iii - seb53672b704ba4a0.jimcontent.com · a lo largo de esta unidad se hablará de uno de los...

242
i

Upload: others

Post on 27-Mar-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

i    

Page 2: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

ii    

Page 3: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

iii    

Morelia, Michoacán. México

Page 4: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

iv    

Cubierta de CIE-CONALEP

Colaboración: Coordinación de Innovación Educativa, CIE/QFB - UMSNH

Sistema Nacional de Educación a Distancia, SINED

Coordinadora: Silvia Ochoa Hernández Eduardo Ochoa Hernández

Quedan rigurosamente prohibidas, sin la autorización escrita de los titulares del “Copyright”, bajo las sanciones establecidas por la ley, la reproducción total o parcial de esta obra por cualquier medio o procedimiento, comprendidos la reprografía y el tratamiento informático, y la distribución de ejemplares de ella mediante alquiler o préstamo público.

©2011 CONALEPMICH/CIE. México

Ediciones CONALEPMICH

Álvaro Obregón 144, Morelia.

http://www.conalepmich.edu.mx/

Registro: CALDER2011-A

Impreso en_____________

Impreso en México –Printed in México

Page 5: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

v    

Para los muchos

estudiantes de CONALEP que sueñan

mirando en la tecnología el espíritu de las matemáticas.

Hay formas y “formas” a la hora de promocionar y difundir los servicios y actividades de la biblioteca. Estamos ante una sociedad donde prima lo audiovisual (fotografías, vídeos..) sobre lo textual (trípticos, carteles…) y donde la biblioteca está muriendo por falta de educación.

Page 6: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

vi    

Así como la belleza de una gran obra de arte causa impacto en nuestro cerebro, este también armoniza en forma particular al comprender y descubrir el placer de las profundidades matemáticas. Al conferirnos la sensibilidad para penetrar en los significados de los números.

Calvin C. Clawson. Misterios matemáticos

Page 7: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

vii    

Prefacio ix

Primera Parte Análisis de funciones

1.1. Análisis de funciones 1 Introducción Conceptos Producto Cartesiano Relaciones y Funciones 1.2. Gráfica de una función 10 1.3. Clasificación de funciones 12 1.4. Álgebra de funciones 30 1.5. Análisis de ecuaciones 59 1.6. Modelación 70 1.7. Problemario 78 1.8. Autoevaluación 86 1.9. Conclusión 87 1.10. Soluciones del problemario 88 1.11. Soluciones de autoevaluación 94 Referencias 96

Segunda Parte

Límites

2.1. Noción intuitiva de límite 1 2.2. Teorema de los límites 15 2.3. Límites determinados e indeterminados 16 2.4. Límites unilaterales 33 2.5. Continuidad de una función 39 2.6. Problemario 47 2.7. Autoevaluación 52 2.8. Conclusión 53 2.9. Soluciones del problemario 54 2.10. Soluciones de autoevaluación 61 Referencias 62  

Page 8: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

viii    

Tercera parte La derivada

3.1. Determinación de razones de cambio 1 3.2. Cálculo de derivadas por fórmulas 10 3.3. Cálculo de máximos y mínimos 43 3.4. Aplicación de máximos y mínimos 53 3.5. Problemario 58 3.6. Autoevaluación 62 3.7. Conclusión 64 3.8. Solución de problemario 65 3.9. Solución de autoevaluación 68 Referencias 70  

Page 9: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

ix    

Hoy nos encontramos ante una encrucijada entre las herramientas informáticas y un nuevo orden de redes sociales que presionan por soluciones; podemos llegar por primera vez al nuevo tiempo, uno más incierto y de carácter tecnológico de innovación constante. La educación es parte de nuestro mundo y a nuestra sociedad le corresponde juzgar si está a la altura de su tiempo. Este sencillo libro, expresa el intento de una institución y sus hombres por hacer de él un medio para hablar entre generaciones, para atar las ideas que amenazan con evaporarse, para romper las paredes del aula a muchos más ciudadanos y para democratizar la actividad de cátedra en páginas que representan la actitud del espíritu CONALEP. Con el apoyo del Sistema Nacional de Educación a Distancia (SINED) para generar los contenidos para formar profesores escritores, con la inventiva de la Coordinación de Innovación Educativa/QFB de la Universidad Michoacana y la clara meta del CONALEPMICH por ser una institución que produce su propia visión de las profundidades de su programa educativo medio superior. En una primera fase mayo –agosto de 2011, forman profesores del sistema CONALEP con el fin de producir una cultura de obras literarias que permitan apoyar las necesidades de conocimiento de estudiantes, formar profesores como escribas de su cátedra. Si estas páginas ayudan a convencer que la educación no es hacer más fácil algo, sino fundamentalmente producir un cambio reflexivo en el desafío cognitivo dentro del pensamiento científico técnico. Esto es prueba de que la comunidad docente, autoridades y sindicato son capaces de sumar para un futuro común.

Eduardo Ochoa H,2011.

Page 10: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

x      

 

   

Mtro.  Leonel  Godoy  Rangel  Gobernador  Constitucional  del  Estado  de  Michoacán  

 Mtra.  Graciela  Carmina  Andrade  García  Peláez  

Secretaria  de  Educación    

Dr.  Rogelio  Sosa  Pulido    Subsecretario  de  Educación  Media  Superior  y  Superior  

 Lic.  Ana  María  Martínez  Cabello  

Directora  de  Educación  Media  Superior    

Mtro.  Wilfrido  Perea  Curiel  Director  General  del  Sistema  Conalep  

 Mtro.  Víctor  Manuel  Lagunas  Ramírez  

Titular  de  la  Oficina  de  Servicios  Federales    en  Apoyo  a  la  Educación  en  Michoacán  

 Lic.  Antonio  Ortiz  Garcilazo  

Director  General  del  Conalep  Michoacán    

Ing.  José  Gilberto  Dávalos  Pantoja  Secretario  General  del  SUTACONALEPMICH  

 Dr.  Salvador  Jara  Guerrero  

Rector  de  la  Universidad  Michoacana  de  San  Nicolás  de  Hidalgo    

M.C.  Lourdes  Galeana  de  la  O  Directora  General  del  SINED  

 Ing.  Eduardo  Ochoa  Hernández  

Coordinador  de  Innovación  Educativa  (CIE/QFB)  

Page 11: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

i

Page 12: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

1

1.1. Análisis de funciones

Introducción

A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la

matemática: la función, la cual surge de la necesidad de relacionar cantidades

variables entre sí.

Los orígenes del concepto de función se remontan a ciertos escritos de astrónomos

babilonios. En la Edad Media el concepto de función se asocia con el de movimiento

siendo Nicolás de Oresme (1323-1392) quien representa en unos ejes coordenados el

cambio de velocidad respecto del tiempo. Posteriormente Galileo (1564-1642) estudió

el movimiento de manera cuantitativa y expresa sus resultados mediante leyes entre

magnitudes.1

Han sido diferentes los personajes matemáticos que gracias a sus investigaciones han

ido desarrollando el concepto de función. Entre los cuales podemos mencionar a René

Descartes (1596-1650), quien en 1637 utiliza la palabra función para señalar la

potencia entera de una variable. Isaac Newton (1642-1727) utilizó el término fluyente

para designar la relación entre variables. Leibniz (1646-1716) aplica el término función

para señalar cantidades que dependen de una variable. Los términos constante,

variable y parámetro fueron introducidos por él. Por otro lado, la notación actual que

designa a una función como f(x), se debe a Leonhard Euler (1707-1783). Finalmente

se puede mencionar al alemán Johann Dirichlet (1805-1859), a quien se le atribuye la

definición moderna de función como una regla de correspondencia entre dos

conjuntos.2

Las funciones pueden ser representadas mediante gráficas, así como llevar a cabo

operaciones entre ellas y ser utilizadas para describir situaciones o fenómenos que se

presentan a diario en nuestro entorno mediante la modelación matemática.

Para dar inicio al estudio de las funciones comenzaremos con la descripción de varios

términos introductorios y necesarios para conceptos que se verán más adelante.

Page 13: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

2

Conceptos

En la resolución de problemas matemáticos se emplean dos tipos de cantidades:

constantes y variables.3

Una variable, es una cantidad que durante el análisis de un problema puede adquirir

diferentes valores y generalmente se utilizan las últimas letras del abecedario (x, y, z),

para ser representadas.

Una constante, es una cantidad que mantiene un valor fijo durante el análisis de un

problema. Podemos tener constantes numéricas o arbitrarias.

Una constante numérica llamada también absoluta, mantiene el mismo valor para

cualquier problema, por ejemplo: √

Una constante arbitraria llamada también parámetro, adquiere ciertos valores

numéricos y los conserva durante el análisis de un problema. Generalmente se utilizan

las primeras letras del abecedario para representarlas (a,b,c,k).

Una fórmula muy conocida es , la cual se utiliza para obtener el área de un

círculo, dado el valor del radio. En esta fórmula podemos identificar que y 2 son

constantes absolutas, mientras que r es una variable.

De cursos anteriores se conoce que la ecuación representa a una línea

recta. Los parámetros o constantes arbitrarias son m y b, las cuales conservarán un

valor durante un problema específico y la variable está representada por x.

Producto Cartesiano

De la teoría de conjuntos rescatamos el concepto de producto cartesiano, el cual es

una manera de vincular dos conjuntos, a través de parejas ordenadas.4

Sea dos conjuntos A y B, el producto cartesiano se define como un nuevo conjunto

conformado por parejas ordenadas (a,b), tales que a pertenece al conjunto A, y b

pertenece al conjunto B.

Lo anterior se puede representar como sigue:

Page 14: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

3

A B = {(a,b) / a A, b B}

Ejemplo 1. Sean los conjuntos M={i,j,k} y N={p,q}. Determinar su producto

cartesiano.

El producto cartesiano será el nuevo conjunto M N conformado de los

siguientes pares ordenados:

M N = {(i,p),(i,q),(j,p),(j,q),(k,p),(k,q)}

Ejemplo 2. Determinar el producto cartesiano de los conjuntos A={1,2} y

B={3,4}.

A B = {(1,3),(1,4),(2,3),(2,4)}

Las parejas se pueden representar como puntos en

el plano cartesiano, considerando el primer

elemento como la abscisa y el segundo como la

ordenada.

Relaciones y funciones

En el producto cartesiano al conjunto de todos los primeros elementos de las parejas

ordenadas se le llama dominio y al conjunto de los segundos elementos se le llama

contradominio o rango.

Una relación es un subconjunto de un producto cartesiano que asocia a los elementos

del dominio con los del contradominio.5

Una función es una relación en la que a todo elemento del dominio le corresponde solo

un elemento del contradominio. Esto implica que en una función no habrá dos pares

ordenados con la misma abscisa (primer elemento) y diferente ordenada (segundo

elemento).

Page 15: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

4

Ejemplo 3. Sean los conjuntos V={a,b,c} y N={2,4,6}, determinar el

producto cartesiano, el dominio y contradominio

El producto cartesiano:

V N={(a,2),(a,4),(a,6),(b,2),(b,4),(b,6),(c,2),(c,4),(c,6)}

Dominio: V={a,b,c}

Contradominio: N={2,4,6}

Ejemplo 4. Dados los conjuntos S={1,5,6}, T={2,4,7} y la relación de que

el primer elemento es mayor que el segundo elemento, determinar el

conjunto solución que satisface dicha relación.

Primeramente obtenemos el producto cartesiano:

S T={(1,2),(1,4),(1,7),(5,2),(5,4),(5,7),(6,2),(6,4),(6,7)}

Los pares que satisfacen la condición S mayor que T son:

R={(5,2),(5,4),(6,2),(6,4)}

Esta relación se puede visualizar mediante un diagrama sagital (diagrama

de flechas)

Podemos observar que algunos elementos del dominio S les corresponden uno

o más elementos del contradominio T. En el conjunto solución aparecen

pares ordenados con el mismo primer elemento 5 y 6.

Ejemplo 5. Dados los conjuntos A={3,6,9}, B={6,12,18,24} y la relación de

que el segundo elemento sea el doble del primer elemento, determinar el

conjunto solución que satisface dicha relación.

Obtengamos el producto cartesiano:

A B={(3,6),(3;12),(3,18),(3,24),(6,6),(6,12),(6,18),(6,24),

2

4

7

1

5

6

S T

Page 16: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

5

(9,6),(9,12),(9,18),(9,24)}

De las parejas obtenidas el conjunto solución es:

R={(3,6),(6,12),(9,18)}

Podemos observar mediante un diagrama sagital, que todos los elementos

del dominio están asociados con un solo elemento del contradominio.

Además los primeros elementos 3, 6 y 9 son diferentes entre sí y no se

repiten en otro par ordenado, por lo que se puede decir que esta relación

es una función.

Ejemplo 6. Determinar si en el siguiente diagrama se representa una

función o una relación.

El diagrama corresponde a una función, ya que a cada elemento del

conjunto A le corresponde un único elemento del conjunto B.

3

6

9

6

12

18

24

A B

A B

5 10 15 20 25

15 30 45 60 75

Page 17: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

6

Ejemplo 7. Indicar si en el siguiente diagrama se representa una función

o una relación:

El diagrama corresponde a una relación, debido a que al menos un elemento

del dominio C está asociado con dos elementos del contradominio D. El

elemento 0 se asocia con los elementos 5 y -5.

Ejemplo 8. Determinar si en el siguiente diagrama se representa una

función o una relación:

Es función porque cumple con la condición de que cada elemento de M está

asociado con un único elemento de N.

N

10

20

30

2

M

C D

0

1

2

5 3 1 -5 -3

Page 18: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

7

Ejemplo 9. Indica si en el siguiente diagrama se representa una función o

una relación:

Representa una relación debido a que un elemento de P está asociado con

más de un elemento de Q.

Ejemplo 10. Determinar si en los siguientes conjuntos de pares ordenados

se tiene una función o una relación.

K={(0,0),(2,4),(5,25),(7,49)}

L={(-2,10),(0,10),(3,10),(6,10)}

M={(0,0),(1,1),(1,-1),(2,4),(2,-4)}

N={(1,1),(2,2),(3,3),(3,4),(3,5)}

De acuerdo con las definiciones de relación y función, se determina que

los conjuntos K y L son funciones, ya que el primer elemento de cada

pareja ordenada no se repite.

En el conjunto M el 1 y 2 aparecen dos veces como primer elemento, así

como en el conjunto N el 3 aparece tres veces, concluimos que los

conjuntos M y N no son funciones, solo relaciones.

Es importante que observe que toda función es una relación, pero no toda relación es

una función. Una característica de las funciones es que nos indica una dependencia existente entre

cantidades relacionadas.

5

15

45

75

P Q

Page 19: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

8

Una función es una regla de correspondencia en la que a cada elemento de un

conjunto A (Dominio) se le asocia uno y solo un elemento de un conjunto B

(Contradominio o Rango).

Notación matemática de una función

Cuando se estable una función de un conjunto A en un conjunto B, a través de una

regla de correspondencia , se asocia a cada elemento x del conjunto A un único

elemento y del conjunto B.

Esto se puede escribir con la siguiente notación6:

ƒ : A → B

Si el valor de y depende de x, decimos que y es una función de x.

Entonces podemos usar la notación de función7 . (se lee f de x)

Es decir,

donde:

x es la variable independiente

y es la variable dependiente

f representa la regla de correspondencia

Como se mencionó anteriormente, esta forma de denotar una función se debe al

matemático Leonhard Euler.

Ejemplo 11. Imagina que trabajas para una compañía en la cual se te

asigna un sueldo de $50.00 por hora. Determinar la regla de

correspondencia y una notación funcional.

Podemos asociar para una determinada cantidad de horas trabajadas un pago

específico.

x Dominio

f(x) Contradominio

f

Page 20: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

9

Dominio

(no. de horas)

Contradominio

(pago correspondiente)

Par ordenado

1 $50 (1,50)

2 $100 (2,100)

5 $250 (5,250)

10 $500 (10,500)

20 $1000 (20,1000)

variable

independiente

variable

dependiente

Ahora observa que para cada elemento del dominio, solo se puede asociar

uno y solo un elemento del contradominio. Es decir, si trabajas 5 horas

no se pueden asociar diferentes pagos $50, $250 o $500. (Únicamente

$250).

Notación funcional:

ó

Si el pago será:

La cantidad a la cual le podemos asignar valores a voluntad, es decir, el

número de horas trabajadas se le llama variable independiente.

Las cantidades cuyos valores se determinan por el valor que toma la

variable independiente, en este caso el pago, se les llama variable

dependiente.

Evaluación de una función

El valor que toma una función es aquel que adquiere la variable

dependiente, digamos y, cuando se le da un valor específico a la variable

independiente, digamos x6.

Ejemplo 12. Obtener el valor que adquiere la función , cuando

x vale -5.

Page 21: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

10

Para obtener f(-5), basta sustituir x=-5 en dicha función y llevar a cabo

las operaciones indicadas.

Por lo tanto, se tiene:

Ejemplo 13. Obtener el valor que adquiere la función

cuando x

vale 2 y cuando vale a.

Sustituimos en la función dada y realizamos las operaciones

correspondientes:

Por lo tanto, se tiene:

Ahora sustituyamos en la función.

Se tiene que

1.2. Gráfica de Funciones

Para visualizar una función otra manera es a través de su gráfica7.

La gráfica de una función es el conjunto de las parejas ordenadas (x,y) en el plano

cartesiano, de manera tal que no existan dos diferentes parejas ordenadas con la

misma abscisa.

Page 22: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

11

Criterio de la recta vertical

Para determinar si una gráfica representa a una función o a una relación, se traza una

recta vertical, paralela al eje Y sobre la gráfica, si recta corta la gráfica en un solo

punto se trata de una función, en caso contrario será una relación6.

Las siguientes gráficas muestran cómo al trazar la recta vertical paralela al eje Y,

pueden cortar en uno o más puntos:

Observa que las dos primeras gráficas corresponden a funciones y la tercera a una

relación, ya que corta en dos puntos.

Page 23: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

12

1.3. Clasificación de funciones

Las funciones pueden ser clasificadas en dos grandes grupos, como funciones

algebraicas y funciones trascendentes1.

Las funciones algebraicas son aquellas en las que se combinan operaciones finitas de

suma, resta, multiplicación, división, potenciación o radicación, que afectan a la

variable independiente.

A su vez, una función algebraica puede ser racional entera o racional fraccionaria.

Función racional entera

Estas funciones también se conocen como polinomiales, y se caracterizan por que se

expresan a través de un polinomio de la forma8:

1 2

1 2 1 0( ) ...n n

n nP x a x a x a x a x a

Trascendente

Racional

Algebraica

Función

Trigonométricas

Exponenciales

Irracional

Logarítmicas Fraccionaria

Entera (Polinomial)

Constante

Lineal

Cuadrática

y otras

Page 24: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

13

Donde es un número positivo, y los números 1 1 0, ,..., ,n na a a a se les denomina

coeficientes del polinomio y además son constantes. El grado del polinomio es .

Por ejemplo en la siguiente función:

5 3 2( ) 2 7 10P x x x x

Su grado es 5.

Su gráfica es la que se muestra a continuación:

Dentro de las funciones polinomiales tenemos varios casos:

Función constante

Cuando en el polinomio

1 2

1 2 1 0( ) ...n n

n nP x a x a x a x a x a

todos los coeficientes de x valen cero, tenemos la función constante6.

También es posible expresar esta función como

Df = R (El dominio es el conjunto de todos los reales)

Rf = {k} (El rango o contradominio lo compone el valor k)

Page 25: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

14

-8 -6 -4 -2 2 4 6 8

-8

-6

-4

-2

2

4

6

8

x

y

k

Ejemplo 14. Obtener la gráfica de la función .

-8 -6 -4 -2 2 4 6 8

-8

-6

-4

-2

2

4

6

8

x

y

Función lineal

Cuando en el polinomio

1 2

1 2 1 0( ) ...n n

n nP x a x a x a x a x a

todos los coeficientes de x valen cero, excepto para tenemos la función

lineal6:

.

En geometría analítica, esta función también puede escribirse como

Donde m representa la pendiente (grado de inclinación) de la recta y b la ordenada en

el origen.

Para este tipo de funciones el dominio y rango está en todos los reales .

Df = R, o en forma de intervalo (

Rf = R, o en forma de intervalo (

f(x)=kk

Page 26: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

15

Recordemos que la pendiente m, representa la razón de cambio de y respecto de x.

Ejemplo 15. Obtener la gráfica de la función

De la fórmula se puede identificar que

y b=1.

Conociendo dos puntos se traza la gráfica de una función lineal, pues

basta unirlos a través de una recta que puede extenderse en ambos

sentidos.

La pendiente

, nos indica que por cada 3 unidades que nos desplacemos

en la dirección x, también nos desplazaremos 2 unidades en la dirección

y. Conociendo b=1, tenemos un punto de la gráfica (0,1).

y

(3,3)

(0,1) x

Page 27: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

16

A partir de (0,1) nos desplazamos, 3 unidades en x, 2 unidades en y

llegando al punto (3,3). Dichos puntos se unen con una recta y se obtiene

la gráfica correspondiente.

Nota: si la pendiente es negativa un desplazamiento es positivo y el otro

negativo.

Ejemplo 16. Obtener la gráfica de la función

Como la pendiente es negativa, se tiene que por cada 2 unidades que nos

desplacemos en la dirección positiva de x, habrá 1 unidad de

desplazamiento en la dirección negativa de y.

Esto nos permite obtener del punto (0,3) otro punto de coordenadas (2,2)

y trazar una recta para obtener la gráfica correspondiente.

Función Identidad

La función identidad es un caso particular de la función lineal que surge

cuando m = 1 y b = 0. Por lo que resulta la función .6 También expresada

como .

Como toda función polinomial, el dominio y rango lo conforman el conjunto de los

números reales.

La gráfica de la función identidad es una recta con una inclinación de 45º.

(0,3)

y (2,2)

x

Page 28: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

17

Función Cuadrática

Esta función es de la forma y representa una parábola cóncava hacia

arriba o hacia abajo, dependiente del signo que tenga el coeficiente del término

cuadrático6.

Las coordenadas (h,k) del vértice de una parábola, se pueden obtener utilizando las

siguientes fórmulas, tomando como base la forma general

Page 29: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

18

Dominio: Df= R para las dos gráficas

Rango:

Rf = [

) cóncava hacia arriba

Rf = [

] cóncava hacia abajo

Ejemplo 17. Obtener la gráfica de la función y determinar el

dominio y el rango.

Observamos los valores que tienen los coeficientes en la función dada y

tenemos: . Con estos valores calculamos las coordenadas

del vértice:

Así que las coordenadas V(h,k)=(2,-1).

Por otro lado, vemos que el coeficiente del término cuadrático es

positivo a=1, por lo que la parábola abre hacia arriba.

Dominio= ó

Contradominio [-1,

Tabulando algunos valores para x, se obtiene:

x -2 -1 0 1 2

y 15 8 3 0 -1

Cuya gráfica es la siguiente:

Page 30: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

19

Función Potencia

Esta función tiene la forma donde n es un entero positivo7.

El dominio son todos los reales:

El rango es [ si n es par. El rango es cuando n es impar

para cuando n = 1,2,3,4,5,6

De acuerdo con las gráficas, se puede observar que cuando n es par, la función

Page 31: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

20

será muy parecida a la parábola , es simétrica respecto al eje Y, y

cuando n es impar será semejante a la gráfica de , es simétrica respecto del

origen.

Para cuando el exponente es

y n es entero positivo

Cuando n es igual a 2 se tiene la función raíz cuadrada

El dominio para esta función es [0,∞).

Para valores pares: 4,6,8… sus gráficas son semejantes a la de la raíz cuadrada.

Cuando n es igual a 3 se tiene la función raíz cúbica √

El dominio para esta función son los reales (-∞, ∞).

Para valores impares: 5,7,9… sus gráficas son semejantes a la de la raíz cúbica.

Para cuando

Cuando se obtiene la función recíproca

El dominio son todos los reales excepto para 0.

Page 32: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

21

Su gráfica es una hipérbola teniendo como asíntotas los ejes de coordenadas.

Función racional fraccionaria

También conocidas como funciones racionales, se caracterizan por expresarse como el

cociente de dos polinomios6

( )

( )( )

P xf x

Q x

donde P y Q son polinomios y Q(x) ≠ 0.

El dominio para este tipo de funciones lo forman todos los valores de x, tales que Q(x)

≠ 0.

La siguiente es un ejemplo de función algebraica racional:

2 2 4( )

2

x xf x

x

El valor de x que vuelve 0 al denominador, representa una asíntota vertical (recta a la

cual tiende a tocar la gráfica, sin llegar a tocarla). Es decir, si , despejando

.

En esta gráfica se observa una asíntota vertical cuya ecuación es . La gráfica

tiende a tocar dicha asíntota conforme x se acerca al valor 2.

Page 33: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

22

En la siguiente función el valor de x que hace 0 al denominador, es cuando

despejando,

1( )

3

xg x

x

Esta gráfica tiene una asíntota cuya ecuación es x = -3. Cuando x se aproxima a -3 los

valores de la función crecen hacia el infinito de manera positiva y negativamente.

Finalmente, en la siguiente gráfica se observa una asíntota que coincide con el eje y.

3y

x

Función Trascendente

Las funciones trascendentes son aquellas que no son algebraicas. Las cuales incluyen a

las trigonométricas directas e inversas, logarítmicas y exponenciales.

Page 34: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

23

Algunos ejemplos son:

trigonométrica

trigonométrica

exponencial

exponencial

logarítmica

trigonométrica inversa

Funciones Trigonométricas

De trigonometría recordemos que las funciones trigonométricas surgen como resultado

de la razón entre las magnitudes de los lados de un triángulo rectángulo:

Generalmente consideraremos la medida de los ángulos en radianes, a menos que se

diga lo contrario, recuerde . Veamos las gráficas de algunas de ellas:

Df=R-{

Rf=(-

Cateto adyacente

Cateto

opuesto

Hipotenusa

θ

Df = R Rf = [-1,1]

Df = R Rf = [-1,1]

Page 35: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

24

Función Exponencial

La función exponencial es de la forma donde la

base k es una constante positiva y el exponente es una

variable.7

El dominio es (-∞, ∞) y el rango es (0, ∞)

Gráfica de la función

Función Logarítmica

La función logarítmica es de la forma , donde la

base a es una constante positiva. Es la inversa de la

función exponencial7.

El dominio es (0, ∞) y el rango es (-∞, ∞)

Gráfica de la función

Función explicita e implícita

Cuando una función tiene a la variable dependiente despejada, se dice que la función

esta expresada en forma explícita. En caso contrario, se dice que está en forma

implícita6.

Ejemplos de funciones explícitas:

Page 36: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

25

Ejemplos de funciones implícitas:

Función creciente y decreciente

Otra manera de clasificar las funciones es de acuerdo con su monotonía.9

Una función f(x) es creciente en un intervalo I, si para cualquier par de valores

pertenecientes al intervalo I, tal que se tiene .

Ejemplo 18. Sea la función:2( )f x x en el intervalo [0,4], tomemos los

puntos x=2 y x=3.

