la fuerza se puede definir a partir de la derivada temporal del momento lineal

30
La fuerza se puede definir a partir de la derivada temporal del momento lineal : Si la masa permanece constante, se puede escribir: que es la expresión tradicional de la segunda ley de Newton . En el caso de la estática, donde no existen aceleraciones, las fuerzas actuantes pueden deducirse de consideraciones de equilibrio Fuerzas de contacto y fuerzas a distanciaEn un sentido estricto, todas las fuerzas naturales son fuerzas producidas a distancia como producto de la interacción entre cuerpos; sin embargo desde el punto de vista macroscópico, se acostumbra a dividir a las fuerzas en dos tipos generales: Fuerzas de contacto, las que se dan como producto de la interacción de los cuerpos en contacto directo; es decir, chocando sus superficies libres (como la fuerza normal). Fuerzas a distancia, como la fuerza gravitatoria o la coulómbica entre cargas, debido a la interacción entre campos (gravitatorio, eléctrico, etc.) y que se producen cuando los cuerpos están separados cierta distancia unos de los otros, por ejemplo: el peso Fuerzas internas y de contacto F N representa la fuerza normal ejercida por el plano inclinado sobre el objeto situado sobre él. En los sólidos, el principio de exclusión de Pauli conduce junto con la conservación de la energía a que los átomos tengan sus electrones distribuidos en capas y tengan impenetrabilidad a pesar de estar vacíos en un 99%. La impenetrabildad se deriva de que los átomos sean "extensos" y que los electrones de las capas exteriores ejerzan fuerzas electrostáticas de repulsión que hacen que la materia sea macroscópicamente impenetrable.Lo anterior se traduce en que dos cuerpos puestos en "contacto" experimentarán superficialmente fuerzas resultantes normales (o aproximadamente normales) a la superficie que impedirán el solapamiento de las nubes electrónicas de ambos cuerpos.Las fuerzas internas son similares a las fuerzas de contacto entre ambos cuerpos y si bien tienen una forma más complicada, ya que no existe una superficie macroscópica a través de la cual se den la superficie. La complicación se traduce por ejemplo en que las fuerzas internas necesitan ser modelizadas

Upload: ivan-tellez-flores

Post on 05-Aug-2015

495 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: La Fuerza Se Puede Definir a Partir de La Derivada Temporal Del Momento Lineal

La fuerza se puede definir a partir de la derivada temporal del momento lineal:

Si la masa permanece constante, se puede escribir:

que es la expresión tradicional de la segunda ley de Newton. En el caso de la estática, donde no existen aceleraciones, las fuerzas actuantes pueden deducirse de consideraciones de equilibrio Fuerzas de contacto y fuerzas a distanciaEn un sentido estricto, todas las fuerzas naturales son fuerzas producidas a distancia como producto de la interacción entre cuerpos; sin embargo desde el punto de vista macroscópico, se acostumbra a dividir a las fuerzas en dos tipos generales:

Fuerzas de contacto, las que se dan como producto de la interacción de los cuerpos en contacto directo; es decir, chocando sus superficies libres (como la fuerza normal). Fuerzas a distancia, como la fuerza gravitatoria o la coulómbica entre cargas, debido a la interacción entre campos (gravitatorio, eléctrico, etc.) y que se producen cuando los cuerpos están separados cierta distancia unos de los otros, por ejemplo: el peso Fuerzas internas y de contacto

FN representa la fuerza normal ejercida por el plano inclinado sobre el objeto situado sobre él.

En los sólidos, el principio de exclusión de Pauli conduce junto con la conservación de la energía a que los átomos tengan sus electrones distribuidos en capas y tengan impenetrabilidad a pesar de estar vacíos en un 99%. La impenetrabildad se deriva de que los átomos sean "extensos" y que los electrones de las capas exteriores ejerzan fuerzas electrostáticas de repulsión que hacen que la materia sea macroscópicamente impenetrable.Lo anterior se traduce en que dos cuerpos puestos en "contacto" experimentarán superficialmente fuerzas resultantes normales (o aproximadamente normales) a la superficie que impedirán el solapamiento de las nubes electrónicas de ambos cuerpos.Las fuerzas internas son similares a las fuerzas de contacto entre ambos cuerpos y si bien tienen una forma más complicada, ya que no existe una superficie macroscópica a través de la cual se den la superficie. La complicación se traduce por ejemplo en que las fuerzas internas necesitan ser modelizadas mediante un tensor de tensiones en que la fuerza por unidad de superficie que experimenta un punto del interior depende de la dirección a lo largo de la cual se consideren las fuerzas.Lo anterior se refiere a sólidos, en los fluidos en reposo las fuerzas internas dependen esencialmente de la presión, y en los fluidos en movimiento también la viscosidad puede desempeñar un papel importante. Fricción

Artículo principal: Fricción.La fricción en sólidos puede darse entre sus superficies libres en contacto. En el tratamiento de los problemas mediante mecánica newtoniana, la fricción entre sólidos frecuentemente se modeliza como una fuerza tangente sobre cualquiera de los planos del contacto entre sus superficies, de valor proporcional a la fuerza normal.El rozamiento entre sólido-líquido y en el interior de un líquido o un gas depende esencialmente de si el flujo se considera laminar o turbulento y de su ecuación constitutiva. Fuerza gravitatoriaVéase también: Gravedad.

Page 2: La Fuerza Se Puede Definir a Partir de La Derivada Temporal Del Momento Lineal

Fuerzas gravitatorias entre dos partículas.En mecánica newtoniana la fuerza de atracción entre dos masas, cuyos centros de gravedad están lejos comparadas con las dimensiones del cuerpo,1 viene dada por la ley de la gravitación universal de Newton:

Donde:

es la fuerza que actúa sobre el cuerpo 2, ejercida por el cuerpo 1. constante de la gravitación universal.

vector de posición relativo del cuerpo 2 respecto al cuerpo 1.es el vector unitario dirigido desde 1 hacía 2.

masas de los cuerpos 1 y 2.

Cuando la masa de uno de los cuerpos es muy grande en comparación con la del otro (por ejemplo, si tiene dimensiones planetarias), la expresión anterior se transforma en otra más simple:

Donde:

es la fuerza del cuerpo de gran masa ("planeta") sobre el cuerpo pequeño.es un vector unitario dirigido desde el centro del "planeta" al cuerpo de pequeña masa.

es la distancia entre el centro del "planeta" y el del cuerpo pequeño.

Fuerzas de campos estacionarios

Artículo principal: Campo (física).En mecánica newtoniana también es posible modelizar algunas fuerzas constantes en el tiempo como campos de fuerza. Por ejemplo la fuerza entre dos cargas eléctricas inmóviles, puede representarse adecuadamente mediante la ley de Coulomb:

Donde:

es la fuerza ejercida por la carga 1 sobre la carga 2.una constante que dependerá del sistema de unidades para la carga.

vector de posición de la carga 2 respecto a la carga 1.valor de las cargas.

Page 3: La Fuerza Se Puede Definir a Partir de La Derivada Temporal Del Momento Lineal

También los campos magnéticos estáticos y los debidos a cargas estáticas con distribuciones más complejas pueden resumirse en dos funciones vectoriales llamadas campo eléctrico y campo magnético tales que una partícula en movimiento respecto a las fuentes estáticas de dichos campos viene dada por la expresión de

Lorentz:

Donde:

es el campo eléctrico.es el campo magnético.es la velocidad de la partícula.es la carga total de la partícula.

