luis Cepeda Atristain Profesor; Ing. José Luis Cepeda Atristain

Page 7: Practica de Transformadores 1

INSTITUTO TECNOLÓGICO DE TLALNEPANTLASUBDIRECCIÓN ACADEMICA

DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ELECRTRÓNICA

Características Generales: Se fabrican en potencias normalizadas desde 25 hasta 1000 kVA y tensiones primarias de 13.2, 15, 25, 33 y 35 kV. Se construyen en otras tensiones primarias según especificaciones particulares del cliente. Se proveen en frecuencias de 50-60 Hz. La variación de tensión, se realiza mediante un conmutador exterior de accionamiento sin carga.Transformadores Secos Encapsulados en Resina Epoxi

Descripción: Se utilizan en interior para distribución de energía eléctrica en media tensión, en lugares donde los espacios reducidos y los requerimientos de seguridad en caso de incendio imposibilitan la utilización de transformadores refrigerados en aceite. Son de aplicación en grandes edificios, hospitales, industrias, minería, grandes centros comerciales y toda actividad que requiera la utilización intensiva de energía eléctrica.Características Generales: Su principal característica es que son refrigerados en aire con aislación clase F, utilizándose resina epoxi

Como medio de protección de los arrollamientos, siendo innecesario cualquier mantenimiento posterior a la instalación.

Se fabrican en potencias normalizadas desde 100 hasta 2500 kVA, tensiones primarias de 13.2, 15, 25, 33 y 35 kV y frecuencias de 50 y 60 HzTransformadores sumergidos en aceite mineral

Descripción: Se utilizan en intemperie o interior para distribución de energía eléctrica en media tensión, siendo muy útiles en lugares donde los espacios son reducidos. Son de aplicación en zonas urbanas, industrias, minería, explotaciones petroleras, grandes centros comerciales y toda actividad que requiera la utilización intensiva de energía eléctrica.Características Generales: Su principal característica es que al no llevar tanque de expansión de aceite no necesita mantenimiento, siendo esta construcción más compacta que la tradicional.

Profesor; Ing. José Luis Cepeda Atristain Profesor; Ing. José Luis Cepeda Atristain

Page 8: Practica de Transformadores 1

INSTITUTO TECNOLÓGICO DE TLALNEPANTLASUBDIRECCIÓN ACADEMICA

DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ELECRTRÓNICA

Se fabrican en potencias normalizadas desde 100 hasta 1000 kVA, tensiones primarias de 13.2, 15, 25, 33 y 35 kV y frecuencias de 50 y 60 Hz.

AUTOTRANSFORMADORES

Los autotransformadores se usan normalmente para conectar dos sistemas de transmisión de tensiones diferentes, frecuentemente con un devanado terciario en triángulo. De manera parecida, los autotransformadores son adecuados como transformadores elevadores de centrales cuando sé desea alimentar dos sistemas de transporte diferentes. En este caso el devanado terciario en triángulo es un devanado de plena capacidad conectado al generador y los dos sistemas de transporte se conectan al devanado, autotransformador. El autotransformador no sólo presenta menores pérdidas que el transformador normal, sino que su menor tamaño y peso permiten el transporte de potencias superiores.TRANSFORMADOR DE CORRIENTE TT/CC

Los transformadores de corriente se utilizan para tomar muestras de corriente de la línea y reducirla a un nivel seguro y medible, para las gamas normalizadas de instrumentos, aparatos de medida, u otros dispositivos de medida y control. Ciertos tipos de transformadores de corriente protegen a los instrumentos al ocurrir cortocircuitos.Los valores de los transformadores de corriente son:Carga nominal: 2.5 a 200 VA, dependiendo su función.Corriente nominal: 5 y 1A en su lado secundario. se definen como relaciones de corriente primaria a corriente secundaria. Unas relaciones típicas de un transformador de corriente podrían ser: 600/5, 800/5, 1000/5.

Usualmente estos dispositivos vienen con un amperímetro adecuado con la razón de transformación de los transformadores de corriente, por ejemplo: un transformador de 600/5 está disponible con un amperímetro graduado de 0 - 600A.

