modulo de puente posterior

22
Ing. Vicente Rojas TREN DE RODAJE PUENTE MOTRIZ DEL AUTOMÓVIL Para que el automóvil se mueva necesita hacer llegar a las ruedas la fuerza motriz generada en el motor. Durante muchos años del desarrollo del vehículo, esta función estaba a cargo de un dispositivo monolítico, colocado en la parte trasera del automóvil, y en cuyos extremos se encontraban las ruedas (Figura 1). Este dispositivo recibía la rotación desde la caja de velocidades, a través de la barra de trasmisión colocada a lo largo del vehículo, y lo transformaba a un movimiento transversal, dividido a cada lado del vehículo para mover los neumáticos y así garantizar la tracción. Como era un cuerpo rígido que iba de un lado al otro del automóvil y en donde se apoyaba este a través de la suspensión, se le denominó puente, pero como además era el responsable de la tracción, se le puso el apellido de motriz para diferenciarlo del otro puente rígido que soportaba las ruedas delanteras y que era el directriz. Puente motriz trasero Figura 1 El desarrollo posterior de la tracción delantera hizo que este "puente" virtualmente desapareciera de los vehículos ligeros, y solo quedara reservado para los camiones y vehículos mas pesados, no obstante, aunque ya la pieza monolítica no exista, el nombre de puente motriz se conserva para todos los automóviles. Observe en la figura 2 un esquema de este tipo de puente motriz. No existe cuerpo rígido ente las ruedas, y estas, están directamente unidas al vehículo por un mecanismo de suspensión independiente. En este tipo de puente van a parar a las ruedas solo dos árboles de trasmisión del movimiento que salen directamente del mecanismo de la trasmisión. Estructura básica del mecanismo motriz El torque generado en el motor y transformado en la caja de velocidades aun no es del valor adecuado para las necesidades óptimas del vehículo y debe ser amplificado aun mas, esta última etapa de amplificación se hace en el puente motriz en una o varias etapas de amplificación; generalmente una, en los

Upload: edgar-rojas

Post on 30-Dec-2015

102 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Modulo de Puente Posterior

Ing. Vicente Rojas TREN DE RODAJE

PUENTE MOTRIZ DEL AUTOMÓVIL

Para que el automóvil se mueva necesita hacer llegar a las ruedas la fuerza motriz generada en el motor. Durante muchos años del desarrollo del vehículo, esta función estaba a cargo de un dispositivo monolítico, colocado en la parte trasera del automóvil, y en cuyos extremos se encontraban las ruedas (Figura 1). Este dispositivo recibía la rotación desde la caja de velocidades, a través de la barra de trasmisión colocada a lo largo del vehículo, y lo transformaba a un movimiento transversal, dividido a cada lado del vehículo para mover los neumáticos y así garantizar la tracción. Como era un cuerpo rígido que iba de un lado al otro del automóvil y en donde se apoyaba este a través de la suspensión, se le denominó puente, pero como además era el responsable de la tracción, se le puso el apellido de motriz para diferenciarlo del otro puente rígido que soportaba las ruedas delanteras y que era el directriz.

Puente motriz trasero

Figura 1

El desarrollo posterior de la tracción delantera hizo que este "puente" virtualmente desapareciera de los vehículos ligeros, y solo quedara reservado para los camiones y vehículos mas pesados, no obstante, aunque ya la pieza monolítica no exista, el nombre de puente motriz se conserva para todos los automóviles. Observe en la figura 2 un esquema de este tipo de puente motriz.

No existe cuerpo rígido ente las ruedas, y estas, están directamente unidas al vehículo por un mecanismo de suspensión independiente. En este tipo de puente van a parar a las ruedas solo dos árboles de trasmisión del movimiento que salen directamente del mecanismo de la trasmisión.

