geología superficial y su impacto en la vulnerabilidad sísmica de las construcciones de la zona...

37
GEOLOGIA SUPERFICIAL Y SU IMPACTO EN LA VULNERABILIDAD SISMICA DE LAS CONSTRUCCIONES DE LA ZONA METROPOLITANA DE GUADALAJARA. TRABAJO QUE PRESENTA EL DR. MARIO CHÁVEZ G. PARA INGRESAR COMO ACADEMICO DE NUMERO A LA ACADEMIA MEXICANA DE INGENIERIA A.C. SEPTIEMBRE 1999 rozonaaáo sismica piiliininar de la ZMG y --dLqnbucián de sus osnsmicaonrs por upo de euraáo y matenil, edad y posfundidad a la roca de sue suelos.

Upload: academia-de-ingenieria-de-mexico

Post on 14-Apr-2017

85 views

Category:

Engineering


1 download

TRANSCRIPT

Page 1: Geología superficial y su impacto en la vulnerabilidad sísmica de las construcciones de la zona metropolitana de Guadalajara

GEOLOGIA SUPERFICIAL Y SU IMPACTO EN LA VULNERABILIDAD SISMICA DE LAS CONSTRUCCIONES DE LA ZONA

METROPOLITANA DE GUADALAJARA.

TRABAJO QUE PRESENTA EL DR. MARIO CHÁVEZ G. PARA INGRESAR COMO ACADEMICO DE NUMERO A LA ACADEMIA MEXICANA

DE INGENIERIA A.C.

SEPTIEMBRE 1999

rozonaaáo sismica piiliininar de la ZMG y --dLqnbucián de sus osnsmicaonrs por upo de euraáo y matenil, edad y posfundidad a la roca de sue suelos.

Page 2: Geología superficial y su impacto en la vulnerabilidad sísmica de las construcciones de la zona metropolitana de Guadalajara

INDICE

INI'RODUCCION 2

GEOLOGLA SUPERFICIAL DE LA ZMG 2

RESPUESTA SLSMICA DE LOS SUELOS DE LA ZMG 3

3.1 Intensidades de Mercalli Modificada observadas en la ZMG 4

3.2 Movimientos fuertes del terreno registrados en la ZMG

5

3.3 Conclusiones sobre la respuesta sísmica de los suelos de la ZMG 8

ESCENARIO DE RIESGO (PELIGRO) SLSMICO PARA LA ZMG 10

S. IMPACTO DE LA GEOLOGIA SUPERFICIAL EN LA VULNERABILIDAD SISMICA DE LAS CONSTRUCCIONES DE LA ZMG 11

CONCLUSIONES Y RECOMENDACIONES

12

REFERENCIAS

13

RECONOCIMIENTOS

14

Page 3: Geología superficial y su impacto en la vulnerabilidad sísmica de las construcciones de la zona metropolitana de Guadalajara

1. INFRODUCCION

En este trabajo se presenta un estudio sobre el impacto de la geología superficial en la vulnerabilidad sísmica de las construcciones de la Zona Metropolitana de Guadalajara (ZMG). El estudio incluye información de la ZMG sobre: la geología superficial; la estadística de las construcciones existentes; las Intensidades de Mercaffi Modificada (IM1M) observadas para sismos históricos; los registros sísmicos obtenidos en las estaciones de la Red Acelerográfica de la ZMG; los registros de ruido ambiental (microtremores) obtenidos en diversos puntos de la ZMG. También se consideró un escenario plausible del riesgo (peligro) sísmico de la ZrvlG; así como funciones de vulnerabilidad sísmica apropiadas para las construcciones existentes en la ZMG.

En el capítulo 2 se presenta una discusión sobre las características principales de la geología superficial de la ZMG. Un estudio sobre el efecto de esta última, en la respuesta sísmica de los suelos de la ZMG se incluye en el capítulo 3. En el capítulo 4 se propone un escenario plausible sobre el riesgo (peligro) sísmico de la ZMG. El estudio sobre el impacto de la geología superficial de la ZMG, en la vulnerabilidad sísmica de sus construcciones es motivo del capítulo 5. Finalmente en el capítulo 6 se presentan las conclusiones y recomendaciones principales del trabajo.

2. GEOLOGIA SUPERFICIAL DE LA ZMG

La ZMG se encuentra en la llamada planicie de Guadalajara, la cual se localiza en la parte oeste del Cinturón Volcánico Transmexicáno (CVT). Esta región del CVT esta principalmente cubierta de rocas ígneas del Terciario y del Cuaternario. En particular, las rocas más recientes de la planicie de Guadalajara están constituidas por flujos piroclásticos y tobas rioliticas. También se encuentran en la planicie de Guadalajara depósitos de origen aluvial y lacustre, que rellenan las depresiones geomórficas y tectónicas de la región (Campos y Alatorre, 1998). De acuerdo con datos sobre las anomalias de Bouguer, así como de los correspondientes a sondeos geotécnicos de la planicie de Guadalajara, en un estudio reciente, Campos y Alatorre (1998), proponen el modelo de corteza superficial en la vecindad de la ZMG que se muestra en la Fig. 1, De esta figura se puede concluir que en la vecindad de la ZMG se tiene un basamento de granito a una profimdidad de aproximadamente 2.5Km. Sobre dicho basamento se apoya una capa de basaltos andesíticos con un espesor del orden del.5Km de espesor; a su vez sobre esta capa se apoya un estrato de tobas y riolitas de aproximadamente 1.2Km de espesor. Es importante resaltar que los espesores de los dos últimos estratos son ligeramente mayores bajo una parte de la ZMG, Fig. 1.

