locomoción de robots ápodos modulares. robotics lab. uc3m

Upload: juan-gonzalez-gomez

Post on 30-May-2018

231 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/9/2019 Locomocin de Robots podos modulares. Robotics Lab. UC3M

    1/75

    Modular Robots - Locomotion andObstacle Avoidance

    Avinash Ranganath

    1. A brief introduction to the field of Reconfigurable Modular Robotics.

    2. Juan Gonzalez s presentation on his work in the field of Modular Robotics.

    3. Presenting my master thesis work in Modular Robotics.Supervisor: Marc Szymanski from IPR, KIT, Karlsruhe, Germany.

    Supervisor: Barbara Webb from Edinburgh University, Edinburgh, Scotland.

  • 8/9/2019 Locomocin de Robots podos modulares. Robotics Lab. UC3M

    2/75

    Introduction Reconfigurable Modular Robots

    What areReconfigurableModular Robots?

    Made up of severalindependent modules.

    Which does not havea fixed morphology.

  • 8/9/2019 Locomocin de Robots podos modulares. Robotics Lab. UC3M

    3/75

    Introduction Common Features of Reconfigurable Modular Robots

    Each module is independent with its own on-board processor, sensor, actuator and power supply.

    Each module can be connected to two or moremodules.

    Ability of modules to connect to or disconnectfrom other modules autonomously.

    Ability to communicate with other modules.

  • 8/9/2019 Locomocin de Robots podos modulares. Robotics Lab. UC3M

    4/75

    Introduction Types of ReconfigurableModular Robots

    Chain Type Lattic Type

  • 8/9/2019 Locomocin de Robots podos modulares. Robotics Lab. UC3M

    5/75

    Motivation Reconfigurable Modular Robotics

    Exploration in unknown environment.Outer space.

    Collapsed building or disaster area.

  • 8/9/2019 Locomocin de Robots podos modulares. Robotics Lab. UC3M

    6/75

    Control Mechanism ReconfigurableModular Robotics

    Centralized Controller Easy to implement.

    Susceptible to the

    failure if the centralcontrolling modulefails.

    Non scalable.

    Under utilization of distributed computingcapabilities.

    Distributed Controller Complex and difficultto implement.

    RobustScalable

    Distributed computingcapability withoutoverloading anyindividual module.

  • 8/9/2019 Locomocin de Robots podos modulares. Robotics Lab. UC3M

    7/75

    Juans Presentation

    Passing the baton to Juan...

  • 8/9/2019 Locomocin de Robots podos modulares. Robotics Lab. UC3M

    8/75

  • 8/9/2019 Locomocin de Robots podos modulares. Robotics Lab. UC3M

    9/75

  • 8/9/2019 Locomocin de Robots podos modulares. Robotics Lab. UC3M

    10/75

    10

    Robots modulares

  • 8/9/2019 Locomocin de Robots podos modulares. Robotics Lab. UC3M

    11/75

    11

    Topologa 1D

    Pitch-pitch Pitch-yaw

    Grupos de estudio

    Robots podos

    Robots modulares

    Locomocin 1D Locomocin 2D

  • 8/9/2019 Locomocin de Robots podos modulares. Robotics Lab. UC3M

    12/75

    12

    Locomocin de robots podos

    GAITs

    Qu modos decaminar se consiguen?

    Controlador

    Cmo coordinar lasarticulaciones paralograr la locomocin?

    CONTROL

    Cual es el espacio decontrol de menordimensin ?

    Configuracionesmnimas

    Cuntos mduloscomo mnimo senecesitan para lograr lalocomocin?

  • 8/9/2019 Locomocin de Robots podos modulares. Robotics Lab. UC3M

    13/75

    13

    CPG CPG CPG

    Controlador

    Modelos para realizar la coordinacin e implementar el controlador:

    Clsicos

    Modelos matemticos Cinemtica inversa Dependen de la

    morfologa del robot

    Bio-inspirados

    Imitar la naturaleza

    Generadores Centralesde patrones: CPG

  • 8/9/2019 Locomocin de Robots podos modulares. Robotics Lab. UC3M

    14/75

    14

    Osciladores sinusoidales

    Reemplazar los CPGs por OSCILADORES SINUSOIDALES

    i t = Ai sin2T

    t i

    Osciladores sinusoidales:

    Es viable?