Por lo tanto la función es creciente del punto 2 al 3.

Una función f(x) es decreciente en un intervalo I, si para cualquier par de valores x1,

x2, pertenecientes al intervalo I, tal que se tiene .

Page 37: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

26

Ejemplo 19. Sea la función: 2( )f x x en el intervalo [-4,0], tomemos los

puntos x=-3 y x=-2.

Se cumple que . La función es decreciente

Ejemplo 20. La siguiente gráfica muestra ambos comportamientos.

En el intervalo [-4,0]: es decreciente.

En el intervalo [(0,4]: es creciente.

Page 38: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

27

Función par

Si en una función se sustituye la variable por su simétrico y se cumple

se dice que la función es par10,11.

Ejemplo 21. Verificar si la función es par o impar.

Se sustituye x por –x

Como se cumple que , entonces es una función par.

Función impar

Si en una función se sustituye la variable x por su simétrico –x y se cumple

se dice que la función es impar6,7

Ejemplo 22. Verificar si la función es par o impar.

Se sustituye x por –x

Como se cumple que , entonces es una función impar.

Ejemplo 23. Verificar si la función es par o impar.

Se sustituye x por –x

Podemos ver que como la función no es par.

Por otro lado, para que la función sea impar se debe cumplir la condición

de que pero

y

Dado que la función no es impar.

Esta función no es impar, ni par.

De lo anterior se concluye:

La gráfica de una función par es simétrica con respecto al eje Y.

Page 39: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

28

La gráfica de una función impar es simétrica con respecto al origen.

Hay funciones que no son pares ni impares.

Función continua y discontinua

Finalmente diremos que otra forma de clasificar a las funciones es con base a la

continuidad de la gráfica.

Una función es continua cuando su gráfica no presenta un hueco o salto. Otra forma de

describirla, es diciendo que una función es continua si se puede dibujar su gráfica sin

tener que levantar el lápiz del papel.12

Una función es discontinua si no es continua.

c c c

Page 40: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

29

Función del mayor entero

Otra función es la definida como función del mayor entero13,14, el símbolo que la

representa es [[x]], el cual se define como el mayor entero menor o igual a x, esto es: [[x]] = n si n , donde n ЄZ

Por ejemplo:

[[1]] = 1, [[1.2]] = 1, [[0.2]] = 0, [[-4.3]] = -5, [[-10]] = -10, [[19.8]] = 19,

y así sucesivamente, queda como reto para el lector hacer su gráfica.

Función valor absoluto

Función valor absoluto8,9, es definida como

| |

Su dominio es el conjunto de todos los números reales y el rango de dicha función son

los números reales no negativos.

Sea la función | |

Cuando , esto indica que su

contradominio es siempre positivo.

Dicha función es par, decreciente de (- y creciente de [0, ).

Nota: hasta aquí solo se ha hablado de las principales funciones que se presentan

durante el estudio del cálculo. Sin embargo, es importante señalar que existe una gran

cantidad de funciones que será conveniente investigar, tales como la función

escalonada que se utiliza en los estacionamientos cuando nos cobran por hora o

fracción, la función definida por intervalos, la función signo, entre otras.

Existen libros dedicados al tema de funciones, en los cuales se puede ampliar dicho

tema. Se invita al lector a que haga la lectura correspondiente.1,15,16.

Page 41: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

30

1.4. Álgebra de funciones

Se puede combinar, una función f con otra función h a través de las operaciones

aritméticas: suma, resta, multiplicación y división. Las cuales se pueden definir de la

siguiente manera:17

Sean las funciones f y h,

Suma:

Resta: Multiplicación:

División: (

)

donde

El dominio de estas nuevas funciones

es la intersección del dominio f

con el dominio h.

A continuación veremos algunas operaciones con funciones.

Sumas de funciones

EJEMPLO 24. Dadas las funciones: ( ) 8 1f x x y la función: 3( ) 5 2g x x

calcular: ( ) ( ) ( )r x f x g x .

Lo primero que podemos realizar es sustituir cada uno de los sumandos de

la función propuesta de la siguiente manera:

( ) ( ) ( )r x f x g x

3( ) (8 1) ( 5 2)r x x x .

Lo segundo sería realizar la suma de los dos términos, esto se realiza

primeramente eliminando los paréntesis que agrupan cada una de las

funciones. Recuerde que para concretar este proceso se debe considerar el

signo que antecede al paréntesis, es decir: si el sigo que está antes del

primer paréntesis es positivo, se dice más por menos y el resultado de

esta operación de signos lo colocamos antes del término considerado. Para

nuestro caso, como en el primer grupo de términos no contiene signo, se

asume que este es positivo, es decir:

( ) ( ) ( ) ( ) ( )r x f x g x f x g x

Ahora bien, el resultado de suprimir el primer paréntesis será entonces:

Page 42: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

31

(8 1) ( 8 1) 8 1 8 1x x x x

Para el segundo término tendremos:

3 3 3( 5 2) ( 5 ) ( 2) 5 2x x x

De manera que suprimiendo los paréntesis de ambas funciones (o de cada

grupo de términos) tendremos:

3 3( ) (8 1) ( 5 2) 8 1 5 2r x x x x x

El siguiente paso en el desarrollo de la suma, será agrupar los términos

semejantes, que para nuestro caso solo tenemos los números +1 y +2:

3 3 3( ) 8 1 5 2 8 5 1 2 8 5 3r x x x x x x x

Finalmente, como una manera ordenada de presentar el resultado, podemos

ordenar los términos, comenzando con los exponentes de mayor a menor,

para finalmente colocar los términos numéricos. Recuerde que este acomodo

debe respetar el signo de cada término como se observa en el acomodo del

término -5x3.

3 3( ) 8 5 3 5 8 3r x x x x x

3 3 3( ) 8 1 5 2 8 5 1 2 8 5 3r x x x x x x x

Siendo el resultado final:

3( ) 5 8 3r x x x

EJEMPLO 25. Dadas las funciones: 2 3( ) 5 (2 ) 8 ( 3 )R u u u u u u y la función:

5

2

1( ) ( 3 ) 12 ( ) 8

2

u uP u u uu

u u

, desarrolla ( ) ( )R u P u .

Como puede observarse, cada una de las funciones está expresada de forma

tal, que es más cómodo primeramente desarrollarla a su mínima expresión,

para después realizar la suma indicada. Por tanto, en la función ( )R u

desarrollada, debemos primeramente desarrollar el cuadrado indicado

2(2 )u y el producto de ( 3 )u u , o sea:

2 2 2 2 2(2 ) (2 ) (4 ) 4u u u u

y para el otro producto:

2( 3 ) ( )( )( )(3 ) 3u u u u u

Desarrollando entonces en la función ( )R u , tendríamos:

2 3 2 3 2( ) 5 (2 ) 8 ( 3 ) 5 4 8 3R u u u u u u u u u u

Page 43: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

32

Acomodando los términos de acuerdo a su exponente y agrupando términos

semejantes, tendríamos:

3 2 2 3 2( ) 8 4 3 5 8 1 5R u u u u u u u u

Por otro lado, para desarrollar la función restante, ( )P u tendríamos

primeramente que quitar el paréntesis del primer término:

( 3 ) 3 3u u u

Similarmente, para el segundo término, tenemos un desarrollo que implica

la división de dos términos iguales (cuyo resultado es la unidad), es

decir:

12 12(1) 12u

u

Para el tercer término, el desarrollo posible es la multiplicación de la

variable por sí misma dos veces, lo cual se entiende como el cuadrado de

la misma, es decir:

2 2 2( ) ( )uu u u u

Finalmente, para el cuarto término podemos realizar la división de las

variables, que al ser la misma base y exponente diferente, lo que se

realiza es la resta de los exponentes (exponente del numerador menos

exponente del denominador). Por otro lado, el desarrollo numérico es el

producto del 8 y de 1

2

lo que nos daría:

5

5 2 3 3

2

1 1 18 8 8 4

2 2 2

uu u u

u

Teniendo como versión final de desarrollo de la función ( )P u como

5

2 3 3 2

2

1( ) 3 12 8 3 12 4 4 3 12

2

u uP u u uu u u u u u u

u u

De esta manera, la suma de las funciones originales, ahora desarrolladas

en sus mínimas expresiones sería:

3 2 3 28 1 5 , ( ) 4 3 12P u u u u F u u u u

Y la suma de ambas, podría expresarse como

3 2 3 2 3 2 3 2( ) ( ) (8 1 5 ) (4 1 5 12) 8 1 5 4 1 3 12P u F u u u u u u u u u u u u u

Acomodando los términos semejantes en orden descendente:

3 3 2 2( ) ( ) 8 4 1 1 5 3 12P u F u u u u u u u

La suma finalmente es:

Page 44: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

33

3 2( ) ( ) 12 2 8 12P u F u u u u

EJEMPLO 26. Realizar la suma de las funciones: 2

3 8

6( )

x

G xx

y

2( ) 2 5 8P y y y

Esta suma no se puede realizar, puesto que cada una de las funciones

definidas no son dependientes de la misma variable, es decir, la función

( )G x depende en su valor de los valores de x, como se define, pero la

función ( )P y está definida de acuerdo a los valores de y, por lo tanto,

los valores de cada una de las funciones son independientes porque

dependen cada una de diferente variable.

EJEMPLO 27. ¿Cuál es el resultado de la suma de 2

3 8

6( )

x

G xx

con

2( ) 2 5 8P x y y ?

Para este caso, como cada una de las funciones está definida para la

misma variable, entonces es posible la suma, solo que para la variable

2( ) 2 5 8P x y y , cada uno de los términos algebraicos no contiene a la

variable a la que se hace referencia, por lo tanto, puede considerarse

como un término independiente a cada uno de los términos que contienen la

y. De esta manera, el desarrollo será:

2

2

3 8

6( ) ( ) 2 5 8

x

G x P x y yx

Pudiendo sintetizar el valor de la función ( )G x :

22 2

3 8 3 8

3 86 6( )6

1

x x

xG x

xx x

Sustituyendo este nuevo valor de la función como

2

2

3 8( ) ( ) 2 5 8

6

xG x P x y y

x

Page 45: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

34

EJEMPLO 28. ¿Cuál es el resultado de la suma de 2

3 8

6( )

x

G xx

con

2( ) 2 5 8P x x x ?

De acuerdo al desarrollo anterior, la suma de estas funciones puede

realizarse como ya se ha explicado, es decir, agrupando las dos funciones

con cada uno de sus términos semejantes. De esta manera, podemos afirmar

que

2

2

3 8

6( ) ( ) 2 5 8

x

G x P x x xx

Desarrollando el resultado de la primera función:

22 2

3 8 3 8

3 86 6( )6

1

x x

xG x

xx x

Lo cual nos daría una suma de la siguiente manera:

2

2

3 8( ) ( ) 2 5 8

6

xG x P x x x

x

El desarrollo se facilita al separar la fracción:

22 2

2 2 2 2

3 8 3 8 1 4 2 5 82 5 8 2 5 8

6 6 6 2 3 1 1 1

x x x xx x x x

x x x x x

De manera que la suma de estas fracciones será:

2 4 3 2

2 2

1 4 2 5 8 3 8 12 30 48

2 3 1 1 1 6

x x x x x x

x x x

Lo que finalmente ordenado nos queda:

4 3 2

2

12 30 48 3 8( ) ( )

6

x x x xG x P x

x

Pues el numerador no es un polinomio que pueda factorizarse.

EJEMPLO 29. Expresar el resultado en su mínima expresión de la siguiente

suma: ( ) ( )M x N x , dadas;

2

( )x

M xy

y

2

( )x y

N xy

La suma entonces, se desarrollará de la siguiente manera:

Page 46: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

35

22

( ) ( )x yx

M x N xy y

Quitando los paréntesis y desarrollando la suma, tendremos:

2 222 x y x x yx

y y y

Desarrollando el binomio cuadrado que contiene al numerador, tendremos:

22 2 2 2 2 2 2( 2 ) 2x x y x x xy y x x xy y

y y y

Como puede observarse, en el numerador tenemos dos términos semejantes

con signo contrario, lo cual los hace cero:

2 2 2 22 2x x xy y xy y

y y

Finalmente para este caso, puede factorizarse en el numerador la y, lo

cual nos llevará a poder dividirla con el mismo factor del denominador

para poder suprimirla:

22 ( 2 ) ( 2 ) ( 2 )1

1 1

xy y y x y y x y x y

y y y

Para obtener el resultado:

( ) ( ) 2M x N x x y

EJEMPLO 30. Comprobar que la suma de funciones es conmutativa (tomar

cualquiera de las funciones anteriormente descritas).

Puede tomarse el ejemplo 23, considerando la suma propuesta

( ) ( ) ( )r x f x g x , considerando ( ) 8 1f x x y la función 3( ) 5 2g x x .

El desarrollo de la suma según se realizó es:

3( ) 5 8 3r x x x

Por consiguiente, aplicando la conmutatividad de la suma, proponemos una

nueva suma cambiando el orden de las funciones, y le llamamos

( ) ( ) ( )R x g x f x . Si el resultado de esta propuesta es igual que el de

( )r x , entonces la conmutatividad es válida.

Page 47: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

36

Desarrollamos entonces la nueva suma ( )R x como se describió en el ejemplo

23, es decir, sustituyendo el valor de cada una de las funciones como

sumandos de la propuesta:

( ) ( ) ( )R x g x f x

3( ) ( 5 2) (8 1)R x x x

Suprimiendo los paréntesis y desarrollando la suma, tendremos:

3 3 3( ) 5 2 8 1 5 2 1 8 5 8 3R x x x x x x x

Entonces, como ambos resultados son iguales, podemos afirmar que

( ) ( ),

( ) ( ) ( ) ( )

r x R x

f x g x g x f x

Lo que demuestra que la suma de funciones es conmutativa.

EJEMPLO 31. Comprobar la validez de la ley asociativa de las funciones,

definida como A+(B+C)=(A+B)+C, El valor de cada una de las funciones A, B

y C es:

2( ) 5A a x x , ( ) (5 3)B b x x y

21

( )3

C c x x

Para desarrollar la parte izquierda de la igualdad, según indican los

paréntesis, desarrollaremos primero la suma de B+C:

2

2 21 2 1 13 26( ) ( ) (5 3) 5 3

3 3 9 3 9b x c x x x x x x x x

Después, el desarrollo del lado izquierdo de la igualdad se completa

sumando al resultado anterior la función A y desarrollando la suma

(quitando los paréntesis y agrupando los términos semejantes) como se

muestra:

2 2 2 2 213 26 13 26 13 19( ) ( 5) 5 2

3 9 3 9 3 9A B C x x x x x x x x

Por otro lado, el cálculo de la parte derecha de la igualdad implica

primero sumar A+B:

2 2 2( ) ( ) 5 5 3 5 5 3 5 2A B a x b x x x x x x x

El cálculo completo quedaría sumando la función C de la siguiente manera:

2 2 22 1 13 195 2 2

3 9 3 9A B C x x x x x x

Page 48: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

37

Como puede observarse, ambos resultados son iguales, lo que afirma que

( ) ( )A B C A B C

EJEMPLO 32. ¿Cuál será el resultado de sumar ( ) sin( )v con

( ) cos2

w

?

Como puede observarse, la suma puede realizarse sencillamente conjuntado

las funciones:

( ) ( ) sin( ) cos2

v w

Lo cual, es el resultado de la suma pedida. Sin embargo, este resultado

tiene un valor peculiar, el cual se puede mostrar asignando valores

característicos al resultado de la suma. Esto puede realizarse con ayuda

de una tabla.

En la siguiente tabla, se muestran los valores característicos y los

resultados para cada una de las funciones dadas, así como los valores de

la suma de las mencionadas funciones. Se muestra además un bosquejo de

las gráficas correspondientes, donde como puede verse, la suma es de cero

para todos los valores de ; o bien, de x de acuerdo al formato para el

software que ha realizado las gráficas.

( ) sin( )v

( ) cos2

w

( ) ( ) sin( ) cos2

v w

0 0 0 0

2

1 -1 0

0 0 0

3

2

-1 1 0

2 0 0 0

Page 49: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

38

x

El resultado entonces más significativo y evidente será:

( ) ( ) sin( ) cos 02

v w

Este resultado justifica una identidad trigonométrica: cos2

sen

EJEMPLO 33. ¿Cuál es el resultado de sumar las funciones: 8 10xh x con

1 10xi x ?

La suma de estas funciones, es de acuerdo a lo anteriormente descrito, la

suma de los valores de cada función:

( ) 8 10 1 10x xh x i x

Donde se puede observar, es factible hacer una factorización, y con ello

la suma de los factores diferentes, es decir:

8 10 1 10 10 (8 1) 9 10x x x x

Teniendo entonces, el resultado:

( ) 8 10 1 10 9 10x x xh x i x

EJEMPLO 34. ¿Cuál es el resultado de sumar ( ) 0n x con 5 8

( )9

xf x

?

El resultado es obviamente la misma ( )f x , pues de acuerdo a los

desarrollos que aquí se han mencionado, podemos decir que

5 8 5 8( ) ( ) (0)

9 9

x xf x n x

Page 50: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

39

De hecho, a la función ( ) 0n x , se le llama la función constante, pues su

valor es el mismo sin depender de la variable independiente x. Para el

caso particular de que esta función se defina con el valor constante de

cero, actúa como el elemento neutro en la suma de funciones.

Resta de funciones

EJEMPLO 35. Dadas las funciones ( ) 3 1f x x y la función ( ) 2 6g x x ;

calcular: ( ) ( ) ( )r x f x g x .

Al igual que se hizo en la suma, lo primero que podemos realizar es

sustituir cada una de las funciones por sus valores correspondientes:

( ) ( ) ( )r x f x g x

( ) (3 1) ( 2 6 )r x x x .

Después, se eliminan los paréntesis que agrupan cada una de los valores

de las funciones. Para este caso, igual que la suma, se debe considerar

el signo que antecede al paréntesis, es decir, si el sigo que está antes

del primer paréntesis es positivo; lo cual no cambia el signo de los

términos de la primer función:

( ) (3 1) 3 1f x x x

Ahora, la manipulación del segundo término conlleva a considerar el signo

negativo que antecede a la función, lo cual, al aplicar la ley de los

signos, cambia cada uno de los signos de cada uno de los términos, como

se muestra:

( ) ( 2 6 ) ( 2) ( 6 ) 2 6g x x x x

Así que finalmente, la resta se puede realizar en realidad como una suma,

es decir; agrupando cada uno de los términos semejantes, solo que antes

de hacer esto, es necesario considerar el resultado de las operaciones

con los signos, en particular con la función a la que le antecede el

signo negativo. Así, para este caso en particular tendremos:

( ) ( ) (3 1) ( 2 6 ) 3 1 2 6f x g x x x x x

( ) ( ) 3 1 2 6 3 3f x g x x x x

( ) 3 3r x x

Que es el resultado final.

Page 51: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

40

EJEMPLO 36. Dadas las mismas funciones que en el ejemplo anterior:

( ) 3 1f x x y la función: ( ) 2 6g x x ; calcular ahora ( ) ( ) ( )s x g x f x

Ahora, desarrollaremos la resta de las mismas funciones, solo que

intercambiando el orden de cada uno de las funciones; lo cual puede

expresarse:

( ) ( ) ( ) ( 2 6 ) (3 1)s x g x f x x x

Desarrollando la suma de acuerdo al mismo procedimiento descrito en

ejemplos anteriores, suprimimos primeramente los paréntesis (en donde si

se recuerda, quitar el paréntesis donde antecede el signo menos, cambia

el signo de todos y cada uno de los términos de la función):

( ) ( 2 6 ) (3 1) 2 6 3 1s x x x x x .

Agrupando entonces los términos semejantes, tendremos:

( ) 2 6 3 1 3 3s x x x x

( ) 3 3s x x

Lo cual será el resultado final, que muestra que si intercambiamos el

orden de los elementos de la resta, el resultado no es el mismo:

( ) 3 3r x x

( ) 3 3s x x

Lo que nos lleva a afirmar que la resta de funciones no es conmutativa,

es decir:

( ) ( ) ( ) ( )f x g x g x f x

EJEMPLO 37. Si cada una de las siguientes funciones se definen como

3 2

1( ) 2 8 5 1F x x x x y2

2( ) 10 5 6F x x x , entonces ¿cuál será el resultado

de 1 2 ( )F F x ?

De manera similar a los ejemplos anteriores, realizar la resta de estas

funciones es el equivalente de conjuntar cada valor quitando los

paréntesis y agrupando los términos similares. Una diferencia para este

caso es la notación, la cual puede entenderse:

1 2 1 2( ) ( ) ( )F F x F x F x

De esta manera, prosiguiendo con la mencionada metodología, escribimos:

3 2 2

1 2( ) ( ) 2 8 5 1 10 5 6F x F x x x x x x

Page 52: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

41

Que a su vez, es:

3 2 2 3 2 22 8 5 1 10 5 6 2 8 5 1 10 5 6x x x x x x x x x x

Acomodando y agrupando los términos semejantes:

3 2 2 3 22 8 10 5 5 1 6 2 2 10 7x x x x x x x x

Teniendo como resultado final:

3 2

1 2 2 2 10 7F F x x x x

Ejemplo 38. ¿Es posible realizar la resta de dos funciones que son

dependientes de dos variables diferentes?

Para responder a esta pregunta, podemos definir dos funciones

cualesquiera, haciendo dependientes a cada una de ellas de variables

diferente, por ejemplo:

( ) 6s x x , ( ) 2t y y

Lo cual no puede realizarse porque, entre otras razones:

( ) ( )s x t y s t x y

EJEMPLO 39. De acuerdo a las funciones: ( ) 2 5,v x x ( ) 6 1.w x x Comprobar

si la siguiente igualdad es verdadera

( ) ( ) ( ) ( )v x w x w x v x

Primero, puede desarrollarse el lado izquierdo de la igualdad:

( ) ( ) (2 5) ( 6 1) 2 5 6 1v x w x x x x x

( ) ( ) 8 6v x w x x

Por otro lado, el lado derecho de la igualdad nos proporciona el

resultado:

( ) ( ) 6 1 2 5 6 1 2 5w x v x x x x x

( ) ( ) 8 6 8 6w x v x x x

Lo cual nos proporciona una evidencia de que la igualdad es verdadera.

Page 53: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

42

EJEMPLO 40. Realizar la diferencia entre las funciones:

2 3( ) 5 (2 ) 8 ( 3 )R u u u u u u & 5

2

1( ) 3 12 8

2

u uF u u uu

u u

Este ejemplo, es retomado de uno de los ejercicios resueltos de las sumas

de funciones, por lo que omitiremos los desarrollos para cada una de las

funciones, puesto que son los mismos, es decir que por un lado:

2 3 2 3 2( ) 5 (2 ) 8 ( 3 ) 5 4 8 3R u u u u u u u u u u

Y de manera semejante:

5

2 3 3 2

2

1( ) 3 12 8 3 12 4 4 3 12

2

u uF u u uu u u u u u u

u u

Por lo que ahora nos corresponde, la resta de las funciones, una vez que

ya se han abreviado, serán con 3 2 3 28 1 5 , ( ) 4 3 12P u u u u F u u u u de

la siguiente manera:

3 2 3 2( ) 8 1 5 4 3 12P u F u u u u u u u

Quitando los paréntesis y agrupando los términos semejantes:

3 2 3 2 3 3 2 2( ) ( ) 8 1 5 4 3 12 8 4 1 5 3 12P u F u u u u u u u u u u u u u

Teniendo como resultado final:

3( ) ( ) 4 2 12P u F u u u

EJEMPLO 41. Definiendo las funciones siguientes: ( )2

tQ t

t

,

2( ) 3 2R t t y

( ) 2S t t , realizar la resta ( ) ( ) ( ) ( )U t Q t R t S t

Para realizar esta resta, se procede primeramente a realizar la resta que

se encuentra agrupada en el paréntesis cuadrado:

2 2 2( ) ( ) 3 2 2 3 2 2 3R t S t t t t t t t

Ahora bien, retomando la resta completa, podemos expresarla como

2( ) ( ) ( ) ( ) 32

tU t Q t R t S t t t

t

Observe que se han sustituido los valores que equivalen a la función Q t

Page 54: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

43

y a la resta de ( ) ( )R t S t ; solo que a esta última por ser la parte del

sustraendo, se le antepone en la resta completa el signo de menos, lo que

nos lleva al realizarla, quitando los paréntesis, a aplicar la ley de los

signos, como ya hemos descrito, para finalmente agrupar términos

semejantes, es decir:

Que una vez desarrollado nos dará el resultado completo:

2 3 2 22

1 2 3 2 3 6 2( ) 3

2 2 2

t t t t tt t t t t tU t t t

t t t

3 2 23 6 2

2

t t t t t

t

EJEMPLO 42. Si retomamos los valores de las funciones definidas en el

problema anterior (40), ¿será cierto que

( ) ( ) ( ) ( ) ( ) ( )Q t R t S t Q t R t S t ?

Como ya hemos realizado la parte izquierda de la igualdad, podemos

desarrollar la parte derecha de la misma, de manera que si llegamos al

mismo resultado, la igualdad será válida.

Realizando entonces primeramente la resta del paréntesis cuadrado:

2( ) ( ) 3 22

tQ t R t t

t

Lo que desarrollado nos dará como resultado:

3 2

2 2 3 6 4( ) ( ) 3 2 3 2

2 2 2

t t t t tQ t R t t t

t t t

Completando ahora la operación deseada tendremos:

3 23 6 4

( ) ( ) ( ) 22

t t tQ t R t S t t

t

Quitando los paréntesis y realizando las operaciones finalmente como

suma:

2 2( ) 3 32 2

t tU t t t t t

t t

Page 55: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

44

3 2 3 23 6 4 3 5 8

( ) ( ) ( ) 22 2

t t t t t tQ t R t S t t

t t

Como los resultados son diferentes, podemos responder que “no” a la

pregunta realizada, o bien afirmar que

( ) ( ) ( ) ( ) ( ) ( )Q t R t S t Q t R t S t

EJEMPLO 43. ¿Será cierto que ( ) ( ) 0F x F x ?

Esta propiedad de la resta, se puede comprobar si proponemos una función

cualquiera como ( )F a . Un buen ejemplo puede ser un polinomio de tercer

grado:

3 2( ) 3 2 8 3F x x x x

De esta manera, si realizamos la resta de las funciones ahora propuestas,

tendremos:

3 2 3 2( ) ( ) 3 2 8 3 3 2 8 3F x F x x x x x x x

Ahora bien, si desarrollamos la resta como tal, procedemos primeramente a

quitar los paréntesis:

3 2 3 2( ) ( ) 3 2 8 3 3 2 8 3F x F x x x x x x x

Agrupando términos semejantes:

3 3 2 2( ) ( ) 3 3 2 2 8 8 3 3 0F x F x x x x x x x

Lo cual demuestra que es cierto que

( ) ( ) 0F x F x

EJEMPLO 44. ¿Cuál es el resultado de la operación ( ) ( ) ( )R x G x P y , dadas:

2

3 8

6( )

x

G xx

y 2( ) 2 5 8?P y y y

Como puede observarse, cada una de las funciones está definida para

diferentes variables, entonces no es posible la resta como operación

definida, pues:

( ) ( )G x P y G P x G P y

Producto de funciones

Page 56: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

45

EJEMPLO 45. Dadas las funciones ( ) 2 6f x x y la función 2( ) 2 8 1;g x x x

calcular: ( ) ( ) ( )R x f x g x .