El estrato de tobas y riolitas bajo la ZMG esta cubierto por una estratigrafia que incluye diversos tipos de suelos, entre los que predominan las arenas y los jales, y en mucho menor porcentaje, limos, arcillas, y gravas. La mayor parte de ellos son de origen piroclástico y aluvial, y en mucho menor porcentaje de origen lacustre. Conviene señalar que las arenas, los jales, y las gravas, están constituidos principalmente de materiales pumíticos. El espesor de la estratigrafia recién descrita es variable, como se muestra en la Fig. 2. Esta figura se obtuvo del procesamiento de la información contenida en aproximadamente 150 sondeos geotécnicos, realizados en la ZMG en los últimos 50 años (Chávez, et al., 1992; Chávez 1997). De la Fig. 2 se puede concluir que el espesor hasta la roca, de la capa de suelos en la ZMG, varia de 1 a lOOm, de este a oeste (ejemplificados por los sitios TON y GRAN, respectivamente). Además, se puede concluir, en una primera aproximación, que los suelos de la ZMG están uniformemente distribuidos en planta, y que solo difieren en su profundidad a los estratos rocosos. Por último, conviene mencionar que los sitios que se muestran en la Fig. 2 corresponden a las 11 estaciones de campo libre de la Red Acelerográfica de la ZMG (RAZMG), Chávez (1993).

2

Page 4: Geología superficial y su impacto en la vulnerabilidad sísmica de las construcciones de la zona metropolitana de Guadalajara

En la Fig. 3 se presenta un ejemplo típico del tipo de estratigrafia de los suelos que se encuentra en la parte central y poniente de la ZMG. En particular se muestra la correspondiente al sitio COL de la Fig. 2. En este caso se tiene una roca basáltica a aproximadamente 33m de profundidad; el espesor de este estrato de roca no se conoce, ya que la profundidad de un sondeo geotécnico efectuado en COL fue de 37m. Sin embargo, de la información con que se cuenta al respecto, es altamente probable que su espesor sea de algunas decenas de metros (Chávez, 1997), y que a su vez se apoye sobre estratos rocosos de centenas de metros de espesor, como lo indican los resultados de Campos y Alatorre (1998), sintetizados en la Fig. 1. Sobre el estrato de roca basáltica vesicular fracturada, se apoya un estrato de arena pumítica con gravas (también pumíticas), poco limosa y muy compacta, de 27m de espesor. A su vez sobre este estrato se apoya un estrato de arena pumítica, poco limosa, de compacidad media a compacta, de un espesor de aproximadamente 6m; Finalmente sobre el anterior se apoya un relleno artificial del orden de im de espesor. Otros ejemplos de estratigraflas típicas de la ZMG, así como de las características fisicas y mecánicas de los suelos de la ZMG se pueden encontrar en Chávez (1997).

3. RESPUESTA SISMICA DE LOS SUELOS DE LA ZMG

Para estudiar el efecto de la geología superficial en la respuesta sísmica de los suelos de la ZMG se analizaron dos tipos de informaciones, una de carácter subjetivo, como lo constituyen las observaciones de las IMIÍVI en la ZMG para sismos históricos; y la otra que es independiente del observador, que consiste en registros de las aceleraciones en terreno libre en los sitios de la ZMG incluidos en la Fig. 2, de sismos recientes ocurridos en la vecindad de la ZMG. Las IM1M son una medida subjetiva de los efectos de un sismo en un sitio específico, expresado en grados por un número romano del 1 al XII, correspondiendo los primeros grados (1 a V) a daños insignificantes o menores en las construcciones, y los superiores (VI a XII) a daños de regulares a importantes, o a la falla total de las mismas. Las aceleraciones del terreno se obtienen por medio de instrumentos diseñados para registrar los movimientos fuertes (aceleración en este caso) del terreno cuando ocurre un sismo. Para el presente estudio, movimientos fuertes significan los que corresponden a aceleraciones del terreno a partir de por ejemplo 1 o 2 cm/s 2 (la aceleración de la gravedad es de 981cm!s2) a diferencia de los movimientos del terreno asociados a la actividad humana en las ciudades, que solo alcanzan aceleraciones muy inferiores a las anteriores, y que se denominan microtremores,.