Profesor; Ing. José Luis Cepeda Atristain Profesor; Ing. José Luis Cepeda Atristain

Page 9: Practica de Transformadores 1

INSTITUTO TECNOLÓGICO DE TLALNEPANTLASUBDIRECCIÓN ACADEMICA

DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ELECRTRÓNICA

TRANSFORMADOR DE POTENCIAL TT/PP

Es un transformador devanado especialmente, con un primario de alto voltaje y un secundario de baja tensión. Tiene una potencia nominal muy baja y su único objetivo es suministrar una muestra de voltaje del

sistema de potencia, para que se mida con instrumentos incorporados.Además, puesto que el objetivo principal es el muestreo de voltaje deberá ser particularmente preciso como para no distorsionar los valores verdaderos. Se pueden conseguir transformadores de potencial de varios niveles de precisión, dependiendo de que tan precisas deban ser sus lecturas, para cada aplicación especial.Transformadores de corriente constanteUn transformador de corriente constante es un transformador que automáticamente mantiene una corriente aproximadamente constante en su circuito secundario, bajo condiciones variables de impedancia de carga, cuando su primario se alimenta de una fuente de tensión aproximadamente constante. El tipo más usual, la disposición de «bobina móvil», tiene separadas las bobinas del primario y secundario, que tienen libertad para moverse entre sí, variando por tanto la reactancia de dispersión magnética del transformador.Existen disponibles tipos para subestación que proporcionan unos modelos compactos integrales, que llevan incluidas los accesorios necesarios para el control y protección del transformador. Los accesorios normales comprenden un interruptor a solenoide primario, una protección. contra apertura del circuito, fusibles o cortacircuitos con fusibles en el primario y descargadores de sobretensiones en el primario y en el secundario.

Los transformadores de corriente constante de tipo estático no tienen partes móviles y funcionan según el principio de una red resonante. Esta red normalmente consta de dos reactancias inductivas y dos capacitivas, cada una de igual reactancia para la frecuencia de alimentación. Con tal red, la corriente secundaria es independiente de la impedancia de

Profesor; Ing. José Luis Cepeda Atristain Profesor; Ing. José Luis Cepeda Atristain

Page 10: Practica de Transformadores 1

INSTITUTO TECNOLÓGICO DE TLALNEPANTLASUBDIRECCIÓN ACADEMICA

DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ELECRTRÓNICA

la carga conectada, pero es directamente proporcional a la tensión del primario.

Transformadores para hornos

Los transformadores para hornos suministran potencia a hornos eléctricos de los tipos de inducción, resistencia, arco abierto y arco sumergido. Las tensiones secundarias son bajas, ocasionalmente menores de 100 V, pero generalmente de varios centenares de Volts. La gama de tamaños varía desde algunos kVA a más de 50 MVA, con corrientes en el secundario superiores a 60 000 A.

Las corrientes elevadas se obtienen conectando en paralelo muchas secciones de devanado. La corriente es recogida por barras internas y llevada a través de la tapa del transformador mediante barras o mediante bornes de gran corriente.

Transformadores de puesta a tierraUn transformador de puesta a tierra es un transformador ideado principalmente con la finalidad de proporcionar un punto neutro a efectos de puesta a tierra. Puede ser una unidad de dos devanados con el devanado secundario conectado en triángulo y el devanado primario conectado en estrella que proporciona el neutro a efectos de puesta a tierra o puede ser un autotransformador trifásico de un solo devanado con devanados en estrella interconectada, o sea en zig-zag.

Transformadores móviles

Transformadores móviles y subestaciones móviles. Los transformadores o autotransformadores móviles están montados normalmente sobre semirremolques y llevan incorporados pararrayos y seccionadores separadores. Una subestación móvil tiene, además, aparamenta y equipo de medida y de protección. La unidad se desplaza por carretera arrastrada por tractores. Los reglamentos estatales y

Profesor; Ing. José Luis Cepeda Atristain Profesor; Ing. José Luis Cepeda Atristain

Page 11: Practica de Transformadores 1

INSTITUTO TECNOLÓGICO DE TLALNEPANTLASUBDIRECCIÓN ACADEMICA

DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ELECRTRÓNICA

federales sobre transporte por carretera limitan el peso y tamaño máximos.