Estructura básica del mecanismo motriz

El torque generado en el motor y transformado en la caja de velocidades aun no es del valor adecuado para las necesidades óptimas del vehículo y debe ser amplificado aun mas, esta última etapa de amplificación se hace en el puente motriz en una o varias etapas de amplificación; generalmente una, en los

Page 2: Modulo de Puente Posterior

Ing. Vicente Rojas TREN DE RODAJE

automóviles ligeros, y dos o mas, en los pesados y muy pesados. Esta necesidad genera la primera condición que debe cumplir el puente motriz:

Condición 1: El puente motriz debe amplificar el torque que recibe de la caja de velocidades.

En muchos casos la colocación del motor y la caja de velocidades es longitudinal al vehículo, en estos casos el puente motriz debe convertir el movimiento longitudinal de entrada a un movimiento transversal para hacerlo llegar a las ruedas. De aquí la segunda condición:

Condición 2: Cuando el movimiento de entrada es longitudinal al vehículo, el puente motriz debe convertirlo en un movimiento transversal al de entada.

Es casi universalmente utilizado que la salida de la caja de velocidades sea única, es decir un solo árbol en movimiento, por lo tanto el puente motriz debe convertir esa rotación de árbol único, a la de dos árboles alineados y hacerlo llegar a cada una de las ruedas. De aquí la tercera condición:

Condición3: El puente motriz debe convertir el movimiento del único del árbol de entrada, al de dos árboles alineados y opuestos uno para cada rueda.

Cuando el vehículo se mueve en una curva, ambas ruedas recorren un espacio diferente, la rueda interior a la curva se mueve por un arco de círculo de menor diámetro que la rueda exterior, por tal motivo ambas velocidades de rotación son diferentes. Si no se provee al puente motriz de un mecanismo que permita esta diferenciación, necesariamente alguna de las ruedas, o ambas, tendrán que deslizarse en contradicción una con la otra en las curvas.

Esta necesidad establece la cuarta condición que se debe cumplir:

Condición 4: El puente motriz debe permitir la diferenciación de la velocidad de rotación de las ruedas en las curvas sin dejar de trasmitir la fuerza motriz.

Veamos ahora como se pueden cumplir todas estas condiciones.

Page 3: Modulo de Puente Posterior

Ing. Vicente Rojas TREN DE RODAJE

Esquema tracción delantera

Figura 2

En la figura 3 se muestra un esquema del mecanismo básico del puente motriz, la entrada del movimiento se hace por árbol de trasmisión, en cuyo extremo interior tiene un piñón dentado cónico de pequeño diámetro. Este piñón engrana con una corona de mayor diámetro cuyo eje está a 90o con respecto al eje del piñón. Este par engranado hace que se cumplan las condiciones anteriores 1 y 2, es decir el torque de entrada se amplifica, debido a la diferencia de diámetros entre los engranes, y además se transforma en un movimiento transversal al de entrada.

Montado rígidamente y solidario a esta corona, existe una suerte de horquilla con ejes en los que se montan dos engranes cónicos conocidos como satélites. Estos satélites a su vez engranan con los planetarios, otro par de engranes cónicos empotrados en los extremos de dos árboles independientes que van a las ruedas, conocidos como palieres.

Este mecanismo de planetarios y satélites se conoce como diferencial, y es el que permite el cumplimiento de las condiciones 3 y 4, es decir, divide el movimiento del árbol único de entrada, al de dos árboles opuestos y alineados que van a parar a las ruedas, y permite el movimiento de rotación relativo de una de las ruedas con respecto a la otra.

Page 4: Modulo de Puente Posterior

Ing. Vicente Rojas TREN DE RODAJE

Diferencial

Figura 3

En las figuras 4 y 5 se presentan esquemas que sirven para ilustrar como el diferencial permite la diferencia de velocidad entre las ruedas durante las curvas.

figuras 4 y 5

Page 5: Modulo de Puente Posterior

Ing. Vicente Rojas TREN DE RODAJE

Observe la figura 4, en este caso el automóvil marcha en linea recta, los satélites no giran sobre sus ejes y solo sirven como elemento de arrastre entre la corona y los planetarios, aquí, los planetarios y con ellos los palieres y las ruedas, giran a la misma velocidad.