Los campos de fuerzas no constantes sin embargo presentan una dificultad especialmente cuando están creados por partículas en movimiento rápido, porque en esos casos los efectos relativistas de retardo pueden ser importantes, y la mecánica clásica, da lugar a un tratamiento de acción a distancia que puede resultar inadecuado si las fuerzas cambian rápidamente con el tiempo. Fuerza eléctricaLa fuerza eléctrica también son de acción a distancia, pero a veces la interacción entre los cuerpos actúa como una fuerza atractiva mientras que, otras veces, tiene el efecto inverso, es decir puede actuar como una fuerza repulsiva.

Unidades de fuerzaEn el Sistema Internacional de Unidades (SI) y en el Cegesimal (cgs), el hecho de definir la fuerza a partir de la masa y la aceleración (magnitud en la que intervienen longitud y tiempo), conlleva a que la fuerza sea una magnitud derivada. Por en contrario, en el Sistema Técnico la fuerza es una Unidad Fundamental y a partir de ella se define la unidad de masa en este sistema, la unidad técnica de masa, abreviada u.t.m. (no tiene símbolo). Este hecho atiende a las evidencias que posee la física actual, expresado en el concepto de Fuerzas Fundamentales, y se ve reflejado en el Sistema Internacional de Unidades.

Sistema Internacional de Unidades (SI)o newton (N)

Sistema Técnico de Unidades o kilogramo-fuerza (kgf) o kilopondio (kp)

Sistema Cegesimal de Unidades o dina (dyn)

Sistema Anglosajón de Unidades o Poundalo Libra fuerza (lbf)o KIP (= 1000 lbf)

Equivalencias1 newton = 100 000 dinas1 kilogramo-fuerza = 9,806 65 newtons1 libra fuerza ≡ 4,448 222 newtons

Fuerza en mecánica relativista

En relatividad especial la fuerza se debe definir sólo como derivada del momento lineal, ya que en este caso la fuerza no resulta simplemente proporcional a la aceleración:

Page 4: La Fuerza Se Puede Definir a Partir de La Derivada Temporal Del Momento Lineal

De hecho en general el vector de aceleración y el de fuerza ni siquiera serán paralelos, sólo en el movimiento circular uniforme y en cualquier movimiento rectilíneo serán paralelos el vector de fuerza y aceleración pero en general se el módulo de la fuerza dependerá tanto de la velocidad como de la aceleración.

"Fuerza" gravitatoria

En la teoría de la relatividad general el campo gravitatorio no se trata como un campo de fuerzas real, sino como un efecto de la curvatura del espacio-tiempo. Una partícula másica que no sufre el efecto de ninguna otra interacción que la gravitatoria seguirá una trayectoria geodésica de mínima curvatura a través del espacio-tiempo, y por tanto su ecuación de movimiento será:

Donde:

son las coordenadas de posición de la partícula.el parámetro de arco, que es proporcional al tiempo propio de la partícula.

son los símbolos de Christoffel correspondientes a la métrica del espacio-tiempo.

La fuerza gravitatoria aparente procede del término asociado a los símbolos de Christoffel. Un observador en "caída libre" formará un sistema de referencia en movimiento en el que dichos símbolos de Christoffel son nulos, y por tanto no percibirá ninguna fuerza gravitatoria tal como sostiene el principio de equivalencia que ayudó a Einstein a formular sus ideas sobre el campo gravitatorio.

Fuerza electromagnética

El efecto del campo electromagnético sobre una partícula relativista viene dado por la expresión covariante de la fuerza de Lorentz:

Donde:

son las componentes covariantes de la cuadrifuerza experimentada por la partícula.

son las componentes del tensor de campo electromagnético.son las componentes de la cuadrivelocidad de la partícula.

La ecuación de movimiento de una partícula en un espacio-tiempo curvo y sometida a la acción de la fuerza anterior viene dada por:

Donde la expresión anterior se ha aplicado el convenio de sumación de Einstein para índices repetidos, el miembro de la derecha representa la cuadriaceleración y siendo las otras magnitudes:

son las componentes contravarianetes de la cuadrifuerza electromagnética sobre la partícula.

es la masa de la partícula.

Page 5: La Fuerza Se Puede Definir a Partir de La Derivada Temporal Del Momento Lineal

Fuerza en física cuántica

Fuerza en mecánica cuántica

En mecánica cuántica no resulta fácil definir para muchos sistemas un equivalente claro de la fuerza. Esto sucede porque en mecánica cuántica un sistema mecánico queda descrito por una función de onda o vector de estado que en general representa a todo el sistema en conjunto y no puede separarse en partes. Sólo para sistemas donde el estado del sistema pueda descomponerse de manera no ambigua en la forma

donde cada una de esas dos partes representa una parte del sistema es posible definir el concepto de fuerza. Sin embargo en la mayoría de sistemas interesanes no es posible esta descomposición. Por ejemplo si consideramos el conjunto de electrones de un átomo, que es un conjunto de partículas idénticas no es posible determinar una mangitud que represente la fuerza entre dos electrones concretos, porque no es posible escribir una función de onda que describa por separado los dos electrones.Sin embargo, en el caso de una partícula aislada sometida a la acción de una fuerza conservativa es posible describir la fuerza mediante un potencial externo e introducir la noción de fuerza. Esta situación es la que se da por ejemplo en el modelo atómico de Schrödinger para un átomo hidrogenoide donde el electrón y el núcleo son discernibles uno de otro. En éste y otros casos de una partícula aislada en un potencial el teorema de Ehrenfest lleva a una generalización de la segunda ley de Newton en la forma:

Donde:

es el valor esperado del momento lineal de la partícula.

es la función de onda de la partícula y su compleja conjugada.

es el potencial del que derivar las "fuerzas".denota el operador nabla.

En otros casos como los experimentos de colisión o dispersión de partículas elementales de energía positiva que son disparados contra otras partículas que hacen de blanco, como los experimentos típicos llevados a cabo en aceleradores de partículas a veces es posible definir un potencial que está relacionado con la fuerza típica que experimentará una partícula en colisión, pero aún así en muchos casos no puede hablarse de fuerza en el sentido clásico de la palabra.

Fuerzas fundamentales en teoría cuántica de campos

Artículo principal: Interacciones fundamentales.

Cuadro explicativo de las 4 fuerzas fundamentales.

En teoría cuántica de campos, el término "fuerza" tiene un sentido ligeramente diferente al que tiene en mecánica clásica debido a la dificultad específica señalada en la sección anterior de definir un equivalente cuántico de las fuerzas clásicas. Por esa razón el término "fuerza fundamental" en teoría cuántica de campos se refiere al modo de interacción entre partículas o campos cuánticos, más que a una medida concreta de la interacción de dos partículas o campos.La teoría cuántica de campos trata de dar una descripción de las

Page 6: La Fuerza Se Puede Definir a Partir de La Derivada Temporal Del Momento Lineal

formas de interacción existentes entre las diferentes formas de materia o campos cuánticos existentes en el Universo. Así el término "fuerzas fundamentales" se refiere actualmente a los modos claramente diferenciados de interacción que conocemos. Cada fuerza fundamental quedará descrita por una teoríadiferente y postulará diferentes lagrangianos de interacción que describan como es ese modo peculiar de interacción.Cuando se formuló la idea de fuerza fundamental se consideró que existían cuatro "fuerzas fundamentales": la gravitatoria, la electromagnética, la nuclear fuerte y la nuclear débil. La descripción de las "fuerzas fundamentales" tradicionales es la siguiente:

1. La gravitatoria es la fuerza de atracción que una masa ejerce sobre otra, y afecta a todos los cuerpos. La gravedad es una fuerza muy débil y de un sólo sentido, pero de alcance infinito.