Antes de analizar la información mencionada, a continuación se discute, brevemente, sobre la tectónica y la sismicidad de la región donde se ubica la ZMG. En la Fig. 4 se muestran los aspectos más relevantes de la tectónica regional de México, en ella se observa que las placas de Cocos, de Rivera, de Norteamérica, y del Caribe, interactuan en la región al moverse unas con respecto a las otras, con direcciones y velocidades diferentes. En particular, la zona de contacto de las tres primeras constituye la llamada zona de subducción de México (las placas de Cocos y de Rivera se sumergen bajo la placa de Norteamérica), en la cual se generan los sismos superficiales más grandes de la región. También se muestra en el recuadro de la Fig. 4 un ejemplo de fallas normales e inversas que ocurren en la placa de Norteamérica y de Cocos (o de Rivera), los sismos que se generan en este tipo de fallas son, en general., de menor magnitud que los sismos de la zona de subducción.

En la Fig. 5 se muestran los epicentros de algunos de los sismos superficiales (con profundidades menores de 20Kni) con magnitudes mayores que 7, ocurridos en la vecindad de la ZMG. Nótese que la distancia epicentral de dichos sismos a la ZMG varía de algunas decenas de Km. (como los ocurridos en 1568, 1875, 1911, 1912, 1921), a cientos de km. (como los ocurridos en 1900, 1932, 1941, 1948, 1973, 1985, y 1995). Es decir, la actividad sísmica de la región vecina a la ZMG se ubica en la costa del Pacifico

al

Page 5: Geología superficial y su impacto en la vulnerabilidad sísmica de las construcciones de la zona metropolitana de Guadalajara

(sismos superficiales de la zona de subducción, Fig. 4 ) y en el interior de la placa Norteamericana (sismos superficiales corticales, Fig. 4).

3.1 Intensidades de Mercalli Modificada observadas en la ZMG

Los efectos de sismos como los recién mencionados, en las construcciones de la ZMG han sido documentados. Por ejemplo, Acosta y Suárez (1996) mencionan que, a partir del siglo X\TIII y hasta 1912, la estadística de edificios públicos y eclesíasticos de Guadalajara que habían sufrido daños por sismo es la siguiente: en el siglo XVIII dos; en el siglo XIX 15; y para los 12 años del siglo XX seis edificios. En cuanto a daños en edificios eclesíasticos la estadística de construcciones dañadas es la siguiente: para el siglo X\TH dos; para el siglo XVffl seis; para el siglo XIX treinta y cinco; y para los 12 años del siglo XX veinte.

Otros ejemplos de la documentación de los efectos de los sismos en las construcciones de la ZMG se incluye en los mapas de isosistas de IMM de las Figs. 6, 7, y 9, 10, lOa. Los primeros corresponden a sismos del siglo XIX y los segundos a sismos de este siglo. En dichos mapas se observa que, en general, las [MIM máximas se presentan en la región vecina al epicentro del sismo en cuestión (IMiMimax = XIX, X), y que conforme la distancia epicentral aumenta las IMIM son menores (IMirvI = ifi, IV). Las IMIM mayores son de particular importancia, porque se relacionan con niveles de daño regulares o severos en las construcciones. A continuación se mencionaran algunos aspectos relevantes sobre cada una de las Figs. 6 a l0 .

En la Fig. 6 se puede observar que la ilvilvI en Guadalajara para el sismo deI 7 de abril de 1845 (de magnitud 7 y distancia epicentral de 500Km) fue de VII, mientras que en sus alrededores fue de solo ifi, es decir hubo una diferencia de IV grados entre ambas observaciones. Por otro lado durante el sismo ocurrido el 11 de febrero de 1875 (con magnitud de 7 y distancia epicentral de algunas decenas de Kni), la 1IMITvI fue de XIX - X, en Guadalajara, como se muestra en la Fig. 7. En la Fig. 8 se presenta un ejemplo del tipo de daños que se presentaron en algunas construcciones del centro histórico de la ZMG, durante el enjambre de sismos de mayo de 1912, dichos daños corresponden a una IMTvI de \TIll[X .

En la Fig. 9 se incluyen las isosistas del sismo del 19 de mayo de 1979 (de magnitud 7.6 y distancia epicentral del orden de 400Km) nótese que en la ZMG se observaron IMirvI de y- VI, mientras que en su vecindad éstas fueron de IV - V, es decir en este caso se tiene una diferencia de hasta II grados entre ambas observaciones. Finalmente para el sismo del 9 de octubre de 1995 (de magnitud 7.4 y distancia epicentral de 240Km) en la ZMG se observaron IMIM de ifi - IV en una parte del extremo este y sureste de la zona (partes de Guadalajara, Tonalá y Tlaquepaque), y de VI - VII en la parte centro y oeste de la zona (parte centro y oeste de Guadalajara y en Zapopan) como se muestra en las Figs. 10 y loa. De acuerdo con información de los diarios locales y de la Dirección de Construcción del Gobierno de Jalisco, de los daños reportados en las construcciones de la ZMG para este sismo, aproximadamente un 85% ocurrieron en las partes centro y oeste de la misma (Chávez y Martínez, sometido a Earthquake Spectra).