Cuando el automóvil entra en una curva, la diferente velocidad de rotación de las ruedas se permite (Figura 5) debido a que los satélites pueden girar sobre sus ejes, con ello se establece una independencia de giro entre ambos palieres y la velocidad de cada uno se adapta automáticamente a la necesidad del giro.

En la figura 6 aparece una vista de un difererencial real, observe que los dientes de la corona y el piñón son dientes inclinados del tipo helicoidales mientras que los de satélites y planetarios son dientes rectos. Todo el mecanismo está confinado a un cárter cerrado donde hay aceite de lubricación hasta cierto nivel. Este aceite es especialmente formulado para soportar la alta presión que se produce en el contacto entre los dientes de los engranes.

figura 6

Con el objetivo de bajar la posición del piñón con respecto a la corona y con ello bajar también la altura de la barra de trasmisión acoplada a este, la unión engranada entre piñón y corona en los vehículos ligeros que aun tienen tracción trasera es del tipo hipoidal.

La figura 7 muestra una vista de este tipo de engranajes hipoidales, observe que el eje del piñón no coincide con el centro de la corona, si no, que está mas abajo, de esta forma la entrada de la barra de trasmisión al puente motriz es mas baja y puede bajarse el nivel del piso del vehículo. La figura 8 es otro ejemplo de engrane hipoidal utilizado en la maquinaria en general.

Los engranajes helicoidales presentan los dientes inclinados y curvos como formando la sección de una rosca, y tienen la ventaja de que su funcionamiento

Page 6: Modulo de Puente Posterior

Ing. Vicente Rojas TREN DE RODAJE

es muy silencioso, y que además participa mas de un diente a la vez en la trasmisión de la fuerza (solape), que los hace muy robustos, pero su geometría tiene el inconveniente; especialmente los hipoidales, de que la posición relativa de ambos sea muy exacta para el funcionamiento silencioso y eficiente, por este motivo, todos los puentes motrices de este tipo, requieren de un montaje cuidadoso y todos tienen la posibilidad de regular la posición tanto de la corona como del piñón para lograrlo.

Para el caso de los puentes motrices de tracción delantera que no son del tipo rígido, la construcción es diferente, en ellos la corona y el diferencial en general, están dentro del mismo cárter que los engranajes de la caja de cambios, y solo los palieres salen al exterior a acoplarse con las ruedas (vea la figura 2 arriba).

Esquema

Figura 7

Page 7: Modulo de Puente Posterior

Ing. Vicente Rojas TREN DE RODAJE

Esquema

Figura 8

Esquema

Figura 4

Esquema

Figura 5

Page 8: Modulo de Puente Posterior

Ing. Vicente Rojas TREN DE RODAJE

En el esquema de la figura 9 se ha representado uno de esto puentes motrices, observe como el movimiento procedente del motor se transmite a través de los engranes de la caja de cambios y pasa directamente a un engranaje cilíndrico de dientes helicoidales que funciona como la corona del diferencial. El movimiento entonces, sale directamente a las ruedas a ambos lados desde el mecanismo de satélites y planetarios embebido en su interior.

En este caso, cada uno de los palieres funciona como si fuera una barra de trasmisión, por lo que deben estar dotados de uniones que permitan el ángulo de inclinación variable de ellos cuando las ruedas se mueven arriba-abajo en las irregularidades del camino, y además la posibilidad de permitir el ángulo de giro de las ruedas que son a la vez directrices.

Aunque en algunos casos se utilizan uniones del tipo cardán, en la mayoría se usan una uniones especiales denominadas juntas homocinéticas.

Tracción delantera

Figura 9

Page 9: Modulo de Puente Posterior

Ing. Vicente Rojas TREN DE RODAJE

TRANSMISIÓN DEL MOVIMIENTO A LAS RUEDAS. PUENTE TRASERO Y DIFERENCIAL. 1. Explica la constitución y características de los diversos sistemas de transmisión.

2. Describe la función del acoplamiento deslizante de la transmisión.

3. Cita las ventajas e inconvenientes de las juntas cardan.

4. ¿Qué es una junta homocinética?

5. Describe la misión del par cónico.

6. Explica las diferencias que existen en la estructura de un puente trasero rígido y otro para suspensión independiente de las ruedas.