2. La fuerza electromagnética afecta a los cuerpos eléctricamente cargados, y es la fuerza involucrada en las transformaciones físicas y químicas de átomos y moléculas. Es mucho más intensa que la fuerza gravitatoria, puede tener dos sentidos (atractivo y repulsivo) y su alcance es infinito.

3. La fuerza o interacción nuclear fuerte es la que mantiene unidos los componentes de los núcleos atómicos, y actúa indistintamente entre dos nucleones cualesquiera, protones o neutrones. Su alcance es del orden de las dimensiones nucleares, pero es más intensa que la fuerza electromagnética.

4. La fuerza o interacción nuclear débil es la responsable de la desintegración beta de los neutrones; los neutrinos son sensibles únicamente a este tipo de interacción (aparte de la gravitatoria) electromagnética y su alcance es aún menor que el de la interacción nuclear fuerte.

Sin embargo, cabe señalar que el número de fuerzas fundamentales en el sentido anteriormente expuesto depende de nuestro estado de conocimiento, así hasta finales de los años 1960 la interacción débil y la interacción electromagnética se consideraban fuerzas fundamentales diferentes, pero los avances teóricos permitieron establecer que en realidad ambos tipos de interacción eran manifestaciones fenomenológicamente diferentes de la misma "fuerza fundamental", la interacción electrodébil. Se tiene la sospecha de que en última instancia todas las "fuerzas fundamentales" son manifestaciones fenomenológicas de una única "fuerza" que sería descrita por algún tipo de teoría unificada o teoría del todo.a: navegación, búsquedaPara otros usos de este término, véase Dina (desambiguación).En física, una dina (de símbolo dyn) es la unidad de fuerza en el Sistema CGS. Equivale a 10 μ N o, lo que es lo mismo, la fuerza que aplicada a una masa de un gramo le comunica una aceleración de un centímetro en cada segundo al cuadrado o gal. Es decir:

1 dyn = 1 g·cm/s² = 10−5 kg·m/s² = 10 µN

1 N = 1 Kg·m/s² = 105 g·cm/s² = 100000 dyn

Tradicionalmente, los dina/centímetro se ha usado para medir tensiones superficiales.La fuerza de Planck es la unidad de fuerza derivada de la definición de las unidades de Planck básicas para el tiempo, la longitud y la masa. Es igual a la unidad natural de momento dividida entre la unidad natural de tiempo:

Otras definiciones

La fuerza de Planck también está asociada a la equivalencia de la energía potencial gravitatoria y la energía electromagnética,1 y en este contexto se puede entender como la fuerza que confina una masa autogravitante a la mitad de su radio de Schwarzschild:

,

,

Page 7: La Fuerza Se Puede Definir a Partir de La Derivada Temporal Del Momento Lineal

donde G es la constante de gravitación universal, c es la velocidad de la luz en el vacío, m es una masa cualquiera y rG es la mitad del radio de Schwarzschild, rs, de dicha masa.

Como la dimensión de la fuerza es una razón de energía por longitud, la fuerza de Planck se puede calcular como la energía dividida entre la mitad del radio de Schwarzschild.

Como se ha mencionado anteriormente, la fuerza de Planck está íntimamente asociada con la masa de Planck. Esta asociación única también se manifiesta cuando la fuerza se calcula como cualquier energía dividida entre la longitud de onda de Compton reducida por 2π de esa misma energía:

Aquí la fuerza es diferente para cada masa (por ejemplo, para el electrón, al fuerza es responsable del efecto Schwinger.2 Es igual a la fuerza de Planck únicamente para la masa de Planck (aproximadamente 2.18 × 10-8 kg). Esto se deduce del hecho de que la longitud de Planck es una longitud de onda de Compton reducida igual a la mitad del radio de Schwarzschild de la masa de Planck:

que a su vez se deduce de otra relación fundamental:

Un kilopondio o kilogramo-fuerza, es la fuerza ejercida sobre una masa de 1 kg masa (según se define en el Sistema Internacional) por la gravedad estándar en la superficie terrestre, esto es 9,80665 m/s2.

En definitiva, el kilogramo-fuerza (o kilopondio) es lo que pesa una masa de 1 kg en la superficie terrestre, expresión poco utilizada en la práctica cotidiana. Nunca oiremos decir: "yo peso 70 kilopondios o kilogramos-fuerza" (que sería lo correcto si utilizamos el Sistema Técnico de Unidades) o: "yo peso 686 newtons" (si utilizamos el Sistema Internacional), sino que lo común es decir: "yo peso 70 kilogramos o kilos" (donde kilogramo es la unidad de masa del SI), a pesar de que, en realidad, nos estamos refiriendo a kilogramos-fuerza, y no a kilogramos de masa. En lo anterior, debemos interpretar a la expresión "kilos" como acortamiento coloquial de kilogramos-fuerza o kilopondios, ya que estamos hablando de un peso; es decir, de una fuerza y no de una masa.

Equivalencias

El valor estándar de la gravedad (g) terrestre es de 9,80665 m/s². Entonces (y de acuerdo con la Segunda Ley de Newton: fuerza = masa × aceleración), tendremos:

1 kp = 1 kgf = 1 kg × 9,80665 m/s² = 9,80665 kg m/s2 = 9,80665 N

de modo que 1 kilogramo-fuerza o kilopondio equivale a 9,80665 newtons.

Page 8: La Fuerza Se Puede Definir a Partir de La Derivada Temporal Del Momento Lineal

Ejemplos

El kilogramo-fuerza o kilopondio (Sistema Técnico) representa el peso de una masa de 1 kg (Sistema Internacional) en la superficie terrestre. Esta circunstancia ha dado lugar a cierto desconcierto que parte de la confusión inicial entre los conceptos de peso y masa.Destaquemos un ejemplo: en la Luna ese mismo kg de masa va a pesar solamente 0,1666 kilopondios o kilogramos-fuerza (ó 1,634 newtons si usamos el SI), ya que la gravedad lunar es la sexta parte de la gravedad terrestre.

Resumiendo

1 kg masa (S.I.) es igual a 0,102 u.t.m. (S.T.U.). Además, el kg de masa pesa:

o en la Tierra: 1 kilopondio o kilogramo-fuerza (S.T.U.), o 9,80665 newtons (SI).o en la Luna: 0,1666 kilopondios o kilogramos-fuerza (S.T.U.), o 1,634 newtons (SI).

Sin embargo, su masa permanecerá invariable: 1 kg masa (SI) ó 0,102 u.t.m. (S.T.U.), tanto en la Tierra como en la Luna u otro lugarLa libra (símbolos: lb, lbf, o lbf), en física, es una unidad de fuerza. Una libra es aproximadamente igual a la fuerza gravitacional ejercida sobre una masa de un libra avoirdupois sobre una idealizada superficie de la Tierra.La constante aceleración de la fuerza de gravedad de la Tierra es usualmente aproximada a 9,80665 m/s² hoy en día, aunque se han utilizado otros valores, incluyendo 32,16 ft/s² (aproximadamente 9,80237 m/s²). La aceleración de gravedad que ejerce la Tierra varía de lugar en lugar, en general incrementándose desde el ecuador (9,78 m/s²) a los polos (9,83 m/s²).En física, un newton (pronunciada /niúton/) o neutonio o neutón (símbolo: N) es la unidad de fuerza en el Sistema Internacional de Unidades, nombrada así en reconocimiento a Isaac Newton por su aportación a la física, especialmente a la mecánica clásica.El newton se define como la fuerza necesaria para proporcionar una aceleración de 1 m/s 2 a un objeto de 1 kg de masa.[1] Es una unidad derivada del SI que se compone de las unidades básicas:

En la tabla que sigue se relacionan los múltiplos y submúltiplos del newton en el Sistema Internacional de Unidades.