Realizar el producto de dos funciones diferentes, conlleva al proceso de

realizar el producto mismo de sus valores, es decir que para este caso

propuesto tendremos el producto de los polinomios indicados:

2( ) ( ) ( ) 2 6 2 8 1R x f x g x x x x

Lo cual se lleva a cabo multiplicando cada uno de los términos

algebraicos del primer factor por los del segundo, es decir:

2 2 2( ) 2 6 2 8 1 2 2 8 1 6 2 8 1R x x x x x x x x x

3 2 2 3 2 2( ) 4 16 2 12 48 6 4 16 2 12 48 6R x x x x x x x x x x x

3 2 2 3 2( ) 4 16 2 12 48 6 4 4 46 6R x x x x x x x x x

Siendo este último el resultado final.

EJEMPLO 46. De acuerdo a las funciones: 2

( ) 53

v x x y1

( ) 16

w x x

Desarrollar: ( ) ( )v x w x

Igual que en el caso anterior, realizar este producto se concreta con el

producto de los polinomios respectivos (binomios para nuestro caso), es

decir:

2 1

( ) ( ) 5 13 6

v x w x x x

Por lo que el desarrollo se puede expresar como

2 1 2 1

( ) ( ) 1 5 5 13 6 3 6

v x w x x x x x

Quitando los paréntesis tendremos:

2 22 2 5 2 2 5( ) ( ) 5 5

18 3 6 18 3 6v x w x x x x x x x

Es decir que, agrupando los términos comunes el resultado será:

21 3( ) ( ) 5

9 2v x w x x x

Page 57: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

46

EJEMPLO 47. Definiendo las funciones siguientes ( )2

tQ t

t

,

2( ) 3 2R t t y

( ) 2S t t , realizar el producto ( ) ( ) ( ) ( )U t Q t R t S t

Este producto, se realiza primeramente desarrollando el producto que

indican los paréntesis rectangulares, es decir:

2 3 2( ) ( ) 3 2 2 3 6 2 4R t S t t t t t t

El resultado anterior se multiplica con el valor de la función ( )Q t :

3 2( ) ( ) ( ) 3 6 2 42

tQ t R t S t t t t

t

El desarrollo de este producto, será entonces:

4 3 2

3 2 3 6 2 4( ) ( ) ( ) 3 6 2 4

2 2

t t t t tQ t R t S t t t t

t t

El anterior puede tomarse como el resultado, sin embargo una

factorización del numerador puede mostrarnos un resultado más elegante:

4 3 23 6 2 4

( ) ( ) ( )2

t t t tQ t R t S t

t

EJEMPLO 48. Definiendo las mismas funciones que en el ejemplo

anterior(45), ¿será cierto que ( ) ( ) ( ) ( ) ( ) ( )Q t R t S t Q t R t S t ?

Como ya se ha desarrollado la parte izquierda de la igualdad sugerida,

procedemos a desarrollar la parte derecha. Igual que el desarrollo del

ejemplo anterior, primeramente desarrollamos el producto indicado en el

paréntesis:

2( ) ( ) 3 22

tQ t R t t

t

El desarrollo de este producto es:

3

2 3 2( ) ( ) 3 2

2 2

t t tQ t R t t

t t

Ahora bien, retomando el producto completo, podemos expresarlo como

33 2

( ) ( ) ( ) 22

t tQ t R t S t t

t

Page 58: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

47

Que una vez desarrollando y agrupando sus términos semejantes, nos

proporciona el resultado:

4 3 23 6 2 4

( ) ( ) ( )2

t t t tQ t R t S t

t

Al igual que en el ejercicio anterior, se puede expresar su resultado de

una manera simplificada como factores del numerador, quedando finalmente:

4 3 23 6 2 4

( ) ( ) ( )2

t t t tQ t R t S t

t

Como puede observarse, este resultado es el mismo que el del ejercicio

anterior, lo cual nos lleva a afirmar que

( ) ( ) ( ) ( ) ( ) ( )Q t R t S t Q t R t S t

EJEMPLO 49. ¿Es posible realizar el producto de 3 8

( )6

xG x

y

2( ) 2 5 8P y y y

Como puede observarse, cada una de las funciones está definida para

diferentes variables. Como el producto de funciones está definido como

( ) ( )G x P x G P x

Entonces no es posible el producto como operación definida, pues:

( ) ( )G x P y G P x G P y

Cociente o división de funciones

EJEMPLO 50. Dadas las funciones ( ) 2 6f x x y 2( ) 2 8 2g x x x ;

calcular: ( )

( )( )

f xR x

g x .

Lo primero que debe realizarse, es la sustitución de los valores de las

funciones en el cociente propiamente dicho. Esto se expresa:

2

( ) 2 6( )

( ) 2 8 2

f x xR x

g x x x

Este puede ser ya el resultado de la división, sin embargo, una

manipulación algebraica puede exhibir un resultado más sintetizado:

Page 59: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

48

2 22

2 3( ) 2 6 3( )

( ) 2 8 2 1 4 12 1 4 1

xf x x xR x

g x x x x xx x

De esta manera, tendremos como resultado final:

2

3( )

4 1

xR x

x x

EJEMPLO 51. De acuerdo a las funciones 2 3

( )8

xv x

y

7 1( )

6

xw x

x

Desarrollar: ( )

( )

v x

w x

Sustituyendo el valor de cada una de las funciones en el cociente,

podemos comenzar el desarrollo de la misma. De esta manera:

2 3

( ) 2 3 7 1 87 1( ) 8 6

6

x

v x x x

xw x x

x

Como puede observarse, realizar esta operación conlleva a la división a

su vez de dos cocientes. Esta operación puede realizarse con el método de

los productos cruzados, o bien, una vez acomodados en un divisor

principal, realizando la ley de la herradora. A continuación se muestra

cada uno de los desarrollos dentro de la igualdad:

2 3 6( ) 2 3 7 1

( ) 8 6 8 7 1

x xv x x x

w x x x

2 32 3 6( ) 8

7 1( ) 8 7 1

6

xx xv x

xw x x

x

De esta manera, desarrollando el producto de numerador y denominador

independientemente del método escogido, tendremos:

22 3 6( ) 12 2 18 3

( ) 8 7 1 56 8

x xv x x x x

w x x x

Agrupando términos semejantes nos daría como resultado final:

2( ) 2 15 18

( ) 56 8

v x x x

w x x

No hay que perder de vista que en el desarrollo de las divisiones y

multiplicaciones, se deben considerar los signos para aplicar

Page 60: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

49

precisamente la ley de los signos. Para el presente ejemplo, el resultado

(que es un cociente) tiene un signo negativo, pues al haber dividido una

función positiva con una negativa, la función resultante es negativa.

Podemos además expresar el resultado sin el signo negativo, esto es:

aplicando el signo al numerador o al denominador de la función

resultante, es decir:

22 22 15 18( ) 2 15 18 2 15 18

( ) 56 8 56 8 56 8

x xv x x x x x

w x x x x

2 2 2( ) 2 15 18 2 15 18 2 15 18

( ) 56 8 56 8 56 8

v x x x x x x x

w x x x x

En ambos casos anteriores, el resultado es el mismo.

EJEMPLO 52. Definiendo las funciones siguientes: ( )2

tQ t

t

,

2( )

tR t

t

realizar el cociente ( )

( )( )

Q tU t

R t

El cociente que se pide, al igual que en los casos anteriores se

desarrolla sustituyendo los valores de cada una de las funciones y

realizando las operaciones indicadas. Para este caso, podemos escribir:

2

2

( ) 2( )2( ) 2 2 2

tt tQ t ttU t

tR t t t tt

EJEMPLO 53. ¿Es cierto que

1

f x

f x ? Considere 25 1f x x

Como puede observarse, desarrollar esta división puede llevarnos al

resultado trivial de la unidad, por lo que para justificarlo, sustituimos

el valor propuesto en la división para corroborarlo. Así escribimos:

5 1

15 1

f x x

f x x

EJEMPLO 54. ¿Es posible realizar el cociente de 2( ) 5 8G x x y ( ) 0P x ?

Esta división no es aritméticamente posible, puesto que cualquier número

o variable (incluyendo al cero), no puede ser dividido entre cero y

Page 61: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

50

darnos un resultado posible. Aunque en teoría este resultado es infinito

(o un número muy grande), el número infinito no está definido.

Simplemente: el infinito puede ser un uno con noventa y nueve ceros, o un

uno con cien ceros. ¿Hay alguna diferencia o ambas cantidades son

iguales?

?

0

f x

Potencia de funciones

EJEMPLO 55. Elevar a la potencia 3 la función: ( ) 3 2f x x

Elevar a una potencia equivale a multiplicar por ella misma el número de

veces que la potencia lo indique. Para este caso, elevar al cubo esta

función equivale a multiplicarla por si misma tres veces, es decir:

3 3

( ) 3 2f x x

El desarrollo de este producto equivale a realizar el producto:

3

3 2 3 2 3 2 3 2x x x x

Para llevar un proceso similar al del producto (que ya hemos descrito),

la potenciación puede realizarse primeramente con el producto de 2 de los

factores y el resultado de nueva cuenta por el factor mismo; es decir:

3 23 2 3 2 3 2 3 2 9 12 4 3 2x x x x x x x

El desarrollo de estos dos nuevos factores será entonces:

2 3 29 12 4 3 2 27 54 36 8x x x x x x

Teniendo entonces como resultado:

3 3 2( ) 27 54 36 8f x x x x

EJEMPLO 56. Realizar la operación: 2

( ) ( )p x w x , definiendo 1

( )2

xw x

De manera similar que en el ejemplo anterior, definimos la potencia como

el producto de la misma función dos veces para esta ocasión. En otras

palabras:

Page 62: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

51

21 1 1

( )2 2 2

x x xp x

Considerando que la función tiene signo negativo, el producto considera

las leyes de los signos, lo cual nos dará de entrada un signo positivo

(dado que menos por menos es más). Siendo la función una fracción, el

producto se realiza igual que lo indica el producto de números

racionales: numerador por numerador y denominador por denominador. De

esta forma tendremos:

1 11 1( )

2 2 2 2

x xx xp x

Teniendo como resultado final:

2 2

2

1 2 1( )

42

x x xp x

EJEMPLO 57. ¿Cuál será el resultado de la siguiente operación:

3

23 2y t

?

Esta potenciación es en realidad una potencia de otra, para lo cual el

proceso para un desarrollo menos laborioso, consiste primeramente en

desarrollar la potencia de la potencia. Esto se hace recordando la regla

algebraica para tal fin, la cual nos dice: b

a a bx x

De manera que para este caso, podemos aplicar esta regla para simplificar

el desarrollo en una sola potencia, es decir:

3

2 2 33 2 3 2y t t

6

3 2y t

El desarrollo ahora de la potencia del binomio puede realizarse por pares

para optimizar un poco los cálculos. Así entonces:

6 2 2 2

3 2 3 2 3 2 3 2y t t t t

Cada cuadrado sería:

2 23 2 9 12 4t t t

Page 63: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

52

De manera que el producto de los dos primeros cuadrados puede

reescribirse como

2 2 4 3 29 12 4 9 12 4 81 216 216 96 16t t t t t t t t

Y si tomamos los dos primeros factores ya desarrollados, solo restaría

multiplicar este resultado por el último cuadrado, es decir:

2 4 3 29 12 4 81 216 216 96 16y t t t t t t

Que finalmente nos dará como resultado

6 5 4 3 2729 2916 4860 4320 2160 576 64y t t t t t t

EJEMPLO 58. ¿Cuál será el resultado de la siguiente operación:

1

2 225 1f x x ?

Siguiendo con la metodología descrita en el ejercicio anterior, elevar

esta potencia de un binomio al cuadrado y esa a su vez a la potencia de

un medio (1/2), puede desarrollarse como

1

1 22 2 122 2 2 2 22 25 1 5 1 5 1 5 1 5 1f x x x x x x

Es decir, el resultado es la misma base

1

2 22 25 1 5 1f x x x

EJEMPLO 59. ¿Es posible expresar de manera distinta la función

2

( ) sinG x x ?

Esta expresión es una conocida identidad, expresada como

2 2 2sin sin 1 cosx x x

Por lo que la expresión puede expresarse como

2 2( ) sin 1 cosG x x x

Page 64: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

53

Inversión de funciones

EJEMPLO 60.Invertir la función: ( ) 3 2f x x

Para invertir esta u otra función, es necesario primero igualarla a y, es

decir:

( ) 3 2f x y x

El siguiente paso es despejar la función para que esta quede en función

de x, lo cual nos resultaría para nuestro caso:

3 2y x

2

3

yx

Luego, debe de hacerse un cambio de variable, es decir: intercambiar las

variables que para nuestro caso, son x y y. De esta forma tenemos que

2

3

yx

2

3

xy

2( )

3

xf x

Este concepto puede verificarse con los trazos gráficos:

Como puede observarse, estas dos funciones son una la imagen de la otra,

o bien, trazando la función ( )y f x x , (la cual es una recta de 45o)

esta sirve como un espejo que refleja ambas funciones.

Ejemplo 61. Encontrar la función inversa de 1

( )2

xw x

Similarmente al ejemplo anterior, la inversión de esta función se logra

primeramente igualando la función a la variable y:

Page 65: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

54

1( )

2

xw x y

Después, despejamos la variable x:

1

2

xy

, 2 1x y

Por último, cambiamos las variables:

2 1y x

Que nos exhibe finalmente la función inversa. Podemos visualizarlo con

las gráficas de ambas ecuaciones:

EJEMPLO 62. Definida la función: 3( ) 1y f x x , ¿Cuál será el resultado

de la operación: 1( )z f x

?

La función 3( ) 1f x x se invierte siguiendo las descripciones anteriores,

primeramente igualando la función con la variable y:

3 1y x

Ahora, despejando la variable x, tendremos:

3 1x y

Finalmente, intercambiando variables:

3 1y x

Page 66: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

55

Que sería la función inversa, pudiendo entonces escribir:

1 3( ) 1f x x , 3 1z x

La gráfica de esta función puede bien mostrar esta inversión:

Ejemplo 63. ¿Cuál es la función inversa de la función: 2

3g x

x

?

Siguiendo con la metodología descrita en todos y cada uno de los

ejercicios anteriores, el primer paso es igualar la función a una

variable distinta:

2

3g x h

x

Después, se despeja la función dependiente:

3 2hx

h

Y finalmente, se intercambian las variables:

3 2xh

x

Ahora bien, para la función original y para la función invertida, debemos

de considerar que existen restricciones: la función no estará definida en

ciertos valores de x. Por ejemplo, la función original no está definida

si 3x , puesto que este valor hará que el denominador tenga como valor

el cero y como se recordará, la división entre cero es una operación

aritmética no definida. Por otro lado, la función h, tiene como numerador

directamente a la variable independiente, es decir, cuando la variable x

vale cero, la función no está definida. Podemos observar estas

condiciones en un bosquejo de la gráfica de ambas funciones:

Page 67: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

56

Ejemplo 64. ¿Es posible invertir la función ( ) sin( )G x x ?

La función sin(x), en el momento de ser igualada a la función y nos

proporciona la función seno, es decir:

sin( )y x

Ahora bien, despejando la variable “x” de esta función, tendremos que

1sin ( )x y

Intercambiando las variables, tendremos:

1sin ( )y x

La cual por definición es una función que solo está definida en los

valores de r hasta

r ; por lo tanto esta función tiene un rango

diferente a su función original, lo que por definición convierte a la

función original sin( )x en una función que no es invertible. La siguiente

figura muestra la inversión de los valores descritos

Page 68: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

57

Composición de funciones

La composición de funciones es otra operación entre funciones que se base en aplicar

una función en otra en un orden determinado, dicho resultado es también una

función18,19.

Dadas dos funciones y , se llama función compuesta a la función definida de la

siguiente forma:

Se lee: o también

El dominio de es el conjunto de toda del dominio de , tal que está en el

dominio de .

La función composición tiene las siguientes propiedades:

(asociativa)

(no es conmutativa)

Ejemplo 65. Dadas las funciones y , determinar

.

( )

( )

( )

( )

Ejemplo 66. Dadas las funciones y , determinar:

.

( )

14

f g

Page 69: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

58

( )

( )

Ejemplo 67. Determinar para las siguientes funciones

.

(√

) √

Ejemplo 68. Determinar para las siguientes funciones:

.

Ejemplo 69. Determinar para las siguientes funciones:

.

(

)

(

)

(

)

(

)

(

)

(

)

Ejemplo 70. Determinar para las siguientes funciones:

√ .

( √ ) ( √ ) √

Page 70: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

59

Ejemplo 71. Determinar , dada .

Ejemplo 72. Determinar , dada .

1.5. Discusión de ecuaciones

Discutir una ecuación algebraica representada por una expresión en dos variables de

forma ( , )f x y =0, significa analizar algunos pasos que nos permitan conocer aspectos

importantes de la ecuación y con esto poder trazar su gráfica con alguna precisión de

una manera relativamente sencilla. Los pasos por analizar los pondremos en forma de

listado como sigue20:

1. Extensión.

2. Intersecciones: con el eje X y con el eje Y.

3. Simetrías: con el eje X, con el eje Y, con el origen de coordenadas.

4. Asíntotas: horizontales y verticales.

5. Tabulación.

6. Gráfica.

Expliquemos cada paso:

1. Extensión: La extensión de una curva ( , )f x y =0, trata la determinación de los

intervalos de variación para los cuales los valores de x y y son valores reales,

esto nos ayuda para la localización de la curva en el plano coordenado y

además, poder saber si se trata de una curva cerrada o de extensión indefinida.

Los intervalos de variación se determinan despejando y en términos de x, y

luego despejando x en términos de y, determinando así el dominio y el rango

de la ecuación ( , )f x y =0.

2. Intersecciones: Con el eje X y con el eje Y.

Recordando que todo punto que se localice sobre el eje X tiene coordenadas (x ,0) donde x , y todo punto sobre el eje Y tiene coordenadas ( y ,0) donde

y , recordar que esto nos permite obtener las intersecciones de la gráfica de

la ecuación con los ejes coordenados, procediendo como sigue:

a) Con el eje X: en la ecuación dada, sustitúyase 0 (cero) en la variable y, y

resuélvase para x.

b) Con el eje Y: en la ecuación dada, sustitúyase 0 en la variable x y

resuélvase para y

Page 71: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

60

Es conveniente aclarar que algunas ecuaciones pueden tener uno,

varios, o ningún punto de intersección con los ejes.

3. Simetría: Con el eje X, con el eje Y, con el origen de coordenadas.

Una curva es simétrica respecto a una línea recta, si cada punto de la

curva tiene su simétrico con respecto a la recta.

Con el eje X: si en la ecuación dada (la original) se sustituye la y por la –y, y esta no

cambia respecto a la original, entonces la curva dada es simétrica respecto al eje X, si

cambia, entonces no hay simetría con el eje X (ya que los puntos de coordenadas

( , )x y y ( , )x y con x , y son simétricos respecto al eje X.

Con el eje Y: si en la ecuación dada (la original) se sustituye la x por la -x y esta no

cambia respecto a la original, entonces la curva dada es simétrica respecto al eje Y, si

cambia, entonces no hay simetría con el eje Y (ya que los puntos de coordenadas

( , )x y y ( , )x y con x , y son simétricos respecto al eje Y.

Con el origen de coordenadas: si en la ecuación dada (la original) se sustituye la x

por la -x y la y por la –y, y esta no cambia respecto a la original, entonces la curva

dada es simétrica respecto al origen de coordenadas, si cambia, entonces no hay

simetría respecto al origen (ya que los puntos de coordenadas ( , )x y y ( , )x y con x ,

y son simétricos con respecto al origen de coordenadas).

Cuando hay simetría respecto a los dos ejes, también habrá simetría respecto al origen

y hay que investigarlo.

4. Asíntotas: horizontales, verticales.

Si la distancia d entre un punto P que se mueve a lo largo de una

curva respecto a una línea recta, se hace cada vez más pequeña sin

que llegue a tocar la recta, dicha recta es asíntota de la curva.

Page 72: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

61

Trataremos algunas reglas para determinar asíntotas cuando se tiene ecuaciones

algebraicas de la forma

; √

donde ( )f x y ( )g x son polinomios en x

distintos de cero, tienen asíntotas horizontales y verticales21.

1a Regla: Si los polinomios y son de igual grado, al efectuar la

división,

el cociente k es la asíntota horizontal , e igualando a cero el

polinomio del denominador y resolviendo para x, se obtendrán las

asíntotas verticales:

f x r xk

g x g x

2a Regla: Si el polinomio del numerador ( )f x es de menor grado que el del

polinomio del denominador ( )g x , la asíntota horizontal es el eje x cuya

ecuación es 0y , e igualando a cero el polinomio del denominador ( ) 0g x y

resolviendo para x , se obtendrán las asíntotas verticales.

3a Regla: Si el polinomio del numerador ( )f x es de grado mayor que el del

polinomio del denominador ( )g x , entonces no existe asíntota horizontal o

serán de otra forma. En lo que respecta a las asíntotas verticales si las hay, su

tratamiento es similar a las reglas anteriores.

5. Tabulación: Para la tabulación de datos se realizaran de acuerdo con los

valores del dominio y rango.

6. Gráfica: Con toda la información obtenida en los 5 puntos anteriores, se

procede a graficar la ecuación original.

EJEMPLO 73. Discutir;

1. Extensión.

Despejando y en términos de x se tiene:

3 6.

2

xy

Despejando x en términos de y se tiene:

2 6.

3

yx

Los valores permisibles son:

Dominio , .

Rango , .

2. Intersección.

Con el eje Y: Si 0x ;3(0) 6 6

32 2

y

; en 3;y 1 0,3 .P

Page 73: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

62

Con el eje X: Si 0y ; 2(0) 6 62

3 3x

; en ; 2 2,0P

3. Simetrías.

Con el eje X: Sustituyendo en la ecuación original la – se

tiene:

3 6

2

xy

3 6

2

xy

Cambió respecto a la ecuación original, no hay

simetría con el eje X.

Con el eje Y: – ;3( ) 6

2

xy

3 6

2

xy

Cambió respecto a la ecuación original, no hay

simetría con el eje Y.

Con el origen de coordenadas: – , –

3 6.

2

xy

3 6

2

xy

Cambió, no hay simetría con el origen.

4. Asíntotas:

Horizontales: No hay asíntota.

Verticales: No hay asíntota

5. Tabulación.

De acuerdo con el dominio, se dan los siguientes valores para x:

x -5 -2 -1 1 2

y 1.8 3 5 -3 -1

6. Gráfica.

Page 74: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

63

EJEMPLO 74. Discutir;

1. Extensión.

Despejando y en términos de x se tiene:

2( 1)y x x ; 2 1

xy

x

Igualando a cero el denominador: 2 1 0x

Factorizando: 1 1 0x x

Igualando a cero cada factor: 1 0x ; 1x

1 0x ; 1x

Dominio 1,1 , 1 1,1 1,

2. Intersección.

Con el eje Y: Si 0x ;

2

0

0 1y

; 1 0,0P

Con el eje X: Si 0y ; 2

01

x

x

; 0x ; 1 0,0P

3. Simetrías.

Con el eje X. Sustituyendo en la ecuación original la – se

tiene:

2 1

xy

x

cambió respecto a la ecuación original, luego no hay

simetría con el eje X.

Con el eje Y: – ;

21

xy

x

2 1

xy

x

Cambió respecto a la ecuación original, luego no hay

simetría con el eje Y.

Con el origen de coordenadas: – , –

2;

1

xy

x

2 1

xy

x

No cambió, sí hay simetría con el origen.

Asíntotas.

Horizontales: Por la segunda Regla, la asíntota horizontal es el

eje X.

Page 75: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

64

0,y es la ecuación de la asíntota horizontal.

Verticales: Igualando a cero el denominador 2 1 0x ; factorizando:

1 1 0x x ; 1 0x ; 1x 1 0x ; 1x

Las ecuaciones 1x y 1x son las asíntotas verticales.

4. Tabulación.

De acuerdo con el dominio, se dan los siguientes valores para x:

x -3 -1.1 -0.9 0 0.9 1.5 3

y -0.38 -5.24 4.74 0 -4.74 1.2 0.38

5. Gráfica.

EJEMPLO 75. Discutir;

1. Extensión.

Despejando y en términos de x se tiene:225 .y x Es necesario para

que y tenga un valor dentro de los reales, que 2 25x 5 5x .

Valores que se encuentren fuera, entre -5 y 5 propiciarían

soluciones complejas, por lo tanto el dominio de la ecuación es:

Dominio 5,5

Despejando x en términos de y se tiene:225 .x y Es necesario

para que x tenga un valor dentro de los reales, que 2 25y

5 5y .

Análogo a lo anterior el rango de la ecuación es:

Rango 5,5

Intersección.

Con el eje Y: Si 0x ;225 (0)y ; en 5y ;

Page 76: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

65

Con el eje X: Si 0y ; 225 (0)x ; en ,

3 5,0P 4 5,0P

2. Simetrías.

Con el eje X: Sustituyendo en la ecuación original la – se

tiene:225 .y x

225y x ;al resolver la ecuación tendremos dos soluciones

del mismo valor pero con signos contrarios por lo que al

multiplicarlos por el signo menos, los resultados serán los

mismos, por lo que si hay simetría con el eje X

Con el eje Y: – ;225 .x y

225x y Análogo a lo anterior, también hay simetría con el

eje Y.

Con el origen de coordenadas: – , –

225 ( )y x 225 ( )y x sí hay simetría con el origen.

3. Asíntotas.

Horizontales: No hay asíntotas.

Verticales: No hay asíntotas.

4. Tabulación.

De acuerdo con el dominio, se dan los siguientes valores para x:

x -5 -2 0 2 5

y 0 4.58 5 4.58 0

5. Gráfica.

Page 77: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

66

EJEMPLO 76. Discutir:

2 12 4 12 0x x y

1. Extensión.

Despejando y en términos de x se tiene:

2( 12 12)

4

x xy

.

Dominio ( , ).

Despejando x en términos de y se tiene: completando el cuadrado de

la ecuación: 2 12 4 12x x y ;

2 12 36 4 12 36x x y ;

2

6 4 24x y ; 24 4 6x y .

Podemos observar que los términos de la raíz resultan negativos

cuando 6y , por lo que el rango de la ecuación es:

Rango ,6 .

2. Intersección.

Con el eje Y: Si 0x ;

2( 12 12)

4

x xy

; en y=-3; 3 0, 3 .P Con el

eje X: Si 0y ; 24 4 6x y ; en 1.1;x 10.89x 1(1.1,0)P

2 10.89,0P

3. Simetrías.

Con el eje X: Sustituyendo en la ecuación original la – se

tiene: ( )

2( 12 12)

4

x xy

; Cambió respecto a la ecuación original, no

hay simetría con el eje X.

