innovacion ciencia

Upload: rsharom3246705

Post on 07-Aug-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/20/2019 innovacion ciencia

    1/16

    CONJUGATE GRADIENT ALGORITHM AND FRACTALS

    MOHAMED LAMINE SAHARI AND ILHEM DJELLIT

    Received 31 August 2005; Accepted 28 November 2005

    This work is an extension of the survey on Cayley’s problem in case where the conjugate

    gradient method is used. We show that for certain values of parameters, this method

    produces beautiful fractal structures.

    Copyright © 2006 M. L. Sahari and I. Djellit. This is an open access article distributed

    under the Creative Commons Attribution License, which permits unrestricted use, dis-

    tribution, and reproduction in any medium, provided the original work is properly cited.

    1. Introduction

    It is well known that the basins of attraction of diff erent roots have fractal boundaries

    when Newton’s method is used to determine the complex roots of polynomials. The sim-

    plest example was given by Cayley in 1879 [2]; it is the case for the equation

    z 3 − 1= 0.   (1.1)

    The works of Cayley have been taken then by the French mathematician Julia [6] to found

    a theory on sets that will carry his name. The survey of this type of sets has been thrown

    back there after 1975 by another French mathematician, Mandelbrot [7], with the help

    of computers and melting; that is what is known by the fractal geometry. In this work we

    are going to give another approach precisely to Cayley’s problem; we are going to study 

    the case where an algorithm of the generalized conjugate gradient (GCG) is used and

    one is going to show that the qualitative and geometric aspects of the basins of attractionfor each solution of (1.1) depend on certain parameters, sometimes, driving to beautiful

    fractal structures. We consider the nonlinear equation

     f  (z ) = 0, (1.2)

    where   f   is complex function with variable  z . To solve (1.2), we can use the conjugategradient method (CG) defined by a recurrent sequence of form

    z k+1 = z k + λkd k   (1.3)

    Hindawi Publishing Corporation

    Discrete Dynamics in Nature and Society 

    Volume 2006, Article ID 52682, Pages 1–15

    DOI /DDNS/ /

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://dx.doi.org/10.1155/S1026022606526822http://dx.doi.org/10.1155/S1026022606526822http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-

  • 8/20/2019 innovacion ciencia

    2/16

    2 Conjugate gradient algorithm and fractals

    and the search direction d k is defined by 

    d 0 =− f 

    z 0

    ,   d k =− f 

    z k

    + βkd k−1,   k > 0.   (1.4)

    The case where   f  is linear, parameters ( λk, βk) are well defined and permit a convergenceof the method (1.3)–(1.4) in few iterations. In the nonlinear case, the choice of these

    parameters is not obvious. The well-know formulas for βk are Fletcher-Reeves (FR) [4, 5]and Plolak-Ribière (PR) [9], and they are given by 

     βFRk   = f z k2 f z k−12 , (1.5)

     βPRk   =

     Re f z k f z k− f z k−1 f z k−12   , (1.6)

    where z  denotes conjugate of  z , Re(z ) = (1 / 2)(z + z ), and |z |2 = z · z . The choice of steplength λk is delicate because it is obtained by solving the equation   f  (z k + λkd k)= 0, whichis absurd. Therefore we prefer to take λk as approximal solution of problem

    min λ>0

     f z k + λd k2; (1.7)it is called an inexact line search [8], and several methods are proposed among them:

    Wolfe line search (W-L.S.) and given by: if one puts  θ ( λ) ≡ | f  (z k + λd k)|2 and θ ( λ) ≡(d/dλ)θ ( λ), the step length λk > 0 satisfies the following conditions:

    θ  λk

    ≤m1θ (0) λk + θ (0),   θ  λk≥m2θ (0), (1.8)with 0 < m1 < m2 

  • 8/20/2019 innovacion ciencia

    3/16

    M. L. Sahari and I. Djellit 3

    Definition 2.1.  A point ω ∈M is a fixed point of  g  if 

     g (ω)= ω.   (2.2)

    ω is attracting if 

    d dz  g (z )

    z =ω 1.   (2.4)

    Definition 2.2.   The basin of attraction

    (ω) of an attractive fixed point ω ∈M

    , associatedwith a function g , is defined by 

    (ω)=

    z ∈M : g k(z )−−−→k→∞

    ω

    .   (2.5)

    Definition 2.3.   Let ω ∈M be an attractive fixed point of  g , then the disk of convergence(z , β) associated with the map (2.1) is defined by 

    (z , β)= β ∈C : g k(z , β)−−−→

    k→∞ω

    .   (2.6)

    In the literature [3], if  g (z )= z 2 + β andM=C, the closure of (0, β) is not other thana Mandelbrot set and ∂(ω) is the Julia set, (∂ denotes a boundary of ).