Múltiplos del Sistema Internacional para newton (N)Submúltiplos Múltiplos

Valor Símbolo Nombre Valor Símbolo Nombre10−1 N dN decinewton 101 N daN decanewton10−2 N cN centinewton 102 N hN hectonewton10−3 N mN millinewton 103 N kN kilonewton10−6 N µN micronewton 106 N MN meganewton10−9 N nN nanonewton 109 N GN giganewton10−12 N pN piconewton 1012 N TN teranewton10−15 N fN femtonewton 1015 N PN petanewton10−18 N aN attonewton 1018 N EN exanewton10−21 N zN zeptonewton 1021 N ZN zettanewton10−24 N yN yoctonewton 1024 N YN yottanewton

Prefijos comunes de unidades están en negrita.

Page 9: La Fuerza Se Puede Definir a Partir de La Derivada Temporal Del Momento Lineal

Esta unidad del Sistema Internacional es nombrada así en honor a Isaac Newton. En las unidades del SI cuyo nombre proviene del nombre propio de una persona, la primera letra del símbolo se escribe con mayúscula (N), en tanto que su nombre siempre empieza con una letra minúscula (newton), salvo en el caso de que inicie una frase o un título.

Primera ley de Newton o Ley de la inerciaLa primera ley del movimiento rebate la idea aristotélica de que un cuerpo sólo puede mantenerse en movimiento si se le aplica una fuerza. Newton expone que:Todo cuerpo persevera en su estado de reposo o movimiento uniforme y rectilíneo a no ser que sea obligado a cambiar su estado por fuerzas impresas sobre él.5Esta ley postula, por tanto, que un cuerpo no puede cambiar por sí solo su estado inicial, ya sea en reposo o en movimiento rectilíneo uniforme, a menos que se aplique una fuerza o una serie de fuerzas cuyo resultante no sea nulo sobre él. Newton toma en cuenta, así, el que los cuerpos en movimiento están sometidos constantemente a fuerzas de roce o fricción, que los frena de forma progresiva, algo novedoso respecto de concepciones anteriores que entendían que el movimiento o la detención de un cuerpo se debía exclusivamente a si se ejercía sobre ellos una fuerza, pero nunca entendiendo como esta a la fricción.En consecuencia, un cuerpo con movimiento rectilíneo uniforme implica que no existe ninguna fuerza externa neta o, dicho de otra forma; un objeto en movimiento no se detiene de forma natural si no se aplica una fuerza sobre él. En el caso de los cuerpos en reposo, se entiende que su velocidad es cero, por lo que si esta cambia es porque sobre ese cuerpo se ha ejercido una fuerza neta.Ejemplo, para un pasajero de un tren, el interventor viene caminando lentamente por el pasillo del tren, mientras que para alguien que ve pasar el tren desde el andén de una estación, el interventor se está moviendo a una gran velocidad. Se necesita, por tanto, un sistema de referencia al cual referir el movimiento.La primera ley de Newton sirve para definir un tipo especial de sistemas de referencia conocidos como Sistemas de referencia inerciales, que son aquellos sistemas de referencia desde los que se observa que un cuerpo sobre el que no actúa ninguna fuerza neta se mueve con velocidad constante.En realidad, es imposible encontrar un sistema de referencia inercial, puesto que siempre hay algún tipo de fuerzas actuando sobre los cuerpos, pero siempre es posible encontrar un sistema de referencia en el que el problema que estemos estudiando se pueda tratar como si estuviésemos en un sistema inercial. En muchos casos, por ejemplo, suponer a un observador fijo en la Tierra es una buena aproximación de sistema inercial. Lo anterior porque a pesar que la Tierra cuenta con una aceleración traslacional y rotacional estas son del orden de 0.01 m/s^2 y en consecuencia podemos considerar que un sistema de referencia de un observador dentro de la superficie terrestre es un sistema de referencia inercial.

Segunda ley de Newton o Ley de fuerzaLa segunda ley del movimiento de Newton dice queEl cambio de movimiento es proporcional a la fuerza motriz impresa y ocurre según la línea recta a lo largo de la cual aquella fuerza se imprime.6Esta ley explica qué ocurre si sobre un cuerpo en movimiento (cuya masa no tiene por qué ser constante) actúa una fuerza neta: la fuerza modificará el estado de movimiento, cambiando la velocidad en módulo o dirección. En concreto, los cambios experimentados en el momento lineal de un cuerpo son proporcionales a la fuerza motriz y se desarrollan en la dirección de esta; las fuerzas son causas que producen aceleraciones en los cuerpos. Consecuentemente, hay relación entre la causa y el efecto, la fuerza y la aceleración están relacionadas. Dicho sintéticamente, la fuerza se define simplemente en función del momento en que se aplica a un objeto, con lo que dos fuerzas serán iguales si causan la misma tasa de cambio en el momento del objeto.En términos matemáticos esta ley se expresa mediante la relación:

Donde:

es el momento lineal

la fuerza total o fuerza resultante.

Suponiendo que la masa es constante y que la velocidad es muy inferior a la velocidad de la luz 7 la ecuación anterior se puede reescribir de la siguiente manera:

Page 10: La Fuerza Se Puede Definir a Partir de La Derivada Temporal Del Momento Lineal

Sabemos que es el momento lineal, que se puede escribir m.V donde m es la masa del cuerpo y V su velocidad.

Consideramos a la masa constante y podemos escribir aplicando estas modificaciones a la ecuación anterior:

que es la ecuación fundamental de la dinámica, donde la constante de proporcionalidad, distinta para cada cuerpo, es su masa de inercia. Veamos lo siguiente, si despejamos m de la ecuación anterior obtenemos que m es la relación que existe entre y . Es decir la relación que hay entre la fuerza aplicada al cuerpo y la aceleración obtenida. Cuando un cuerpo tiene una gran resistencia a cambiar su aceleración (una gran masa) se dice que tiene mucha inercia. Es por esta razón por la que la masa se define como una medida de la inercia del cuerpo.

Por tanto, si la fuerza resultante que actúa sobre una partícula no es cero, esta partícula tendrá una aceleración proporcional a la magnitud de la resultante y en dirección de ésta. La expresión anterior así establecida es válida tanto para la mecánica clásica como para la mecánica relativista, a pesar de que la definición de momento lineal es diferente en las dos teorías: mientras que la dinámica clásica afirma que la masa de un cuerpo es siempre la misma, con independencia de la velocidad con la que se mueve, la mecánica relativista establece que la masa de un cuerpo aumenta al crecer la velocidad con la que se mueve dicho cuerpo.

De la ecuación fundamental se deriva también la definición de la unidad de fuerza o newton (N). Si la masa y la aceleración valen 1, la fuerza también valdrá 1; así, pues, el newton es la fuerza que aplicada a una masa de un kilogramo le produce una aceleración de 1 m/s². Se entiende que la aceleración y la fuerza han de tener la misma dirección y sentido.

La importancia de esa ecuación estriba sobre todo en que resuelve el problema de la dinámica de determinar la clase de fuerza que se necesita para producir los diferentes tipos de movimiento: rectilíneo uniforme (m.r.u), circular uniforme (m.c.u) y uniformemente acelerado (m.r.u.a).

Si sobre el cuerpo actúan muchas fuerzas, habría que determinar primero el vector suma de todas esas fuerzas. Por último, si se tratase de un objeto que cayese hacia la tierra con una resistencia del aire igual a cero, la fuerza sería su peso, que provocaría una aceleración descendente igual a la de la gravedad.