    CPG CPG CPG

  • 8/9/2019 Locomocin de Robots podos modulares. Robotics Lab. UC3M

    15/75

    15

    NDICE

    1. Introduccin

    2. Locomocin en 1D3. Locomocin en 2D

    4. Plataforma

    5. Conclusiones y trabajo futuro

    Juan Gonzlez-Gmez [email protected] [email protected]

    Locomocin de Robots podos modulares

    05/Julio/2010

    mailto:[email protected]:[email protected]
  • 8/9/2019 Locomocin de Robots podos modulares. Robotics Lab. UC3M

    16/75

    16

    Modelo de control

    Locomocin en 1D: Resultados

    El modelo es viable Movimiento: Propagacin de ondas.

    Adelante-Atrs Configuracin mnima: 2 mdulos Espacio de control mnimo: A , , T

    Paso del robot N ondulaciones Velocidad

    Vdeos 1-3

  • 8/9/2019 Locomocin de Robots podos modulares. Robotics Lab. UC3M

    17/75

    17

    Minicube-I (II)

    Morfologa

    2 modules con conexincabeceo-cabeceo

    Controlador:

    Dos generadores iguales Parmetros Ms informacin:

    Demo

    A , , T

    Locomocin en 1D

    http://bit.ly/9SNFXb

  • 8/9/2019 Locomocin de Robots podos modulares. Robotics Lab. UC3M

    18/75

    18

    NDICE

    1. Introduccin

    2. Locomocin en 1D

    3. Locomocin en 2D4. Plataforma

    5. Conclusiones y trabajo futuro

    Juan Gonzlez-Gmez [email protected] [email protected]

    Locomocin de Robots podos modulares

    05/Julio/2010

    mailto:[email protected]:[email protected]
  • 8/9/2019 Locomocin de Robots podos modulares. Robotics Lab. UC3M

    19/75

    19

    Locomocin en 2D: Resultados

    El modelo es viable 5 movimientos: lnea recta, arco, lateral, rotar y rodar Configuracin mnima: 3 mdulos Espacio de control mnimo:

    Vdeo 4

    Modelo de control

    Ah , Av , h , v , vh ,T

  • 8/9/2019 Locomocin de Robots podos modulares. Robotics Lab. UC3M

    20/75

    20

    Minicube-II

    Morfologa:Tres mdulos con conexincabeceo-viraje

    Control:

    Tres generadores sinusoidales Parmetros:

    A v ,A h , v , vh ,T

    Demostracin

    Locomocin en 2D

  • 8/9/2019 Locomocin de Robots podos modulares. Robotics Lab. UC3M

    21/75

    21

    NDICE

    1. Introduccin

    2. Locomocin en 1D

    3. Locomocin en 2D

    4. Plataforma5. Conclusiones y trabajo futuro

    Juan Gonzlez-Gmez [email protected] [email protected]

    Locomocin de Robots podos modulares

    05/Julio/2010

    mailto:[email protected]:[email protected]
  • 8/9/2019 Locomocin de Robots podos modulares. Robotics Lab. UC3M

    22/75

    22

    Mecnica: Familia de Mdulos Y1

    Un grado de libertad Fciles de construir Servo: Futaba 3003 Tamao: 52x52x72mm Libres

    Y1Repy1 MY1

    Tipos de conexin:

    El t i T j t Sk b

  • 8/9/2019 Locomocin de Robots podos modulares. Robotics Lab. UC3M

    23/75

    23

    Electrnica: Tarjeta Skycube

    Hardware libre Diseada con KICAD

    Robots modulares autnomos PIC16F876A Se integra en los mdulos MY1 Ms informacin:

    http://bit.ly/FhPLl

  • 8/9/2019 Locomocin de Robots podos modulares. Robotics Lab. UC3M

    24/75

    24

    Simulacin (I)

    Cmo hemos encontrado las soluciones?