Las unidades móviles se usan para restablecer el servicio eléctrico en emergencias, para permitir el mantenimiento sin interrupción de servicio, para proporcionar servicio durante las construcciones importantes y para reducir las inversiones en el sistema.La unidad móvil está proyectada de manera que constituye una unidad compacta de aplicación múltiple que proporciona la máxima potencia en kVA, para el peso admisible.

CONSTRUCCION DE LOS TRANSFORMADORES:

Para realizar la construcción del transformador tendremos la necesidad de diseñar y construir un transformador que reuna características para casos especiales. Sin duda, lo más fácil y práctico es comprar un transformador nuevo, para reponer el que se haya quemado, pero en algunos casos, no es posible encontrar uno idéntico,

por lo que tenemos que recurrir al diseño y construcción del mismo, basándonos en las especificaciones que se requieran.

TIPOS DE NUCLEOS:

El núcleo de los transformadores de fuerza pueden ser de dos tipos, de acuerdo a su forma, tipo D y B o de barra central.

DISEÑO DEL TRANSFORMADOR: Nuestro primer paso en el diseño es considerar el circuito en el cual va a usarse y saber con certeza el número de vatios, o sea la potencia. Para esto usaremos la fórmula siguiente: W= V x A (VATIOS = VOLTIOS x AMPERIOS)Ahora diseñemos uno: SECUNDARIO: 5 voltios y 2 amperios, ejecutemos la fórmula: 2 x 5 = 10 vatios. Si fuera, por ejemplo: 6.3 voltios: 6.3 x 2 = 12.6 vatios(para facilitarnos el diseño, tomemos una cifra redonda: 13 vatios.

Profesor; Ing. José Luis Cepeda Atristain Profesor; Ing. José Luis Cepeda Atristain

Page 12: Practica de Transformadores 1

INSTITUTO TECNOLÓGICO DE TLALNEPANTLASUBDIRECCIÓN ACADEMICA

DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ELECRTRÓNICA

DISEÑO DEL NUCLEO:El tamaño del núcleo que debemos emplear, lo encontraremos por medio de la carta gráfica, que nos da el tamaño del lado del cuadrado de corte transversal, o sea en "L", sin embargo hay que tomar en cuenta el uso que dicho transformador va a tener. Para uso continuo debe tomarse el número total de vatios, de lo contrario o si se quiere reducir el costo y tamaño, puede tomarse una potencia un poco menor(aunque no es aconsejable), por ejemplo:

De 10 a 1000 vatios, multipliquemos la potencia por .7De 1000 vatios en adelante, por .8Para nuestro caso las dimensiones serían de 1.1 pulgadas aproximadamente.

NUMERO DE VUELTAS POR VOLTIO:Ahora pasemos a obtener el número de vueltas por voltio, en relación a la dimisión "L", que en este caso es de 1.1 pulgadas, lo podemos encontrar con la fórmula siguiente: Vueltas por voltio = 6.47 dividido entre el área transversal del núcleo, que es igual a: 1.1 x 1.1 = 1.21, y seguimos: 6.47 dividido entre 1.21 igual 5.3 vueltas por voltio, como en este caso no sabemos como debemos devanar .3 redondeamos a 6.0.Ahora procedamos a encontrar el número de vueltas para el secundario, que sería: 5 voltios x 6 igual: 30 vueltas. Para el primario que es de 110, necesitamos: 110 x 6 igual: 660 vueltas. Además de lo antes dicho, debemos decir que al calcular el número de vueltas de

nuestro secundario debemos agregar un 5% para contrarrestar las pérdidas por la transferencia de energía del primario al secundario, en este caso será: 5 x 6 +(5 x .05) 0 30 + .25 0 30.25 vueltas, pero para evitarnos problemas dejemos 30 vueltas

CALIBRE DEL ALAMBRE:

Nuestro siguiente paso es el de determinar el calibre del alambre que debemos usar para cada uno de los devanados, el cual depende de la intensidad de la corriente que fluirá por ellos. Por ejemplo: según la tabla el alambre para el

Profesor; Ing. José Luis Cepeda Atristain Profesor; Ing. José Luis Cepeda Atristain

Page 13: Practica de Transformadores 1

INSTITUTO TECNOLÓGICO DE TLALNEPANTLASUBDIRECCIÓN ACADEMICA

DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ELECRTRÓNICA

secundario es el número 17, usamos como referencia los amperios. Para el primario usamos para averiguar el amperaje la fórmula: Corriente en amperios = vatios dividido voltios, o sea: 60 dividido 110 igual .545, buscamos en la tabla y el valor que se acerca es .500 amperios; por lo que el calibre del alambre es el número 23. Resumiendo: PRIMARIO: 660 vueltas de alambre # 23, SECUNDARIO: 30 vueltas de alambre # 17.