    Definition 2.4.   Let z I ,z S  be a cone in C generated by the complex  z I , and z S is defined by 

    z I ,z S =νz I  + ξz S;   ν > 0,  ξ > 0

    .   (2.7)

    3. Generalized conjugate gradient method (GCG)

    Instead of choosing the reals ( λk, βk) at every iteration of the CG method, we fix the real or

    complex parameters, and the sequences (3.1) may be generalized in the following form:

     λ, β :

    z k+1 = z k + λwk,wk+1 =− f 

    z k + λwk

    + βwk,

    (3.1)

    where (z k, wk, λ, β) ∈ C4, w0 = 0, and thus (3.1) is called generalized conjugate gradientmethod (GCG).

    3.1. Convergence analysis.  We verify that the map (3.1) would admit some stationary 

    points if  λ = 0 and such points (z ∗,0) verify   f  (z ∗)= 0; the Jacobian matrix is given by 

     J  λ, β (z ,w)=

      1   λ− f (z + λw) −λ f (z + λw) + β

    ; (3.2)

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-

  • 8/20/2019 innovacion ciencia

    4/16

    4 Conjugate gradient algorithm and fractals

    hence at stationary points (z ∗,0), we have

     J  λ, βz ∗,0=   1   λ

    − f  z ∗   − λ f z ∗+ β .   (3.3)

    The eigenvalues µ1 ≡ µ1(z ∗, λ, β) and µ2 ≡ µ2(z ∗, λ, β) of  J  λ, β (z ∗,0) are

    µ1 =  12

    1− λ f z ∗+ β +1− λ f z ∗+ β2 − 4 β

    ,

    µ2 =  12

    1− λ f z ∗+ β−1− λ f z ∗+ β2 − 4 β

    .

    (3.4)

    Proposition 3.1.  If GCG method converge, then

    1− λ f z ∗+ β  2, then we deduce that (z ∗,0) is repulsive. Indeedlet us put |µ|max =max(|µ1|,|µ2|); it follows that

    | β| = det J  λ, βz ∗, 0= µ1 ·µ2≤ |µ|

    2max ,1− λ f z ∗) + β= Tr J  λ, β (z ∗, 0)= µ1 + µ2≤ 2|µ|max . (3.6)

    Unfortunately, the conditions (3.5)arenotsufficient, for example if we take 1− λ f (z ∗)+ β = 1 and β = 3 / 4, we obtain µ1 = (1 / 2)(1+ i

    √ 2) =⇒ |µ1| =

    √ 3 / 2 > 1. Nevertheless, we

    can find some strict conditions as in the following case.

    Proposition 3.2.   Let   f   : C→ C be holomorphic function and  z ∗  a solution of   f  (z ) = 0 ,then if  | β| < γ2 and  |1− λ f  (z ∗)| < γ − γ2, where γ ≤ 2 / √ 5 + 1  (inverse of gold number),

    the fixed point  (z ∗, 0) is attractive for 

     λ, β.Therefore in neighborhood of  z ∗, GCG method generates a sequence {z k}k=0,1,2... such

    that z k → z ∗.Proof.   Denote α= |1− λ f (z ∗) + β|, for | β| < γ2 and |1− λ f (z ∗)| < γ− γ2, we can haveα < γ.

    For i= 1,2, we have then

    2

    µi

    ≤ α +

    α2 − 4 β < γ

    1 +

    √ 5

    ≤ 2 (3.7)

    and thus

    < 1 i 1 2 (3 8)

    http://-/?-http://-/?-

  • 8/20/2019 innovacion ciencia

    5/16

    M. L. Sahari and I. Djellit 5

    Remark 3.3.  We can use |1− λ f  (z ∗)| < γ− γ2 as a condition to satisfy for convergenceof GCG, however if  λ > 0 (the case of a linear search), it is necessary that

     f 

    z ∗∈z I ,z S   (3.9)

    with z I  = δ − i∆ and z S = δ  + i∆, where δ = 1− (γ− γ2)3 / 2 and ∆= (γ− γ2)

    1− (γ− γ2).But, as we will see further the condition (3.9) is still not true.