De lo comentado en los párrafos anteriores se puede concluir lo siguiente: de acuerdo con la información analizada sobre el efecto de los sismos en las construcciones de la ZMG, cuantificada por la escala de Intensidades de Mercaffi Modificada, se tiene evidencia de que cuando menos desde el siglo XVII y hasta la fecha se han observado daños en edificios públicos y eclesíasticos que han alcanzado valores de 1MM que varian de VI - VII hasta IX - X; Para un mismo sismo se han observado diferencias de entre II y 1V grados en las IIMM reportadas para la ZMG y las correspondientes a su vecindad, así como para subzonas de la misma.

4

Page 6: Geología superficial y su impacto en la vulnerabilidad sísmica de las construcciones de la zona metropolitana de Guadalajara

3.2 Movimientos fuertes del terreno registrados en la ZMG

El sismo del 9 de octubre de 1995 mencionado anteriormente (Fig. 5) es el único que se ha registrado en las 11 estaciones de superficie y las dos de pozo de la Red Acelerográfica de la ZMG (RAZMG), la cual consta de 11 acelerógrafos SSA2 y 2 acelerógrafos de pozo FDH13, de Kinemetrics. La RAZMG inició operaciones en febrero de 1992 con 10 estaciones de superficie; la restante de superficie y las dos de pozo entraron en funcionamiento en diciembre de 1993 (Chávez, 1993). Para su diseño se utilizó parte de la información mencionada en el capítulo 2 y en la primera parte de este. La localización de las estaciones en la ZMG se presenta en la Fig. 2, nótese que están distribuidas, grosso modo, en las direcciones norte- sur (n-s), este - oeste (e-o), y noroeste-sureste. Las profundidades (inferidas) a la roca basáltica de los suelos bajo las estaciones de superficie varía de 1 a lOOm, Fig. 2. Las estaciones de pozo se encuentran en la estación COL a 9m (en suelo típico de la ZMG) y a 35m de profundidad (en la roca basáltica), la cual tiene la estratigrafia (obtenida de un sondeo efectuado en 1993) mostrada en la Fig. 3, que fue discutida en el capítulo 2.

En la Fig. 11 se incluye más información sobre el sismo del 9 de octubre de 1995 con magnitud de Richter de 7.4, en particular se muestra el área de ruptura (la proyección en planta de la superficie de contacto entre placas que se supone rompe durante un sismo) de dicho evento, así como de las correspondientes a los sismos del 3 y 18 de junio de 1932, los cuales tuvieron magnitudes de Richter de 8.2 y 8, respectivamente. Los tres sismos tuvieron profi.mdidades entre 15 y 201Cm, y distancias epicentrales del orden de 200Km a la ZMG. Los tres eventos tienen mecanismos de falla inversa, típicos de la zona de subducción de México, en este caso asociados a la subducción de las placas de Rivera y Cocos bajo la placa Norteamericána. Nótese que el área de ruptura del sismo del 3 de junio es muy superior a las de los otros dos (incidentalmente, para el sismo del 3 de junio de 1932 se reportó una IMTvI de VI en la ZMG, Fig. 10).

En las Figs. 12, 13 y 14 se muestran los acelerogramas registrados en las estaciones de la RAZMG durante el sismo del 9 de octubre de 1995, en las direcciones n-s, e-o, y vertical (y), respectivamente, Chávez, (1997). De dichas Figs. se puede concluir: que las aceleraciones máximas (Amax) para las direcciones n-s y e-o (Figs. 12 y 13), registradas en la RAZMG variaron de 15 a 25cm1s 2 , y que éstas correspondieron a las estaciones con profundidades de sus suelos a la roca, H, iguales o mayores a 18m (estaciones COL, ROT, SUR, ARC, GRAN, OBR); que las Amax de las estaciones con valores de H menores a 15m (TON, TvÍIR., RAF, OBL, PLA) fueron entre 6 y lOcmls2 , correspondiendo el valor menor a la estacione TON (con H = im); que los registros de TON y los de la estación de pozo de COL con H = 35m (en la roca basáltica, Figs 2 y 3) son muy similares; que las duraciones de los registros variaron de aproximadamente 110 a 170s, correspondiendo la segunda a los acelerogramas de la estación COL (esta estación tiene umbrales de disparo en sus acelerógrafos de pozo, inferiores a las del resto de las estaciones de la RAZMG). Los comentarios anteriores son aplicables a los registros obtenidos para la dirección vertical (Fig. 14) de las estaciones de la RAZMG, excepto que las Amax correspondientes son del orden de 2/3 a '/2 de las mencionadas para las direcciones n-s y e-o.