DIMENSIONES DEL NUCLEO:

Conociendo la sección transversal del núcleo que es de 1.1 pulgadas por lado, esta sección se hace generalmente cuadrada, por dar mejores resultados. Las demás dimensiones del núcleo, dependen de la ventanilla o espacio requerido por el volumen total de los devanados y varía ligeramente según el tipo que se emplee, B o D. Cuando se usa el tipo B, el conjunto de devanados se enrolla sobre la barra central, la cual está comúnmente colocada a lo ancho, Si se desea, puede

diseñarse el núcleo con la barra del centro en sentido longitudinal, en cuyo caso el largo de los devanados es mayor que su espesor. Si empleamos en núcleo D, los devanados pueden enrollarse sobre cualquiera de los lados, aunque generalmente se hace sobre uno de los dos más largos. Siendo el núcleo B el que reúne mayores ventajas, vamos a empelar este núcleo en la construcción de nuestro transformador. Para determinar las dimensiones del núcleo el procedimiento más práctico es dibujar el transformador, dando a éste un ancho aproximado y luego marcar el espesor de cada devanado más el grueso del aislamiento entre los mismos, esto lo hacemos con el fin de tener una idea del tamaño que tendrá el transformador.

DIMENSIONES DE LA VENTANILLA:

Como hemos tomado un ancho de 4 pulgadas, disponemos de un espacio de 4 - ( 2 x .55) = 2.9" en la ventanilla, pero debemos dejar un pequeño espacio entre los lados del

Profesor; Ing. José Luis Cepeda Atristain Profesor; Ing. José Luis Cepeda Atristain

Page 14: Practica de Transformadores 1

INSTITUTO TECNOLÓGICO DE TLALNEPANTLASUBDIRECCIÓN ACADEMICA

DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ELECRTRÓNICA

devanado y el núcleo. Calculemos ahora el grueso del primario, para el cual utilizaremos alambre # 23, con esto podemos obtener 31.1 vueltas por pulgada lineal. Como disponemos de un espacio de 2.5" para cada capa, el número de vueltas por capa será de: 31.1 x 2.5 = 77.75 vueltas por capa, que en números redondos será de 77.El número total de vueltas requeridas para el primario es de 660, por lo tanto para encontrar el número de capas únicamente tendremos que dividir este número entre el número de vueltas por capa, o sea: 660 dividido 77 = 8.6, o sea 9 capas(recordemos que las fracciones las vamos a considerar como números enteros).Con la información anterior, considero que ya pueden empezar a experimentar con los transformadores, no pretendo dar una cátedra completa, simplemente, trato de dar luces. Si hay dudas, que estoy seguro las van a haber, no dejen de escribirme y trataré de aclararlas en lo posible.

III. Resultados III. Resultados (11)(11)

Profesor; Ing. José Luis Cepeda Atristain Profesor; Ing. José Luis Cepeda Atristain

Page 15: Practica de Transformadores 1

INSTITUTO TECNOLÓGICO DE TLALNEPANTLASUBDIRECCIÓN ACADEMICA

DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ELECRTRÓNICA

En la placa de los transformadores se da la información de todas las conexiones, su refrigerante, tensiones a las cuales puede ser sometido, los distintos valores de las tomas, peso, etc.

Potencia nominal:

Es la potencia que el transformador consume cuando está trabajando a plena carga.

Numero de fases:

Indica el número de fases con las que trabaja el transformador.

Peso total:

Es el peso total del transformador (Refrigerante, núcleo, bobinas).

Año:

Indica el año de fabricación del transformador.

Frecuencia:

La frecuencia de trabajo del transformador.

Aceite:

Es el tipo de aceite que usa el transformador para su sistema de refrigeración.

Volumen de aceite:

Es la cantidad de aceite que cabe dentro del depósito de aceite para la refrigeración del transformador.