    4. Application to Cayley’s problem

    Cayley asked about the problem of characterization of the basins of attraction of zeroesfor the cubic complex polynomial

     f  (z )= z 3 − 1.   (4.1)

    The three roots of the equation   f  (z )= 0 are

    z k = e(2 / 3)(k−1)πi ,   k = 1,2,3.   (4.2)

    Let us begin to analyze an equivalent problem that consists in minimizing the square of 

    the following residual:

    minz ∈C

     f  (z )2.   (4.3)

    To solve the problem (4.3), return to solve the following nonlinear equation:

     f  (z )·

     f  (z )=

    0.   (4.4)

    Apply the GC method on this last equation, we obtain the following sequence in C:

    z k+1 = z k + λk− f  (z ) · f  (z ) +   βk

     λk−1

    z k − z k−1

    , (4.5)

    with β0 = 0, and for k > 0, we choose between  βFR k   and βPR k   in accordance with (1.5) or(1.6), and λk is obtained by line search. Results of numerical test (Figure 4.1) confirm the

    superiority of the PR method on FR method [7]. Note that we can not apply the analysisfor Section 3 to (4.5), because the complex function   f   ·  f    is not holomorphic.On theother hand, | f |2 is locally convex and the theory developed in [1, 4, 8, 9] assures the local

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-

  • 8/20/2019 innovacion ciencia

    6/16

    6 Conjugate gradient algorithm and fractals

    −2

    0

    2

    −2 0 2Re (z )

         I   m

         (     z     )   z 1

    z 2z 3

    (a)

    −2

    0

    2

    −2 0 2Re (z )

         I   m

         (     z     )

    123456

    7891011121314151617181920212223> 23

    (b)

    −2

    0

    2

    −2 0 2Re (z )

         I   m

         (     z     )   z 1

    z 2z 3

    (c)

    −2

    0

    2

    −2 0 2Re (z )

         I   m

         (     z     )

    1234567891011

    121314151617181920212223> 23

    (d)

    Figure 4.1. Basins of attraction for  z 3 − 1 = 0. (a)–(b) Using CG-PR method and W-L.S. (c)–(d)Using CG-FR method and W-L.S.

    Now the residual is used only to do a line search, the sequence (4.5) will take the

    following form:

    z k+1=

    z k + λk1− z 3 +

      βk

     λk−1z k − z k−1.   (4.6)

    In Figure 4.2, we show the basins of solutions of  z 3 − 1 = 0 with the process (4.6) andβ β h ki FR PR d W lf li h

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-

  • 8/20/2019 innovacion ciencia

    7/16

    M. L. Sahari and I. Djellit 7

    −2

    0

    2

    −2 0 2Re (z )

         I   m

         (     z     )

    123456

    78910111213141516171819202122> 22

    (a)

    −2

    0

    2

    −2 0 2Re (z )

         I   m

         (     z     )

    12345678910111213141516171819202122> 22

    (b)

    Figure 4.2. Basins of attraction for z 3 − 1= 0 using (4.6). (a) PR method and W-L.S. (b) FR methodand W-L.S.

    −1.5

    0

    1.5

    −2.2 0 2.2Re (z )

         I   m

         (     z     )

    12345

    678910111213141516171819202122> 22

    (a)

    −2

    0

    2

    −5 0 5Re (z)

         I   m

         (   z     )

    12345

    678910111213141516171819202122> 22

    (b)

    Figure 4.3. Basins of attraction of  z 1   using (4.6). (a) With PR method and  λ = 0.4. (b) With FR method and λ = 0.1.

    If we choose β  according to PR or FR and for any  λ ≡ λk >  0 arbitrary small (Figure4.3), we remark that we can obtain a local convergence for ( 4.6) method.