Con el fin de estudiar el efecto de la geología superficial en la respuesta sísmica de los suelos de la ZMG, se utilizaron las técnicas del cociente espectral y del cociente de Nakamura (también conocido como de H!V, Nakamura, 1989) a los espectros de amplitudes de Fourier de los registros mostrados en las Figs. 12, 13 y 14. También se aplicó la técnica de Nakamura a registros de microtremores (ruido ambiental) de la ZMG. Ambas técnicas han sido aplicadas con éxito en diversos sitios del mundo (Seo, 1997; Bard, 1998), aunque las bases teóricas de las mismas aún son motivo de estudio, especialmente la relacionada con el

Page 7: Geología superficial y su impacto en la vulnerabilidad sísmica de las construcciones de la zona metropolitana de Guadalajara

cociente de Nakamura aplicado a los registros de microtremores. En las dos técnicas se considera que las señales sísmicas y los microtremores tienen un alto contenido de ondas de superficie, que al propagarse en medios estratificados con relaciones de impedancia altos, permiten determinar la función de transferencia de la estratigrafia de interés (el cociente que resulta de dividir el espectro de amplitudes de Fourier de la señal sísmica en la superficie de la estratigrafia, entre el correspondiente a la base de la misma, que en general se supone que es roca o un suelo muy firme). En general se ha podido comprobar que la técnica del cociente espectral permite determinar de una manera más adecuada la función de transferencia de interés; mientras que la técnica de Nakamura solo permite identificar la frecuencia fundamental de vibrar de la estratigrafia (la que se asocia con la amplitud máxima de la fimción de transferencia) y en general subestima las amplitudes de la función de transferencia (Seo, 1997; Bard 1998).

La técnica del cociente espectral consiste en seleccionar, de un conjunto de estaciones de registro temporal o permanente, una estación de referencia (de preferencia la que corresponde a un sitio sobre suelo muy firme o roca) y la función de transferencia de la estación de interés, en una dirección dada, se determina por medio del cociente que resulta de dividir las ordenadas del espectro de amplitudes de Fourier del registro en la estación de interés, entre la correspondientes a la estación de referencia. Si el cociente mencionado tiene un valor cercano a uno, se concluye que no hay amplificación del movimiento del terreno en la estación de interés con respecto a la de referencia; en cambio, si el valor de dicho cociente es mayor o menor que uno, se concluye que los movimientos del terreno en la estación de interés están siendo amplificados o deamplificados, en una frecuencia o banda de frecuencias, con respecto a los de la estación de referencia.

En la técnica del cociente de Nakamura no se requiere una estación de referencia, y el cociente que se calcula en una estación de interés, tiene en el numerador las amplitudes del espectro de Fourier de la componente n-s o e-o, y en el denominador las amplitudes correspondientes a la componente vertical de la misma estación. Las interpretaciones que se pueden obtener de los cocientes de Nakamura en la estación de interés son idénticas a las descritas para el cociente espectral.

A continuación se presentarán los resultados de la aplicación de las técnicas del cociente espectral y de Nakamura a los registros de las Figs. 12 a 14. En las Figs 15, 16 y 17 se incluyen los espectros de amplitudes de Fourier de los acelerogramas de las Figs. 12, 13 y 14, respectivamente. De dichas Figs. se puede concluir lo siguiente:

Las formas y las amplitudes de los espectros de amplitudes de Fourier para los componentes n-s y e-o (Figs 15 y 16) son muy similares para el rango de 0.1 a 1Hz, en prácticamente todas las estaciones de la RAZMG. Para el rango de 1 a l0Hz las formas y las amplitudes de dichos espectros son diferentes para las estaciones que tienen un H mayor o igual 18m (COL, ROT, ARC, SUR, GRAN, OBR, Fig. 2) con respecto a las estaciones que tienen una H menor que ese valor (estaciones TON, RAF, MIR, PLA, OBL, Fig 2). Para estas últimas, los espectros presentan una pendiente negativa importante en el rango de frecuencias considerado. En lo que se refiere a las estaciones COL, ROT, y ARC sus espectros presentan amplitudes máximas bien definidos entre 1.5 y 6Hz; mientras que los espectros de las estaciones SIJR.. GRAN, y OBR, presentan amplitudes máximas en una banda de frecuencias que varían de 0.8 a 4Hz.

Los espectros de Fourier para las componentes verticales (Fig. 17) son también muy similares en todas las estaciones de la RAZMG, para la banda de 0.1 a 1Hz; Sin embargo para frecuencias en la banda de 1 a 10Hz, la pendiente promedio de los espectros para las estaciones COL, ARC, ROT, SUR, GRAN, y OBR, es muy cercana a cero grados; comparadas con las pendientes negativas muy superiores a cero grados, de los espectros correspondientes a las estaciones TON, RAF, PvIIR, PLA, y OBL.

rol

Page 8: Geología superficial y su impacto en la vulnerabilidad sísmica de las construcciones de la zona metropolitana de Guadalajara

En las Figs. 18 y 19 se muestran los cocientes espectrales (CE) de las estaciones en las direcciones n-s y e-o, teniendo como estación de referencia a TON (que tiene una H igual a Im, Fig. 2), la cual se puede considerar que se encuentra sobre roca, y que por tanto, debería tener una función de transferencia con un valor promedio de uno para la banda de frecuencias considerada. Es decir, que en términos generales no presenta amplificaciones de las señales sísmicas, debidas a la geología superficial. A continuación se presentan las conclusiones más relevantes de las Figs. 18 y 19.