Profesor; Ing. José Luis Cepeda Atristain Profesor; Ing. José Luis Cepeda Atristain

Page 16: Practica de Transformadores 1

INSTITUTO TECNOLÓGICO DE TLALNEPANTLASUBDIRECCIÓN ACADEMICA

DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ELECRTRÓNICA

Tipo de conexión: Indica el tipo de conexión del transformador

El termino % Z significa el porcentaje de la impedancia de un transformador es la caída de voltaje a plena carga, debido a la resistencia del devanado y la reactancia de fuga expresado como porcentaje de la tensión nominal.

La etiqueta ANSI C57 12.00- 1980 representa la presentación que debe tener una placa de datos que suministran en cada transformador según ANSI. Ninguna conexión interna debe hacerse dentro del transformador que no sea aquella indicada en la placa de datos.

La primera placa es de un transformador que esta fabricado en México por industrias “IEM”, S.A de C.V., en Tlalnepantla, Edo de México. Con tecnología de WESTINGHOUSE.

Y es de tipo trifásico:

El transformador trifásico es una maquina electromagnética estática que está construida para funcionar con tres fases simultáneamente, por lo tanto está constituida por un núcleo y dos bobinados por fase obteniendo tres núcleos y seis bobinados en total. Su forma y construcción varia obteniendo varias combinaciones.

Este transformador en su interior se encuentra reposando en aceite para su refrigeración. Estos aparatos son aplicados a sistemas de distribución aéreos tales como:

Zonas urbanas, fraccionamientos residenciales, pequeñas industrias y comercios, zonas rurales. Son muy ventajosos puesto que ahorran espacio son de rápida instalación y necesitan poco mantenimiento.

Profesor; Ing. José Luis Cepeda Atristain Profesor; Ing. José Luis Cepeda Atristain

Page 17: Practica de Transformadores 1

INSTITUTO TECNOLÓGICO DE TLALNEPANTLASUBDIRECCIÓN ACADEMICA

DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ELECRTRÓNICA

El trasformador de la siguiente imagen es un transformador tipo poste, en el cual podremos apreciar los accesorios que lo conforman en su parte exterior.

Profesor; Ing. José Luis Cepeda Atristain Profesor; Ing. José Luis Cepeda Atristain

Page 18: Practica de Transformadores 1

INSTITUTO TECNOLÓGICO DE TLALNEPANTLASUBDIRECCIÓN ACADEMICA

DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ELECRTRÓNICA

Transformador auto protegido:

Este tipo de transformadores tienen un cortocircuito secundario de protección por sobrecarga y cortocircuito, controlado térmicamente y montado en su interior; un eslabón protector de montaje interno conectado en serie con el devanado de alto voltaje para desconectar el transformador de la línea en caso de falla interna de las bobinas, y uno o más apartar rayos montados en forma integral en el exterior del tanque para protección por sobre voltaje.

Profesor; Ing. José Luis Cepeda Atristain Profesor; Ing. José Luis Cepeda Atristain

Page 19: Practica de Transformadores 1

INSTITUTO TECNOLÓGICO DE TLALNEPANTLASUBDIRECCIÓN ACADEMICA

DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ELECRTRÓNICA

TRANSFORMADOR “IEM”

Volts:

13200-200Y/127*440Y/254.

Fases: 3.

Frecuencia: 60Hz.

Elevación: 65˚c Altitud: 2000 M.S.N.M.

Conexión: Delta-Estrella.

Profesor; Ing. José Luis Cepeda Atristain Profesor; Ing. José Luis Cepeda Atristain

Page 20: Practica de Transformadores 1

INSTITUTO TECNOLÓGICO DE TLALNEPANTLASUBDIRECCIÓN ACADEMICA

DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ELECRTRÓNICA

Volts Alta Tensión

Posición Conectar

13860 1 4-513530 2 5-313200 3 3-612870 4 6-212540 5 2-7

Volts Baja Tensión Conectar440 B con C220 A con C

B con D

Profesor; Ing. José Luis Cepeda Atristain Profesor; Ing. José Luis Cepeda Atristain

Page 21: Practica de Transformadores 1

INSTITUTO TECNOLÓGICO DE TLALNEPANTLASUBDIRECCIÓN ACADEMICA

DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ELECRTRÓNICA

La siguiente imagen es del segundo transformador que analizamos en el laboratorio y en mi muy particular punto de vista, creo que la placa de datos es mucho mas completa.Aunque siguen faltándoles datos