Con el eje Y: – ; 24 4 6x y

24 4 6x y ; cambió respecto a la ecuación original, no hay

simetría con el eje Y.

Con el origen de coordenadas: – , –

2( 12( ) 12)

4

x xy

2( 12 12)

4

x xy

cambió, no hay simetría con el origen.

Page 78: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

67

4. Asíntotas.

Horizontales: No hay asíntotas.

Verticales: No hay asíntotas.

5. Tabulación.

De acuerdo con el dominio, se dan los siguientes valores para “ x ”:

x -4 0 1.1 5.5 10.89 13 16

y -19 -3 0 5.93 0 -6.25 -19

6. Gráfica.

EJEMPLO 77.Discutir;

1. Extensión.

Despejando y en términos de x se tiene: 4

.x

yx

Igualando a cero el denominador: 0.x Los valores permisibles para son todos los reales excepto cero.

Dominio 0 ,0 0, .

2. Intersección.

Con el eje Y: Si 0x ; 0 4

0y

; No hay. Con el eje X: Si 0y

;

3. Simetrías.

Con el eje X: Sustituyendo en la ecuación original se tiene

4xy

x

cambió, no hay simetría con el eje X.

Page 79: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

68

Con el eje Y: sustituimos y por –y; 4x

yx

4xy

x

cambió respecto a la ecuación original, no hay simetría

con el eje Y.

Con el origen de coordenadas: – , –

4xy

x

cambió, no hay simetría con el origen.

4. Asíntotas.

Horizontales: Por la primera regla, haciendo la división:

4 41

xy

x x

1y es la ecuación de la asíntota horizontal.

Verticales: Igualando a cero el denominador 0x ; es la ecuación

de la asíntota vertical (es el eje Y).

5. Tabulación.

De acuerdo con el dominio, se dan los siguientes valores para x:

x -5 -2 -1 1 2

y 1.8 3 5 -3 -1

6. Gráfica.

EJEMPLO 78.Discutir:

Page 80: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

69

1. Extensión.

Despejando y en términos de x se tiene: 328

27yx

; obsérvese que

los términos de la raíz se hacen infinitos cuando 0x ; por lo que

Dominio 0 ( ,0) 0, .

Despejando x en términos de y se tiene: 3

28

27x

y

.

Nótese que la expresión se vuelve infinita cuando el denominador de

la ecuación sea cero y para que esto suceda, el valor de y debe

ser -3, por lo que el rango nos queda:

rango , 3 3, .

2. Intersección.

Con el eje Y: Si 0x ; 328

270

y ; en ; no hay intersección

con el eje Y.

Con el eje X: Si 0y ; 3

28

(0) 27x

; en x=1.03; 1 1.03,0 .P

3. Simetrías.

Con el eje X: Sustituyendo en la ecuación original

La – se tiene:

328

27yx

328

27yx

; Cambió respecto a la ecuación original, no hay

simetría con el eje X.

Con el eje Y:

por

x x;

3

28

27x

y

3

28

27x

y

; Cambió respecto a la ecuación original, no hay

simetría con el eje Y.

Con el origen de coordenadas: – , –

328

27yx

328

27yx

cambió, no hay simetría con el origen.

4. Asíntotas.

Page 81: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

70

Horizontales: Por la primera Regla, partiendo de la ecuación:

3 2827y

x ,

3 27y ;

3y

es la ecuación de la asíntota horizontal.

Verticales: Igualando a cero el denominador 0x ; es la ecuación

de la asíntota vertical (es el eje Y)

5. Tabulación.

De acuerdo con el dominio, se dan los siguientes valores para x:

x -2 -1 -0.5 0.5 1.037 2 4

y -3.44 -3.8 -4.36 3.07 0 -2.35 -2.71

6. Gráfica.

1.6. Modelación de funciones.

Ejemplo 79. Un terreno rectangular tiene un perímetro de 80 m. Se desea

expresar el área en función de uno del lado más largo (base).

Un buen comienzo para el planteamiento de este problema, es realizar un

dibujo que represente lo más posible al problema planteado, con todas las

representaciones de sus variables. De esta manera, podemos expresar en un

bosquejo un dibujo como el siguiente:

Page 82: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

71

De acuerdo a la figura, podemos expresar el área del rectángulo en

función de la base o de la altura, es decir:

( , )A b h b h

Por otro lado, un cálculo que puede ser también útil es la función del

perímetro, que se escribiría:

( , ) 2 2P b h b b h h b h

Como conocemos el valor del perímetro, podemos sustituirlo en la

expresión anterior de manera que

( , ) 80 2 2P b h m b h

Que podemos expresar como

80 2 2m b h

Esta es ya una ecuación, pues sus valores están en función de un valor en

particular, de hecho, puede expresarse de manera más sintetizada como

40m b h

Podemos despejar de esta ecuación, la variable altura (h), para de esta

manera tener la ecuación en función de la base (b), es decir:

40h m b

Sustituyendo esta variable en la función del área tendremos:

( , ) 40A b h b h b m b

Lo cual nos deja una expresión en función de una sola variable:

2( ) 40 40A b b m b m b b

Y que es la función pedida.

EJEMPLO 80. ¿Cómo se puede expresar el área de un triángulo equilátero

como función de la longitud x de uno de sus lados?

Page 83: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

72

Al igual que en el problema anterior, un buen comienzo puede ser una

representación del problema. Así, un dibujo del triángulo ayudaría:

Como puede observarse, la figura muestra la representación de un

triángulo equilátero, esto es, con cada uno de sus lados iguales. La

altura de esta parte de la mitad del lado considerado como base (por ser

un triángulo rectángulo), de ahí que la base se divide en dos partes

iguales a partir de la altura, que es una recta perpendicular a la base.

Comenzando con el análisis de la figura, tenemos que el área del

rectángulo será:

,2

b hA b h

Como sabemos, la base puede sustituirse por el valor de la base, es

decir:

,2

x hA x h

Por lo que puede observarse, debemos encontrar una expresión que vincule

la variable h con la variable x. Una manera de expresar lo anterior es

considerando uno de los triángulos rectángulo en los que se ha dividido

el triángulo rectángulo:

Page 84: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

73

En el triángulo mencionado, podemos expresar que por teorema de

Pitágoras:

2

22

2

xx h

Despejando la variable h:

2

2

2

xh x

Que es una fórmula que contiene solamente a la variable x. Por tanto,

podemos sustituir esta fórmula en la función que expresa el área del

triángulo:

2

2

2

2

xx x

A x

Que es la fórmula pedida.

Ejemplo 81. Una pista de atletismo tiene 400m de longitud, y su figura

está compuesta por dos lados paralelos y dos semicírculos. Encuentra una

función que exprese el área encerrada en la pista en función del radio de

los semicírculos.

La figura que representa el problema propuesto puede ser como la

siguiente:

Si observamos, el área contenida por el perímetro de la pista puede

dividirse en tres partes: dos semicírculos y un rectángulo. La siguiente

figura muestra estas áreas, el área llamada A1 como el área del

rectángulo y el área A2 y A3 como las áreas de los semicírculos, que por

cierto, son iguales.

Page 85: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

74

El área del rectángulo puede calcularse como

1 2A b h a r

El área de cada uno de los semicírculos será:

2 2

2 32 2

r rA A

Y el área total de la figura será:

2 2

1 2 3 22 2

r rA A A a r

Por otro lado, considerando el perímetro total de la figura, tendremos

que será la suma del perímetro de cada una de las dos semicircunferencias

( r ) y las bases del rectángulo(a):

2( )P r r a a r a

Como conocemos el valor numérico del perímetro que es de 400m, podemos

sustituirlo en esta ecuación:

400 2( )P r a

Despejamos la variable a, el área de cada uno de los semicírculos en

función del radio será:

200a r

Por lo tanto, considerar esta fórmula para el cálculo de la variable a o

lado de la figura puede ser sustituida en la fórmula del área total:

2 2 2 2

1 2 3 2 200 22 2 2 2

r r r rA A A a r r r

El área total estará entonces en función del radio de las

semicircunferencias, por lo que agrupando términos y reduciendo la

expresión tendremos:

( ) 400At r r r

Que sería la función pedida.

Ejemplo 82. Se desea fabricar una caja sin tapa con una lámina de cartón

cuadrada cuyos lados midan 12cm. Encontrar una expresión del volumen que

contendrá la caja en función de cuatro recortes cuadrados que se

realizarán en cada una de las esquinas.

Page 86: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

75

Un dibujo que represente el planteamiento del texto anterior puede ser

similar al siguiente:

Como puede observarse, la hoja de cartón tiene los recortes descritos,

por lo que una función que nos indique la base de la caja se expresaría

como

( ) 12 2 12 2b x cm x cm x

Puesto que el cuadro que haría las veces de base tiene como lado el valor

de 12 2cm x , como se muestra en la siguiente figura:

Como puede observarse, el valor de la altura de la caja será entonces de

x, por lo que el volumen total de la caja puede expresarse como el

producto de la base por la altura, es decir:

( ) ( ) 12 2 12 2b x h x cm x cm x x

Desarrollando el producto y agrupando términos semejantes, tendríamos:

2

( ) 4 6V x x x cm

Que es la función pedida.

Page 87: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

76

Ejemplo 83. Un pueblo se encuentra a 3km de distancia de un río. En una

sesión de simulacro, se pretendió que un bosque se incendiaba a una

distancia de 2km del mismo río. La distancia sobre el río que separa al

pueblo del bosque es de 6km (véase la figura). Los bomberos matemáticos

quieren representar una función que represente la distancia sobre el río

para en un momento dado, calcular el trayecto más corto para ir del

pueblo al río y después al bosque22.

Una suposición que puede ubicar una mejor solución para el problema, es

suponer un punto sobre el río, el cual será la posición de menor

distancia del recorrido. Esto puede bosquejarse, puede ser como la

siguiente:

Como puede observarse, el punto x representa la distancia entre los dos

pueblos en donde puede ser mínima función de la distancia total. Por otro

lado, la distancia que han de recorrer los bomberos desde el pueblo al

río y luego al bosque (o incluso en orden inverso) se calcula con la suma

de los trayectos que han de recorrer; esto es de acuerdo al dibujo: el

segmento A más el segmento B.

( ) ( ) ( )D x A x B x

El segmento A puede ser expresado como 2 2

( ) 3A x Km x

Y el segmento B: 2 2

( ) 2 6B x Km Km x

Page 88: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

77

Por lo que la suma de ambas funciones sería:

2 2 2 2( ) ( ) ( ) 3 2 6D x A x B x Km x Km Km x

Que una vez desarrollando y agrupando términos semejantes, obtendríamos:

2 2( ) 2 12 49D x x x Km Km .

Page 89: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

78

1.7. Problemario

1. Determinar las variables independientes y las dependientes, así como las constantes

que intervienen en cada una de las situaciones que se indican a continuación:

1.1. El área de un triángulo se determina utilizando la fórmula

1.2. El área de un círculo es a través de la fórmula

1.3. A cierto trabajador se le paga por el número de horas trabajadas. El costo por

hora para dicho trabajador es de $80.00, por lo que su pago se determina mediante la

ecuación , siendo n el número total de horas trabajadas.

1.4. La energía cinética de un cuerpo es la energía que dicho cuerpo tiene debido a su

movimiento, la cual depende su masa y de su velocidad de acuerdo son la siguiente

fórmula:

1.5. En geometría analítica se demuestra que la ecuación que determina una parábola

está definida como

1.6. La ecuación que define la posición en un instante de tiempo t, de un cuerpo que

se mueve con una velocidad inicial y con una aceleración constante a es:

1.7. Cuando un cuerpo se ve afectado por un cambio de temperatura , se pueden

presentar dilataciones o contracciones, de manera que la deformación lineal se

puede calcular con la fórmula , donde L representa la longitud inicial del

cuerpo y es el coeficiente de dilatación lineal que caracteriza al material del cuerpo.

1.8. La Ley de Ohm nos permite determinar la corriente a través de un conductor

mediante la fórmula

, en la que V representa el voltaje aplicado y R la resistencia

eléctrica.

1.9. Para describir el crecimiento de bacterias en un cultivo, se tiene , donde

A se conoce como factor de crecimiento y k tasa de crecimiento y ambos son positivos.

1.10. La cantidad de agua contenida en un tinaco cilíndrico V, se puede calcular

conociendo el diámetro D y el nivel de agua medido desde la base h mediante:

2. Obtener el producto cartesiano de los siguientes conjuntos:

2.1. { y {

2.2. { y {

Page 90: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

79

2.3. { y {

2.4. { y {

2.5. { y {

3. Determinar si los siguientes conjuntos corresponden a funciones o relaciones:

3.1. {

3.2. {

3.3. {

3.4. {

3.5. {(

) (

) (

) (

)

4. Determinar si las siguientes gráficas corresponden a funciones o relaciones:

4.1. 4.2.

4.3. 4.4.

4.5. 4.6.

Page 91: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

80

4.7. 4.8.

4.9. 4.10.

5. Evaluar las siguientes funciones:

5.1. para ⁄

5.2. para ⁄

5.3. para

5.4. para

5.5. √ para

5.6.

para ( ⁄ )

5.7. para ( ⁄ )

5.8. para

5.9.

para

5.10. ⁄ para ( ⁄ ) ( ⁄ )

6. Identificar si las funciones siguientes son de tipo algebraica o trascendente:

6.1.

6.2.

6.3.

6.4.

6.5. √

Page 92: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

81

6.6.

6.7.

6.8.

6.9.

6.10.

7. Determinar si las funciones siguientes son pares, impares o ninguna de las dos:

7.1.

7.2.

7.3.

7.4.

7.5.

7.6.

7.7.

7.8.

7.9.

7.10.

8. Dadas las siguientes funciones, realizar las sumas propuestas:

1

2 2( ) 2r x x

,

22 2( )

x xs x

x

,

( 1)( 1)( )

x xt x

x

,

22 2( )

2

2

x xu x

x

,

( ) sinv x x , ( ) xw x e

8.1. ( ) ( )r x s x

8.2. ( ) ( )r x t x

8.3. ( ) ( ) ( )s x t x u x

8.4. ( ) ( )s x r x

8.5. ( ) ( )w x r x

8.6. ( ) ( )v x s x

8.7. ( ) ( ) ( )u x s x r x

8.8. ( ) ( ) ( )u x s x r x

8.9. ( ) ( )v x t x

8.10. ( ) ( ) ( ) ( )v x w x s x t x

Page 93: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

82

9. Dadas las siguientes funciones, realizar las restas o diferencias propuestas:

2( ) 2 8 5A x x x , 3( ) 5 2 0B x x x ,

( 1)( 1)( )

x xC x

x

, ( ) sin ( )D x x ,

1( ) sin ( )E x x , &1

( )2

F x

9.1. ( ) ( )A x F x

9.2. ( ) ( )F x A x

9.3. ( ) ( )B x A x

9.4. ( ) ( )C x A x

9.5. ( ) ( )D x A x

9.6. ( ) ( 3)A x B

9.7. ( ) ( )E x D x

9.8. ( ) ( )A x F x

9.9. ( ) ( ) ( )A x B x C x

9.10. ( ) ( ) ( )A x B x C x

10. Dadas las siguientes funciones, realizar las multiplicaciones propuestas:

2( ) 2 8 5A x x x , 3( ) 5 2 0B x x x ,

( 1)( 1)( )

x xC x

x

, ( ) sin ( )D x x ,

1( ) sin ( )E x x , ( )2

xF x

10.1. ( ) ( )A x B x

10.2. ( ) ( )B x A x

10.3. ( ) ( )C x A x

10.4. ( ) ( )D x E x

10.5. ( ) ( )F x B x

10.6. 1

( )3

A x B x

10.7. ( ) ( )A x D x

10.8. ( ) ( )A x F x

10.9. ( ) ( ) ( )A x B x C x

Page 94: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

83

10.10. ( ) ( ) ( )A x B x C x

11. Dadas las siguientes funciones, realizar las divisiones propuestas:

2( )A x x x , 2( ) 2 1B x x x ,

( 1)( 1)( )

x xC x

x

,

1( ) sin ( )D x x , ( )E x ux vx ,

( )8

xF x

11.1. ( )

( )

A x

B x

11.2. ( )

( )

B x

A x

11.3. ( )

( )

A x

C x

11.4. ( )

( )

C x

B x

11.5. ( )

( )

A x

E x

11.6. ( )

( )

F x

D x

11.7. ( )

( )

A x

D x

11.8. ( )

( )

F x

A x

11.9. ( )

( )

A x

F x

11.10. ( )

(1)

C x

A

12. Dadas las siguientes funciones, realizar las potencias propuestas:

2( )A x x x , 2( ) 2 1B x x x ,

1( ) sin ( )C x x , ( )8

xD x

12.1. 2( )A x

12.2. 3( )B x

12.3. 1( )C x

Page 95: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

84

12.4. 2( )D x

12.5. 1( )D x

12.6. 0( )A x

12.7. 2

4( )C x

12.8.

2

4( )D x

12.9.

168

2( )A x

12.10. 0

4( )A x

13. Encontrar la función inversa de cada una de las funciones propuestas:

13.1. 2 1( ) 3 2 , ( )f x x x f x

13.2. 1( ) 2 3, ( )f x x f x

13.3. 11

( ) , ( )2

f x f xx

13.4. 1( ) 5 25, ( )f x x f x

13.5. 1( ) ln( ), ( )f x x f x

13.6. 1( ) , ( )xf x e f x

13.7. 1( ) 3 2, ( )f x x f x

13.8. 1( ) , ( )f x x f x

13.9. 1( ) tan( ), ( )f x x f x

13.10. 13

( ) , ( )1

xf x f x

14. Dadas las siguientes funciones, determinar

14.1.

14.2.

14.3.

14.4.

14.5.

Page 96: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

85

14.6.

14.7.

14.8. √

15. Calcular lo siguiente

15.1. √

15.2.

16. Discusión y análisis de ecuaciones:

16.1.

16.2.

16.3.

16.4.

Page 97: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

86

1.8. Autoevaluación

1. Con los siguientes pares ordenados, determina el dominio y el contradominio.

Indicar si se trata de una relación o función. Graficar los pares en un sistema de

coordenadas.

a)

b)

2. Encuentra el dominio de la siguiente función:

3. Dada la función , determinar el valor de la función para

.

4. Dada la función

, indicar si es algebraica o trascendente, si tiene simetría

respectos a los ejes o el origen, si es continua o discontinua y elaborar la gráfica de

dicha función en el intervalo [-2,2].

5. Dadas las funciones √ , determinar:

a) b)

c) d)

e) f)

6. Se tiene una lata de refresco cuya capacidad volumétrica es de 350cm3. Expresar el

área total S de la superficie de la lata en función de su radio r y determinar el dominio.

Área superficial

S

r

h

Page 98: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

87

1.9. Conclusión

Uno de los pilares de las matemáticas es la función. Lo estudiado en esta unidad

facilita el estudio del cálculo. Otro de los pilares en el estudio de las matemáticas es la

determinación de límites de una función que veremos en la siguiente unidad.

La gráfica de una función es una imagen visual que nos permite ver el comportamiento

de dicha función. Hoy día podemos contar con calculadoras y una gran cantidad de

programas informáticos para la graficación de una función. ¿Conoces alguno de estos

programas?

Page 99: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

88

1.10. Soluciones del problemario

1.1. A es la función dependiente, b y h son las variables independientes, 2 es la

constante numérica.

1.2. A es la variable dependiente, r es la variable independiente, π y 2 son constantes

numéricas.

1.3. S es la variable que depende de n, la cual es la variable independiente, 80 es la

constante numérica.

1.4. Ec es la variable dependiente, v es la variable independiente, m es una constante

arbitraria (parámetro), ½ y 2 son constantes numéricas.

1.5. y es la variable dependiente, x es la variable independiente, mientras que a, b y c

son parámetros.

1.6. S es la variable dependiente, t es la variable independiente, y a son

parámetros, ½ y 2 son constantes numéricas.

1.7 es la variable dependiente, y L son parámetros, T es la variable

independiente.

1.8. I variable dependiente, V y R variables independientes.

1.9. f es la variable dependiente, A y k son parámetros, e es una constante numérica,

t es la variable independiente.

1.10. V es la variable dependiente, D y H variables independientes, las constantes

numéricas son 4, 2 y π.

2.1. {

2.1. {

2.3. {

2.4. {

2.5. {( ) ( ) ( ) ( ) ( ) ( )

3.1. A es una función (ya que no se repite el primer elemento con segundos elementos

diferentes).

3.2. B es una función

3.3. C es una relación, (ya que los elementos 1 y 4 se vuelven a repetir)

3.4. D es una función

3.5. E es una relación (el primer elemento es el mismo en todas las parejas

ordenadas)

4.1. Función

Page 100: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

89

4.2. Función

4.3. Función

4.4. Relación

4.5. Relación

4.6. Función

4.7. Relación

4.8. Relación

4.9. Función

4.10. Función

5.1. ( ⁄ ) ⁄

5.2. ( ⁄ ) ⁄

5.3.

5.4.

5.5. √

5.6 ⁄ ( ⁄ )

⁄ ( ⁄ )

5.7. ( ⁄ ) ⁄

5.8.

5.9.

5.10. ( ⁄ ) ⁄ ( ⁄ ) (

)

6.1. Trascendente

6.2. Trascendente

6.3. Trascendente

6.4. Algebraica

6.5. Algebraica

6.6. Algebraica

6.7. Trascendente

6.8. Trascendente

6.9. Algebraica

6.10. Trascendente

7.1. Par

7.2. Impar

Page 101: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

90

7.3. No es par ni impar

7.4. No es par ni impar

7.5. No es par ni impar

7.6. No es par ni impar

7.7. Par

7.8. Impar

7.9. Impar

7.10. No es par ni impar

14.1.

14.2.

14.3.

√ √

14.4.

14.5.

14.6.

14.7.

14.8 . √ √

15.1. √√

15.2.

16.1.

a) Dominio = 2 ,2 2, .

b) Intersecciones: Eje X, 1 3,0 .P

Eje Y, 2 0,3 .P

c) Simetrías: Eje X, no hay.

Eje Y, no hay.

Origen, no hay.

d) Asíntotas: Horizontales, 2y .

Verticales, 2x .

e) Tabulación:

x -4 0 1.5 2.5 5

y 2.33 3 6 -2 1.33

f) Gráfica:

Page 102: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

91

16.2.

a) Dominio = , .

b) Rango = , .

c) Intersecciones: Eje X, 1

5,0 .

3P

Eje Y, 2 0,5P

d) Simetrías: Eje X, no hay.

Eje Y, no hay.

Origen, no hay.

e) Asíntotas: Horizontales, no tiene.

Verticales, no tiene.

f) Tabulación:

x -1.5 0.5 0 1 1.66 3

y 9.5 3.5 5 2 0 -4

g) Gráfica:

16.3.

a) Dominio = 1 , 1 1, .

Page 103: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

92

b) Rango = 0.25 , 0.25 0.25, .

c) Intersecciones: Eje X, 1 0,0P

Eje Y, 2 0,0P

d) Simetrías: Eje X, no hay.

Eje Y, no hay.

Origen, no hay.

e) Asíntotas: Horizontales, 0.25y .

Verticales, 1x .

f) Tabulación:

x -3 -2 -1.5 -0.5 0 2 y 0.37 -0.5 -0.75 0.25 0 -0.16

g) Gráfica:

16.4.

a) Dominio = 0, .

b) Rango = , .

c) Intersecciones: Eje X, 1 0,0 .P

Eje Y, 2 0,0 .P

d) Simetrías: Eje X, sí hay.

Eje Y, no hay.

Origen, no hay.

e) Asíntotas: Horizontales, no tiene.

Verticales, no tiene.

f) Tabulación:

x 0 0.5 1 1.5 2 2.5

Page 104: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

93

y 0 2 2.82 3.46 4 4.47

g) Gráfica:

16.5.

a) Dominio = , .

b) Rango = 0, .

c) Intersecciones: Eje X, 0.x

Eje Y, 0.y

d) Simetrías: Eje X, no hay.

Eje Y, si hay.

Origen, no hay.

e) Asíntotas: Horizontales, no tiene.

Verticales, no tiene.

f) Tabulación:

x -3 -2 -1 0 1 2 3

y 0.56 0.25 0.06 0 0.06 0.25 0.56

g) Gráfica:

Page 105: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

94

1.11. Soluciones de la Autoevaluación

1a) {

{

Se trata de una función, ya que los primeros elementos no se repiten en otro

par ordenado.

1b) {

{

Se trata de una relación, ya que los primeros elementos se repiten en otro par

ordenado.

2.El dominio son todos los reales excepto (generan división por cero), expresado en

intervalos:

3.

4.La función

, es de tipo algebraica, continua y no tiene simetría ni con los

ejes ni con el origen (no es par ni impar), su gráfica es como la que se muestra:

Page 106: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

95

5.

a) √

b) √

c) √

d)

e) ( ) √

f) ( ) √ (√ ) √

6. Superficie total

Como el volumen es 350cm3 tenemos por lo que

Así que (

)

con

Page 107: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

96

Referencias

1Gozález G. Carlos, ET.AL. (2008). Matemáticas: Bachillerato 1. Madrid, España. Editex, S.A.

2Engler Adriana, ET.AL. (2005). Funciones. Santa Fe, Argentina. Ed. Universidad Nacional Del

Litoral.

3Granville William. (1997). Cálculo Diferencial e Integral. México. Limusa.

4Dugopolski Mark. (2005). Álgebra Intermedia. México. McGraw- Hill

5 Arana Hernández Alma Nora. (2008). Esenciales de Cálculo. México. Santillana

6 De Oteyza Elena. (2006). Conocimientos Fundamentales de Matemáticas Cálculo diferencial e

integral. México. Pearson

7 Aguilar Marquez Arturo, et.al. (2010). Cálculo diferencial e integral. México. Pearson.

8 Stewart James. Cálculo: Conceptos y Contextos.(2010). México. Cengage Learning

9Mendez Hinojosa Arturo. (2007). Matemáticas 4. México. Santillana

10Haar R. Bart M. Front- end vision and multi- scale image analysis. (2003). KluwerAcademic

Publisher.

11Fuenlabrada Samuel. Cálculo Diferencial. (2008). McGraw Hill Interamericana

12SydsaeterKnut, Matemáticas para el análisis económico. (1996). Madrid España. Prentice

Hall

13Leithold Louis.(1982)El cálculocon geometría analítica.México. Harla

14 Sullivan Michael.(1997)Trigonometría y Geometría Analítica.México: Pearson Educación

Consultado 13 de julio de 2011

http://books.google.com.mx/books?id=nt64q3HX_T0C&pg=PA51&dq=funci%C3%B3n+del+mayor+

entero&hl=es&ei=T7MdTuT4LoS-

sAO48Li4DA&sa=X&oi=book_result&ct=result&resnum=1&ved=0CCgQ6AEwAA#v=onepage&

q=funci%C3%B3n%20del%20mayor%20entero&f=false

15Ibáñez Carrasco Patricia, (2006). Matemáticas IV: Precálculo. México. Thomson

16González García Carlos, (2008). Matemáticas aplicadas a Ciencias Sociales. Madrid

España. Editex

17 G. Zill Dennis. (1987). Cálculo con geometría analítica. México. Grupo Editorial

Iberoamérica.