    Bsquedas en los espacios de control Utilizacin de algoritmos genticos (PGApack)

    Funcin de evaluacin: Paso del robot Motor fsico: Open Dynamics Engine (ODE) Descarte de soluciones Comprobacin en robots reales

    Cube Simulator

    http://bit.ly/bnN4KP

    Demo

    Si l i (II)

  • 8/9/2019 Locomocin de Robots podos modulares. Robotics Lab. UC3M

    25/75

    25

    Simulacin (II) Demo

    Simulador: OpenRave + OpenMR plugin OpenMR = OpenRave Modular Robot plugin Ms informacin: http://bit.ly/9a3fXk

  • 8/9/2019 Locomocin de Robots podos modulares. Robotics Lab. UC3M

    26/75

    26

    NDICE

    1. Introduccin

    2. Locomocin en 1D

    3. Locomocin en 2D4. Plataforma

    5. Conclusiones y trabajo futuro

    Juan Gonzlez-Gmez [email protected] [email protected]

    Locomocin de Robots podos modulares

    05/Julio/2010

    C l i

    mailto:[email protected]:[email protected]
  • 8/9/2019 Locomocin de Robots podos modulares. Robotics Lab. UC3M

    27/75

    27

    Conclusiones

    El modelo basado en generadores sinusoidales es vlido para lalocomocin de robots modulares con topologa de 1D

    Requiere muy pocos recursos para su implementacin Se consiguen movimientos muy suaves y naturales

    Se pueden realizar diferentes tipos de movimientos Configuraciones mnimas de 2 y 3 mdulos

    i t = Ai sin2

    T iO i

    T b j f t (I)

  • 8/9/2019 Locomocin de Robots podos modulares. Robotics Lab. UC3M

    28/75

    28

    Trabajo futuro (I)

    Aplicacin : Robots de bsqueda y rescate en zonas catastrficas Aplicacin : Robots de bsqueda y rescate en zonas catastrficas

    Juan Gonzalez-Gomez, Javier Gonzalez-quijano, Houxiang Zhang, Mohamed Abderrahim, " Towardthe sense of touch in snake modular robots for search and rescue operations ". In Proc of theICRA 2010 workshop on modular robots: State of the art. May-3rd, Anchorage, Alaska

  • 8/9/2019 Locomocin de Robots podos modulares. Robotics Lab. UC3M

    29/75

    Trabajo futuro (III)

  • 8/9/2019 Locomocin de Robots podos modulares. Robotics Lab. UC3M

    30/75

    30

    Trabajo futuro (III)

    Capacidades : Locomocin, trepar y agarre de objetos

    Trabajo futuro (IV)

  • 8/9/2019 Locomocin de Robots podos modulares. Robotics Lab. UC3M

    31/75

    31

    Trabajo futuro (IV)

    Agarre y manipulacin de objetos con serpientes modulares

    Trabajo futuro (V)

  • 8/9/2019 Locomocin de Robots podos modulares. Robotics Lab. UC3M

    32/75

    32

    Trabajo futuro (V)

    Locomocin de otras configuraciones

    Locomocin de

  • 8/9/2019 Locomocin de Robots podos modulares. Robotics Lab. UC3M

    33/75

    33

    Juan Gonzlez Gmez

    Locomocin deRobots podos modulares

    Dpto. Ingeniera de Sistemas y AutomticaRobotics Lab

    Universidad Carlos III de Madrid

    Juan Gonzlez-Gmez [email protected] [email protected]

    05/Julio/2010

    My Master Thesis

    mailto:[email protected]:[email protected]
  • 8/9/2019 Locomocin de Robots podos modulares. Robotics Lab. UC3M

    34/75

    My Master Thesis

    Title: Distributed Control Algorithm For A MultiCellular Robotic Organism.Author: Avinash Ranganath

    Under the EU sponsored modular roboticsproject called SYMBRION.