    The local convergence is possible with diff erent line searches and varying β in the range

    (0,1) (Figure 4.4).It is necessary to note that contrarily to the method (4.5), where there is coexistence

    of three basins (z 1), (z 2), and (z 3), in Figures 4.2, 4.3, and 4.4, we show that only ( ) i t I d d f ( ) 3 hi h i li l l f th

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-

  • 8/20/2019 innovacion ciencia

    8/16

    8 Conjugate gradient algorithm and fractals

    −2

    0

    2

    −2 0 2Re (z )

         I   m

         (     z     )

    123456

    78910111213141516171819202122> 22

    (a)

    −2

    0

    2

    −2 0 2Re (z )

         I   m

         (     z     )

    123456

    78910111213141516171819202122> 22

    (b)

    −2

    0

    2

    −2 0 2Re (z )

         I   m

         (     z     )

    12345678910111213141516171819202122> 22

    (c)

    −2

    0

    2

    −2 0 2Re (z )

         I   m

         (     z     )

    12345678910111213141516171819202122> 22

    (d)

    Figure 4.4. Basins of attraction of  z 1 using (4.6) and W-L.S. with: (a) β = 0.1, (b) β = 0.2, (c) β = 0.3,(d) β = 0.7.

    solution z 1 (according to Proposition 3.2). On the other hand, an analytical study of realfunctions ( λ, β)→ |µ1(z 1, λ, β)|− 1and( λ, β)→ |µ1(z 2, λ, β)|− 1 (see Figure 4.5(b)) showsthat |µ1(z 1, λ, β)| > 1 and |µ1(z 2, λ, β)| > 1 for λ >  0 and β ∈ R; then the points z 2  and z 3are repulsive in this case.

    This fact is confirmed by the bifurcation diagram of GCG method (Figure 4.6); but

    adding to that it shows the existence of convergence zone for solutions  z 2 and z 3 if  λ

  • 8/20/2019 innovacion ciencia

    9/16

    M. L. Sahari and I. Djellit 9

    −1   00

    21 3

    −1

    −2

     f (z 2)

     f (z 3)

     f (z 1)

    1

    2

    (a)

    21.5

    10.5

    02

    10

    −1−20

    1

    2

    3

    4

    5

    6

    7

           |     µ     1     (     z     1  ,

         2  ,

            λ  ,

            β     )       |   −

         1

     λ  β

    (b)Figure 4.5. (a) The conez I ,z S . (b) Function graph ( λ, β)→ |µ1(z i, λ, β)|− 1 (i= 1,2).

    −0.3 0 0.550−1.10

    0

    1

     λ

     βz 1z 2z 3

    (a)

    −0.3 0 0.500−1.10

    0

    1.100

     λ

     β

    0-55-1010-1515-2020-2525-3030-3535-4040-4545-5050-6565-70

    70-7575-8080-8585-9090-9595-100> 100

    (b)

    −0.3 0 0.550−1.10

    0

    1.100

     λ

     β

    z 1z 2z 3

    (c)

    −0.3 0 0.550−1.10

    0

    1

     λ

     β

    0-55-1010-1515-20

    20-2525-3030-3535-4040-4545-5050-6565-7070-7575-8080-8585-9090-9595-100> 100

    (d)

    Figure 4.6. Bifurcations diagram of GCG method in ( λ, β)-plane with the following starting points:(a)–(b) z 0 =−1.2 + i · 0.1, (c)–(d) z 0 =−1.2− i · 0.1.

  • 8/20/2019 innovacion ciencia

    10/16

    10 Conjugate gradient algorithm and fractals

    −3 0 3−3.2

    0

    3.2

    Re (z )

         I   m

         (     z     )

    z 1z 2z 3

    (a)

    −3 0 3−3.2

    0

    3.2

    Re (z )

         I   m

         (     z     )

    1234567891011121314151617181920212223> 23

    (b)

    Figure 4.7. Basin of attraction for z 3 −1= 0 using GCG method with λ =−0.2 and β =−0.2.

    −1.2 0 1.2−1.2

    0

    1.2

     βx 

     β y  z 1

    z 2z 3

    (a)

    −1.2 0 1.2−1.2

    0

    1.2

     βx 

     β y 

    0-55-1010-1515-2020-2525-3030-3535-4040-4545-5050-6565-7070-7575-8080-8585-9090-9595-100> 100

    (b)

    Figure 4.8. Disks of convergence (−1.2 + i, β) with W-L.S.

    Take β = βx  + i · β y , according to bifurcation diagram in the parametric plane ( βx , β y ),from GCG method, with or without line search, one can detect convergence areas for the

    three roots z 1,z 2, and z 3  in a disk (z 0, β) centered in (0,0) and of radius strictly lowerthan 1 (Figures 4.8, 4.9), which confirms Proposition 3.1.