7. ¿Qué es un engranaje hipoide?

8. Explica la necesidad del diferencial.

9. Describe la constitución y funcionamiento del diferencial.

10. Describe los diferentes tipos de juntas homocinéticas utilizados en los automóviles.

11. Enumera las verificaciones que deben realizarse en el puente trasero.

12. Explica el proceso de reglaje del conjunto piñón-corona.

1. EXPLICA LA CONSTITUCIÓN Y CARACTERÍSTICAS DE LOS DIVERSOS SISTEMAS DE TRANSMISIÓN.

Dependiendo de la ubicación del grupo motopropulsor en el vehículo, los sistemas de transmisión del movimiento a las ruedas son diferentes. Encontrándonos con dos grupos:

Vehículos con motor y tracción delanteros, o con motor y propulsión traseros, en donde el secundario de la caja de velocidades termina en un piñón cónico, que da movimiento a una corona, que a su vez lo transmite directamente a las ruedas por medio de sendos ejes de transmisión, emplazados transversalmente en el vehículo.

En los vehículos con motor delantero y propulsión trasera, el movimiento se transmite desde la caja de velocidades al par cónico de reducción (emplazado en el puente trasero) por mediación de un eje hueco llamado árbol de transmisión, que esta emplazado en sentido longitudinal al vehículo. Este

Page 10: Modulo de Puente Posterior

Ing. Vicente Rojas TREN DE RODAJE

sistema de transmisión esta constituido por: una caja de velocidades, árbol de transmisión y puente trasero. El movimiento procedente de la caja de velocidades es cambiado de sentido en 90° y es reducido al mismo tiempo en el par cónico emplazado en el puente trasero. En su extremo posterior, el árbol de transmisión termina en la junta cardan que transmite el movimiento al eje de entrada del puente trasero. De este último lo toman las ruedas por medio de palieres que pasan por el interior de los tubos.

Esta última disposición es la considerada como convencional y fue muy utilizada hasta hace unos años, en que fue sustituida casi por completo en los vehículos de turismo, por un sistema de tracción delantera.

2. DESCRIBE LA FUNCIÓN DEL ACOPLAMIENTO DESLIZANTE DE LA TRANSMISIÓN.

Debido al movimiento vertical del puente trasero, el cual altera constantemente la longitud del árbol de transmisión, se hace necesaria la posibilidad de aumentar o disminuir esta longitud, adaptándola a la requerida en cada caso en función de los movimientos del puente trasero. Esto se consigue con un acoplamiento deslizante, que se coloca del lado de la salida de la caja de velocidades, como se muestra en (3) y en (9) de la figura. En el caso de árbol partido, se dispone además de un cojinete (10) en el extremo posterior del árbol intermedio.

La Fig. 5.3 muestra un árbol de transmisión cuyo acoplamiento deslizante (9) permite las variaciones de longitud. Este dispositivo esta formado por un manguito estriado interiormente con el que ensambla la punta estriada del árbol de transmisión (5). El manguito (9) se une en este caso al eje (1) de salida de la caja de cambios por medio de la junta elástica (2), fijada en (3) y en (7) al eje de salida y al manguito deslizante, respectivamente. En su extremo posterior, el árbol de transmisión termina en la junta cardan (10) que transmite el movimiento al eje de entrada (13) del puente trasero.

Fig. 5.3. Acoplamiento deslizante de la transmisión.

Page 11: Modulo de Puente Posterior

Ing. Vicente Rojas TREN DE RODAJE

3. CITA LAS VENTAJAS E INCONVENIENTES DE LAS JUNTAS CARDAN.

Ventajas:

La principal ventaja de la junta cardan es la de poder transmitir elevados esfuerzos de rotación.

Inconvenientes:

El principal inconveniente, es que cuando los ejes unidos por la junta giran desalienados, el de salida se adelanta y retrasa periódicamente respecto al de entrada, en función de la disposición que ocupan entre sí. Como consecuencia de ello, los engranajes de la caja de cambios y el puente trasero quedan sometidos a variaciones de su velocidad angular y, por lo tanto, a esfuerzos alternos que aumentan su fatiga. Cuanto mayor sea el ángulo formado por los ejes unidos a la junta, mayor es la fluctuación de la velocidad angular del eje de salida, por cuya causa las juntas cardan sólo son utilizables para desviaciones angulares máximas de 15°.