La forma de los CE en las direcciones n-s y e-o de cada estación son similares; Los cocientes para todas las estaciones y ambas direcciones, adoptan un valor promedio de uno para la banda de frecuencias de 0. 1 a 1Hz, es decir, no presentan amplificaciones de las señal sísmica en dicha banda de frecuencias; Para la banda de frecuencias de 1 a lOFIz, en todas las estaciones se presentan cocientes mayores que uno, es decir, presentan amplificaciones de la señal sísmica con respecto a la estación TON; Los cocientes son de hasta 2 veces para MIR y PLA, y de hasta 4 veces para RAF y OBL (las cuatro estaciones tienen II menores a 18m, Fig. 2), por lo tanto en ninguna de estas estaciones se presenta claramente un cociente máximo, que se pueda asociar a la frecuencia fimdamental de vibrar de las estratigrafias respectivas; Los cocientes de COL, ROT, y ARC, presentan máximos de 11, 12, y 20 veces, en aproximadamente, 2.6, 22, y 4.71-Iz, respectivamente, estas últimas probablemente sean las frecuencias fi.indamentales de vibrar de las respectivas estratigrafias (las estaciones mencionadas tienen una H de 35, 30 y 48m, respectivamente, Fig. 2); Los cocientes para las estaciones SUR, GRAN, y OBR, presentan máximos de hasta 15, 9, y 10 veces, en bandas de frecuencias de 1 a 7, 0.8 a 5, y 1.5 a 6Hz, respectivamente, esto significa que no se tienen cocientes máximos que permitan identificar las frecuencias fundamentales de vibrar de las estratigrafias respectivas (las estaciones en cuestión tienen una FI de 38, 93, y 5 im, respectivamente, Fig 2); De los resultados recién mencionados sobre los valores de los CE en la banda de 1 a 101-Iz, se sigue que, aparentemente, estos son fünción creciente de la profundidad a la roca H de los suelos de la ZMG.

En las Figs. 20 y 21 se muestran los cocientes de Nakamura (CN) para las direcciones n-s y e-o, respectivamente. Como se mencionó anteriormente, estos cocientes no requieren de una estación de referencia, y resultan de dividir las amplitudes del espectro de Fourier de un componente horizontal, entre las correspondientes al componente vertical, para una estación dada. A continuación se presenta una síntesis de los resultados obtenidos con la técnica de Nakamura para los registros del sismo del 9 de octubre de 1995 observados en las estaciones de la RAZMG.

En términos generales, las formas de los CN de las Figs. 20 y 21, son similares a las de los CE de las Figs. 19 y 20, respectivamente; La similitud es mayor para la banda de frecuencias de 0. 1 a 1Hz, para la cual el CN promedio es de uno, es decir, para dicha banda prácticamente no se presentan amplificaciones de las señales sísmicas en las estratigrafias de las estaciones de la RAZMG; Los CN para MIER, RAF, OBL, y PLA en la banda de 1 a 10Hz son muy parecidos a los correspondientes para los CE, recién discutidos; El CN promedio para la estación TON también es de uno para la banda de frecuencias de 1 a lOFIz, este resultado confirma que la selección de TON como estación de referencia para calcular los CE es adecuada; Los CN para las estaciones COL, ROT, y ARC, en la banda de frecuencias de 1 a 3Hz, son muy similares a los respectivos CE, sin embargo para frecuencias mayores a 3Hz, las amplitudes de los CN son muy inferiores a los de los CE; Para las estaciones SUR., GRAN, y OBR, los CN tienen amplitudes similares a los correspondientes a los CE, sin embargo, los máximos de los CN son inferiores a los de los CE, y se presentan en bandas de frecuencias más reducidas que para los CE. Con el fin de comparar los resultados obtenidos con las técnicas del CE y del CN entre si, así como con respecto a la función de transferencia observada para la estación COL para el sismo del 9 de octubre de

7

Page 9: Geología superficial y su impacto en la vulnerabilidad sísmica de las construcciones de la zona metropolitana de Guadalajara

1995 (definida como el cociente que resulta de dividir el espectro de amplitudes de Fourier del registro en superficie, entre el espectro correspondiente al registro en roca, a 35m de profundidad, Fig. 3) en las Figs 22 y 23 se presentan los tres cocientes. De esas Figs. se puede concluir lo siguiente: La firnción de transferencia para COL en la dirección n-s y e-o (llamada C95SupI35m) alcanza un valor de 20 veces para una frecuencia de aproximadamente 2.7Hz, versus un valor de 10 y 7 veces, para frecuencias de 2.5 y 2.45Hz, para los cocientes espectral (llamado C95 Sup/Ton) y de Nakamura (llamado Na95), respectivamente. Para la banda de frecuencias de 0.1 a lI-Iz los tres cocientes proporcionan un valor promedio de uno. Para la banda de frecuencias de 4 a 10Hz, los valores de los cocientes espectrales y la función de transferencia alcanzan valores de hasta 4 y 8 veces, respectivamente, comparados con valores de hasta 0.7 para el cociente de Nakamura. De lo anterior se sigue que para la estación COL la técnica del CE proporciona resultados más aceptables que la del CN, tanto para el valor del cociente máximo, como para el valor de la frecuencia en que este ocurre. La amplitud máxima de los cocientes obtenidos con las técnicas del CE y del CN, son del orden de la mitad y de un tercio, de la observada en COL, respectivamente. Se tiene una diferencia del orden de 0.2Hz en la frecuencia fundamental de la estratigrafia de COL observada y la obtenida con las técnicas del CE y el CN.