    Objectives:

    Develop a framework to control locomotion andobstacle avoidance behavior in modular robots.

    Distributed controller.

    My Master Thesis

  • 8/9/2019 Locomocin de Robots podos modulares. Robotics Lab. UC3M

    35/75

    My Master Thesis

    Unified controller for different modular roboticconfigurations.

    Fault tolerance capability.

    My work is based on Digital Hormone Method[DHM], as proposed by Shen et al. from ISI,USC.

    SYMBRION Module

  • 8/9/2019 Locomocin de Robots podos modulares. Robotics Lab. UC3M

    36/75

    SYMBRION Module

    Homogeneous, opensided cubes.

    2 interlocking 3D U

    shaped body.1 motor with 1 DOF.

    4 Connectors.

    Screw driver wheels.1 tilt and multiple IRsensors.

    Implementation Platform

  • 8/9/2019 Locomocin de Robots podos modulares. Robotics Lab. UC3M

    37/75

    Implementation Platform

    The framework was tested in a distributedsimulation environment called Symbricator3D.

    I implemented the control algorithm on three

    different robotic organisms.

    Locomotion

  • 8/9/2019 Locomocin de Robots podos modulares. Robotics Lab. UC3M

    38/75

    Locomotion

    Coordinated local action of individual modulesproduces locomotion as a global behavior.

    Eg: Caterpillar locomotion gait is a sin wave.

    Modules oscillate between +45 and -45 degrees.Interval between the oscillations determine thewave length.

    So how do you get individual modules toperform local actions to produce the globalbehavior based on the organism they are a partof?

    Inspiration of DHM

  • 8/9/2019 Locomocin de Robots podos modulares. Robotics Lab. UC3M

    39/75

    Inspiration of DHM

    In multicellular biological organisms, there arevarious types of cells. Some of them generate anddiffuse hormones, which are targeted are certainother types of cells. All cell types receive these

    hormone, but are reacted upon only by thedesignated type of cells.

    -Wei Min Shen

    Digital Hormone Method

  • 8/9/2019 Locomocin de Robots podos modulares. Robotics Lab. UC3M

    40/75

    Digital Hormone Method

    Topology Mapping - Where in the topology am Ilocated?

    Local Communication - What are my neighbors

    doing?Environment Input - What does my sensor readabout the local environment?

    Internal Variables - What are the values of myinternal variables? Eg: Tilt sensor, Directionvariable, etc.

    Caterpillar Gait Using DHM

  • 8/9/2019 Locomocin de Robots podos modulares. Robotics Lab. UC3M

    41/75

    Caterpillar Gait Using DHM

    Node_1: Rotates motor to +/- 45 degrees. Generate and initiatehormone diffusion.

    Node_2 to Node_n-1: Perform the same action as the parentnode. Diffuse hormone.

    Node_n: Perform same action as its parent. No hormonediffusion.

    Node_1: After x amount of time, rotate motor in the oppositedirection. Generate and initiate hormone diffusion.

    Node_1Node_n

    Caterpillar Gait Using DHM

  • 8/9/2019 Locomocin de Robots podos modulares. Robotics Lab. UC3M

    42/75

    Caterpillar Gait Using DHM

    So how does each node know whether or not it isresponsible for initiating the hormone diffusion?

    Topology Mapping Module Type

  • 8/9/2019 Locomocin de Robots podos modulares. Robotics Lab. UC3M

    43/75

    Topology Mapping Module Type

    Three distinct module types in caterpillar configuration.Tail: Node_1

    Spine: Node_2 to Node_n-1

    Head: Node_n

    Each module has four connectors.

    Left Front

    Back Right

    Topology Mapping Module Type

  • 8/9/2019 Locomocin de Robots podos modulares. Robotics Lab. UC3M

    44/75

    Topology Mapping Module Type

    Connector: Can be connected to another connector in fivedifferent ways.