Tercera ley de Newton o Ley de acción y reacciónCon toda acción ocurre siempre una reacción igual y contraria: o sea, las acciones mutuas de dos cuerpos siempre son iguales y dirigidas en sentido opuesto.6La tercera ley de Newton es completamente original (pues las dos primeras ya habían sido propuestas de otras maneras por Galileo, Hooke y Huygens) y hace de las leyes de la mecánica un conjunto lógico y completo.8 Expone que por cada fuerza que actúa sobre un cuerpo (empuje), este realiza una fuerza de igual intensidad, pero de sentido contrario sobre el cuerpo que la produjo. Dicho de otra forma, las fuerzas, situadas sobre la misma recta, siempre se presentan en pares de igual magnitud y de dirección, pero con sentido opuesto.Este principio presupone que la interacción entre dos partículas se propaga instantáneamente en el espacio (lo cual requeriría velocidad infinita), y en su formulación original no es válido para fuerzas electromagnéticas puesto que estas no se propagan por el espacio de modo instantáneo sino que lo hacen a velocidad finita "c".Es importante observar que este principio de acción y reacción relaciona dos fuerzas que no están aplicadas al mismo cuerpo, produciendo en ellos aceleraciones diferentes, según sean sus masas. Por lo demás, cada una

Page 11: La Fuerza Se Puede Definir a Partir de La Derivada Temporal Del Momento Lineal

de esas fuerzas obedece por separado a la segunda ley. Junto con las anteriores leyes, ésta permite enunciar los principios de conservación del momento lineal y del momento angular.

GeneralizacionesDespués de que Newton formulara las famosas tres leyes, numerosos físicos y matemáticos hicieron contribuciones para darles una forma más general o de más fácil aplicación a sistemas no inerciales o a sistemas con ligaduras. Una de estas primeras generalizaciones fue el principio de d'Alembert de 1743 que era una forma válida para cuando existieran ligaduras que permitía resolver las ecuaciones sin necesidad de calcular explícitamente el valor de las reacciones asociadas a dichas ligaduras.Por la misma época, Lagrange encontró una forma de las ecuaciones de movimiento válida para cualquier sistema de referencia inercial o no-inercial sin necesidad de introducir fuerzas ficticias. Ya que es un hecho conocido que las Leyes de Newton, tal como fueron escritas, sólo son válidas a los sistemas de referencia inerciales, o más precisamente, para aplicarlas a sistemas no-inerciales, requieren la introducción de las llamadas fuerzas ficticias, que se comportan como fuerzas pero no están provocadas directamente por ninguna partícula material o agente concreto, sino que son un efecto aparente del sistema de referencia no inercial.

Más tarde la introducción de la teoría de la relatividad obligó a modificar la forma de la segunda ley de Newton (ver (2c)), y la mecánica cuántica dejó claro que las leyes de Newton o la relatividad general sólo son aproximaciones al comportamiento dinámico en escalas macroscópicas. También se han conjeturado algunas modificaciones macroscópicas y no-relativistas, basadas en otros supuestos como la dinámica MOND.

Generalizaciones relativistasLas leyes de Newton constituyen tres principios aproximadamente válidos para velocidades pequeñas. La forma en que Newton las formuló no era la más general posible. De hecho la segunda y tercera leyes en su forma original no son válidas en mecánica relativista sin embargo formulados de forma ligeramente diferente la segunda ley es válida, y la tercera ley admite una formulación menos restrictiva que es válida en mecánica relativista.

Primera ley, en ausencia de campos gravitatorios no requiere modificaciones. En un espacio-tiempo plano una línea recta cumple la condición de ser geodésica. En presencia de curvatura en el espacio-tiempo la primera ley de Newton sigue siendo correcta si substituimos la expresión línea recta por línea geodésica.

Segunda ley. Sigue siendo válida si se dice que la fuerza sobre una partícula coincide con la tasa de cambio de su momento lineal. Sin embargo, ahora la definición de momento lineal en la teoría newtoniana y en la teoría relativista difieren. En la teoría newtoniana el momento lineal se define según (1a) mientras que en la teoría de la relatividad de Einstein se define mediante (1b):

(1a)

(1b)

donde m es la masa invariante de la partícula y la velocidad de ésta medida desde un cierto sistema inercial. Esta segunda formulación de hecho incluye implícitamente definición (1) según la cual el momento lineal es el producto de la masa por la velocidad. Como ese supuesto implícito no se cumple en el marco de la teoría de la relatividad de Einstein (donde la definición es (2)), la expresión de la fuerza en términos de la aceleración en la teoría de la relatividad toma una forma diferente. Por ejemplo, para el movimiento rectilíneo de una partícula en un sistema inercial se tiene que la expresión equivalente a (2a) es:

Page 12: La Fuerza Se Puede Definir a Partir de La Derivada Temporal Del Momento Lineal

(2b)

Si la velocidad y la fuerza no son paralelas, la expresión sería la siguiente:

(2c)

Nótese que esta última ecuación implica que salvo para el movimiento rectilíneo y el circular uniforme, el vector de aceleración y el vector de fuerza no serán parelelos y formarán un pequeño ángulo relacionado con el ángulo que formen la aceleración y la velocidad.

Tercera Ley de Newton. La formulación original de la tercera ley por parte de Newton implica que la acción y reacción, además de ser de la misma magnitud y opuestas, son colineales. En esta forma la tercera ley no siempre se cumple en presencia de campos magnéticos. En particular, la parte magnética de la fuerza de Lorentz que se ejercen dos partículas en movimiento no son iguales y de signo contrario. Esto puede verse por cómputo directo. Dadas dos partículas puntuales con cargas q1 y q2 y velocidades , la fuerza de la partícula 1 sobre la partícula 2 es:

donde d la distancia entre las dos partículas y es el vector director unitario que va de la partícula 1 a la 2. Análogamente, la fuerza de la partícula 2 sobre la partícula 1 es:

Empleando la identidad vectorial , puede verse que la

primera fuerza está en el plano formado por y que la segunda fuerza está en el plano formado por

y . Por tanto, estas fuerzas no siempre resultan estar sobre la misma línea, aunque son de igual magnitud.

Versión débil de ley de acción y reacción

Como se explicó en la sección anterior ciertos sistemas magnéticos no cumplen el enunciado fuerte de esta ley (tampoco lo hacen las fuerzas eléctricas ejercidas entre una carga puntual y un dipolo). Sin embargo si se relajan algo las condiciones los anteriores sistemas sí cumplirían con otra formulación más débil o relajada de la ley de acción y reacción. En concreto los sistemas descritos que no cumplen la ley en su forma fuerte, si cumplen la ley de acción y reacción en su forma débil:

La acción y la reacción deben ser de la misma magnitud (aunque no necesariamente deben encontrarse sobre la misma línea)

Page 13: La Fuerza Se Puede Definir a Partir de La Derivada Temporal Del Momento Lineal

Todas las fuerzas de la mecánica clásica y el electromagnetismo no-relativista cumplen con la formulación débil, si además las fuerzas están sobre la misma línea entonces también cumplen con la formulación fuerte de la tercera ley de Newton.

Teorema de Ehrenfest

El teorema de Ehrenfest permite generalizar las leyes de Newton al marco de la mecánica cuántica. Si bien en dicha teoría no es lícito hablar de fuerzas o de trayectoria, se puede hablar de magnitudes como momento lineal y potencial de manera similar a como se hace en mecánica newtoniana.

En concreto la versión cuántica de la segunda Ley de Newton afirma que la derivada temporal del valor esperado del momento de una partícula en un campo iguala al valor esperado de la "fuerza" o valor esperado del gradiente del potencial:

Donde:

es el potencial del que derivar las "fuerzas".