18Fuenlabrada Samuel.(1995) Matemáticas IV Cálculo Diferencial .México: McGraw- Hill

Page 108: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

97

19González G: Carlos, et al.(2008). Matemáticas, 1 Bachillerato. México. Editex

20Padilla Pineda Julio Eduardo, ET.AL. (2007). Gimnasia con Geometría Analítica. México.

UNAM. http://www.prepa5.unam.mx/profesor/publicacionMate/09V.pdf

21Feria Gollaz, Víctor. (2004). Cuaderno de trabajo de matemáticas V. México. UNAM.

http://books.google.com.mx/books?id=NHuHt766JZ8C&pg=PA55&dq=discusi%C3%B3n+de+ecuac

iones+algebraicas&hl=es&ei=M4IYTsmsE6vhsQKEx7jCBw&sa=X&oi=book_result&ct=resu

lt&resnum=1&ved=0CC0Q6AEwAA#v=onepage&q=discusi%C3%B3n%20de%20ecuaciones%20a

lgebraicas&f=false

22Hitt Espinosa, Fernando. (2002). Funciones en contexto. 1a ed. México: Pearson Educación.

Page 109: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

i

Page 110: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

1

2.1. Noción intuitiva de límite

Un poco de historia.

El cálculo como una de las aplicaciones de las matemáticas tiene sus orígenes en los

desarrollos de las matemáticas en la antigua Grecia, particularmente basados en las

propuestas de Euclides ( 325 a.C.- 265 a.C.), quien realizó una serie de postulados

relacionados directamente con la geometría desarrollada en el plano (conocida también

como Geometría Euclidiana)1. Los desarrollos que en aquellos tiempos se proponían,

tenían siempre relación con las figuras geométricas. Un problema en particular era

calcular el área del círculo solo con regla y compás. Aunque los intentos por realizar

esta tarea no tuvieron resultados tan concretos como otros, los planteamientos tenían

relaciones directas con operaciones con sumas o series de números2.

Algunos de los desarrollos numéricos que se realizaron, tienen relación directa con el

concepto de límite, concepto acuñado de manera formal hasta principio del siglo XIX,

es decir, a principios de 1800 por los matemático Fourier, Bolzano y Euler. Los trabajos

realizados por estos matemáticos pudieron no solo darle un sentido distinto al

concepto de función, sino que estos nuevos conceptos pudieron dar un sustento a los

trabajos realizados por Isaac Newton y Gottfried Leibniz3.

Como ya se ha mencionado, Newton y Leibniz digamos que fueron quienes

descubrieron el cálculo como una operación que, aplicada a una función, puede

proveernos información importante respecto a su comportamiento general o en puntos

específicos. Por cierto, este descubrimiento tiene una interesante historia que

podríamos relacionar con lo que ahora se conoce como derechos de autor, pero aun

que estos trabajos contribuyeron a explicar y definir el concepto de derivada e integral

de una función, no fue sino hasta el mencionado trabajo acerca de límites cuando se

pudo aceptar al cálculo como una operación formal y definida en las matemáticas.

El concepto de límite

Una definición práctica del concepto de límite puede ser exhibida a partir de una serie

de números, esto es: el límite de una sucesión4. Por ejemplo, si observamos la

sucesión de fracciones:

1, 1

2,

1

3,

1

4,

1

5, …

1

10, …,

1

100, ...

1

1000, ….,

1

n

Page 111: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

2

Podemos observar que cada uno de los resultados de las fracciones propuestas se va

pareciendo más y más a una cantidad determinada:

1, .5 , .3 , .25 , .2 , … .1 , …, .01, ... .001, …., ¿0?

Preguntamos entonces: ¿cuál es esa cantidad? La respuesta es que en realidad esa

cantidad no es muy directa, es decir, ese resultado no es una cantidad exacta por muy

pequeña que sea, por lo que podemos expresarla tan pequeña como sea posible

conforme a qué tan grande podamos expresar n. En otras palabras, el resultado de

dividir uno entre n, cuando n tiende a infinito será cero; es decir:

10

n cuando n

Es necesario aclarar que solo podemos colocar el signo de igual, cuando la n tiene

como tendencia una cantidad que es tan cercana como sea posible a la expresada

(infinito, para nuestro caso).

Por otro lado, si realizamos la misma operación tratando de expresar una fracción cuyo

denominador tienda a cero (recuerde que la operación de cualquier número entre cero

no está definida), ¿cómo podemos expresar el resultado?. Analizando esta situación de

manera similar a la anterior, podemos comenzar expresando una sucesión de

cocientes, cuyo denominador se vaya haciendo en cada ocasión más pequeño:

1, 1

.9,

1

.8, …,

1

.5, …,

1

.1, …,

1

.01, …,

1

.001, ...

1

.0001, ….,

1

n

Lo cual nos proporcionará los resultados:

1, 1.1, 1.25 , …, 2 , …,10 , …,100 , …,1000 , ... 10000 , …., ¿ ?

De acuerdo a estos resultados y al proceso de análisis descrito en el ejemplo anterior,

podemos afirmar que dada la sucesión de fracciones, donde el denominador de estas

se hace cada vez más pequeño, el resultado de la fracción uno entre n cuando n tiende

a cero será infinito. En otras palabras:

Page 112: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

3

1

n cuando 0n

Aunque una definición más formal puede situarnos en toda la magnitud del concepto

de límite, una definición que puede perfectamente situarnos en un conocimiento

elemental y práctico del concepto de límite 5 nos dice que afirmar que f tiende a l en a,

equivale e expresarlo en la ecuación:

lim ( ) 1x a

f x

Como podrá observarse, en esta definición se retoma el concepto de función y esto es

debido a que, para nuestro caso la variable n puede tomar cualquier valor, lo que nos

proporciona una evaluación de la función. De hecho, prácticamente la tendencia de la

variable es equivalente a tomar su valor, solo que no se debe olvidar que es un valor

tan cercano como sea posible a la tendencia, no es igual a ese valor. Por lo que,

considerando los ejemplos anteriores, podemos reescribir que la función 1

n tiende a

cero en infinito de acuerdo a la notación de límite. Esto es:

10

n cuando n será equivalente a escribir:

1lim 0n n

De la misma manera, podemos afirmar que

1

n cuando 0n será equivalente a:

0

1limn n

Por otro lado, podemos evaluar la función con cualquier otro valor definiéndolo como

su límite. De esta manera, cuando de se evalúa la función anterior en diez, podemos

decir:

10

1 1lim 0.1

10n n

Resumiendo: la idea central es evaluar la función en un valor lo más cercano posible al

propuesto, poniendo atención en comportamientos especiales como los que nos dan

como resultado cero o infinito.

Page 113: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

4

Ejemplo 1. ¿Cuál será el resultado de aplicar el límite a la función

2 1n

n

cuando n tiende a 3?

Lo primero que debemos hacer es realizar la sustitución del valor

propuesto, es decir, aplicar el límite, lo cual, se puede expresar como

3

2 3 12 1 5lim

3 3n

n

n

El resultado será entonces cinco tercios.

Ejemplo 2. Expresar la siguiente sucesión como un límite y determinar su

valor cuando n tiende a infinito.

1, 3

2,

5

3,

7

4,

9

5 …

2 1n

n

Podemos definir primeramente la función que expresa cada una de las

fracciones de manera general, la cual se muestra como

2 1n

f nn

Después, aplicamos el límite de la función:

2 1lim ( )n

f n

Como puede observarse, aplicar la operación no tiene un sentido numérico,

puesto que multiplicar por dos el infinito nos daría un ¿doble infinito?.

Debemos entonces analizar el resultado de la serie que se generaliza en

la función. De esta manera tendremos como resultados, cuando vamos dando

valores crecientes a n, en este caso n=1,2,3,4,5,…:

Page 114: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

5

1, 3

1.52 ,

51.66

3 ,

71.75

4 ,

91.8

5 …

Para un número n muy grande en la serie, digamos 100, tendremos como

resultado:

2 100 1 199

100 1.99100 100

f

De manera análoga 1000 1.999,f por lo que de acuerdo al análisis de la

función podemos afirmar:

lim ( ) 2n

f n

No podemos afirmar que existan límites especiales, pues en realidad todos y cada uno

de estos tienen la particularidad de asumir un valor una vez aplicado el valor

correspondiente. Sin embargo, veamos qué sucede cuando aplicamos el límite a la

siguiente función:

3 1

1

xf x

x

Parece que esta función no tendrá problemas al aplicar por ejemplo el valor de cero:

3

0

0 1lim ( ) 1

0 1xf x

De hecho, podríamos observar la gráfica de esta función, la cual parece que muestra

una curva que es continua en cualquier punto:

Page 115: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

6

Sin embargo, ¿Qué sucede si aplicamos a la variable el valor de 1?

3

1

1lim

1x

x

x

La idea que primeramente se puede aplicar considerando los procesos anteriores, es

sustituir el valor propuesto al cual tiende el límite, es decir:

3

1

1 1 0lim ¿?

1 1 0x

La aplicación entonces del límite parece que no existe. Sin embargo, parece que si

realizamos una manipulación algebraica tendremos que

23

2

1 1 1

1 11lim lim lim 1

1 1x x x

x x xxx x

x x

Lo que, como puede apreciarse; tiene un valor determinado:

2

1lim 1 3x

x x

Es decir; el límite de f(x) cuando x tiende a uno, es tres6:

Page 116: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

7

Pero aquí puede hacerse un análisis más exhaustivo; si se realiza una tabla con las

evaluaciones numéricas de un valor tan cercano al valor propuesto 1, tendremos

valores de la función prácticamente iguales a 3. Sin olvidar el concepto de límite, aún

sin realizar las manipulaciones algebraicas descritas, podemos afirmar dos cosas:

1. Al acercarnos tanto como sea posible al valor de uno por un lado, la tendencia

del resultado es 3. Si es de izquierda a derecha, se dice que el límite de f(x)

tiende a tres cuando x tiende a uno por la izquierda.

2. Por otro lado, si los valores de la función son tan cercanos al tres y podemos

acercarnos al valor 1 de derecha a izquierda, se dice que el límite tiende a tres

cuando x tiende a uno por la derecha.

Si nos acercamos al valor de 3 tanto como sea posible por un lado y otro, la tendencia

del resultado es 3, aunque no exista el límite en el valor exacto al que tiende el límite

(es decir: aunque la función no exista en el punto propuesto). La siguiente tabla ilustra

lo anteriormente explicado:

( )f x 1.11 2.71 2.9701 2.997 3 3.003 3.0301 3.31 3.64

x .1 .9 .99 .999 1 1.001 1.01 1.1 1.2

Para este caso en particular, el valor del límite por la izquierda es el mismo que por la

derecha: tres. La representación de este límite se representa con un superíndice en el

valor de la tendencia, lo cual no representa que tenga un signo, sino que el símbolo

menos para este caso, representa que el límite tiende por la izquierda, y el símbolo de

más, representará la tendencia por la derecha. Como operación entonces será:

Límite por la izquierda:

3

1

1lim 3

1x

x

x

Límite por la derecha:

3

1

1lim 3

1x

x

x

Tendencia por derecha Tendencia por izquierda

Page 117: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

8

Ejemplo 3. ¿Cuál será el resultado de aplicar el siguiente límite:

0

1limx x

?

El límite descrito de acuerdo a la simbología descrita, es un límite al

cual se la acercará por la derecha. Como ya hemos abordado este mismo

límite mediante el concepto de series numéricas (con la variable n en

lugar de x y con un resultado de cero), analizaremos ahora el resultado

con una tabla de valores con tendencia por la derecha, esto es:

x 0 … .0001 .0001 .01 .1 1 10 100

1

x

… 10000 1000 100 10 1 .1 .01

Podemos corroborar entonces, que el valor coincide con el que analizamos

algunos párrafos anteriores.

0

1limx x

¿Cuál será entonces la diferencia entre la aplicación de límites

laterales y el límite directo? Probablemente el siguiente ejemplo pueda

resolver esta pregunta.

Ejemplo 4. ¿Será lo mismo aplicar el resultado del límite 0

1limx x

que

0

1limx x

?

De entrada, el resultado de la aplicación del límite por la derecha, ya

se ha desarrollado en el ejemplo anterior, dándonos como resultado

infinito:

Page 118: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

9

0

1limx x

Veamos ahora la tendencia de la aplicación del límite por la izquierda

mediante la tabla correspondiente:

x -10 -1 -.1 -.01 -.001 -.0001 … 0

1

x -.1 -1 -10 -100 -1000 -10000 …

Entonces, como puede apreciarse, al tomar valores negativos desde los más

grandes negativos (teóricamente, desde menos infinito), el valor de la

función va tomando valores muy grandes, lo que podemos expresar en

función de límites como

0

1limx x

Y que además podemos analizar graficando la función

:

Por tanto, podemos afirmar que los límites no son iguales, pues:

Page 119: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

10

0

1limx x

,

0

1limx x

Ejemplo 5. Encontrar el límite 2( ) 9f x x cuando x tiende a 3 por la

izquierda.

Lo primero que realizaremos es la sustitución del límite de acuerdo a la

notación descrita:

3lim ( )x

f x

Lo cual nos lleva a establecer las operaciones aritméticas necesarias:

2

3lim 9 9 9 0x

x

Esta sustitución no parece tener problema alguno, pues si se observa la

tendencia de x con el valor propuesto como tres, entonces podríamos

suponer igualmente un valor tan cercano al tres que se acerque por la

izquierda (2.9, 2.99, etc.), dándonos un resultado tan cercano como fuese

posible al cero en la operación completa; incluso en el valor del tres

nos daría como resultado el cero. En pocas palabras:

2

3lim 9 0x

x

Ejemplo 6. Aplicar el mismo límite propuesto en la función anterior, en

el valor de tres por la derecha.

Escribiendo el límite para ubicar la operación que se aplicará a la

función:

2

3lim 9x

x

Page 120: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

11

Aplicando el límite propuesto, tendremos:

2

3lim 9 9 9 0x

x

Es decir; tendríamos una situación prácticamente igual a la situación

anterior, el valor de la aplicación del límite es cero.

Sin embargo, si nos acercamos al valor de tres tanto como sea posible por

la derecha, podemos llenar los valores resultantes en una tabla:

x 3 3.0001 3.001 3.01 … 3.2

29 x 0 0 .0006 ? .006 ? .06 ? … .06 ?

Como puede observarse, acercarse tanto como sea posible al límite por la

derecha equivale a tener una raíz negativa, lo cual no es posible. Por

tanto, el límite de esta función cuando la variable tiende a tres por la

derecha no existe, es decir:

2

3lim 9 .x

x Noexiste

Ejemplo 7. Calcular el límite de la función 1

1( )

3 2n

g n

, cuando n tiende

a cero, por la izquierda.

Comenzaremos por aplicar el límite por la izquierda. Esto se expresa como

10 0

1lim ( ) lim

3 2n n

n

g n

Si aplicamos directamente el valor sugerido, podemos expresar el límite

como

1 10

0

1 1lim

3 2 3 2n

n

Page 121: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

12

Como ya sabemos, al aplicar el límite del exponente de número dos,

podemos expresar que

0

1limn n

Por lo tanto, el número dos elevado al exponente ya calculado, podemos

calcularlo como un dos elevado a la menos infinito, es decir, como el

inverso del dos elevado al infinito. Como ya hemos calculado, la

constante entre el infinito para el caso de los límites tiende a cero,

por lo tanto, el resultado de esta operación será cero. En otras

palabras:

1 12 0

2

De esta manera, aplicando el cálculo de cada potencia anteriormente

descrita podemos escribir:

1 10

0

1 1 1 1lim

3 2 3 03 2 3 2

nn

Por tanto, el resultado final de aplicar el límite a la función pedida

cuando la variable n tiende a cero por la izquierda será:

10

1 1lim

33 2

nn

Ejemplo 8. Calcular el límite de la función 1

1( )

3 2n

g n

, cuando n tiende

a cero, por la derecha.

Al igual que en el ejemplo anterior, aplicar el límite en este caso se

puede representar como

Page 122: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

13

10

1lim

3 2n

n

Por lo que sustituyendo el valor sugerido tendremos:

1 10

0

1 1lim

3 2 3 2n

n

De igual manera que en el ejemplo anterior, el límite de la potencia (que

es donde se observa la aplicación de este) será:

11

0

0lim 2 2 2n

n

Por lo tanto, sustituyendo el valor encontrado del límite de la potencia

antes descrita, tendremos:

1 10

0

1 1 1 1 1lim

3 2 33 2 3 2

nn

Por lo tanto, el resultado de aplicar el límite a la función propuesta

cuando la variable n tiende a cero por la derecha será cero, es decir:

10

1lim 0

3 2n

n

Ejemplo 9. Aplicar el límite a la función tangente cuando su argumento

tiende a 90 grados.

Primeramente, expresar en términos algebraicos la función descrita en el

texto anterior sería:

( ) tan( )f x x

Por lo que, aplicar el límite pedido sería:

Page 123: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

14

90 90lim ( ) lim tan( )x x

f x x

Entonces, aplicar el límite se expresaría como

90

lim tan( ) tan 90x

x

Este valor en particular es un valor para el cual no está definida la

función tangente, por lo tanto, el límite de la función tangente cuando

su argumento tiende a noventa grados (2

radianes) no existe:

90lim tan( )x

x noexiste

Ejemplo 10. Aplicar el límite a la función tangente cuando su argumento

tiende a 90 grados por la izquierda.

De manera análoga al ejemplo anterior, la expresión algebraica que

representa al texto del problema será:

90

lim tan( )x

x

Que para fines prácticos expresaremos el equivalente en radianes del

argumento de noventa grados, puesto que esta notación puede excluir las

unidades (y que no se confunde con la tendencia hacia la izquierda del

límite), o sea:

2

lim tan( )x

x

Pero, aplicar el límite por la izquierda es acercarse tanto como sea

posible al valor sugerido, lo cual mostrado en una tabla puede

ilustrarnos mejor la tendencia del valor:

x 88 89

89.9 89.99

… 90

tan( )x 28.63 57.29 572.957 5729.58

Page 124: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

15

Por tanto, como puede deducirse, el límite de la función tangente cuando

su argumento tiende a noventa grados (o pi entre dos radianes) por la

izquierda es infinito, o sea:

2

lim tan( )x

x

De manera similar, el límite por la derecha será:

2

lim tan( )x

x

Se deja la comprobación al lector.

2.2. Teoremas de los límites

Como se vio en el apartado anterior, el cálculo de un límite se llevó a cabo a través del

análisis de gráficas y de tablas numéricas, en las que se observa cómo una función se

aproxima a un valor, cuando la variable independiente se acerca cada vez más y más

hacia un valor determinado. Esta manera de calcular límites es intuitiva.

Sin embargo, existen propiedades que nos permitirán calcular límites de funciones de

otra manera, dichas propiedades se conocen como leyes o teoremas de límites7.

Supóngase que c es una constante, n un entero positivo y que los límites siguientes

existen:

( ) , ( )

TEOREMAS

1.

2.

3. ( )

( )

4. ( ) ( )

5. ( ) ( ) ( ) ( )

Page 125: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

16

6. ( ) ( ) ( ) ( )

7. ( ) ( ) ( ) ( )

8. ( ) ( ) ( ) ( )

Estas leyes pueden expresarse como sigue:

1. El límite de una constante es igual a dicha constante.

2. El límite de una variable x cuando tiende al valor a es a.

3. El límite de la potencia de una función es igual a la potencia del límite.

4. El límite del producto de una constante por una función es igual al producto de

la constante por el límite de la función.

5. El límite de una suma de funciones es igual a la suma de sus límites.

6. El límite de una diferencia de funciones es igual a la diferencia de sus límites.

7. El límite de un producto de funciones es igual al producto de sus límites.

8. El límite de un cociente de funciones es igual al cociente de sus límites.

(Siempre que el límite del denominador no sea 0).

Veamos algunos ejemplos, del cálculo de límites mediante estos teoremas.

2.3. Límites determinados e indeterminados

Ejemplo 11. Calcular

De acuerdo con el teorema 1, se tiene:

Ejemplo 12. Calcular

Ejemplo 13. Calcular

Ejemplo 14. Calcular

Page 126: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

17

De acuerdo con el teorema 2, se tiene

Ejemplo 15. Calcular

Ejemplo 16. Calcular

Ejemplo 17. Calcular a)

De acuerdo con el teorema 3, se tiene:

( )

Ejemplo 18. Calcular

( )

Ejemplo 19. Calcular

( )

Ejemplo 20. Calcular a)

De acuerdo con los teoremas 4,3 y 2, se tiene:

( )

Ejemplo 21. Calcular

( )

Ejemplo 22. Calcular

( )

Ejemplo 23. Determinar ( )

Primeramente aplicamos los teoremas 5 y 6, y posteriormente los teoremas

1 a 4.

( )

( )

( ) ( ) ( )

Page 127: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

18

( ) ( )

Por lo que el valor del límite es:

( )

Ejemplo 24. Determinar ( )( )

Se puede desarrollar el producto o aplicar directamente el teorema 7.

( )( )

( )

( ) ( )( )

Si desarrollamos el producto, tenemos:

( )( )

Por lo que ahora el límite será:

( )( )

( )

Ejemplo 25. Calcular

Aplicando primeramente el teorema 8, se tiene

( )

( )

( )

Con base en los tres ejemplos anteriores, basto con realizar una

sustitución directa para obtener el límite.

Se puede hablar de otra propiedad que dice así8:

Sea f una función polinomial o racional, y si a está en el dominio de

f, entonces se tiene

( ) ( )

En otras palabras el límite se obtiene evaluando el valor a en la

función.

Page 128: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

19

Ejemplo 26. Determinar ( )

( ) ( ) ( )

Ejemplo 27. Calcular el límite de ( )

cuando .

( )

( )

(no existe el límite)

Recodemos que la división entre 0, no está definida en el conjunto de los

números reales.

Formas indeterminadas

Puede darse el caso de que al llevar a cabo la sustitución en una función racional no

obtengamos un resultado satisfactorio.

Cuando el resultado es de la forma

se dice que es una forma indeterminada, por lo

que no podemos afirmar si existe o no un límite. Será necesario buscar un artificio

algebraico y tratar de romper la indeterminación9.

Ejemplo 28. Calcular el límite de ( )

cuando

Si aplicamos la sustitución directa se obtiene:

Cuyo resultado es una forma indeterminada. Una manera de eliminar la

indeterminación es mediante la factorización del numerador.

( )( )

( )

Por lo que el límite puedes escribirse como

Page 129: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

20

( )

En este caso la indeterminación es evitable si asignamos a la función el

valor 8.

( )

Ejemplo 29. Sea la función ( )

calcular el límite de dicha función

cuando

Al realizar una sustitución directa

Se tiene una forma indeterminada. Si se factoriza el numerador, se tiene:

( )

Por lo tanto:

Ejemplo 30. Sea la función ( ) √

, calcular el límite de dicha función

cuando

se tiene una forma indeterminada

Vamos a racionalizar el numerador. Para ello multiplicaremos por el

binomio conjugado del numerador.

(√ )

(√ )

( )(√ )

(√ )

Así que,

Page 130: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

21

(√ )

Límites particulares

Se pueden presentar ciertos resultados al calcular el límite de una función, para los

cuales será conveniente hacer una breve reflexión al respecto10.

x tiende a 0 Escrito en forma breve

(no existe el límite)

x tiende a Escrito en forma breve

(no existe el límite)

(no existe el límite)

(no existe el límite)

Nota: Infinito no es un número, solo un símbolo que indica una cantidad o muy grande

(+ ) o muy pequeña (- ).

Límites infinitos y límites al infinito

Un límite infinito es aquel en el cual la función f(x) adquiere valores que crecen o

decrecen sin medida cuando la variable independiente tiende a un valor a, tanto por

la izquierda como por la derecha8.

( ) (El límite crece)

( ) (El límite decrece)

Gráficamente podemos observar el comportamiento de una función f que tiende al

infinito cuando x tiende a un valor a. La recta representa una asíntota vertical de

la gráfica de dicha función.

Page 131: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

22

Ejemplo 31. Sea la función ( )

determinar el límite de la función

cuando

Vemos que la función crece cuando x tiende a cero por la derecha

y decrece cuando tiende a cero por la izquierda

Por lo que podemos escribir:

La ecuación representa la asíntota vertical, la cual coincide con el

eje Y. como se ve en la siguiente gráfica:

x 0.000001 0.00001 0.001 0.01 0.1

f(x) 1000000 100000 1000 100 10

x -0.1 -0.01 -0.001 -0.00001 -0.000001

f(x) -10 -100 -1000 -100000 -1000000

x=a

f(x)

f(x)

x=a

Page 132: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

23

-6 -5 -4 -3 -2 -1 1 2 3 4 5

-5

-4

-3

-2

-1

1

2

3

4

5

6

x

y

Concluimos que el límite:

no existe.

Un límite al infinito, es aquel en el cual una función se aproxima a un valor A, cuando

la variable independiente tiende al infinito positiva o negativamente.11

( )

Se lee: el límite de una función f(x), cuando x tiende al infinito es A

La recta representa una asíntota horizontal de la gráfica de dicha función.

De la gráfica anterior ( ( )

) se puede observar que cuando la función f(x)

tiende al valor 0, lo cual se puede escribir como

( )

Y cuando la variable x tiende hacia menos infinito la función f(x) también

tiende al valor de 0. Es decir:

( )

El eje horizontal, eje X, representa una asíntota horizontal.

En resumen, si ( ) o si ( ) se dice que es la ecuación

de la asíntota horizontal.

Cuando , una manera de calcular el límite de una función es dividiendo cada

término entre la base de mayor exponente12 y aplicar

(ver límites

particulares).

Page 133: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

24

Ejemplo 32. Determinar el límite de la función ( )

Cuando .

Si aplicamos sustitución directa obtenemos una forma indeterminada

Dividamos entre para evitar la indeterminación

(

)

(

)

Por lo tanto:

La gráfica de esta función presenta una asíntota horizontal cuya ecuación

es

-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0.5 1 1.5 2 2.5 3

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0.5

1

1.5

2

2.5

x

y

Ejemplo 33. Determinar

Vemos que la base de mayor exponente es así que dividimos cada

término:

(

)

(

)

(

)

(

)

Page 134: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

25

Por lo tanto:

Esta gráfica presenta dos asíntotas: una vertical y otra horizontal.

La asíntota vertical se obtiene haciendo 0 al denominador por lo

que y √

así que

La asíntota horizontal se obtiene del valor del límite

Límites para funciones trascendentes

Para el cálculo de límites de funciones trigonométricas, exponenciales y logarítmicas

también podemos utilizar la sustitución directa, en base a las siguientes propiedades9:

Sea a un número real, el cual está en el dominio de la función señalada, entonces:

( )

Nota: la unidad de medida de los ángulos es el radián.