4. ¿QUÉ ES UNA JUNTA HOMOCINÉTICA?

Para compensar las variaciones periódicas de la velocidad angular debidas a la presencia de la junta cardan, se disponen dos de éstas, una a cada extremo del árbol de transmisión, de manera que sean compensados los adelantos y retrasos del árbol conducido en la segunda junta cardan.

El acoplamiento de estas dos juntas cardan se denomina acoplamiento homocinético o junta homocinética.

5. DESCRIBE LA MISIÓN DEL PAR CÓNICO.

El giro del motor, que llega al puente trasero por medio del árbol de transmisión (Fig. 5.8), tiene que aplicarse a las ruedas que están situadas en un eje perpendicular al del árbol de transmisión, por lo que ha de cambiarse el giro en un ángulo de 90°, lo cual se consigue por medio del par cónico formado por el piñón cónico y la corona. El piñón cónico o piñón de ataque recibe el movimiento del árbol de transmisión y lo comunica a la corona, que por mediación del mecanismo diferencial, lo pasa a los palieres y a las ruedas.

Page 12: Modulo de Puente Posterior

Ing. Vicente Rojas TREN DE RODAJE

Fig. 5.8. Estructura del puente trasero.

Fig. 5.9. Disposición del montaje del conjunto par cónico y diferencial.

6. EXPLICA LAS DIFERENCIAS QUE EXISTEN EN LA ESTRUCTURA DE UN PUENTE TRASERO RÍGIDO Y OTRO PARA SUSPENSIÓN INDEPENDIENTE DE LAS RUEDAS.

En la Fig. 5.10 se muestra el despiece de un puente trasero de tipo convencional (rígido), en el cual los palieres o semiejes (9) quedan alojados en las trompetas (6), apoyándose por su extremo interior en el conjunto diferencial (5), del cual recibe el movimiento, mientras que por el extremo exterior se apoyan en la trompeta por medio del rodamiento (8). A la caja del diferencial (5) se fija la corona (4), que recibe movimiento del piñón de ataque (3), alojado en la carcasa del diferencial, apoyado sobre ella por medio de los cojinetes (1) y (7).

Page 13: Modulo de Puente Posterior

Ing. Vicente Rojas TREN DE RODAJE

Fig. 5.10. Despiece del puente trasero.

En otros casos, como el representado en la Fig. 5.11, los palieres van al descubierto y enlazan con las ruedas por interposición de juntas universales, que permiten los desplazamientos de las ruedas con respecto al puente en la marcha del vehículo, ya que el puente está fijado al chasis en estos casos (suspensión independiente de las ruedas traseras).

Fig. 5.11. Disposición de montaje del puente trasero con suspensión independiente de las ruedas.

Page 14: Modulo de Puente Posterior

Ing. Vicente Rojas TREN DE RODAJE

7. ¿QUÉ ES UN ENGRANAJE HIPOIDE?

Tanto el piñón cónico como la corona disponen de un dentado helicoidal, atacando el primero a la segunda un poco por debajo de su centro (Fig. 5.13). Esta disposición recibe el nombre de engranaje hipoide. Y presenta la ventaja de que resulta más adecuada a las carrocerías de piso bajo que se utilizan en los vehículos actuales, ganando en estabilidad del mismo. Por otra parte, con esta disposición existe un mayor nº de dientes de piñón en contacto con la corona aumentando su diámetro con respecto a ella, lo que supone una mayor robustez.

Fig. 5.13. Engranaje hipoide del conjunto piñón-corona.

8. EXPLICA LA NECESIDAD DEL DIFERENCIAL.

Debido a que esta constatado que las ruedas de un automóvil, ante una trayectoria curva, realizan diferentes trazados, lo cual implica que la rueda interior hace un recorrido menor que la rueda exterior, lo cual provocaría (si estuvieran unidas directamente a la corona del par cónico) el arrastre o patinado de una de las ruedas.