, son las funciones de onda de la partícula y su compleja conjugada.denota el operador nabla

Las leyes de Kepler fueron enunciadas por Johannes Kepler para describir matemáticamente el movimiento de los planetas en sus órbitas alrededor del Sol. Aunque él no las describió así, en la actualidad se enuncian como sigue:

Primera ley (1609): Todos los planetas se desplazan alrededor del Sol describiendo órbitas elípticas. El Sol se encuentra en uno de los focos de la elipse.

Segunda ley (1609): el radio vector que une un planeta y el Sol barre áreas iguales en tiempos iguales.

La ley de las áreas es equivalente a la constancia del momento angular, es decir, cuando el planeta está más alejado del Sol (afelio) su velocidad es menor que cuando está más cercano al Sol (perihelio). En el afelio y en el perihelio, el momento angular es el producto de la masa del planeta, su velocidad y su distancia al centro del Sol.

Tercera ley (1618): para cualquier planeta, el cuadrado de su período orbital es directamente proporcional al cubo de la longitud del semieje mayor de su órbita elíptica.

Page 14: La Fuerza Se Puede Definir a Partir de La Derivada Temporal Del Momento Lineal

Donde, T es el periodo orbital (tiempo que tarda en dar una vuelta alrededor del Sol), (L) la distancia media del planeta con el Sol y K la constante de proporcionalidad.

Estas leyes se aplican a otros cuerpos astronómicos que se encuentran en mutua influencia gravitatoria, como el sistema formado por la Tierra y la Luna.

Formulación de Newton de la tercera ley de Kepler

Antes de que se produjeran las leyes de Kepler hubo otros científicos como Cópernico, Ptolomeo y Tycho Brahe que fue un gran astrónomo cuya principal contribución al avance de la ciencia estuvo en haber conseguido medidas muy precisas de las posiciones de los planetas y de las estrellas, uno de sus discípulos fue Kepler.

Kepler permitió descubrir el movimiento de los planetas. Utilizó grandes conocimientos matemáticos para encontrar relaciones entre los datos de las observaciones astronómicas obtenidas por Tycho Brahe y con ellos logró componer un modelo heliocéntrico del universo. Comenzó trabajando al modo tradicional, planteando trayectorias excéntricas y movimientos en epiciclos, pero encontró que esos datos los situaban fuera del esquema que había establecido Copérnico, lo que le llevó a pensar que no describían una órbita circular. Ensayó otras formas para las órbitas y encontró que los planetas describían órbitas elípticas que tenían al Sol en uno de sus focos. Analizando los datos de Brahe, Kepler descubrió también que la velocidad de los planetas no es constante, sino que el radio vector que los une con el Sol describe áreas iguales en tiempos iguales. En consecuencia, la velocidad de los planetas es mayor cuando están próximos al Sol (perihelio) que cuando se mueven por las zonas más alejadas (afelio). Esto dio lugar a las tres Leyes de Kepler sobre el movimiento planetario.

Las leyes de Kepler representan una descripción cinemática del sistema solar.

Primera Ley de Kepler: Todos los planetas se mueven alrededor del Sol siguiendo órbitas elípticas. El Sol está en uno de los focos de la elipse. (a y b con semejantes a la elipse)

Segunda Ley de Kepler: Los planetas se mueven con velocidad areolar constante. Es decir, el vector posición r de cada planeta con respecto al Sol barre áreas iguales en tiempos iguales.

Se puede demostrar que el momento angular es constante lo que nos lleva a las siguientes conclusiones:

Las órbitas son planas y estables.Se recorren siempre en el mismo sentido.La fuerza que mueve los planetas es central.

Tercera Ley de Kepler: se cumple que para todos los planetas, la razón entre el periodo de revolución al cuadrado y el radio orbital al cubo se mantiene constante. Esto es:

El estudio de Newton de las leyes de Kepler condujo a su formulación de la ley de la gravitación universal.

La formulación matemática de Newton de la tercera ley de Kepler es:

La fuerza gravitacional crea la aceleración centrípeta necesaria para el movimiento circular:

Page 15: La Fuerza Se Puede Definir a Partir de La Derivada Temporal Del Momento Lineal

Al reemplazar la velocidad v por (el tiempo de una órbita completa) obtenemos

Donde, T es el periodo orbital, r el semieje mayor de la órbita, M es la masa del cuerpo central y G una constante denominada Constante de gravitación universal cuyo valor marca la intensidad de la interacción gravitatoria y el sistema de unidades a utilizar para las otras variables de esta expresión.

La ley de la Gravitación Universal es una ley física clásica que describe la interacción gravitatoria entre distintos cuerpos con masa. Ésta fue presentada por Isaac Newton en su libro Philosophiae Naturalis Principia Mathematica, publicado en 1687, donde establece por primera vez una relación cuantitativa (deducida empíricamente de la observación) de la fuerza con que se atraen dos objetos con masa. Así, Newton dedujo que la fuerza con que se atraen dos cuerpos de diferente masa únicamente depende del valor de sus masas y del cuadrado de la distancia que los separa. También se observa que dicha fuerza actúa de tal forma que es como si toda la masa de cada uno de los cuerpos estuviese concentrada únicamente en su centro, es decir, es como si dichos objetos fuesen únicamente un punto, lo cual permite reducir enormemente la complejidad de las interacciones entre cuerpos complejos.Así, con todo esto resulta que la ley de la Gravitación Universal predice que la fuerza ejercida entre dos cuerpos de masas y separados una distancia es proporcional al producto de sus masas e inversamente proporcional al cuadrado de la distancia, es decir

(1)

donde

es el módulo de la fuerza ejercida entre ambos cuerpos, y su dirección se encuentra en el eje que une ambos cuerpos.

es la constante de la Gravitación Universal.

Es decir, cuanto más masivos sean los cuerpos y más cercanos se encuentren, con mayor fuerza se atraerán. El valor de esta constante de Gravitación Universal no pudo ser establecido por Newton, que únicamente dedujo la forma de la interacción gravitatoria, pero no tenía suficientes datos como para establecer cuantitativamente su valor. Únicamente dedujo que su valor debería ser muy pequeño. Sólo mucho tiempo después se desarrollaron las técnicas necesarias para calcular su valor, y aún hoy es una de las constantes universales conocidas con menor precisión. En 1798 se hizo el primer intento de medición(véase el experimento de Cavendish) y en la actualidad, con técnicas mucho más precisas se ha llegado a estos resultados:

(2)

en unidades del Sistema Internacional.Esta ley recuerda mucho a la forma de la ley de Coulomb para las fuerzas electrostáticas, ya que ambas leyes siguen una ley de la inversa del cuadrado (es decir, la fuerza decae con el cuadrado de la distancia) y ambas son proporcionales al producto de magnitudes propias de los cuerpos (en el caso gravitatorio de sus masas y en el caso electrostáticos de su carga eléctrica).