Profesor; Ing. José Luis Cepeda Atristain Profesor; Ing. José Luis Cepeda Atristain

Page 22: Practica de Transformadores 1

INSTITUTO TECNOLÓGICO DE TLALNEPANTLASUBDIRECCIÓN ACADEMICA

DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ELECRTRÓNICA

Por eso es que decidí buscar una placa aun mas completa para mostrar un ejemplo mejor:

Profesor; Ing. José Luis Cepeda Atristain Profesor; Ing. José Luis Cepeda Atristain

Page 23: Practica de Transformadores 1

INSTITUTO TECNOLÓGICO DE TLALNEPANTLASUBDIRECCIÓN ACADEMICA

DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ELECRTRÓNICA

Interpretación.

Potencia Nominal: 125KVA

Profesor; Ing. José Luis Cepeda Atristain Profesor; Ing. José Luis Cepeda Atristain

Page 24: Practica de Transformadores 1

INSTITUTO TECNOLÓGICO DE TLALNEPANTLASUBDIRECCIÓN ACADEMICA

DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ELECRTRÓNICA

Numero De Fases: 3 Tensión Primaria: 22KV Tensión Secundaria: 220V Corriente Primaria: 3.28A Corriente Secundaria: 828A

Alta Tensión Bornes H1, H2, H3.

Voltios Posición Al conmutador

Conexión

23100 1 3-4 “DELTA”22550 2 4-2 “22000 3 2-5 “23450 4 5-1 “20800 5 1-6 “

Baja Tensión Bornes X0, X1, X2, X3.

220127

“ESTRELLA”

Conexión (Δ- Y)

Profesor; Ing. José Luis Cepeda Atristain Profesor; Ing. José Luis Cepeda Atristain

Page 25: Practica de Transformadores 1

INSTITUTO TECNOLÓGICO DE TLALNEPANTLASUBDIRECCIÓN ACADEMICA

DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ELECRTRÓNICA

Esta conexión se utiliza normalmente para elevar el voltaje a un valor alto. Cuando el devanado primario se encuentra en triángulo y el devanado secundario se encuentra en estrella. En esta conexión los voltajes de línea y de fase son iguales tanto en el primario como en el secundario.

Conexión (Y - Δ) La conexión estrella – triangulo, se usa generalmente para bajar de un voltaje alto a uno medio o bajo. Una razón de ello es que se tiene un neutro para aterrizar el lado de alto voltaje lo cual es conveniente y tiene grandes ventajas. Figura

Profesor; Ing. José Luis Cepeda Atristain Profesor; Ing. José Luis Cepeda Atristain

Page 26: Practica de Transformadores 1

INSTITUTO TECNOLÓGICO DE TLALNEPANTLASUBDIRECCIÓN ACADEMICA

DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ELECRTRÓNICA

V. Conclusiones y Recomendaciones V. Conclusiones y Recomendaciones (13)(13)

Como se pudo estudiar el transformador trifásico es una maquina poderosa que tiene un muchas aplicaciones y es de vital importancia que se tengan claros los conceptos de su funcionamiento, su construcción y sus características según la conexión en la que se encuentre. Al momento de utilizar o adquirir un transformador es necesario que se conozca bien cuál será su funcionalidad para aplicar una conexión adecuada y aprovechar al máximo su rendimiento.

VI. Anexos VI. Anexos (14)(14)

Profesor; Ing. José Luis Cepeda Atristain Profesor; Ing. José Luis Cepeda Atristain

Page 27: Practica de Transformadores 1

INSTITUTO TECNOLÓGICO DE TLALNEPANTLASUBDIRECCIÓN ACADEMICA

DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ELECRTRÓNICA

VII. Bibliografía VII. Bibliografía (15)(15)

Prolec GE Internacional, S. de R.L. de C.V, “Transformador trifásico tipo poste” Catalogo de Zetrak.http://personales.unican.es/rodrigma/PDFs/trafos-trifasicos.pdf

VIII. Fecha y Forma de entrega del Reporte VIII. Fecha y Forma de entrega del Reporte (16)(16)

Profesor; Ing. José Luis Cepeda Atristain Profesor; Ing. José Luis Cepeda Atristain