Debido a esto, es necesario montar un mecanismo que permita el giro de las dos ruedas motrices a distintas velocidades, al mismo tiempo que transmite a las mismas el esfuerzo motriz. Esto se consigue con la implantación de un mecanismo diferencial, que en las curvas permite dar un mayor nº de vueltas a la rueda exterior y disminuye las de la interior, ajustando el giro de cada rueda al recorrido que efectúa.

Page 15: Modulo de Puente Posterior

Ing. Vicente Rojas TREN DE RODAJE

9. DESCRIBE LA CONSTITUCIÓN Y FUNCIONAMIENTO DEL DIFERENCIAL.

(Fig. 5.18) Esta constituido por la corona (2), que se une a la caja del diferencial por mediación de tornillos como el (1), y en su interior se aloja el mecanismo diferencial, formado por los satélites (7, en nº de dos generalmente) y los planetarios (4) y (9). Los satélites se montan sobre el eje (6) que va alojado en la carcasa (3), de manera que puedan girar libremente en él; pero son volteados por la caja (3) cuando gira la corona (2).

Engranados con los satélites se montan los planetarios, cuyos ejes de giro se alojan en la corona y caja del diferencial respectivamente, pudiendo girar libremente en ellos con interposición de casquillos de fricción. A los ejes de los planetarios se unen a su vez los palieres, que transmitirán el movimiento a las ruedas.

El conjunto queda ensamblado como muestra el detalle de la figura, apoyado en la carcasa del puente trasero por interposición de cojinetes de rodillos troncocónicos, situados en ambos lados de la corona y caja de diferencial respectivamente.

Fig. 5.18. Despiece del diferencial.

Page 16: Modulo de Puente Posterior

Ing. Vicente Rojas TREN DE RODAJE

Constituido así el mecanismo, cuando la corona empieza a girar impulsada por el piñón de ataque (Fig. 5.19), arrastra con ella a la caja del diferencial (B), que en su giro voltea a los satélites (C) y (D) que, actuado como cuñas, arrastran a su vez a los planetarios (E) y (F), los cuales transmiten el movimiento a las ruedas haciéndolas girar en el mismo sentido y con igual velocidad mientras el vehículo marche en línea recta; pero cuando toma una curva, la rueda interior ofrece más resistencia al giro que la exterior (al tener que recorrer distancias desiguales) y, por ello, los satélites (C) y (D) rodarán un poco sobre uno de los planetarios (el correspondiente a la rueda interior) multiplicando el giro en el otro (el de la rueda exterior). De esta manera, lo que pierde en giro una rueda lo gana la otra, ajustándose automáticamente el giro de cada una de ellas al recorrido que le corresponda efectuar en cada curva. Igualmente, las diferencias de trayectoria en línea recta, debidas a diferencias de la presión de inflado de los neumáticos, irregularidades del terreno, etc., son absorbidas por el diferencial.

Fig. 5.19. Diferencial ensamblado.

Page 17: Modulo de Puente Posterior

Ing. Vicente Rojas TREN DE RODAJE

10. DESCRIBE LOS DIFERENTES TIPOS DE JUNTAS HOMOCINÉTICAS UTILIZADOS EN LOS AUTOMÓVILES. Uno de estos tipos de juntas es la constituida por dos juntas cardan (Fig. 5.22), donde el giro alterado por una de ellas es rectificado por la otra, transmitiéndose así una rotación uniforme a las ruedas cualquiera que sea su orientación.

Fig. 5.22. Junta homocinética cardán. En el otro extremo de la transmisión (generalmente del lado de unión a la caja de cambios), suele disponerse una junta deslizante trípode, que permite las variaciones de longitud de la transmisión que se producen con los movimientos oscilantes y de orientación de las ruedas. El tipo de junta trípode deslizante (Fig. 5.23) consiste en un trípode (2) formado por tres pernos en los que se acoplan los rodillos (3), que se alojan en tres ranuras cilíndricas del cajeado (4, donde pueden deslizarse) el cual, a su vez, va estriado al planetario del diferencial. En el trípode (2) se aloja a su vez el palier (1), estriado sobre él, resultando de todo ello una junta homocinética deslizante.