Recordemos que

Page 135: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

26

Límites de funciones trigonométricas

Veamos algunos ejemplos para calcular límites de funciones trascendentes.

Ejemplo 34. Determinar

Se lleva a cabo una sustitución directa del valor de x en la función:

(

)

El valor al cual tiende el límite es 0.

Ejemplo 35. Determinar el límite de la función ( ) cuando .

Nuevamente aplicamos sustitución directa

( ) ( )

El valor del límite es -2 veces pi radianes.

Ejemplo 36. Calcular

(

) ( )

Límites trigonométricos indeterminados

Cuando se presentan indeterminaciones al calcular límites trigonométricos, podemos

aplicar alguna identidad trigonométrica o utilizar los siguientes límites particulares:

Que también puedes ser:

Page 136: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

27

Ejemplo 37. Calcular

( )

Sustituyendo el valor de x

( )

(√

)

Podemos emplear la identidad

( )

( )

( )

( )

( )

Ahora el límite será

( )

(

)

(√

)

Ejemplo 38. Determinar el valor de ( )

cuando

Sustituyendo el valor de x

Dado que tenemos una forma indeterminada, hagamos lo siguiente:

Y empleando el límite

Tenemos que

Ejemplo 39. Determinar

Tenemos una indeterminación

Page 137: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

28

Multipliquemos por 2 tanto en el numerador como denominador

( )

Por lo tanto:

Ejemplo 40. Determinar

Tenemos una indeterminación

Multipliquemos por 3 tanto en el numerador como denominador

( )

Empleando el límite

Tenemos

( )

Por lo tanto:

Límites de funciones exponenciales

Para ver algunos ejemplos relacionados con funciones exponenciales y logarítmicas,

recordemos las gráficas correspondientes. Tenemos que

Page 138: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

29

-4 -3 -2 -1 1 2 3 4 5 6

-2

2

4

6

8

10

12

14

x

y

-4 -3 -2 -1 1 2 3 4 5 6

-2

2

4

6

8

10

12

14

x

y

Ejemplo 41. Determinar

Ejemplo 42. Determinar

Ejemplo 43. Determinar (

)

(

)

Función

exponencial:

f(x) = ax

0 < a < 1 a >0

Page 139: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

30

Número de Euler e

Este número surge de la expresión (

)

cuando el valor de x toma valores cada vez

más grandes, es decir, cuando tiene a infinito.8

x (

)

1 2.0

10 2.5937424

100 2.7048138

1000 2.7169239

100 000 2.7182682

1 000 000 2.7182804

10 000 000 2.7182816

Como puede observarse en la tabla, esta expresión tiende al número irracional:

2.71828… el cual se representa como e.

Se tiene el siguiente límite:

(

)

Junto a este límite también se tiene los siguientes límites:1

( )

( )

Ejemplo 44. Determinar (

)

Recordando las leyes de los exponentes la expresión puede escribirse como

(

)

(

)

(

)

Por lo que

Page 140: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

31

(

)

(

)

(

)

(

)

( )

Así que el resultado final es

(

)

Ejemplo 45.Calcular (

)

De las leyes de los exponentes tenemos que

(

)

((

)

)

Por lo que

(

)

((

)

)

( )

Así que el resultado final es

(

)

Page 141: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

32

Límites de funciones logarítmicas

Con base en las gráficas de las funciones logarítmicas que se muestran a continuación:

-5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9

-10

-8

-6

-4

-2

2

4

6

x

y

-5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9

-2

2

4

6

8

10

12

14

x

y

Se deja como reto al lector:

Investigar los límites siguientes, cuando a > 0 :

( )

( )

Investigar los límites siguientes, cuando 0 < a < 1 :

( )

( )

Función

logarítmica:

f(x) = lna x 0 < a < 1 a >0

Page 142: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

33

2.4. Límites unilaterales

Si se tiene una función f que está definida en un solo lado del punto a , de tal forma

que el lim ( )x a

f x

es el mismo que el límite lateral, sí existe13.

En la siguiente gráfica de la función ( ) 3f x x podemos observar que ( )f x no

existe si 3x y 3

lim 3 ,x

x

no existe ya que para valores cercanos a 3x , por ambos

lados, no se aproxima a un valor determinado.

No así, si tomamos en cuenta los valores de x cercanos a 3, pero no mayores, nos

damos cuenta que ( )f x se aproxima a cero.

Si consideramos ahora la función ( ) 1f x x cuya gráfica es:

Page 143: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

34

Evaluando ( )f x para valores cercanos a 1x , para la función ( ) 1f x x . ( )f x ,

no existe si 1x , por lo que 1

lim 1x

x

, no existe.

Si tomamos en cuenta únicamente los valores de x cercanos a 1 pero menores que 1,

notamos que ( )f x se aproxima a cero.

Situaciones como las anteriores en las que ( )f x se aproximan a cero cuando x se

aproxima a 3 por la izquierda en la primera gráfica y a 1 por la derecha en la segunda

respectivamente, se consideran como límites unilaterales14.

Ejemplo 46. Evaluar los límites de la función 2( ) 1f x x , determinando

los unilaterales.

( )f x , se aproxima a cero cuando x se aproxima a (-1) por la derecha,

por lo tanto se tiene que

1lim ( ) 0

xf x

.

( )f x , no está definida si x es menor que -1, es decir, ( )f x no existe

si x se aproxima a -1 por la izquierda, por lo que

1lim ( )

xf x

= no existe.

1lim ( )x

f x

no existe.

Por otra parte, ( )f x no está definida si x es mayor que 1, es decir,

( )f x no existe si se aproxima por la derecha, de tal forma que

Page 144: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

35

1lim ( )x

f x

no existe.

( )f x , se aproxima a cero cuando x se aproxima a 1 por la izquierda,

resultando:

1lim ( ) 0x

f x

.

1lim ( )x

f x

no existe.

Ejemplo 47. Evaluar los límites de la función ( ) 5f x x , determinando

los unilaterales, cuando x tiende a 5.

( )f x , se aproxima a cero cuando x se aproxima a 5 por la izquierda, por

lo tanto se tiene que

5lim ( ) 0x

f x

.

( )f x , no está definida si x es mayor que 5, es decir, ( )f x no existe si

x se aproxima a 5 por la derecha, por lo que

5lim ( )x

f x

= no existe.

5lim ( )x

f x

no existe.

Page 145: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

36

Ejemplo 48. Evaluar los límites de la función 2( ) 4f x x , determinando

los unilaterales, cuando x tiende a -2 y 2.

( )f x , se aproxima a cero cuando x se aproxima a -2 por la izquierda,

por lo tanto se tiene que

2lim ( ) 0

xf x

.

( )f x , no está definida si x es mayor que -2 y menor que 2, es decir,

( )f x no existe si x se aproxima a -2 por la derecha, por lo que

2lim ( )

xf x

= no existe.

2lim ( )x

f x

no existe.

Por otra parte, ( )f x no está definida si x es menor que 2 y mayor que -

2, es decir, ( )f x no existe si se aproxima por la izquierda, de tal forma

que:

2lim ( )x

f x

no existe.

( )f x , se aproxima a cero cuando x se aproxima a 2 por la derecha,

resultando:

2lim ( ) 0x

f x

.

2lim ( )x

f x

no existe.

Page 146: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

37

Ejemplo 49. Evaluar los límites de la siguiente función, determinando los

unilaterales.

2 1

( ) 1 1

3 1

si x

f x si x

si x

( )f x , se aproxima a 3 cuando x se aproxima a -1 por la derecha, por lo

tanto se tiene que

1lim ( ) 3

xf x

.

( )f x , se aproxima a -2 cuando x se aproxima a -1 por la izquierda, por lo

que

1lim ( ) 2

xf x

1lim ( )x

f x

no existe porque

1 1lim ( ) lim ( )

x xf x f x

Page 147: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

38

Ejemplo 50. Evaluar los límites de la siguiente función, determinando

los unilaterales.

1 0

( ) 0 0

1 0

si x

f x si x

si x

( )f x , se aproxima a -1 cuando x se aproxima a cero por la izquierda,

por lo tanto, se tiene que

0lim ( ) 1x

f x

.

( )f x , se aproxima a 1 cuando x se aproxima a cero por la derecha, por lo

que

0lim ( ) 1.x

f x

0lim ( )x

f x

no existe porque

0 0lim ( ) lim ( )x x

f x f x

Page 148: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

39

2.5. Continuidad de una función

La continuidad de una función se refiere a que su gráfica no sufra algún brinco o

rompimiento, es decir, que pueda ser dibujada sin tener que despegar el lápiz del

papel.

La continuidad de una función se puede analizar en un punto o en un intervalo.

Continuidad en un punto

Se dice que una función es continua en un punto si su gráfica no se interrumpe

en dicho punto8.

Las siguientes figuras muestras discontinuidad en el punto c.

De izquierda a derecha, en la primera figura se observa que c no se encuentra en el

dominio de la función. En la figura de en medio no existe el límite ( ). Y en la

tercera figura se ve que no coinciden los valores: ( ) ( )

Esto nos conduce a definir la continuidad puntual de una función de la siguiente

manera:

Una función es continua en un punto si se verifican las tres condiciones

siguientes:8

1. ( )

c c c

Page 149: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

40

2. ( )

3. ( ) ( )

Ejemplo 51. Determinar si la función ( ) es continua en .

Veamos si se verifican las tres condiciones antes mencionadas

( ) ( )

( )

Podemos ver que debido a que estas dos condiciones tienen el mismo valor;

la tercera condición también se cumple, es decir,

( )

( )

Concluimos que la función es continua en x=2

Ejemplo 52. Determinar si la función ( )

es continua en .

Al evaluar el valor de x = 9, vemos que no está definida la función para

dicho valor, así como tampoco existe el límite:

( )

Con una de las condiciones que no se cumpla es suficiente para determinar

que la función es discontinua en x=2.

Ejemplo 53. Determinar si ( )

es continua para .

Evaluando la función para x=3

( )

Page 150: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

41

Vemos que la función no está definida para x=3, condición suficiente para

determinar que la función es discontinua en dicho punto. Aún cuando el

límite existe:

( )( )

Continuidad en un intervalo

Se dice que una función es continua en un intervalo si su gráfica no se interrumpe para

cualquier valor que esté dentro de dicho intervalo15.

Continuidad por la derecha

Se dice que una función ( ) es continua a la derecha del punto a si y sólo si para

se cumplen las siguientes condiciones:

1. ( )

2. ( )

3. ( ) ( )

Continuidad por la izquierda

Una función ( ) es continua a la izquierda de b si y sólo si para se cumple:

1. ( )

2. ( )

3. ( ) ( )

Page 151: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

42

Continuidad en un intervalo abierto

Una función es continua en un intervalo abierto (a,b) si y sólo si es continua en todos

los puntos del intervalo.

Continuidad en un intervalo cerrado

Una función es continua en un intervalo cerrado [a,b] si y sólo si es continua en el

intervalo abierto (a,b) y además

( ) ( )

( ) ( )

Ejemplo 54. Confirmar que la función ( ) √ es continua en el

intervalo abierto ( ) y en el intervalo cerrado .

De acuerdo con la gráfica de dicha función, esta está definida para todos

los puntos del intervalo señalado (-4,4).

-5 -4 -3 -2 -1 1 2 3 4 5

-2

-1

1

2

3

4

5

x

y

Para el intervalo cerrado, examinemos la continuidad en los extremos:

Para

( ) √ ( ) √

( )

( ) ( )

Page 152: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

43

( )

( ) ( )

Para

( ) √ ( ) √

( )

( ) ( )

( )

( ) ( )

Es continua a la derecha de -4 y es continua a la izquierda de 4, así

que es continua en el intervalo cerrado.

Ejemplo 55. Comprobar que la función ( ) es continua en el

intervalo .

La función es un polinomio, por lo cual está definida en el intervalo

abierto (-4,2)

Comprobemos la continuidad en los extremos del intervalo

( ) ( ) ( )

( )

( ) ( )

( )

Page 153: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

44

( ) ( )

( )

( ) ( )

( )

( )

( )

( )

Dado que es continua en el intervalo abierto, continua por la derecha de

-4 y continua por la izquierda de 2, es continua en el intervalo [-4,2].

Ejemplo 56. Determinar si la función ( ) {

es continua en

el intervalo [-3,2].

Con base en la gráfica, la función no es continua en x=0.

Al verificar las condiciones de continuidad se tiene:

( )

( )

Dado que los límites laterales son diferentes.

Page 154: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

45

( )

( )

no existe ( )

al no ser f(x) continua en el intervalo abierto (-3,2) tampoco lo es en

el intervalo cerrado [-3,2].

Teorema del valor intermedio

Una consecuencia de la continuidad de una función es el siguiente teorema:

Sea una función continua en el intervalo cerrado y sea cualquier número

comprendido entre ( ) ( ), entonces existe al menos un número en , tal que

( ) .8

Ejemplo 57. Sea ( ) , una función continua en el intervalo ,

determinar el valor de c que cumpla con el teorema del valor intermedio

cuando k=2.

Como ( ) ( ) ( ) ( )

Al aplicar el teorema, tenemos que ( ) , así que

c

k

f(a)

f(b)

Page 155: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

46

Para que k=2, el valor de c debe ser

Ejemplo 58. Sea la función ( ) definida en el intervalo ,

obtener el valor de k que cumpla con el teorema del valor intermedio

cuando c=3

Al aplicar el teorema, se tiene:

( )

( )

Este valor está dentro de los valores ( ) ( )

Page 156: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

47

2.6. Problemario

1. Calcular el valor de los siguientes límites:

1.1.

1.2.

1.3.

1.4. ( )

1.5. ( )

1.6. ( )

1.7. ( )

1.8. ( )( )

1.9. √

1.10.

1.11. (

)

1.12. ( )

1.13.

( )

1.14. (

)

1.15. ( )

1.16. √

1.17.

( )

1.18. √

1.19. (

)

Page 157: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

48

1.20.

2. Determinar el valor de los siguientes límites:

2.1. (

)

2.2. ( )

2.3. (

)

2.4. (

)

2.5. ( √

√ )

2.6.

2.7.

2.8. √

2.9. √

2.10.

3. Determinar si tienen asíntotas verticales y horizontales las siguientes funciones. (Se

puede usar un programa de graficación para comprobar las respuestas).

3.1. ( )

3.2. ( )

( )

3.3. ( )

3.4. ( )

3.5. ( ) √

4. Determinar el valor de los siguientes límites:

Page 158: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

49

4.1.

4.2.

4.3.

( )

4.4.

4.5.

4.6. ( )

4.7.

4.8.

4.9.

4.10.

4.11.

4.12. ( )

4.13.

( )

4.14. ( )

4.15.

5. Calcular los siguientes límites:

6. Determinar si las funciones siguientes son continuas en los puntos indicados para

cada caso. Aplicar los criterios de continuidad.

6.1. ( )

6.2. ( )

6.3. ( )

Page 159: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

50

6.4. ( ) √

6.5. ( )

7. Determinar los puntos de discontinuidad en las siguientes funciones:

7.1. ( )

7.2. ( )

7.3. ( )

7.4. ( ) √

7.5. ( )

8. Determinar si las siguientes funciones son continuas en el intervalo indicado:

8.1. ( )

( )

8.2. ( ) ( )

8.3. ( )

( )

8.4. ( )

( )

8.5. ( ) √ ( )

9. Aplicando el teorema del valor intermedio, determinar el valor de c para las

siguientes funciones:

9.1. ( )

9.2. ( )

9.3. √

Page 160: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

51

10. Aplicando el teorema del valor intermedio, determinar el valor de k para las

siguientes funciones:

10.1. ( )

10.2. ( )

10.3. ( ) √

11. Encontrar los límites unilaterales de las siguientes funciones:

11.1. ( ) √

11.2. 2( ) 4f x x

11.3. ( ) 1f x x

11.4. 2( ) 1f x x

11.5.

3 2

( ) 2 2

1 2

si x

f x si x

si x

12. Encuentre los siguientes límites unilaterales o establezca que no existen:

12.1.

2

3

3lim

x

x

x

12.2. 23

3lim

9x

x

x

12.3.

3 3

0lim

3x

x

12.4. 1

1lim

4 4x

x

x

12.5. 2

3lim 2x

x x

Page 161: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

52

2.7. Autoevaluación

1. Encuentre el límite de las siguientes funciones:

a)0

2lim

4x

x

b)

2

1

1lim

1x

x

x

2. Obtener el valor del límite por la izquierda y por la derecha para comprobar si son

iguales y existe.

a) 22

2 4lim

2 8x

x

x

b) 1

2lim

5x x

3. Calcula el valor de los siguientes límites:

a) 2

1lim5x

b) 0

lim3 2x

x

c)

2

30

5 3lim

4x

x

x

d)

2

30

5 3lim

4x

x

x

e)

3

2

2 5lim

1x

x

x

f) 2

limx

Sin

Cos

g)

2

2

2lim

1x

y

y

Page 162: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

53

4. Determinar si las siguientes funcione son continuas en los puntos señalados.

a) 2( )f x x en 0x , 2x

b) ( ) 2f x x en 2x , 2x

2.8. Conclusión

El concepto de límite de una función puede parecer demasiado obvio y sin importancia,

sin embargo, es necesario comprender que la aplicación del límite a una función puede

mostrarnos comportamientos interesantes de las funciones, como lo son:

discontinuidades, tendencias al valor cero, al valor infinito y comportamientos

diferentes mientras se acerca al mismo valor por dos diferentes lados o cantidades

numéricas.

Es importante entonces, resaltar que la claridad y el dominio de lo que un límite

significa en el comportamiento de una función, sienta una importante base para el

posterior estudio del concepto de derivada. Por supuesto que la aplicación de

conceptos aquí abordados, respecto a los límites en una función, debe de ser afirmado

al resolver los problemas propuestos y la autoevaluación correspondiente.

Te invitamos entonces, si hasta este momento has llegado a comprender y abordar los

conceptos descritos acerca de los límites, prepárate entonces para adentrarte en el

maravilloso mundo de uno de los desarrollos matemáticos más trascendentes en la

historia, y que gracias al concepto de límite de una función ha podido ser comprendido

en toda su magnitud: el cálculo.

Page 163: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

54

2.9. Soluciones del problemario

1.1. 500

1.2.

1.3.1

1.4.20

1.5.41

1.6.5

1.7.

1.8.12

1.9.7

1.10.

1.11. 1

1.12. 0

1.13.

1.14.No existe

1.15.

1.16.

1.17.

1.18.

1.19. 4

1.20. 0

2.1.

Page 164: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

55

2.2. 9

2.3. 6

2.4. 0

2.5.

2.6. -5

2.7.

2.8.

2.9. No existe

2.10. 5

3.1. ,

-3 -2.5 -2 -1.5 -1 -0.5 0.5 1 1.5 2 2.5 3

-4

-2

2

4

6

8

10

12

14

16

x

y

3.2. ,

-1.5 -1 -0.5 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-1

1

2

3

4

5

6

7

x

y

3.3. ,

Page 165: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

56

-9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9

-10

-5

5

10

15

x

y

3.4. , a

-5 -4 -3 -2 -1 1 2 3 4 5 6

-6

-4

-2

2

4

6

8

x

y

3.5. ,

-1.5 -1 -0.5 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

-2

-1

1

2

3

4

5

6

7

x

y

4.1.

4.2. No existe

4.3. √

4.4.

4.5. 1

Page 166: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

57

4.6.

4.7. No existe

4.8. 0

4.9. 1

4.10.

4.11. 1

4.12. 3

4.13. 0

4.14. 0

4.15. 1

6.1.

6.2.

6.3.

6.4.

6.5.

7.1.

7.2.

7.3.

7.4.

7.5.

8.1. No es continua

8.2. Sí es continua

8.3. No es continua

8.4.Sí es continua

Page 167: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

58

8.5. No es continua

9.1.

9.2.

9.3.

10.1.

10.2.

10.3.

11.1. a) 4

lim ( ) 0x

f x

b)4

lim ( )x

f x

no existe

c)4

lim ( )x

f x

no existe

d)4

lim ( )x

f x

no existe

e)4

lim ( ) 0x

f x

f)4

lim ( )x

f x

no existe

11.2. a) 2

lim ( )x

f x

no existe

b)2

lim ( ) 0x

f x

c)2

lim ( )x

f x

no existe

d)2

lim ( ) 0x

f x

e)2

lim ( )x

f x

no existe

f)2

lim ( )x

f x

no existe

Page 168: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

59

11.3. a) 1

lim ( ) 0x

f x

no existe

b)1

lim ( )x

f x

no existe

c)1

lim ( )x

f x

no existe

11.4. a) 1

lim ( ) 0x

f x

no existe

b)1

lim ( )x

f x

no existe

c)1

lim ( )x

f x

no existe

d)1

lim ( )x

f x

no existe

e)1

lim ( ) 0x

f x

f)1

lim ( )x

f x

no existe

11.5.

a)

2lim ( ) 1x

f x

b)2

lim ( ) 3x

f x

c)2

lim ( )x

f x

no existe

Page 169: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

60

12.1. 2

33

12.2. No existe

12.3.

32

3

12.4. 1

28

12.5. 15

Page 170: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

61

2.10. Solución de autoevaluación

1. a) 1. b) 2.

2. a) 2

2

2 4 1lim

2 8 4x

x

x

22

2 4 1lim

2 8 4x

x

x

son iguales

22

2 4lim

2 8x

x

x

existe

b) 1

2lim 1

5x x

1

2lim 1

5x x

son iguales 1

2lim

5x x existe

3. a) 25

b) -2

c) 3

4

d)

e) 0

f)

2 2

1

y

y

4. a) 2

0(0) 0 lim

xf x

2

2(2) 4 lim

xf x

2( )f x x sí es continua en 0x y

2x

b) (2) 0f , 2

lim 2x

x

no está definido por la izquierda, ( 2)f no está

definida. ( ) 2f x x no es continua en 2x y 2x

Page 171: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

62

Referencias

1http://es.wikipedia.org/wiki/Euclides 2http://es.wikipedia.org/wiki/Cuadratura_del_círculo 3STEWART, Ian. Historia de las Matemáticas en los últimos 10.000 años. España, Editorial Crítica S.L. 2007

4 Courant, R., & Robbins, H. (1996). What Is Mathematics? An Elementary Approach to Ideas and Methods. American Mathematical Monthly (p. 566). Oxford University Press 5M. Spivak, Calculus, W.A. Benjamin, New York, 1967.

6Larson, Hostetler y Edwards. Cálculo (Volumen 1). Trad. L. Abellanas R. 6ª Edición. México. Mc Graw hill. 1999. 895 páginas. 7 Cuellar Juan Antonio. (2007). Matemáticas V: Cálculo diferencial. México. McGraw-Hill. 8 Stewart James. (2010). Cálculo: Conceptos y Contextos. México. Cengage Learning. 9Aguilar Márquez Arturo. (2010). Cálculo diferencial e integral. México. Pearson 10 Fuenlabrada Samuel. (2008). Cálculo Diferencial, México. 3ª Ed. McGraw Hill 11G. Zill Dennis. (1987). Cálculo con geometría analítica. México. Iberoamericana. 12G. Zill Dennis. (1987). Cálculo con geometría analítica. México. Iberoamericana. 13 Frank Ayres, Jr & Elliot Mendelson. (1991). Cálculo Diferencial e integral, México. McGraw-Hill. 14 Silva, Juan Manuel & Lazo, Adriana. (2003). Fundamentos de matemáticas: álgebra, trigonometría, geometría analítica y cálculo. México. Limusa. http://books.google.com.mx/books?id=TyRUwQ4pKLMC&pg=PA928&dq=l%C3%ADmites+unilaterales&hl=es&ei=37cpTvnPJa-

nsQKRhdW7Cw&sa=X&oi=book_result&ct=result&resnum=2&ved=0CCsQ6AEwATgK#v=onepage&q=l%C3%ADmites%20unilaterales&f=

false

15 Aguilar Márquez, Arturo ET AL. (2010). Cálculo diferencial e integral. México. Ed. Pearson

Page 172: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

i

Page 173: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

1

3.1. Determinación de razones de cambio

La derivada

El cálculo diferencial e integral surgió por la necesidad de dar solución a problemas

planteados por los antiguos griegos. Sin embargo, problemas relacionados con las

ciencias físicas fueron los que motivaron en el transcurso de los siglos XVI y XVII a dar

resultados más apropiados y precisos1.

El concepto de derivada apareció históricamente a partir de querer encontrar la

tangente a una curva en un punto, así como determinar la velocidad instantánea de un

cuerpo en movimiento. El iniciador de este concepto fue Isaac Barrow que pensó en un

método para trazar la tangente a una curva en un punto dado. Años más tarde Isaac

Newton y Gottfried Wilhelm Leibniz por vías semejantes y lenguajes diferentes

formalizaron dicho concepto2.

Nuestro mundo está en continuo cambio, por lo que un término común en nuestra

comunicación diaria, es el incremento o decremento de las variables que nos rodean,

por lo que el concepto de derivada será empleado para conocer y determinar la

variación de toda magnitud que está en función de otra2.

También es importante señalar la trascendencia que tiene el detectar puntos

sobresalientes del comportamiento de las funciones que modelan fenómenos naturales,

sociales, económicos, problemas de ingeniería, etc., en los que intervienen datos con

valores máximos y mínimos que dan significado relevante al problema en cuestión.

Los diversos tipos de fenómenos y problemas mencionados anteriormente, son

abordados en forma diferencial para generar modelos matemáticos que puedan

describir y predecir su comportamiento, esto con el propósito de evitar catástrofes

naturales o para el ahorro de recursos en genera,l así como para el estudio y

desarrollo de la ciencia en general.

Definición de derivada

El incremento x de una variable x cuando aumenta o disminuye desde un valor

1x x hasta otro valor 2x x en su dominio, es 2 1x x x , y podemos decir

2 1x x x .

Si sucede un incremento en la variable x , es decir, 1x x x , la función 1( )y f x

también cambiará un cierto incremento 1 1( ) ( )y f x x f x , por lo que la razón

media de cambio de la función en el intervalo de 1x x hasta 1x x x será el

cociente3:

Page 174: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

2

cambioen y y

cambioen x x

Observando la gráfica de arriba, podemos darnos cuenta que la recta secante que

corta a la función ( )f x se va aproximando a la recta tangente cuando el incremento

x se va haciendo muy pequeño, de tal forma que la derivada de la función ( )y f x

respecto a x en el punto 1x x se define como4

1 1

0 0

( ) ( )lim limx x

f x x f xy

x x

Este límite suponiendo que existe, se llama razón instantánea de cambio de la variable

dependiente y respecto de la independiente x en 1x x .

Generalizando el límite para cualquier valor del dominio de la función se tiene:

0 0

( ) ( )lim limx x

y f x x f x

x x

La derivada de la función ( )y f x puede representarse con diferentes símbolos que

finalmente indican lo mismo.