Con el fin de comparar los resultados de los párrafos anteriores (obtenidos para los registros del sismo del 9 de octubre de 1995), con los correspondientes a microtremores (ruido ambiental) de la ZMG, se obtuvieron registros de estos últimos en las estaciones de la RAZMG con un acelerógrafo K2 de Kinemetrics. Los registros de microtremores tuvieron una duración de 2 minutos y se tomaron cinco muestras en cada estación. El procesamiento de las señales de ruido fue idéntico al efectuado para las señales sísmicas. En las Figs. 24 y 25 se presentan los valores esperados (media) de los CN para ruido ambiental en las estaciones de la RAZMG. De dichas Figs se puede concluir lo siguiente:

Para todas las estaciones de la RAZMG, las amplitudes del CN para ruido ambiental son iguales a uno para la banda de frecuencias de 0.3 a 1Hz (se considera que para frecuencias inferiores a 0.3 los resultados del experimento no son confiables debido a limitaciones instrumentales). Este resultado coincide con el obtenido para las señales sísmicas. Para la banda de 1 a 10Hz las amplitudes de los CN para TON y MIIR son de uno, y para RAF, OBL, y PLA alcanza valores de hasta 5, 9, y 3 veces, para frecuencias de, 6, 7, y 10Hz, respectivamente. Para las estaciones COL, ROT, y ARC, los CN presentan máximos de hasta 8, 10, y 5 veces, para frecuencias de 2.6, 2.3, y 1.9Hz, respectivamente. Para las estaciones SUR, GRAN, y OBR, los CN alcanzan valores de 3, 2.5, y 3 veces, para frecuencias de 1.5 a 2, 1.5, y 2 a 31-Iz, respectivamente. De la comparación de estos resultados, con los obtenidos con la misma técnica de Nakamura, pero para los registros del sismo del 9 de octubre de 1995 (Figs 20, 21), se puede concluir que para la banda de frecuencias de 1 a lOFIz, a excepción de los resultados para las estaciones COL y ROT, la técnica de Nakamura aplicada a ruido ambiental proporcionó resultados poco satisfactorios, tanto para la forma de la función de transferencia, como para la identificación de la frecuencia fundamental de las estratigrafias de los sitios del resto de las estaciones de la RAZMG.

3.3 Conclusiones sobre la respuesta sísmica de los suelos de la ZMG.

De lo resultados anteriores se puede concluir lo siguiente:

A) De acuerdo con la información analizada sobre el efecto de sismos históricos en las construcciones de la ZMG, cuantificada por la escala de Intensidades de Mercalli Modificada, se tiene evidencia de que cuando menos desde el siglo XVII y hasta la fecha se han observado daños en edificios públicos y

8

Page 10: Geología superficial y su impacto en la vulnerabilidad sísmica de las construcciones de la zona metropolitana de Guadalajara

eclesíasticos, así como en construcciones en general, que han alcanzado valores de IMM que varían deVl — VllhastaIX. -X; Para un mismo sismo se han observado diferencias de entre II y 1V grados en las [MITvI reportadas para la ZMG y las correspondientes a su vecindad, así como para subzonas de la misma. Los CE y los CN estimados para los registros n-s y e-o del sismo del 9 de octubre de 1995, en todas las estaciones de la RAZMG, adoptan un valor promedio de uno para la banda de frecuencias de 0. 1 a lI-Iz, es decir, no presentan amplificaciones de las señales sísmicas con relación a la estación TON (la cual tiene suelos conprofundidad a la roca H, de im) en dicha banda de frecuencias. Para la banda de frecuencias de 1 a 10Hz, en todas las estaciones de la RAZMG se presentan cocientes mayores que uno, es decir, presentan amplificaciones de la señal sísmica con respecto a la estación TON. Los CE y los CN de MIR, RAF, OBL, PLA, presentan máximos que varían de 2 a 4 veces, para diferentes frecuencias en el rango de 1 a 10Hz. Estas estaciones tiene suelos con profundidades a la roca H, de menos de 18m. Los CE de COL, ROT, y ARC, presentan máximos de 11, 12, y 20 veces, en aproximadamente, 2.6, 2.2, y 4.7Hz, respectivamente, estas últimas probablemente sean las frecuencias fundamentales de vibrar de las respectivas estratigrafias. Los suelos de las estaciones mencionadas tienen H, de 35, 30 y 48m respectivamente. Los cocientes para las estaciones SUR, GRAN, y OBR, presentan máximos de hasta 15, 9, y 10 veces, en bandas de frecuencias de 1 a 7, 0.8 a 5, y 1.5 a 6Hz, respectivamente. Los suelos de estas estaciones tienen un H de 38, 93, y 51m, respectivamente. De los resultados recién mencionados sobre los valores de los CE en la banda de 1 a 10Hz, se sigue

que, aparentemente, estos son función creciente de la profündidad a la roca H de los suelos de la ZMG.