Fig. 5.23. Junta trípode deslizante del lado de la caja de velocidades. Otras veces del lado de la rueda se monta una junta homocinética del tipo de bolas, provista de seis bolas de acero mantenidas en una jaula apropiada y que pueden deslizarse en unas gargantas tóricas formadas en los semiárboles conductor y conducido. (Fig. 5.26)

Page 18: Modulo de Puente Posterior

Ing. Vicente Rojas TREN DE RODAJE

Fig. 5.26. Junta homocinética de bolas.

11. ENUMERA LAS VERIFICACIONES QUE DEBEN REALIZARSE EN EL PUENTE TRASERO.

Comprobación de la carcasa (27), la cual no debe tener deformaciones ni grietas en su superficie y los alojamientos de retenes y cojinetes se encuentran en perfecto estado.

Los engranajes del par cónico (8) y (25), así como los satélites (33) y planetarios (35), no deben presentar desgastes excesivos, roturas ni deformaciones. Cuando se desmonte la corona, en su posterior montaje sobre la caja del diferencial deben de utilizarse tornillos nuevos e impregnarlos con un sellador.

Comprobación de los cojinetes de apoyo (17 y 22, Fig. 5.29) del piñón de ataque y (7) y (38) del conjunto corona-diferencial, no debiendo presentar anomalías de ningún tipo. Observar que los rodillos no estén picados y que las pistas no presenten deformaciones ni huellas de desgastes.

Page 19: Modulo de Puente Posterior

Ing. Vicente Rojas TREN DE RODAJE

Fig. 5.29. Despiece del puente trasero. Comprobación de los espaciadores y arandelas de reglaje, no deben presentar desgastes ni deformaciones. Con el conjunto diferencial ensamblado (Fig. 5.31), se verificará con una galga de espesores el juego lateral de cada planetario, que no ha de superar los 0.15 mm., se sustituirán las arandelas de empuje por otras de mayor espesor.

Page 20: Modulo de Puente Posterior

Ing. Vicente Rojas TREN DE RODAJE

Fig. 5.31. Verificación del juego lateral del planetario. En la operación de ensamblado del conjunto par cónico-diferencial, se impregnarán convenientemente sus componentes del aceite adecuado, debiendo observar durante esta fase una escrupulosa limpieza. Al ajustar el piñón de ataque, acoplaremos sus cojinetes de manera que no exista juego entre ellos, pero tampoco excesiva dureza. El montaje del conjunto corona-diferencial requiere también una operación de reglaje, que determine el posicionamiento de la corona con respecto al piñón.

Page 21: Modulo de Puente Posterior

Ing. Vicente Rojas TREN DE RODAJE

12. EXPLICA EL PROCESO DE REGLAJE DEL CONJUNTO PIÑÓN-CORONA.

Fig. 5.30. Marcas de identificación y reglaje del conjunto piñón-corona.

Se realiza simultáneamente durante la operación de ensamblado del conjunto par cónico-diferencial, ajustamos el conjunto piñón-corona, siguiendo el orden establecido en la Fig. 5.32, ajustamos 1º la posición del piñón de ataque (fases 1 y 2) y después la corona (fase 3), para terminar con la verificación de la posición y contacto de los dientes de ambos (fase 4).

Fig. 5.32. Proceso de reglaje del conjunto piñón-corona.

Page 22: Modulo de Puente Posterior

Ing. Vicente Rojas TREN DE RODAJE

Esta verificación se realiza impregnando la corona con un colorante y haciéndola rodar una vuelta completa arrastrada por el piñón. Si la huella de contacto entre ambos es correcta, Fig. 5.28, el ajuste está bien realizado; en caso contrario deberá repetirse este ajuste corrigiendo la posición del piñón de ataque o de la corona en función de la huella obtenida en la comprobación.

Fig. 5.28. Huellas típicas del contacto del piñón de ataque con la corona.