Y

Recta Secante

X

Recta Tangente

Page 175: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

3

dy

dx, ( )

df x

dx,

dy

dx, xD y , y , ( )f x

Pendiente de la recta tangente a una curva

En una curva ( )y f x , la pendiente m varía en cada punto. La pendiente de la curva

en un punto P es también la pendiente de su tangente en dicho punto.

tandy

mdx

Posición, velocidad instantánea, y aceleración de una partícula.

Otro caso que motivó la aparición del concepto de derivada está relacionado con el

movimiento rectilíneo de partículas.

Una partícula que se mueve a lo largo de una línea recta, ocupará una cierta posición

en cualquier instante t . La posición de la partícula P está definida partiendo de un

origen fijo O sobre la línea recta y una dirección positiva a lo largo de la línea. Se

mide la distancia x de O a P , la cual define completamente la posición de la partícula

llamada coordenada de posición5.

Cuando se conoce la coordenada de posición x de la partícula en todo valor del tiempo

t , decimos que se conoce el movimiento de la partícula.

A partir de la posición P de la partícula en el tiempo t y la coordenada x tenemos una

nueva posición P en un tiempo t t ; la coordenada de la posición P resulta de

agregar un incremento x a la coordenada x de la posición P , por tanto, la velocidad

promedio de la partícula en el intervalo de tiempo t queda definido como el cociente

del desplazamiento x y el intervalo de tiempo t .

Page 176: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

4

xVelocidad promedio

t

La velocidad instantánea v de la partícula en el instante t , resulta de la velocidad

promedio a partir de intervalos de tiempo t y desplazamientos x cada vez más

pequeños.

Velocidad instantánea=0

limt

xv

t

Por definición, el límite anterior es la derivada de la posición x respecto al tiempo t

por lo que tenemos:

dxv

dt

De igual forma la aceleración instantánea de la partícula está dada por

Aceleración instantáneadv

adt

En términos de la posición, la aceleración instantánea de la partícula es:

2

2

d xa

dt

También puede quedar en función de la velocidad instantánea y la posición como

Page 177: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

5

dva v

dx

A manera de ejemplo, sea una partícula, que tiene un movimiento rectilíneo en la que

su posición está definida por la ecuación

2 38 2x t t

La gráfica de esta ecuación que describe la posición x de la partícula para cualquier

tiempo t queda:

Su derivada expresará la velocidad instantánea v en cualquier tiempo t , siendo:

216 6dx

v t tdt

Graficando la velocidad.

Page 178: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

6

Y su aceleración instantánea a resultará de derivar la velocidad instantánea v

respecto al tiempo t , teniendo:

16 12dv

a tdt

Graficando la aceleración.

Page 179: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

7

Cálculo de derivadas aplicando la definición general.

A partir de la definición de la derivada, que se vio anteriormente, podemos obtener la

derivada de diferentes funciones ( )y f x . Iniciaremos con la regla de los 4 pasos:

1. ( )y y f x x se suman los incrementos y y x a las variables.

2. ( ) ( )y f x x f x se despeja y , sustituyéndose por ( )f x .

3. ( ) ( )y f x x f x

x x

se dividen los dos miembros por x .

4. 0 0

( ) ( )lim limx x

dy y f x x f x

dx x x

se toma el límite cuando 0x .

Finalmente por definición se obtiene la derivada y de la función ( )y f x .

Ejemplo 1. Encontrar la derivada de .

22( )y y x x

2 2 22( 2 ) 2y x x x x x

2 2 22 4 2 2y x x x x x

24 2y x x x

24 2y x x x

x x

4 2y

x xx

0

lim 4 2x

dyx x

dx

4dy

y xdx

Ejemplo 2. Encontrar y de .

22( ) 5( )y y x x x x

Page 180: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

8

2 22( ) 5( ) 2 5y x x x x x x

2 2 22 2 5 10 5 2 5y x x x x x x x x

22 10 5y x x x x

22 10 5y x x x x

x x

2 10 5y

x xx

0

lim 2 10 5x

dyx x

dx

2 10dy

y xdx

Ejemplo 3. Obtener y de √ .

125y y x x

125 5y x x x

1 12 25 ( )y x x x

1 1 1 12 2 2 2

15

2y x x x x x

11 22

15

2x x x

y

x x

1 12 2

15

2

yx x

x

1 12 2

0

1lim 5

2x

dyx x

dx

Page 181: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

9

1

25 5

2 2

dyy x

dx x

Ejemplo 4. Hallar yde .

3( ) 3( )y y x x x x

3 3( ) 3( ) 3y x x x x x x

3 2 2 3 3( 3 3 ) 3( ) 3y x x x x x x x x x x

3 2 2 3 33 3 3 3 3y x x x x x x x x x x

2 2 33 3 3y x x x x x x

x x

2 23 3 3y

x x x xx

2 2

0lim 3 3 3x

dyx x x x

dx

23 3dy

y xdx

Ejemplo 5. Hallar y de .

y y sen x x

y sen x x sen x

sen x x sen xy

x x

Aplicando una relación trigonométrica para la suma de ángulos tenemos:

cos cossen x x sen x x x sen x

Page 182: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

10

cos cosy sen x x x sen x sen x

x x

Tomando el límite cuando 0x y recordando:

0lim 1x

sen x

x

0

cos coslimx

dy sen x x x sen x sen x

dx x x x

cos 1dy

xdx

cosdy

y xdx

3.2. Cálculo de derivadas por fórmulas

Existen fórmulas para derivar una función, basadas en la regla general de los cuatro

pasos, que nos facilitan el proceso de derivación de dicha función.6

Las fórmulas se agrupan en dos categorías: algebraicas y trascendentes.

Fórmulas para derivar funciones algebraicas

Se recomienda memorizar las fórmulas, así como poder enunciarlas verbalmente. La

demostración de estas fórmulas se deja como reto para el estudiante.

Para estas fórmulas, se considera a como funciones derivables de , mientras

que como una constante.1

1.

2.

3.

( )

Page 183: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

11

4.

5.

5a.

6.

7.

(

)

7a.

(

)

8.

A continuación se enuncian cada una de estas fórmulas.1

1. La derivada de una constante es cero.

Ejemplo 6. Determinar la derivada de .

Ejemplo 7. Determinar la derivada de .

Ejemplo 8. Determinar la derivada de √ .

2. La derivada de una variable respecto a sí misma es uno.

Ejemplo 9. Determinar la derivada de .

Page 184: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

12

Ejemplo 10. Determinar la derivada de .

Ejemplo 11. Determinar la derivada de .

3. La derivada de una suma de un número finito de funciones, es igual a la suma

algebraica de las derivadas de las funciones.

( )

Ejemplo 12. Determinar la derivada de .

Ejemplo 13. Determinar la derivada de .

4. La derivada del producto de una constante por una función, es igual al producto de

la constante por la derivada de la función.

Ejemplo 14. Determinar la derivada de .

( )

Ejemplo 15. Determinar la derivada de .

Page 185: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

13

( )

( )

5. La derivada de una potencia de exponente constante, es igual al producto del

exponente por la función elevada a un exponente disminuido en una unidad y por la

derivada de la función.

Si entonces la fórmula se simplifica de la siguiente manera:

Ejemplo 16. Determinar la derivada de .

Ejemplo 17. Determinar la derivada de .

( )

Ejemplo 18. Determinar la derivada de

.

(

)

(

)

(

)

Ejemplo 19. Determinar la derivada de √ .

Primeramente escribir el radical en forma de exponente fraccionario, esto

es:

Ahora aplicando la fórmula

(

)

(

)

(

)

Page 186: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

14

Ejemplo 20. Determinar la derivada de ( ) .

Sea

( )

( ) ( ) ( ) ( )

Ejemplo 21. Determinar la derivada de ( ) .

Sea

( )

( ) ( )( )

( )( )

factorizando

( ) ( )

( )( )

6. La derivada de un producto de dos funciones, es igual al producto de la primera

función por la derivada de la segunda, más el producto de la segunda por la derivada

de la primera.

Ejemplo 22. Determinar la derivada de (√ )( ).

Aplicando la fórmula con √ ( )

( ) ( )

√ ( ) ( )( )

√ ( )

√ ( )

Ejemplo 23. Determinar la derivada de (√ )(√

).

Page 187: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

15

Aplicando la fórmula con √ √

tenemos que

( )

(√ ) (

)

(

) ( )

( )

( ) ( )

√ √

7. La derivada de un cociente de funciones es igual al producto del denominador por la

derivada del numerador, menos el producto del numerador por la derivada del

denominador, todo dividido por el cuadrado del denominador.

(

)

Cuando la fórmula se simplifica como sigue:

(

)

Ejemplo 24. Determinar la derivada de ( ) ( ).

Aplicaremos la fórmula considerando

( )

( ) ( )

( )

( )

( )( ) ( )( )

( )

( )

( )

Ejemplo 25. Determinar la derivada de √ .

Page 188: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

16

Considerar √ así que según la fórmula.

( )

( ) √

( )

( ) (

) ( ) √ ( )

( ) √

√ √

( )

( )

Regla de la cadena

Esta regla permite calcular la derivada de una función de función.

Sea una función que puede ser derivable respecto de y esta a su vez derivable

respecto a , entonces es derivable con respecto a .7 Esto es:

( ) ( ) ( )

8. Si ( ) ( ), la derivada de con respecto de , es igual al producto de la

derivada de con respecto a , por la derivada de con respecto a .

Según la notación de Leibniz,

Ejemplo 26. Determinar la derivada

⁄ , dadas las funciones

√ .

Determinamos primeramente las derivadas,

Page 189: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

17

Finalmente aplicamos la fórmula de la cadena,

( ) (

√ )

Ejemplo 27. Determinar la derivada

⁄ , dadas las funciones

( ).

Determinamos primeramente las derivadas,

( )

( )

Por la tanto,

( )( )

Derivadas de funciones implícitas

Para obtener la derivada de una función implícita, se procede a derivar término a

término, considerando a como una función de y luego despejar de la ecuación

obtenida el término

⁄ .1

Ejemplo 28. Hallar la derivada de la siguiente función: .

Procedemos a derivar término a término

( )

( )

( )

( )

[

( )] [ (

) ]

Factorizamos el término de la derivada,

Page 190: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

18

( )

Despejando

( )

Se hace notar que el resultado de la derivada obtenida, queda en términos

tanto de como de .

Ejemplo 29. Hallar la derivada de la siguiente función de la

circunferencia con centro en el origen: .

Derivando término a término

Despejando el término de la derivada

Ejemplo 30. Hallar la derivada de la siguiente función .

Derivando término a término

( )

( )

( )

( ) [

( )] (

)

Page 191: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

19

( )

Finalmente

Fórmulas para derivar funciones trascendentes

Ahora se verá otra lista de fórmulas para derivar funciones trascendentes, tales como

las trigonométricas, exponenciales y logarítmicas.1

Fórmulas para derivar funciones trascendentes

9.

( )

10.

( )

11.

( )

12.

( )

13.

( )

14.

( )

15.

( )

16.

( )

17.

( )

18.

( )

19.

( )

20.

( )

21.

( )

22.

( )

23.

( )

24.

( )

25.

( )

Page 192: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

20

Recordemos que, el logaritmo de un número N, en una base dada b, es el exponente

x, al cual se eleva la base para obtener dicho número1.

Los logaritmos naturales tienen como base el número e:

Los logaritmos vulgares tienen como base el número 10:

El logaritmo de base 10 de un número, se obtiene del producto de su logaritmo natural

por la constante , es decir:

9. La derivada del logaritmo natural de una función es igual a la derivada de la función

dividida por la función.

( )

Dado que

10. La derivada del logaritmo decimal de una función, es igual a la derivada de la

función multiplicada por el cociente del logaritmo decimal de entre la función.

( )

Veamos algunos ejemplos:

Ejemplo 31. Derivar .

Considerando como aplicamos la fórmula

( )

( )

Ejemplo 32. Derivar .

Considerando como aplicamos la fórmula

( )

( )

Page 193: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

21

Ejemplo 33. Derivar ( ).

Para aplicar directamente la fórmula considerar

( )

( )

( ) ( )

( )

( )

Ejemplo 34. Derivar ( ).

Considerando aplicamos la fórmula 10

( )

( )

En ocasiones, cuando se derivan funciones logarítmicas es muy útil hacer uso de las

leyes de los logaritmos, antes de aplicar directamente las fórmulas.

Ejemplo 35. Derivar √ .

Se puede expresar la función en forma exponencial

( )

Page 194: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

22

Y aplicar leyes de los logaritmos

( )

Aplicamos la fórmula de derivación

( )

( )

( ) ( )

( )

Ejemplo 36. Derivar

.

Dado que la función es un cociente

Aplicamos leyes de los logaritmos

( ) ( )

Y procedemos a derivar

( )

( )

( )

( )

11 y 12. La derivada de una constante elevada a un exponente variable es igual al

producto del logaritmo natural de la constante por la constante elevada al exponente

variable por la derivada del exponente.

( )

En caso de que resulta que al aplicar logaritmos y recordando que

, tenemos:

( )

Ejemplo 37. Derivar .

Page 195: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

23

Para aplicar la fórmula considerar

( )

( )

Ejemplo 38. Derivar .

Considerando

Ejemplo 39. Derivar .

Para aplicar la fórmula considerar

Esta función tiene la particularidad de que su derivada es igual a la

función misma.

Ejemplo 40. Derivar .

En este caso

( )

( )

13. La derivada de una función con un exponente variable, es igual a la suma de los

dos resultados que se obtienen derivando en primer lugar según fórmula 5,

considerando el exponente como constante, y después derivar según fórmula 11,

considerando la función constante.

( )

Page 196: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

24

Ejemplo 41. Derivar .

Aplicando la fórmula, considerar

( )

Factorizando

( )

Otra alternativa de solución es a través de logaritmos.

Aplicamos logaritmos naturales en ambos miembros de la función

Bajamos el exponente

Derivamos en forma implícita

( )

[

]

[

] ( )

Como

( )

Mismo resultado que se obtuvo con la aplicación directa de la fórmula 13

Ejemplo 42. Derivar la función √ .

Aplicando la fórmula 13:

( )

Se debe considerar √

√ ( √ )

√ √ √ (

√ )

Page 197: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

25

√ √

√ (√

√ )

Este resultado puede simplificarse llevando a cabo algunas operaciones

algebraicas

√ (

√ ) √ (

( )

√ ) √ (

√ )

√ (

√ )

Solución alterna:

Como en el ejemplo anterior, podemos utilizar logaritmos antes de

derivar.

√ √

Derivando ambos miembros

(√ )

(

√ )

Como √

√ (√

√ )

Como ya se vio, el resultado simplificado es

√ (

√ )

14. La derivada del seno de una función, es igual al coseno de la función por la

derivada de la función.

( )

Ejemplo 43. Encontrar la derivada de ( ).

Page 198: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

26

Sea

( )

( )

( )

Ejemplo 44. Encontrar la derivada de ( ).

Sea

( )

( )

( )( )

( )

Ejemplo 45. Encontrar la derivada de ( ).

Sea

( )

( )

( )

Ejemplo 46. Encontrar la derivada de ( ).

Antes de resolver la derivada, es conveniente aclarar que

( ) ( )

Por otro lado,

( ) ( )

Por lo que al derivar la función, tenemos que

( )

( )

( )

( )

( ) ( )

Finalmente nos queda

( ) ( )

Page 199: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

27

15. La derivada del coseno de una función, es igual a menos seno de la función por la

derivada de la función.

( )

Ejemplo 47. Encontrar la derivada de ( ).

Sea

( )

( )

( )( )

( )

Ejemplo 48. Encontrar la derivada de ( ).

Dado que

( ) ( )

Procedemos a derivar

( )

( )

( )

( ) ( )

( )( ( ))

Ejemplo 49. Encontrar la derivada de

( ).

Dado que

( )

Derivando

( )

Page 200: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

28

16. La derivada de la tangente de una función, es igual al cuadrado de la secante de la

función por la derivada de la función.

( )

Ejemplo 50. Encontrar la derivada de ( ).

Sea

( )

( )

( )( )

( )

Ejemplo 51. Encontrar la derivada de ( ).

Sea

( )

( ) (

)

( )

17. La derivada de la cotangente de una función, es igual a menos el cuadrado de la

cosecante de la función por la derivada de la función.

( )

Ejemplo 52. Encontrar la derivada de ( ).

Sea

( )

( )

18. La derivada de la secante de una función, es igual al producto de la secante de la

función por la tangente de la función y por la función misma.

Page 201: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

29

( )

Ejemplo 53. Encontrar la derivada de .

Sea

( )( )

19. La derivada de la cosecante de una función, es igual al producto de menos

cosecante de la función por la tangente de la función y por la función misma.

( )

Ejemplo 54. Encontrar la derivada de .

Sea

( )( )

20. La derivada del arco seno de una función es igual al cociente de la derivada de la

función entre la raíz cuadrada de uno menos el cuadrado de la función.

( )

Ejemplo 55. Hallar la derivada de ( ).

Sea

( )

√ ( )

Page 202: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

30

Ejemplo 56. Hallar la derivada de ( ).

Sea

( )

√ ( )

21. La derivada del arco coseno de una función, es igual al cociente negativo de la

derivada de la función entre la raíz cuadrada de uno menos el cuadrado de la función.

( )

Ejemplo 57. Hallar la derivada de ( ).

Sea

( )

√ ( )

Ejemplo 58. Hallar la derivada de ( ).

Sea

( )

√ ( )

22. La derivada del arco tangente de una función, es igual al cociente de la derivada de

la función entre uno más el cuadrado de la función.

( )

Page 203: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

31

Ejemplo 59. Hallar la derivada de ( ).

Sea

( )

( )

Ejemplo 60. Hallar la derivada de ( ).

Sea

( )

( )

23. La derivada del arco cotangente de una función, es igual al cociente negativo de la

derivada de la función entre uno más el cuadrado de la función.

( )

Ejemplo 61. Hallar la derivada de ( ).

Sea

( )

( )

Ejemplo 62. Hallar la derivada de ( ).

Sea

( )

( )

Page 204: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

32

24. La derivada del arco secante de una función, es igual al cociente de la derivada de

la función entre el producto de la función, multiplicada por la raíz cuadrada del

cuadrado de la función menos uno.

( )

Ejemplo 63. Hallar la derivada de ( ).

Sea

( )

√( )

Ejemplo 64. Hallar la derivada de ( ).

Sea

( )

√( )

25. La derivada del arco cosecante de una función, es igual al cociente negativo de la

derivada de la función entre el producto de la función multiplicada por la raíz cuadrada

del cuadrado de la función menos uno.

( )

Ejemplo 65. Hallar la derivada de ( ).

Sea

( )

√( )

Page 205: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

33

Ejemplo 66. Hallar la derivada de ( ).

Sea

( )

√( )

Derivadas sucesivas

Son derivadas que se obtienen de otra derivada. A las derivadas obtenidas se les

conocen como derivadas de orden superior8.

Se llama primera derivada, a la derivada de una función, la cual se denota como

( )

La segunda derivada de una función, es decir, la derivada de la derivada se denota

como

( )

(

)

La tercera derivada se denota como

( )

(

)

La n-ésima derivada se denota como

( ) ( )

Ejemplo 67. Obtener hasta la tercera derivada de la siguiente función

.

Ejemplo 68. Obtener hasta la quinta derivada de la siguiente función

.

Page 206: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

34

Ejemplo 69. Obtener la segunda derivada de la función

.

( )

( ) ( )

( )

( )

( )( ) ( )( )

( )

( )

( )

Ahora obtengamos la segunda derivada

( )

( ) ( )

( )

( )

( ) ( ) ( )( )( )( )

( )

( )( ) ( )( )

( )

( ) ( )

( )

( )

( )

( )

( )

( )

Page 207: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

35

Razón de cambio

Recuerde que una razón en matemáticas significa que se comparan dos cantidades en

forma de cociente.9

La razón de cambio de una variable que depende de otra, es una medida de cuánto

cambia la primera respecto a un cambio de la segunda.

La fórmula para calcular el volumen de un recipiente cúbico es , donde

representa la longitud de las aristas del cubo.

Supóngase una longitud inicial de . Esto implica un volumen inicial de

( )

Si la longitud de la arista sufre un pequeño incremento , el volumen final será

( ) .

El cambio de volumen que sufre el recipiente es ( )

A través de una razón de cambio podemos comparar el cambio de volumen que se

generó cuando la arista se incrementó de a ( ) . La razón de cambio

correspondiente se expresa como

Por otro lado, si el incremento de longitud de la arista es muy pequeño y se

aproxima a cero, es decir,

Al resultado de este límite se le conoce como razón instantánea de cambio.4 En nuestro caso es la razón instantánea de cambio del volumen con respecto a la arista .

En el caso que estamos analizando, cuando la arista mide , determinemos la

razón instantánea de cambio:

( )

( )( ) ( )( ) ( )

( ) ( ) ( )

La razón de incrementos es:

( ) ( ) ( )

( ) ( )

Page 208: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

36

Aplicando el límite:

( ) ( )

Este resultado nos indica que cuando la arista del recipiente cúbico es de 2 m, la razón del cambio del volumen es de 12 veces el cambio de la arista.

Este límite por definición es la derivada.

En este sentido la derivada de una función representa la razón de cambio.

Con el uso del concepto de derivada, el problema del recipiente cúbico puede ser resuelto de la siguiente manera:

Determinar la razón de cambio del volumen de un cubo cuando la longitud de la arista es de 2 m.

Derivando la función

Evaluando para

( ) ( )

Razones de cambio relacionadas

En la vida cotidiana existen diversas situaciones en la cuales se presentan variables que varían con el tiempo.

Cuando dos de estas cantidades se relacionan por medio de una ecuación y es posible

conocer la razón de cambio de una de ellas al derivar la ecuación respecto del tiempo, se puede obtener la razón a la cual cambia la otra cantidad4

Si representa una distancia recorrida, la derivada respecto del tiempo

representa la

razón de cambio, la cual se conoce como velocidad.

Si representa el volumen de agua desalojado de un tinaco en el transcurso del

tiempo, entonces

representa la razón de cambio de dicho volumen en el tiempo.

Veamos algunos ejemplos de aplicación.

Page 209: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

37

Ejemplo 70. En una fábrica se deposita aceite industrial a razón de

en el interior de un contenedor cuya forma es cónica, con una

altura de 14 m y un radio de 2.5 m. Determinar la razón a la cual sube el

aceite cuando este se encuentra a una altura de 6 m.

Sean

Como el llenado es a razón de se tiene

Se quiere determinar

, cuando

La ecuación del volumen nos permite relacionar V y h.

Sin embargo se requiere primero tener r en términos de h. De la figura se

observan los triángulos semejantes, lo que nos permite expresar:

Sustituyendo en la ecuación del volumen

(

)

Derivando en ambos miembros de la ecuación

( )

Despejando

r

2.5m

h

14m

Page 210: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

38

Evaluando esta expresión cuando h=6 m

( )

Finalmente, el nivel de aceite sube con una razón de cuando el aceite está a una altura de 6 m.

Ejemplo 71. Del ejemplo anterior, supóngase que se deposita el aceite

industrial a la misma razón de , pero cuya forma es cilíndrica con

una altura de 14 m y un radio de 1.5 m. Determinar la razón a la cual

sube el aceite cuando éste ha alcanzado una altura de 6 m.

Sean

Como el llenado es a razón de se tiene

Se quiere determinar

, cuando

La ecuación del volumen nos permite relacionar V y h.

Derivamos en ambos miembros

Despejando

Sustituyendo datos

1.5m

h

14 m

Page 211: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

39

( )

Observamos que la razón de cambio es constante y no depende de h. Por lo

que a 6 m o cualquier otra altura el nivel de aceite sube a razón de

.

Ejemplo 72. Dos lanchas parten de un punto P. Una de ellas se mueve hacia

el este a razón de 100 km/h, mientras que la otra se mueve hacia el sur a

razón de 120 km/h. Determinar la razón de cambio de la distancia que las

separa cuando la lancha que va al este se ubica a 20 km y la que va al

sur a 30 km, ambas de su punto de partida.

Sea

( )

( )

( )

( )

Tenemos los siguientes datos:

La rapidez a la cual se separan las lanchas es

La ecuación que nos permite relacionar las variables, se obtiene al

aplicar el teorema de Pitágoras. Según la figura.

Derivando implícitamente

Nos falta determinar

P

s y

x

Page 212: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

40

√ √ √ √

Sustituyendo datos

(

) ( ) (

) ( )

Finalmente decimos que las lanchas se alejan a una razón de

Diferenciales

La derivada de una función en un punto dado representa, desde el punto de vista

geométrico, a la pendiente de la recta tangente a la curva de la función en dicho

punto.1

De la figura podemos ver que para pequeños valores del incremento , la pendiente

de la secante se aproxima a la pendiente de la tangente. Es decir,

( )

De aquí que

( )

𝑑𝑦

secante tangente

𝑥 𝑑𝑥

𝑦

Page 213: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

41

Se llama diferencial de la variable independiente al incremento y se representa

como . Mientras que a la expresión ( ) se le denomina diferencial de la variable

dependiente , la cual se representa como .10

La diferencial de una función se obtiene llevando a cabo el producto de su derivada

por el diferencial de la variable independiente .4 Se puede expresar como

( )

Ejemplo 73. Determinar la diferencial de .

Primero se obtiene la derivada

Para obtener su diferencial se multiplica por

( )

Ejemplo 74. Obtener la diferencial de √ .

( )

Se determina primeramente su derivada

( )

( )

√ ( )

Para obtener su diferencial, se multiplica por

Ejemplo 75. Determinar la diferencial de .

( )

( )

Así que su diferencial es

Page 214: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

42

Los diferenciales son utilizados para obtener aproximaciones de una función

incrementada cuando el incremento de es pequeño ( ).5

Partiendo de

( ) ( )

Se tiene la aproximación

( ) ( ) ( )

( ) ( )

Ejemplo 76. Mediante diferenciales obtener una aproximación de √ .

Partimos de que la función es

( ) √

Queremos calcular

( ) √

Obtengamos el diferencial de la función

Por lo tanto

√ √

√ √

√ ( )

Mediante una calculadora se tiene que √

Ejemplo 77. Calcular mediante diferenciales el incremento del área de un

cuadrado, cuando sus lados que miden 3 m, sufren un aumento de 3 mm.

La función para determinar el área de un cuadrado cuyo lado mide es

Y se tienen los datos

Page 215: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

43

Obtengamos la diferencial de la función

Sustituyendo datos

( )( )

Con un incremento en el lado del cuadrado de 3 mm, el área incrementa

aproximadamente .

Ejemplo 78. A una placa circular con un radio de 5cm se le aplica calor,

aumentando su radio en 0.015 cm. Determinar aproximadamente cuanto

aumento la superficie de la placa.

La fórmula para determinar el área de un círculo de radio r es

( )

Por tanto

( )( )

Con fines comparativos, el resultado con cuatro decimales de precisión es

( )

( )

3.3. Cálculo de máximos y mínimos

Dentro de las aplicaciones del cálculo diferencial, se encuentra la localización de los

valores máximos y mínimos de las funciones. Esta aplicación en particular tiene

aplicaciones directas con problemas de modelación matemática y con el significado de

la derivada. Veremos a lo largo de este apartado de manera más explícita todas estas

afirmaciones.