Page 16: La Fuerza Se Puede Definir a Partir de La Derivada Temporal Del Momento Lineal

Aunque actualmente se conocen los límites en los que dicha ley deja de tener validez (lo cual ocurre básicamente cuando nos encontramos cerca de cuerpos extremadamente masivos), en cuyo caso es necesario realizar una descripción a través de la Relatividad General enunciada por Albert Einstein en 1915, dicha ley sigue siendo ampliamente utilizada y permite describir con una extraordinaria precisión los movimientos de los cuerpos (planetas, lunas, asteroides, etc) del Sistema Solar, por lo que a grandes rasgos, para la mayor parte de las aplicaciones cotidianas sigue siendo la utilizada, debido a su mayor simplicidad frente a la Relatividad General, y a que ésta en estas situaciones no predice variaciones detectables respecto a la Gravitación Universal

En física clásica, el peso es una medida de la fuerza gravitatoria que actúa sobre un objeto.[1] El peso equivale a la fuerza que ejerce un cuerpo sobre un punto de apoyo, originada por la acción del campo gravitatorio local sobre la masa del cuerpo. Por ser una fuerza, el peso se representa como un vector, definido por su módulo, dirección y sentido, aplicado en el centro de gravedad del cuerpo y dirigido aproximadamente hacia el centro de la Tierra. Por extensión de esta definición, también podemos referirnos al peso de un cuerpo en cualquier otro astro (Luna, Marte,...) en cuyas proximidades se encuentre.Los conceptos newtonianos de la gravedad fueron desafiados por la relatividad en el siglo 20. El principio de equivalencia de Einstein coloca todos los observadores en el mismo plano. Esto condujo a una ambigüedad en cuanto a qué es exactamente lo que se entiende por la "fuerza de la gravedad" y, en consecuencia, peso. Las ambigüedades introducidas por la relatividad condujeron, a partir de la década de 1960, a un considerable debate en la comunidad educativa sobre cómo definir el peso a sus alumnos. La elección fue una definición newtoniana de peso como la fuerza de un objeto en reposo en el suelo debido a la gravedad, o una definición operacional definida por el acto de pesaje.[cita requerida] En la definición operacional, el peso se convierte en cero, en condiciones de ingravidez como en la órbita de la Tierra o la caída libre en el vacío. En tales situaciones, la visión newtoniana es que sigue existiendo una fuerza debido a la gravedad que no se mide (causando así un peso aparente de cero), mientras que la vista einsteiniana es que nunca existe una fuerza medible debido a la gravedad (incluso en el suelo ), sino que, en caída libre, ninguna fuerza puede medirse debido a que el suelo no ejerce la fuerza mecánica que ordinariamente se observó como "peso".La magnitud del peso de un objeto, desde la definición operacional de peso, depende tan sólo de la intensidad del campo gravitatorio local y de la masa del cuerpo, en un sentido estricto. Sin embargo, desde un punto de vista legal y práctico, se establece que el peso, cuando el sistema de referencia es la Tierra, comprende no solo la fuerza gravitatoria local, sino también la fuerza centrífuga local debido a la rotación de la Tierra; por el contrario, el empuje atmosférico no se incluye, ni ninguna otra fuerza externa.[2]

Un momento culminante en la historia de la Física fue el descubrimiento realizado por Isaac Newton de la Ley de la Gravitación Universal: todos los objetos se atraen unos a otros con una fuerza directamente proporcional al producto de sus masas e inversamente proporcional al cuadrado de la distancia que separa sus centros. Al someter a una sola ley matemática los fenómenos físicos más importantes del universo observable, Newton demostró que la física terrestre y la física celeste son una misma cosa. El concepto de gravitación lograba de un solo golpe:

Revelar el significado físico de las tres leyes de Kepler sobre el movimiento planetario. Resolver el intrincado problema del origen de las mareas Dar cuenta de la curiosa e inexplicable observación de Galileo Galilei de que el movimiento de un

objeto en caída libre es independiente de su peso.

La naturaleza cuadrático inversa de la fuerza centrípetra para el caso de órbitas circulares, puede deducirse fácilmente de la tercera ley de Kepler sobre el movimiento planetario y de la dinámica del movimiento circular uniforme:

1. Según la tercera ley de Kepler el cuadrado del periodo P es proporcional al cubo del semieje mayor de la elipse, que en el caso de la circunferencia es su propio radio r, P2=kr3.

Page 17: La Fuerza Se Puede Definir a Partir de La Derivada Temporal Del Momento Lineal

2. La dinámica del movimiento circular uniforme, nos dice que en una trayectoria circular, la fuerza que hay que aplicar al cuerpo es igual al producto de su masa por la aceleración normal, F=mv2/r.

El tiempo que tarda un planeta en dar una vuelta completa es el cociente entre la longitud de la circunferencia y la velocidad, P=2 r/v. En física clásica, la ley universal de conservación de la energía —que es el fundamento del primer principio de la termodinámica—, indica que la energía ligada a un sistema aislado permanece constante en el tiempo. Eso significa que para multitud de sistemas físicos clásicos la suma de la energía mecánica, la energía calorífica, la energía electromagnética, y otros tipos de energía potencial es un número constante. Por ejemplo, la energía cinética se cuantifica en función del movimiento de la materia, la energía potencial según propiedades como el estado de deformación o a la posición de la materia en relación con las fuerzas que actúan sobre ella, la energía térmica según el estado termodinámico, y la energía química según la composición química.

Mecánica cuántica

Sin embargo, debe tenerse en cuenta que según la teoría de la relatividad la energía definida según la mecánica clásica no se conserva constante, sino que lo que se conserva en es la masa-energía equivalente. Es decir, la teoría de la relatividad especial establece una equivalencia entre masa y energía por la cual todos los cuerpos, por el hecho de estar formados de materia, poseen una energía adicional equivalente a , y si se considera el principio de conservación de la energía esta energía debe ser tomada en cuenta para obtener una ley de conservación (naturalmente en contrapartida la masa no se conserva en relatividad, sino que la única posibilidad para una ley de conservación es contabilizar juntas la energía asociada a la masa y el resto de formas de energía).

Su expresión matemática

La energía es una propiedad de los sistemas físicos, no es un estado físico real, ni una "sustancia intangible". En mecánica clásica se representa como una magnitud escalar. La energía es una abstracción matemática de una propiedad de los sistemas físicos. Por ejemplo, se puede decir que un sistema con energía cinética nula está en reposo. En problemas relativistas la energía de una partícula no puede ser representada por un escalar invariante, sino por la componente temporal de un cuadrivector energía-momento (cuadrimomento), ya que diferentes observadores no miden la misma energía si no se mueven a la misma velocidad con respecto a la partícula. Si se consideran distribuciones de materia continuas, la descripción resulta todavía más complicada y la correcta descripción de la cantidad de movimiento y la energía requiere el uso del tensor energía-impulso.

Se utiliza como una abstracción de los sistemas físicos por la facilidad para trabajar con magnitudes escalares, en comparación con las magnitudes vectoriales como la velocidad o la aceleración. Por ejemplo, en mecánica, se puede describir completamente la dinámica de un sistema en función de las energías cinética, potencial, que componen la energía mecánica, que en la mecánica newtoniana tiene la propiedad de conservarse, es decir, ser invariante en el tiempo.

Page 18: La Fuerza Se Puede Definir a Partir de La Derivada Temporal Del Momento Lineal

Matemáticamente, la conservación de la energía para un sistema es una consecuencia directa de que las ecuaciones de evolución de ese sistema sean independientes del instante de tiempo considerado, de acuerdo con el teorema de Noether.

Energía en diversos tipos de sistemas físicos

La energía también es una magnitud física que se presenta bajo diversas formas, está involucrada en todos los procesos de cambio de estado físico, se transforma y se transmite, depende del sistema de referencia y fijado éste se conserva.1 Por lo tanto, todo cuerpo es capaz de poseer energía en función de su movimiento, posición, temperatura, masa, composición química, y otras propiedades. En las diversas disciplinas de la física y la ciencia, se dan varias definiciones de energía, todas coherentes y complementarias entre sí, y todas ellas siempre relacionadas con el concepto de trabajo.