    Module: Can be connected to other modules around it in 5 =

    625 different ways.

    Modules communicate connector information with neighbors.Calculate Level_0 topology mapping.

    Modules choose local action based on module type.

    Obstacle Avoidance in Caterpillar

  • 8/9/2019 Locomocin de Robots podos modulares. Robotics Lab. UC3M

    45/75

    Obstacle Avoidance in Caterpillar

    Use IR sensors on the head node.Use pitched module for rotation.

    Moves back if pitch module not present.

    Head module generates Obstacle Hormone.Reacted upon either by the pitched or the tailmodule.

    Pitched Module

    IR Sensor

    Obstacle Avoidance in Caterpillar

  • 8/9/2019 Locomocin de Robots podos modulares. Robotics Lab. UC3M

    46/75

    Obstacle Avoidance in Caterpillar

    What if there is no pitched module?Tail node becomes head node.

    Head node becomes tail node.

    Organism moves in the reverse direction.

    Scorpion Organism

  • 8/9/2019 Locomocin de Robots podos modulares. Robotics Lab. UC3M

    47/75

    p g

    Outer Arm

    IR Sensor

    Inner Arm

    Tail Head

    IR Sensor

    Scorpion Locomotion Gait

  • 8/9/2019 Locomocin de Robots podos modulares. Robotics Lab. UC3M

    48/75

    p

    Forward MotionLift arm up.

    Swing arm forward.

    Push arm down.Swing arm backward.

    Outer arm moduleInner arm module

    Scorpion Locomotion Gait

  • 8/9/2019 Locomocin de Robots podos modulares. Robotics Lab. UC3M

    49/75

    p

    Backward MotionLift arm up.

    Swing arm backward.

    Push arm down.Swing arm Forward.

    Turn RightLeft arm forward.

    Right arm backward.

    Turn LeftRight arm forward.

    Left arm backward.

