matematicas 3

2
1. DEMUESTRE QUE: L ( x,y,z) ( 1,4,9) x +y+ z+ xy + xz + yz =17 Demostración: ∀ε >0 ,∃δ > 0 / | f ( x,y,z ) 17 | <ε Siempre que: 0< ( x1) 2 +( y4) 2 +( z9) 2 <δ Además: ¿ ( x,y,z )−( 1,4,9)∨¿ δ⇨x1¿ δ∧ y4¿ δ∧ z9¿ δ Luego: | x+ y + z+ xy + xz + yz 17 | = |x + y+ z +( x1 )+ y+ x ( z3) + 3 x+ z ( y2) +2 z17 | | x+ y + z+ xy + xz + yz 17 | = |4 x+2 y +3 z+ y ( x1) + x ( z3 ) + z ( y2 )17 | | x+ y + z+ xy+ xz + yz 17 | = |4 ( x1 )+4 +2 ( y2 )+4 +3 ( z3 )+9 + y ( x1 )+ x ( z3 )+ z ( y| x+ y + z+ xy + xz+ yz 17 | = |4 ( x1 )+2 ( y2) + 3 ( z3 )+ y ( x 1) + x ( z3) + z ( y2 ) | | x+ y +z+ xy + xz + yz 17 | = | 4 ( x1) x +1 + 2 ( y4 ) y+ 2 + 3 ( z9 ) z+ 3 + y ( x1) x + 1 + x ( z9 ) z+3 + z ( y4 ) y +2 | | x+ y +z+ xy + xz + yz 17 | = 4 ¿ Si asumo f=1 (radio 1 de la esfera) | x1| <1 1< x1<1 0< x<2 0< x <2 < 2 | x| <2 0< x <2 1< x +1< 2 +1 1 2 +1 < 1 x +1 <1 | 1 x+1 | < 1 | y4| <1 1< y4<1 3< y< 5 3< y < 5 <3 | y| < 3 3< y < 5 3+2 <y+2 <5 +2 1 5 +2 < 1 y +2 < 1 3+2 <1 | 1 y+ 2 | < 1 | z9| <1 1< z9<1 8< z<10 8< z< 10 <4 | z |<4 8< z< 10 8+3 <z+3 <10 + 3 1 10 +3 < 1 z+ 3 < 1 8+3 < 1

Upload: yessi-pl

Post on 04-Dec-2015

216 views

Category:

Documents


2 download

DESCRIPTION

matematica 3

TRANSCRIPT

Page 1: MATEMATICAS 3

1.

DEMUESTRE QUE:

L ℑ(x , y , z)→(1,4,9)

√ x+√ y+√ z+√xy+√xz+√ yz=17

Demostración:∀ ε>0 ,∃ δ>0 /|f (x , y ,z )−17|<ε Siempre que: 0<√(x−1)2+( y−4)2+(z−9)2<δ

Además:¿(x , y , z )−(1,4,9)∨¿δ⇨∨x−1∨¿δ∧∨ y−4∨¿δ∧∨z−9∨¿δ

Luego:

|√ x+√ y+√z+√ xy+√ xz+√ yz−17|=|√ x+√ y+√ z+ (√x−1 )+√ y+√x (√ z−3 )+3√ x+√z (√ y−2 )+2√z−17|

|√ x+√ y+√z+√ xy+√ xz+√ yz−17|=|4 √x+2√ y+3 √z+√ y (√x−1 )+√x (√z−3 )+√z (√ y−2 )−17|

|√ x+√ y+√z+√ xy+√ xz+√ yz−17|=|4 (√x−1 )+4+2 (√ y−2 )+4+3 (√z−3 )+9+√ y (√x−1 )+√x (√ z−3 )+√ z (√ y−2 )−17|

|√ x+√ y+√z+√ xy+√ xz+√ yz−17|=|4 (√x−1 )+2 (√ y−2 )+3 (√z−3 )+√ y (√x−1 )+√x (√z−3 )+√z (√ y−2 )|

|√ x+√ y+√z+√ xy+√ xz+√ yz−17|=|4 ( x−1 )√ x+1

+2 ( y−4 )√ y+2

+3 (z−9 )√ z+3

+ √ y ( x−1 )√x+1

+ √ x ( z−9 )√z+3

+ √ z ( y−4 )√ y+2 |

|√ x+√ y+√z+√ xy+√ xz+√ yz−17|=4¿

Si asumo f=1 (radio 1 de la esfera)

|x−1|<1−1<x−1<10<x<20<√x<√2…<2|√ x|<√2…①0<√x<√21<√ x+1<√2+1

1

√2+1< 1

√x+1<1

| 1

√ x+1|<1… ②

|y−4|<1−1< y−4<13< y<5√3<√ y<√5…<3|√ y|<3…③√3<√ y<√5√3+2<√ y+2<√5+2

1

√5+2< 1

√ y+2< 1

√3+2<1

| 1

√ y+2|<1…④

|z−9|<1−1<z−9<18<z<10√8<√ z<√10…<4|√ z|<4…⑤√8<√ z<√10√8+3<√z+3<√10+3

1

√10+3< 1

√ z+3< 1

√8+3<1

| 1

√ z+3|<1…⑥ , , ,① ② ③ ④ , , en ⑤ ⑥ *

4 δ+2δ+3δ+3 δ+2δ+4δ<ε

18δ<ε⇨δ< ε18

δ= ε18

Luego:

|√ x+√ y+√z+√ xy+√ xz+√ yz−17|<εSiempre que:

0<√(x−1)2+( y−4)2+(z−9)2<δDónde:

Page 2: MATEMATICAS 3

δ=min {1,ε

18}