Física clásica

En la mecánica se encuentran:

Energía mecánica , que es la combinación o suma de los siguientes tipos:o Energía cinética : relativa al movimiento.o Energía potencial : la asociada a la posición dentro de un campo de fuerzas

conservativo. Por ejemplo, está la Energía potencial gravitatoria y la Energía potencial elástica (o energía de deformación, llamada así debido a las deformaciones elásticas). Una onda también es capaz de transmitir energía al desplazarse por un medio elástico.

En electromagnetismo se tiene a la:

Energía electromagnética , que se compone de:o Energía radiante : la energía que poseen las ondas electromagnéticas.o Energía calórica : la cantidad de energía que la unidad de masa de materia

puede desprender al producirse una reacción química de oxidación.o Energía potencial eléctrica (véase potencial eléctrico)o Energía eléctrica : resultado de la existencia de una diferencia de potencial

entre dos puntos.

En la termodinámica están:

Energía interna , que es la suma de la energía mecánica de las partículas constituyentes de un sistema.

Energía térmica , que es la energía liberada en forma de calor, obtenida de la naturaleza (energía geotérmica) o mediante la combustión.

Física relativista

En la relatividad están:

Page 19: La Fuerza Se Puede Definir a Partir de La Derivada Temporal Del Momento Lineal

Energía en reposo , que es la energía debida a la masa según la conocida fórmula de Einstein, E=mc2, que establece la equivalencia entre masa y energía.

Energía de desintegración , que es la diferencia de energía en reposo entre las partículas iniciales y finales de una desintegración.

Al redefinir el concepto de masa, también se modifica el de energía cinética (véase relación de energía-momento).

Física cuántica

En física cuántica, la energía es una magnitud ligada al operador hamiltoniano. La energía total de un sistema no aislado de hecho puede no estar definida: en un instante dado la medida de la energía puede arrojar diferentes valores con probabilidades definidas. En cambio, para los sistemas aislados en los que el hamiltoniano no depende explícitamente del tiempo, los estados estacionarios sí tienen una energía bien definida. Además de la energía asociadas a la materia ordinaria o campos de materia, en física cuántica aparece la:

Energía del vacío : un tipo de energía existente en el espacio, incluso en ausencia de materia.

Química

En química aparecen algunas formas específicas no mencionadas anteriormente:

Energía de ionización , una forma de energía potencial, es la energía que hace falta para ionizar una molécula o átomo.

Energía de enlace , es la energía potencial almacenada en los enlaces químicos de un compuesto. Las reacciones químicas liberan o absorben esta clase de energía, en función de la entalpía y energía calórica.

Si estas formas de energía son consecuencia de interacciones biológicas, la energía resultante es bioquímica, pues necesita de las mismas leyes físicas que aplican a la química, pero los procesos por los cuales se obtienen son biológicos, como norma general resultante del metabolismo celular (véase Ruta metabólica).

Energía potencial

Artículo principal: Energía potencial.

Es la energía que se le puede asociar a un cuerpo o sistema conservativo en virtud de su posición o de su configuración. Si en una región del espacio existe un campo de fuerzas conservativo, la energía potencial del campo en el punto (A) se define como el trabajo requerido para mover una masa desde un punto de referencia (nivel de tierra) hasta el punto (A). Por definición el nivel de tierra tiene energía potencial nula. Algunos tipos de energía potencial que aparecen en diversos contextos de la física son:

Page 20: La Fuerza Se Puede Definir a Partir de La Derivada Temporal Del Momento Lineal

La energía potencial gravitatoria asociada a la posición de un cuerpo en el campo gravitatorio (en el contexto de la mecánica clásica). La energía potencial gravitatoria de un cuerpo de masa m en un campo gravitatorio constante viene dada

por: donde h es la altura del centro de masas respecto al cero convencional de energía potencial.

La energía potencial electrostática V de un sistema se relaciona con el campo eléctrico mediante la relación:

siendo E el valor del campo eléctrico.

La energía potencial elástica asociada al campo de tensiones de un cuerpo deformable.

La energía potencial puede definirse solamente cuando existe un campo de fuerzas que es conservativa, es decir, que cumpla con alguna de las siguientes propiedades:

1. El trabajo realizado por la fuerza entre dos puntos es independiente del camino recorrido.

2. El trabajo realizado por la fuerza para cualquier camino cerrado es nulo.3. Cuando el rotor de F es cero (sobre cualquier dominio simplemente conexo).

Se puede demostrar que todas las propiedades son equivalentes (es decir que cualquiera de ellas implica la otra). En estas condiciones, la energía potencial en un punto arbitrario se define como la diferencia de energía que tiene una partícula en el punto arbitrario y otro punto fijo llamado "potencial cero".

Energía cinética de una masa puntual

La energía cinética es un concepto fundamental de la física que aparece tanto en mecánica clásica, como mecánica relativista y mecánica cuántica. La energía cinética es una magnitud escalar asociada al movimiento de cada una de las partículas del sistema. Su expresión varía ligeramente de una teoría física a otra. Esta energía se suele designar como K, T o Ec.

El límite clásico de la energía cinética de un cuerpo rígido que se desplaza a una velocidad v viene dada por la expresión:

Una propiedad interesante es que esta magnitud es extensiva por lo que la energía de un sistema puede expresarse como "suma" de las energía de partes disjuntas del sistema. Así por ejemplo puesto que los cuerpos están formados de partículas, se puede conocer su energía sumando las energías individuales de cada partícula del cuerpo.

Magnitudes relacionadas

Page 21: La Fuerza Se Puede Definir a Partir de La Derivada Temporal Del Momento Lineal

La energía se define como la capacidad de realizar un trabajo. Energía y trabajo son equivalentes y, por tanto, se expresan en las mismas unidades. El calor es una forma de energía, por lo que también hay una equivalencia entre unidades de energía y de calor. La capacidad de realizar un trabajo en una determinada cantidad de tiempo es la potencia.

Transformación de la energía

Para la optimización de recursos y la adaptación a nuestros usos, necesitamos transformar unas formas de energía en otras. Todas ellas se pueden transformar en otra cumpliendo los siguientes principios termodinámicos:

“La energía no se crea ni se destruye; sólo se transforma”. De este modo, la cantidad de energía inicial es igual a la final.

“La energía se degrada continuamente hacia una forma de energía de menor calidad (energía térmica)”. Dicho de otro modo, ninguna transformación se realiza con un 100% de rendimiento, ya que siempre se producen unas pérdidas de energía térmica no recuperable. El rendimiento de un sistema energético es la relación entre la energía obtenida y la que suministramos al sistema.

Unidades de medida de energía

La unidad de energía definida por el Sistema Internacional de Unidades es el julio, que se define como el trabajo realizado por una fuerza de un newton en un desplazamiento de un metro en la dirección de la fuerza, es decir, equivale a multiplicar un Newton por un metro. Existen muchas otras unidades de energía, algunas de ellas en desuso.

Nombre Abreviatura Equivalencia en juliosCaloría cal 4,1855Frigoría fg 4185,5Termia th 4 185 500Kilovatio hora kWh 3 600 000Caloría grande Cal 4185,5Tonelada equivalente de petróleo Tep 41 840 000 000Tonelada equivalente de carbón Tec 29 300 000 000Tonelada de refrigeración TR 3,517/hElectronvoltio eV 1,602176462 × 10-19

British Thermal Unit BTU o BTu 1055,05585Caballo de vapor por hora2 CVh 3,777154675 × 10-7

Ergio erg 1 × 10-7

Pie por libra (Foot pound) ft × lb 1,35581795Foot-poundal 3 ft × pdl 4,214011001 × 10-11

3.