Originalmente, una función matemática es una representación algebraica que nos

indica el comportamiento de una variable en relación con otra u otras. La

Page 216: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

44

representación puede realizarse de maneras diferentes: algebraica, numérica y gráfica.

Por otro lado, recordemos que la derivada es una operación aplicada a una función; tal

operación nos muestra de manera general el valor de la pendiente de la recta tangente

a la función original o también llamada primitiva.

En otras palabras; la derivada como función, nos indica cómo y de qué manera cambia

la función original para todos y cada uno de los valores de la variable independiente.

Veamos el siguiente ejemplo que puede ayudarnos a comenzar a comprender este

concepto.

Ejemplo 79.Calcular y graficar la derivada de la función

3 2( ) 2 2f x x x x .

La función como tal es un comportamiento de acuerdo a los valores que se

propongan a la variable x (variable independiente) y el resultado de

estos. Esta representación puede realizarse de manera simbólica con su

proceso algebraico. Como ya se ha visto, el desarrollo algebraico de la

derivada se realiza de manera práctica con el uso de fórmulas de

derivación implícita. Para nuestro caso tendremos:

3 2( ) 2 2f x x x x 2( ) 3 4 1d

f x x xdx

Esta es la derivada de la función ( )f x

que se ha calculado

algebraicamente aplicando las fórmulas de derivación que ya viste. Las

gráficas que a continuación se muestran son respectivamente f1 como la

función original o también llamada primitiva y f2 como la función

derivada de la original:

Page 217: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

45

Si bien tenemos ya la representación gráfica de la función y su derivada, conviene

analizarlas de acuerdo a su comportamiento conjunto. Si recordamos el Teorema de

Rolle, el cual dice: Si una curva regular sale y llega a la misma altura, en algún punto

tendrá por lo menos una tangente horizontal11, entonces parece que la función

primitiva tendrá gráficamente un comportamiento tal, que su tangente tendrá un valor

de cero en algún punto; este punto será en donde su derivada (que es precisamente la

gráfica del valor de su tangente) vale cero.

Para fines de analizar las funciones con y por medio de sus comportamientos gráficos,

las clasificaciones parten de las funciones que son prácticamente planas en alguna

parte de gráfica; estas funciones se llaman funciones monótonas y tienen un

comportamiento creciente o decreciente, teniendo en una parte de su rango o valores

de la variable independiente, una parte plana. Aún con este comportamiento, la

función tendrá una pendiente cuyo valor es cero, en este punto tendremos entonces un

máximo o un mínimo relativo, puesto que si el resto de la función es tendiente al

crecimiento, tendrá más de un valor máximo. De hecho, después del valor máximo

relativo, todos los valores serán máximos, de ahí el nombre de relativo.

Las siguientes tres gráficas representan a funciones monótonas. La primera de ellas es

una función estrictamente creciente, ya que conserva el orden ascendente durante

todo el recorrido de la función. La segunda de ellas es estrictamente decreciente,

puesto que conserva el orden descendente durante todo el recorrido de la función. La

última de ellas es una función con un recorrido con partes donde la función es

creciente, partes donde es decreciente y entonces no es una función monótona12.

Page 218: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

46

Función monótona

creciente.

Función monótona

decreciente.

Función no monótona.

La primera gráfica tiene una tendencia creciente, pero si trazamos una recta tangente

a la gráfica en la parte plana, entonces cumpliremos con el criterio de que la derivada

en esa parte vale cero, y tendríamos un máximo; la gráfica de la parte central ilustra

la operación complementaria: de un valor máximo llegamos a un valor mínimo, aun

que la función siga teniendo valores mínimos.

Volvamos a la función propuesta que de acuerdo a las menciones anteriores, es una

función no monótona. La función 3 2( ) 2 2f x x x x será entonces no monótona.

En un principio, tendremos más de un valor máximo y un valor mínimo, llamados

entonces igualmente máximo relativo y mínimo relativo. Analizando la derivada que se

ha calculado para esta función y su representación gráfica, observaremos en principio

que si trazamos un punto en la función y en este una recta tangente, entonces esta

recta tangente tendrá por supuesto un ángulo de inclinación, o sea: una pendiente.

Con la ayuda de un software de graficación analizaremos el comportamiento de esta

pendiente o derivada en la función primitiva. Si se observa, un primer punto nos

muestra una pendiente con valor de 5.53.

Page 219: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

47

Mientras avancemos con este punto (es decir: mientras vayamos aumentando los

valores de la variable independiente o avanzando en los valores del eje X), tendremos

un cambio en el valor de dicha pendiente. La siguiente figura nos muestra la pendiente

ahora con un valor de 0.898, es decir: un valor menor al que anteriormente habíamos

observado.

Si seguimos manipulando el punto y por consiguiente variando el valor de la

pendiente, podemos llegar al punto en donde la posición de la pendiente es

prácticamente una recta paralela al eje X, teniendo entonces como valor el cero.

Page 220: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

48

Como ya hemos explicado, el valor de la pendiente en todos y cada uno de los puntos

de la función primitiva, ese es el valor de la derivada. Si graficáramos estos valores,

tendremos entonces la gráfica de la función derivada. Por esa razón, si se observa en

la gráfica anterior, en el punto donde la pendiente es cero, la gráfica de la función

derivada cruza el eje de la X, es decir; en este punto la función derivada vale cero.

Si continuamos con el movimiento del punto descrito, entonces el valor de la pendiente

obviamente cambiará, solo que si se piensa un poco, la inclinación será ahora

diferente, en otro sentido. Esos valores en la pendiente se representan ahora como

negativos, es decir: los valores de la pendiente tendrán un cambio de signo después

de haber tenido el valor de cero. La siguiente gráfica muestra el valor de la pendiente

a la curva después de haber pasado por el punto donde esta vale cero. Para este caso,

la pendiente vale menos 2 (-2). Obsérvalo:

Si continuamos con el recorrido del punto, volveremos a llegar a la posición en donde

la pendiente volverá a tener el valor de cero, solo que ahora la pendiente vendrá de

Page 221: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

49

haber tenido valores negativos y llegará al punto donde vale cero. Este valor nos indica

en la gráfica el valor mínimo de la función, en donde la derivada vale cero, que

además, es donde la gráfica de la función derivada cruza por el eje de las X.

Como puede suponerse, al continuar a través del eje X (o dicho de otra forma:

asignando valores más grandes a la variable independiente) en la función primitiva, se

observará que el valor de la pendiente cambia, adquiriendo ahora valores positivos,

como los tuvo en un principio del análisis que aquí hemos hecho. En la siguiente figura

se muestra el nuevo valor de la pendiente, que es ahora de dos (2):

Dicho en otras palabras: aplicar la primera derivada a una función cualquiera nos

puede proveer información acerca de cómo se comporta la función original, más

específicamente: el valor de cero en la derivada indica cuando existe un valor máximo

o mínimo en la función primitiva. Estos valores pueden ser vistos como asíntotas

verticales, mismas que serán en donde los valores de la función primitiva cambian de

un valor máximo a uno mínimo o viceversa. Si trazáramos una recta horizontal en cada

uno de los puntos de intersección entre la asíntota vertical y la función primitiva,

Page 222: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

50

encontraremos la coordenada en y del valor máximo de la función. Las siguientes

figuras muestran las asíntotas horizontales y verticales, donde el valor de la derivada

es cero y que coincide con el punto máximo y/o mínimo de la función primitiva.

Por supuesto que gráficamente podemos ver como se comporta la función primitiva y

su derivada. Un método analítico puede darnos los valores exactos donde la derivada

es cero y consecuentemente, el valor de la función primitiva es máximo o mínimo.

Para lograr esto, se procede de la siguiente manera:

Uno: La función derivada se iguala a cero.

2( ) 3 4 1d

f x x xdx

20 3 4 1x x

Esto se realiza con el fin de encontrar los valores donde la función se hace cero. Una

manera de encontrar estos valores es factorizando la función derivada; otro método

será aplicar la fórmula general (puesto que estamos resolviendo una ecuación de

segundo grado). Para este caso, la factorización no es posible de una manera más o

menos directa, por lo que es mejor recurrir a la fórmula general, la cual nos

proporciona los valores:

1 2

7 2 7 2,

3 3x x

Si bien ya hemos encontrado los anteriores valores que nos indican el lugar exacto en

donde la función derivada vale cero (y que además es el lugar en donde existe un

máximo o un mínimo), conviene además precisar si en cada uno de dichos valores se

encuentra un máximo o un mínimo.

Analizar la concavidad de la función primitiva se realiza evaluando la función primitiva

en dos valores tan cercanos como sea posible al valor de la concavidad. Si en el valor

inmediato menor la pendiente es positiva y en el valor inmediato mayor la pendiente

Page 223: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

51

es negativa, entonces se puede afirmar que la concavidad es hacia arriba, es decir:

que en ese punto se encuentra un valor máximo relativo. Ahora bien, si se analiza la

función de manera similar en dos valores tan cercanos como sea posible y el cambio

de valor en signo es contrario (de negativo a positivo), el punto de la función primitiva

es un mínimo relativo. Tratemos de dejar más claro esta situación en el siguiente

ejemplo:

Ejemplo 80. Definir cuál es el valor máximo y mínimo relativo de la

función: 3 2( ) 2 2f x x x x .

Retomando la misma función que en el ejemplo anterior y considerando las

explicaciones aquí descritas, para calcular el valor máximo y/o mínimo

exacto de manera analítica, derivamos primeramente la función (como ya se

ha realizado):

3 2( ) 2 2f x x x x 2( ) 3 4 1d

f x x xdx

Después, igualamos la función derivada a cero:

20 3 4 1x x

Como ya se ha descrito, encontrando las raíces de este polinomio se

localizan de manera exacta los puntos de inflexión de la función

primitiva:

1 2

7 2 7 2,

3 3x x

Para analizar ahora en cuál de estos valores de la variable independiente

se encuentra un máximo o un mínimo, analizaremos cada uno de los valores.

Primeramente, para el valor de 1 1.54858x , consideramos un valor

inmediato más pequeño o más a la izquierda de la recta. Con el valor de

1 1.6x evaluado de la función derivada tendremos que la evaluación nos

dará como resultado 1(́ ) .28f x . Por otro lado, al evaluar la función

derivada en el valor inmediato más grande que el punto de inflexión

Page 224: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

52

tendremos que para 1 1.4x , la función primitiva valdrá: (́ ) 0.72f x , es

decir: tendremos un cambio en el valor de la pendiente de positivo a

negativo, por lo tanto habrá en el punto de inflexión un máximo relativo.

De manera similar, para el punto de 2 0.21525x , un valor inmediato menor

como 2 0.214x nos dará como resultado en su evaluación en la función

derivada el valor de 2(́ ) 0.0066f x ,mientras que para una valor inmediato

mayor como 2 .216x , el valor de la función primitiva será de

2(́ ) 0.0039f x ; por lo tanto: al cambiar el valor de la pendiente de

negativo a positivo nos garantiza que en la inflexión existe un mínimo

relativo.

Otro criterio que puede considerarse en cuenta para el análisis de las funciones es

encontrar la segunda derivada de la función primitiva, o lo que es lo mismo, encontrar

la derivada de la derivada de la función primitiva. El criterio nos menciona a grandes

rasgos que si existe la segunda derivada de la función y esta cruza al menos en una

ocasión por el eje de las X, entonces cuando sus valores son negativos o menores que

cero, existe en el intervalo de los valores negativos (

2

0d y

dx ) un máximo local de la

función primitiva.

En el caso contrario, cuando el valor de la segunda derivada es mayor que cero, existe

en el intervalo mayor que cero un mínimo local13. La siguiente gráfica nos muestra la

gráfica de la segunda derivada de la función que hasta este momento hemos

considerado como ejemplo. En esta se muestra que la segunda derivada 3( ) 6 4f x x

cruza al menos una vez el eje de las X, es decir: asume en su evaluación de valores de

la variable independiente x, valores positivos y negativos.

Cuando los valores de esta segunda derivada son negativos, entonces en ese intervalo

existe un máximo relativo y cuando los valores son positivos, entonces existe en el

intervalo un mínimo local.

Page 225: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

53

3.4. Aplicación de máximos y mínimos.

Una de las aplicaciones de la derivada como análisis del comportamiento de las

funciones se realiza con ayuda de los máximos y mínimos, siendo estos valores críticos

o deseados, en una función modelada de un fenómeno real. Como ya se ha

mencionado en la modelación de funciones, en el apartado 1 el comportamiento en

términos matemáticos específicamente con y por medio de una función puede darnos

importante información de cómo se comporta cierto fenómeno, más aún si se requiere

por ejemplo optimizar el comportamiento en términos de una variable. Retomaremos

uno de los ejemplos ya abordados para vincularlo con el tema aquí visto de máximos y

mínimos como aplicación directa del cálculo.

Ejemplo 81. Se desea fabricar una caja sin tapa con una lámina de cartón

cuadrada cuyos lados midan 12cm. Encontrar una expresión del volumen que

contendrá la caja en función de cuatro recortes cuadrados que se

realizarán en cada una de las esquinas. ¿Cuál será el valor de estos

recortes si se desea un volumen máximo en la caja?

Un dibujo que represente el planteamiento del texto anterior puede ser

similar al siguiente:

Page 226: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

54

Como puede observarse, la hoja de cartón tiene los recortes descritos,

por lo que una función que nos indique la base de la caja se expresaría

como

( ) 12 2 12 2b x cm x cm x

Puesto que el cuadro que haría las veces de base tiene como lado el valor

de 12 2cm x , como se muestra en la siguiente figura:

Como puede observarse, el valor de la altura de la caja será entonces de

x, por lo que el volumen total de la caja puede expresarse como el

producto de la base por la altura, es decir:

( ) ( ) 12 2 12 2b x h x cm x cm x x

Desarrollando el producto y agrupando términos semejantes, tendríamos:

2

( ) 4 6V x x x cm

que es la función pedida.

Por otro lado, si derivamos esta función y encontramos el valor máximo en

la graficación de medida de los recortes contra el volumen, entonces

habremos encontrado el volumen máximo. Procedemos pues a derivar la

función (en donde hemos omitido las unidades para fines prácticos):

2 3 24( ) 4 6 48 144V x x x x xx

Cuya derivada será:

2(́ ) 12 96 144V x x x

Page 227: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

55

Como ya hemos descrito, para encontrar los valores máximos y/o mínimos

procedemos a igualar esta derivada a cero:

20 12 96 144x x

Encontramos las raíces de esta ecuación de segundo grado (ya sea

factorizando o con la fórmula general, según convenga):

1 22, 6x x

Esto serán los puntos en donde existe concavidad en la función primitiva,

es decir: uno de estos puntos es un máximo relativo y el otro

probablemente un mínimo también relativo. Procedemos a hacer el análisis

de la derivada evaluando los puntos.

1 1.9x 1 2.1x 2 5.9x 2 6.1x

Sustitución: 4.92 -4.68 -4.68 4.92

Pendiente + - - +

Como puede observarse, con la sustitución de valores cercanos a la primer

raíz (x=2), se observa que el valor de la pendiente pasa de ser negativo

a ser positivo, esto nos indica que en el punto x=2 existe una concavidad

hacia abajo o un valor máximo, por lo tanto, el valor en donde la caja

puede contener un volumen máximo es aquel en donde sus cortes serán de

dos centímetros. Por supuesto que la gráfica de la función en donde se

tracen las coordenadas de un punto móvil nos puede corroborar dicha

información:

Page 228: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

56

De hecho, al sustituir el valor 2 en la función original, su resultado

será de 128 (retomando las unidades, centímetros cúbicos). Por supuesto

que la sustitución de valores más pequeños que el 2 o más grandes incluso

en una escala muy pequeña nos dará valores más pequeños que 128. Se deja

la comprobación de este hecho al estudiante.

Ejemplo 82.Un pueblo se encuentra a 3km de distancia de un río. En una

sesión de simulacro, se pretendió que un bosque se incendiaba a una

distancia de 2km del mismo río. La distancia sobre el río que separa al

pueblo del bosque es de 6km (véase la figura). Los bomberos matemáticos

quieren representar una función que represente la distancia sobre el río

para en un momento dado, calcular el trayecto más corto para ir del

pueblo al río y después al bosque.

Una suposición que puede ubicar una mejor solución para el problema es

suponer un punto sobre el río, el cual será la posición de menor

distancia del recorrido. Esto puede bosquejarse, puede ser como la

siguiente:

Page 229: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

57

Como puede observarse, el punto x representa la distancia entre los dos

pueblos en donde puede ser mínima función de la distancia total. Por otro

lado, la distancia que han de recorrer los bomberos desde el pueblo al

río y luego al bosque (o incluso en orden inverso) se calcula con la suma

de los trayectos que han de recorrer; esto es de acuerdo al dibujo: el

segmento A más el segmento B.

( ) ( ) ( )D x A x B x

El segmento A puede ser expresado como

2 2

( ) 3A x Km x

Y el segmento B:

2 2

( ) 2 6B x Km Km x

Por lo que la suma de ambas funciones sería:

2 2 2 2( ) ( ) ( ) 3 2 6D x A x B x Km x Km Km x

Que una vez desarrollando y agrupando términos semejantes, obtendríamos:

2 2( ) 2 12 49D x x x Km Km .

Ahora bien, una vez expresada la función que relaciona la distancia total

que habrá de recorrerse en función de la distancia sobre el río desde el

pueblo, se procede a encontrar en este caso el valor mínimo. De esta

manera, procedemos como lo hemos descrito: encontrando primero la

derivada (y omitiendo las unidades de medida para fines prácticos):

2( ) 2 12 49D x x x

Cuya derivada es:

(́ ) 4 12D x x

Igualando la derivada a cero:

0 4 12x

Page 230: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

58

Encontrando entonces el valor de x:

3x

Como en este caso no tenemos dos o más valores, este valor único

es el valor en donde se encuentra la inflexión de la función primitiva y

donde se encuentra el valor mínimo buscado. Una gráfica en donde se

muestre la función primitiva y un punto con las coordenadas x=3, nos

mostrará la distancia mínima total (que a su vez resulta de evaluar el

valor mínimo en la función primitiva).

3.5. Problemario

1. Hallar la derivada de las siguientes funciones usando la regla general de derivación

1.1. y=x3-2

1.2.

2. Mediante el uso de las fórmulas algebraicas, determinar la derivada de las

siguientes funciones:

2.1.

2.2.

Page 231: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

59

2.3.

2.4. √

2.5. √

2.6.

2.7.

2.8.

2.9.

2.10.

2.11. √

2.12. ( )( )

2.13. ( )( )

2.14.

2.15. ( )

2.16. ( √ )

2.17. √

2.18.

2.19.

2.20. √

3. Determinar la derivada de las siguientes funciones implícitas:

3.1.

3.2.

Page 232: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

60

3.3. √

3.4.

3.5. √

4. Mediante el uso de las fórmulas trascendentes, determinar la derivada de las

siguientes funciones:

4.1. ( )

4.2. ( )

4.3. ( )

4.4. ( )

4.5.

4.6.

4.7. ( √ )

4.8. (

)

4.9.

4.10.

4.11.

4.12.

4.13.

4.14.

4.15. ( )

4.16. ( )

4.17. ( ) ( )

Page 233: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

61

4.18.

4.19. ( )

4.20. ( )

5. Hallar la segunda derivada de las funciones siguientes:

5.1. √

5.2. ( )

6. Hallar la sexta derivada de las funciones siguientes:

6.1. ( )

6.2.

7. Resolver los siguientes problemas:

7.1. Un globo aerostático pierde aire a razón de . ¿Con qué rapidez

va

disminuyendo el valor del radio del globo cuando .

7.2. Una placa cuadrada de acero de 1.5 m de lado, se somete a una contracción

térmica durante un proceso de enfriamiento, lo cual origina una disminución en sus

lados de 5 mm. Determinar aproximadamente cuanto disminuye el área de la placa .

𝑟 V

Page 234: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

62

7.3. Obtener una aproximación del resultado de √ .

8. Encontrar el valor mínimo relativo que puede alcanzar la función:

2( ) 6 10 3A x x x

9. Encontrar el valor máximo y mínimo relativo que tiene la función:

3 2( ) 3 5 4B x x x

10. ¿Cuál es el valor máximo que puede alcanzar la función seno?

3.6. Autoevaluación

1. Hallar la derivada de las siguientes funciones usando la regla general de derivación.

1.1. y=4x3-2x

1.2.

2. Se requiere colocar una cerca de un terreno rectangular que tiene un área de 50

metros cuadrados. Uno de los lados más largos del terreno colinda con un río, por lo

que no se requiere cercar ese lado. Expresar la longitud de la cerca en función del lado

que colinda con el río y el valor que debe de tener dicho lado para que la longitud de la

cerca sea mínima.

3. Determinar los máximos y mínimos de la función ( ) .

4. Derivar por fórmulas.

4.1. y=5x4-3x2+6x+8

4.2. y=x2senx

4.3. √

4.4.

4.5. √

4.6.

4.7. √

4.8.

4.9. ( ) ( )

Page 235: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

63

4.10. √

4.11.

4.12.

4.13. ( )

4.14. ( )

4.15.

5. Deriva la siguiente función implícita.

5.1.

6. Usando diferenciales calcular:

6.1.

6.2.

6.3. √

6.4. √

6.5. √

3.7. Conclusión

En este apartado se te brindó una nueva herramienta algebraica útil en el análisis de

funciones y de pequeñas variaciones que ocurren en cantidades continuas, hablamos

sobre el concepto de derivada como razón de cambio, pendientes de curvas, valores

máximos y mínimos, se vieron aplicaciones de optimización, pero hay muchas otras

aplicaciones en el campo de la ingeniería, la física, la economía, la química e inclusive

en las ciencias sociales. Lo visto en este capítulo es prerrequisito para tu próximo

curso de cálculo integral.

Page 236: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

64

3.8. Soluciones del problemario

1.1. 3x2

1.2. y’=

2.1.

2.2.

2.3.

Page 237: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

65

2.4.

2.5. √

2.6.

2.7.

2.8.

2.9.

2.10.

2.11.

2.12.

2.13.

2.14.

2.15. ( )( )

2.16.

( √ )

√ ( √ )

2.17.

2.18. ( )

( )

2.19.

√( )

2.20.

√ √( )

3.1.

3.2.

3.3. √(

)

Page 238: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

66

3.4.

3.5. √

4.1.

4.2.

4.3.

4.4. ( )

4.5.

4.6.

4.7. √

√ ( √ )

4.8.

( )

4.9.

4.10.

4.11. ( )

4.12.

4.13. ( )

4.14. ( )

4.15. ( ) [

( )]

4.16. ( ) ( )

4.17.

4.18.

Page 239: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

67

4.19.

4.20. ( ) ( )

5.1.

5.2. ( ) ( )

6.1. ( )

6.2.

7.1.

7.2.

7.3. ( )

8. -.833

9. Máximo relativo: 1.11, mínimo relativo: 0

10. 1

3.9. Solución de autoevaluación

1.1. y’=12x2-2x

1.2.

2.

2100( )

mL x x

x valor mínimo: 10 m.

3. Máximo en x=1 y mínimo en x=3

4.1. y’=20x3-6x+6

4.2. y’=x2cosx+2xsenx

Page 240: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

68

4.3.

4.4.

4.5.

( )

4.6.

4.7.

4.8.

( )

4.9. ( )

√( )

4.10.

4.11.

( )

4.12.

4.13. ( )( )

4.14.

4.15.

5.1.

6.1. 7687

6.2.

6.3.

6.4.

6.5.

Page 241: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

69

Referencias y notas

1Ángel Ruiz, Hugo Bar rantes. (1996).E lementos de Cálcu lo Di ferencia l. Costa r ica:

Univers idad de Costa Rica. Recuperado 6 de ju l io de 2011, de

ht tp://books.goog le.com.mx/books?id=ptBh j sVvwioC&pg=PR8&dq=E lementos+de+C%C3%A1 lcu l

o+Di ferencia l+%C3%81ngel+Ruiz,+Hugo+Bar rantes&h l=es&ei=xEcXTsLFKdHEsQLAwtQ1&s

a=X&oi=book_resu l t &c t=resu l t & resnum=1&ved=0CCgQ6AEwAA#v=onepage&q=E lementos%20

de%20C%C3%A1 lcu lo%20Di ferencia l%20%C3%81ngel%20Ruiz%2C%20Hugo%20Bar rantes& f=

f a l se

Page 242: iii - seb53672b704ba4a0.jimcontent.com · A lo largo de esta unidad se hablará de uno de los conceptos pilares en el estudio de la matemática: la función, la cual surge de la necesidad

CONALEP-2011 [Análisis derivativo de funciones]

70

2 Gera rdo Ba labasquer Vi l l a.(1994) E l Concepto de Deri vada y sus Ap l icaciones. España:

Univers idad Po l i técnica de Madr id. Recuperado 6 de ju l io de 2011, de

ht tp://books.goog le.com.mx/books?id=bW5Dmr1YX_YC&pg=PA3&dq=E l+Concepto+de+Deri vada+

y+sus+Ap l icaciones+Gera rdo+Ba labasquer+Vi l l a &h l=es&ei= -

0oXTuqyBNL j sQK fxbR j &sa=X&oi=book_resu l t &ct= resu l t & resnum=1&ved=0CCsQ6AEwAA#

v=onepage&q=E l%20Concepto%20de%20Deri vada%20y%20sus%20Ap l icaciones%20Gera rdo%

20Ba labasquer%20Vi l l a & f= fa l se

3 F rank Ay res, J r& E l l io t Mende lson (1991). Cálcu l o Di ferencia l e integra l, México.

McGraw-Hi l l .

4 5 Ferdinand P. Beer & E. Russe l l Johnston, J r.(1990). Mecánica Vector ia l pa ra Ingenieros

“Dinámica ”, México. McGraw -Hi l l . recuperado 5 de agosto 2011

6Granv i l le Wi l l i am A. (1982). Cálcu lo di ferencia l e integra l. México. Limusa

7 Cue l l a r Juan Antonio. (2007). Matemáticas V: Cálcul o di fe rencia l. México. McGraw -Hi l l

8 Agui la r Márquez Ar tu ro, et.a l. (2010). Cálcu lo di ferencia l e integra l. México. Pearson

9 Fuen lab rada de la Vega Samuel. (2008). Cálcu lo di f erencia l. México. McGraw-Hi l l

10 G. Zi l l Dennis. (1987). Cálcu lo con geometr ía ana l í t ica. México. Iberoamericana.

11ht tp://es.wikipedia.org/wiki/Teorema_de_Ro l le

12ht tp://es.wikipedia.org/wiki/Función_monótona

13 Esteves, D., Gabino (2003) Cálcu lo di fe rencia l. Morel ia: UMSNH. Recuperado 6 de ju l io de

2011, de ht tp://dieumsnh.qfb.umich.mx/DIFERENCIAL/c r i ter io_de_ la_segunda_deri vada.htm