    Outer arm moduleInner arm module

    Scorpion Gait - DHM

  • 8/9/2019 Locomocin de Robots podos modulares. Robotics Lab. UC3M

    50/75

    p

    Hormone generated by Head node

    Scorpion Gait - DHM

  • 8/9/2019 Locomocin de Robots podos modulares. Robotics Lab. UC3M

    51/75

    p

    Hormone generated by Head node

    Scorpion Gait - DHM

  • 8/9/2019 Locomocin de Robots podos modulares. Robotics Lab. UC3M

    52/75

    p

    Hormone generated by Head node

    Hormone generated by Outer Arm node

    Scorpion Gait - DHM

  • 8/9/2019 Locomocin de Robots podos modulares. Robotics Lab. UC3M

    53/75

    Hormone generated by Head node

    Hormone generated by Outer Arm node

    Scorpion Obstacle Avoidance -DHM

  • 8/9/2019 Locomocin de Robots podos modulares. Robotics Lab. UC3M

    54/75

    DHM

    Obstacle found

    Scorpion Obstacle Avoidance -DHM

  • 8/9/2019 Locomocin de Robots podos modulares. Robotics Lab. UC3M

    55/75

    DHM

    Hormone generated by Outer Arm node

    Obstacle found

    Scorpion Obstacle Avoidance -DHM

  • 8/9/2019 Locomocin de Robots podos modulares. Robotics Lab. UC3M

    56/75

    DHM

    Hormone generated by Outer Arm node

    Obstacle found

    Scorpion Obstacle Avoidance -DHM

  • 8/9/2019 Locomocin de Robots podos modulares. Robotics Lab. UC3M

    57/75

    DHM

    Hormone generated by Head node

    Hormone generated by Outer Arm node

    Obstacle found

    Scorpion Obstacle Avoidance -DHM

  • 8/9/2019 Locomocin de Robots podos modulares. Robotics Lab. UC3M

    58/75

    DHM

    Hormone generated by Head node

    Hormone generated by Outer Arm node

    Obstacle found

    Scorpion Obstacle Avoidance -DHM

  • 8/9/2019 Locomocin de Robots podos modulares. Robotics Lab. UC3M

    59/75

    DHM

    Obstacle avoided

    Scorpion Obstacle Avoidance -DHM

  • 8/9/2019 Locomocin de Robots podos modulares. Robotics Lab. UC3M

    60/75

    DHM

    Hormone generated by Outer Arm node

    Obstacle avoided

    Scorpion Obstacle Avoidance -DHM

  • 8/9/2019 Locomocin de Robots podos modulares. Robotics Lab. UC3M

    61/75

    DHM

    Hormone generated by Outer Arm node

    Obstacle avoided

    Scorpion Obstacle Avoidance -DHM

  • 8/9/2019 Locomocin de Robots podos modulares. Robotics Lab. UC3M

    62/75

    DHM

    Hormone generated by Head node

    Hormone generated by Outer Arm node

    Obstacle avoided

    Scorpion Obstacle Avoidance -DHM

  • 8/9/2019 Locomocin de Robots podos modulares. Robotics Lab. UC3M

    63/75

    Hormone generated by Head node

    Hormone generated by Outer Arm node

    Obstacle avoided

    Scorpion Topology

  • 8/9/2019 Locomocin de Robots podos modulares. Robotics Lab. UC3M

    64/75

    Scorpion Topology

  • 8/9/2019 Locomocin de Robots podos modulares. Robotics Lab. UC3M

    65/75

    Multi Level Topology Mapping

  • 8/9/2019 Locomocin de Robots podos modulares. Robotics Lab. UC3M

    66/75

    Level-0 MappingHow a module is connected to each directlyconnected module.

    Level-1 MappingHow a module is connected to modules that are atone modules distance away.

    Level-n MappingConstrained to available memory.

    Level-2 Topology Mapping

  • 8/9/2019 Locomocin de Robots podos modulares. Robotics Lab. UC3M

    67/75

    C1C1 to C4: {(B,F), (B,F), (B,F)}

    Level-2 Topology Mapping

  • 8/9/2019 Locomocin de Robots podos modulares. Robotics Lab. UC3M

    68/75

    S1S1 to S4: {(B,F), (B,F), (B,B)}

    S1 to S6: {(B,F), (B,F), (R,B)}

    S5S5 to S2: {(B,F), (B,B), (F,B)}

    S5 to S6: {(B,F), (B,B), (R,B)}

    S7

    S7 to S2: {(B,F), (B,R), (F,B)}S7 to S4: {(B,F), (B,R), (B,B)}

    Drawbacks of the System

  • 8/9/2019 Locomocin de Robots podos modulares. Robotics Lab. UC3M

    69/75

    Configuration specific.

    Drawbacks of the System

  • 8/9/2019 Locomocin de Robots podos modulares. Robotics Lab. UC3M

    70/75

    Configuration specific.

    Drawbacks of the System

  • 8/9/2019 Locomocin de Robots podos modulares. Robotics Lab. UC3M

    71/75

    Configuration specific.Does not work for all configurations.

    Drawbacks of the System

  • 8/9/2019 Locomocin de Robots podos modulares. Robotics Lab. UC3M

    72/75

    Configuration specific.Does not work for all configurations.

    Drawbacks of the System

  • 8/9/2019 Locomocin de Robots podos modulares. Robotics Lab. UC3M

    73/75

    Configuration specific.Does not work for all configurations.

    The underlying rules and parameter for the

    locomotion gait are hand coded.

    What Next?

  • 8/9/2019 Locomocin de Robots podos modulares. Robotics Lab. UC3M

    74/75

    Evolution of locomotion in higher order [3D]organisms.

    Investigate search and exploration techniques.

    Object (recognition) and manipulation.Use Juans robots by modifying it to includenecessary sensors and communicationchannel.

    Look for a distributed simulation environment.

    Questions

  • 8/9/2019 Locomocin de Robots podos modulares. Robotics Lab. UC3M

    75/75