    Exploiting the diagram in Figures 4.9(b), 4.9(c), 4.9(e), and 4.9(f), we can find that

    values for each basin of attraction (z 1), (z 2), and (z 3) are nonempty (Figure 4.10).The same thing if we fix  λ and β, we can obtain basins of attraction (z 1),(z 2), and

    (z 3) with fractal boundary (Figure 4.11).I Fi 4 12 l f f t l t t ’ f t th t i th lf i il it

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-

  • 8/20/2019 innovacion ciencia

    11/16

    M. L. Sahari and I. Djellit 11

    −1.2 0 1.2−1.2

    0

    1.2

     βx 

     β y z 1z 2z 3

    (a)

    −1.2 0 1.2−1.2

    0

    1.2

     βx 

     β y 

    0-55-1010-1515-2020-2525-30

    30-3535-4040-4545-5050-6565-7070-7575-8080-8585-9090-9595-100> 100

    (b)

    −2 0 2−1

    0

    1

    βx

    βy   z1

    z2z3

    (c)

    −1 0 1−1

    0

    1

     βx 

     β y 

    0-55-1010-1515-2020-2525-3030-3535-4040-4545-5050-6565-7070-7575-8080-85

    85-9090-9595-100> 100

    (d)

    −1.1 0 1.1−1.1

    0

    1.1

     βx 

     β y z 1z 2z 3

    (e)

    −1 0 1−1

    0

    1

     βx 

     β y 

    0-55-1010-1515-20

    20-2525-3030-3535-4040-4545-5050-6565-7070-7575-8080-8585-9090-9595-100> 100

    (f)

    Figure 4.9. Disks of convergence: (a)–(b)  (1.2− i, β) with W-L.S., (c)–(d)  (0.0, β) with λ = 0.2,

  • 8/20/2019 innovacion ciencia

    12/16

    12 Conjugate gradient algorithm and fractals

    −2 0 2−2

    0

    2

    Re (z )

         I   m

         (     z     )   z 1

    z 2z 3

    (a)

    −2 0 2−2

    0

    2

    Re (z )

         I   m

         (     z     )

    0-55-1010-1515-2020-2525-30

    30-3535-4040-4545-5050-6565-7070-7575-8080-8585-9090-9595-100> 100

    (b)

    −2 0 2−2

    0

    2

    Re (z )

         I   m

         (     z     )

      z 1z 2z 3

    (c)

    −2 0 2−2

    0

    2

    Re (z )

         I   m

         (     z     )

    0-55-1010-1515-2020-2525-3030-3535-4040-4545-5050-6565-7070-7575-8080-85

    85-9090-9595-100> 100

    (d)

    −2 0 2−2

    0

    2

    Re (z )

         I   m

         (     z     )   z 1

    z 2z 3

    (e)

    −2 0 2−2

    0

    2

    Re (z )

         I   m

         (     z     )

    0-55-1010-1515-2020-25

    25-3030-3535-4040-4545-5050-6565-7070-7575-8080-8585-9090-9595-100> 100

    (f)

    Figure 4.10. Basin of attraction for  z 3 − 1 = 0 using GCG method and W-L.S. with: (a)–(b)  β =( ) (d) β ( ) (f) β

  • 8/20/2019 innovacion ciencia

    13/16

    M. L. Sahari and I. Djellit 13

    −3 0 3−4

    0

    4

    Re (z )

         I   m

         (     z     )   z 1

    z 2z 3

    (a)

    −3 0 3−4

    0

    4

    Re (z )

         I   m

         (     z     )

    0-55-1010-1515-2020-2525-30

    30-3535-4040-4545-5050-6565-7070-7575-8080-8585-9090-9595-100> 100

    (b)

    −3 0 3−4

    0

    4

    Re (z )

         I   m

         (     z     )   z 1

    z 2z 3

    (c)

    −3 0 3−4

    0

    4

    Re (z )

         I   m

         (     z     )

    0-55-1010-1515-2020-2525-3030-3535-4040-4545-5050-6565-7070-7575-8080-8585-90

    90-9595-100> 100

    (d)

    −5 0 5−3

    0

    3

    Re (z )

         I   m

         (     z     )

      z 1z 2z 3

    (e)

    −5 0 5−3

    0

    3

    Re (z )

         I   m

         (     z     )

    0-55-1010-1515-2020-2525-3030-3535-4040-4545-5050-6565-7070-7575-8080-8585-9090-9595-100> 100

    (f)

    Figure 4.11. Basin of attraction for z 3 − 1= 0 using GCG method with: (a)–(b) λ =−0.2 + i · 0.1 andβ =−0.1 + i ·0.1, (c)–(d) λ =−0.2 + i · 0.1 and β =−0.1− i · 0.1, (e)–(f) λ = β= 0.1.

  • 8/20/2019 innovacion ciencia

    14/16

    14 Conjugate gradient algorithm and fractals

    −3 0 3−3.2

    0

    3.2

    Re (z)

         I   m

         (   z     )

    (a)

    −0.280   −0.120−0.875

    −0.736

    Re (z)

         I   m

         (   z     )

    (b)

    −3 0 3−3.2

    0

    3.2

    Re (z)

         I   m

         (   z     )

    (c)

    1.4 1.5600.570

    0.779

    Re (z)

         I   m

         (   z     )

    (d)

    Figure 4.12. Basin of attraction for z 3

    − 1 = 0 using GCG method: (a) λ = β =−0.2 + i · 0.1, (b) en-largement of the part framed in (a), (c) λ= β =−0.2, (d) enlargement of the part framed in (c).

    Appendix 

    (i) Numerical tests are done from implementations in FORTRAN90 with graphic

    mode.

    (ii) For basins of attraction and bifurcations diagrams, we have used a graphic reso-

    lution of 600× 600 pixels.(iii) The maximal iteration number nmax  is fixed to 150 iterations for GC and GCG.(iv) For line search, the maximal iteration number  nLSmax  is fixed to 50 iterations with

    these values of parameters: λ0 = 1 0 m1 = 0 3 m2 = 0 7

  • 8/20/2019 innovacion ciencia

    15/16

    M. L. Sahari and I. Djellit 15

    References

    [1] M. Al-Baali, Descent property and global convergence of the Fletcher-Reeves method with inexact 

    line search, IMA Journal of Numerical Analysis 5 (1985), no. 1, 121–124.

    [2] A. Cayley, Desiderata and suggestions: no. 3. The Newton-Fourier imaginary problem , AmericanJournal of Mathematics 2 (1879), no. 1, 97.

    [3] K. Falconer, Fractal Geometry , Mathematical Foundations and Applications, John Wiley & Sons,

    Chichester, 1990.

    [4] R. Fletcher,  A new approach to variable metric algorithms, The Computer Journal  13  (1970),

    no. 3, 317–322.

    [5] R. Fletcher and M. J. D. Powell, A rapidly convergent descent method for minimization, The Com-

    puter Journal 6 (1963/1964), 163–168.

    [6] G. Julia, M ́emoire sur l’it ́eration des fonctions rationnelles, Journal de Mathématiques Pures et

    Appliquées 81 (1918), 47–235.

    [7] B. B. Mandelbrot, The Fractal Geometry of Nature, W. H. Freeman, New York, 1983.

    [8] J. Nocedal, Theory of algorithms for unconstrained optimization, Acta Numerica, 1991, Acta Nu-mer., Cambridge University Press, Cambridge, 1992, pp. 199–242.

    [9] E. Polak, Computational Methods in Optimization. A Unified Approach, Mathematics in Science

    and Engineering, vol. 77, Academic Press, New York, 1971.

    [10] G. Zoutendijk,   Nonlinear programming, computational methods, Integer and Nonlinear Pro-

    gramming (J. Abadie, ed.), North-Holland, Amsterdam, 1970, pp. 37–86.

    Mohamed Lamine Sahari: Département de Mathématiques, Université Badji-Mokhtar, B.P. 12,

    Annaba 23.000, Algeria

    E-mail address: [email protected]

    Ilhem Djellit: Département de Mathématiques, Université Badji-Mokhtar, B.P. 12,Annaba 23.000, Algeria

    E-mail address: i [email protected]

    mailto:[email protected]:[email protected]:[email protected]:[email protected]

  • 8/20/2019 innovacion ciencia

    16/16

    Submit your manuscripts at

    http://www.hindawi.com