1) La función de transferencia para COL en la direcciones n-s y e-o alcanzan valores de hasta 20 veces para una frecuencia de aproximadamente 2.7Hz, versus un valor de 10 y 7 veces, para frecuencias de 2.5 y 2.45Hz, obtenidos con los cocientes espectral y de Nakamura, respectivamente. De la comparación de los resultados obtenidos con la técnica de Nakamu.ra para los registros sísmicos y de ruido ambiental de la ZMG, se puede concluir que para la banda de frecuencias de 1 a 10Hz, a excepción de los resultados para las estaciones COL y ROT, la técnica de Nakamura aplicada a ruido ambiental proporcionó resultados poco satisfactorios, tanto para la forma de la función de transferencia, como para la identificación de la frecuencia fundamental de las estratigrafias de los sitios del resto de las estaciones de la RAZMG. Los resultados de C) a J) muestran la existencia de importantes efectos de sitio en la ZMG, es decir, de la amplificación de los movimientos sísmicos en los suelos superficiales de la ZMG con respecto a los registros en suelo firme o roca, especialmente en suelos con espesores, FI, hasta la roca, iguales o mayores a 1 8m. El resultado K) coincide, cualitativamente, con las IMM observadas en la ZMG para varios sismos históricos (incluyendo el del 9 de octubre de 1995), ya que las diferencias de II a IV grados observadas entre las IMM mínimas y máximas para un mismo sismo en la ZMG, puede explicarse por los efectos de la geología superficial en la respuesta sísmica de los suelos de la ZMG. Incidentalmente, Chávez (1993) sugirió lo anterior, como una posible hipótesis que explicara las diferencias reportadas por Figueroa (1987) entre las IMIM observadas en la ZMG y en su inmediata vecindad.

Tomando en cuenta los resultados obtenidos en este capítulo, así como los del capítulo 2, en este trabajo se propone la microzonación sísmica preliminar de la ZMG que se incluye en la Fig. 27. En dicha Fig. se

Page 11: Geología superficial y su impacto en la vulnerabilidad sísmica de las construcciones de la zona metropolitana de Guadalajara

puede observar que se proponen cuatro subzonas como se indica a continuación: la 1 con H :5 5m; la II con 5:~ H:!~ 30m;laI1Icon30:~ H:~ 50m;ylalVconH>50m.

4. ESCENARIO DE RIESGO (PELIGRO) SISMICO PARA LA ZMG

El alto potencial sísmico de la región vecina a la ZMG ha sido documentado desde el siglo XVI en que ocurrió el sismo del 27de diciembre de 1568, con epicentro a solo algunas decenas de Km de la ZTvIG (Fig 5), de acuerdo con Suárez et al. (1995), este evento causó graves daños en la región epicentral y su vecindad. Los epicentros de otros sismos importantes ocurridos en la región de interés se presentan en la Fig 5, y sus efectos en la ZMG, expresados por medio de la escala de IMil\'I se incluyen en las Figs.6 a las cuales frieron discutidas en el capítulo 3. Como se mencionó previamente, todos los sismos de la Fig. 5 son superficiales, los de mayor magnitud (como el del 3 de junio de 1932 con magnitud de 8.2) ocurren a distancias epicentrales del orden de 240Km de la ZMG, en la zona de subducción; mientras que los de menor magnitud (como el del 11 de febrero de 1875 con magnitud del orden de 7) y distancias epicentrales de decenas de Km de la ZMG, se originan en fallas corticales normales, como las que se muestran en la Fig. 11.

De los sismos incluidos en la Fig. 5, solo para el del 9 de octubre de 1995 se tienen observaciones de las IMM reportadas en la ZMG, Fig. lOa, así como registros de las aceleraciones obtenidas en la superficie y a diversas profimdidades de los suelos de la ZMG (Figs. 12 a 14). De la Fig. l0 se observa que las IMM mínimas y máximas observadas para dicho sismo fueron de ffl-IV (reportadas en Tonalá, y partes de Tiaquepaque y de Guadalajara), y de VI-\Tll (reportadas en partes de Guadalajara, y de Tiaquepaque, y en Zapópan). Por otro lado de las Figs. 12 a 14 se concluyó: que las aceleraciones máximas (Amax) en roca fueron del orden de 6cmIs 2 , las cuales se registraron en la estación TON, localizada en Tonala (Fig. 2); y que las aceleraciones máximas en suelos típicos de la ZMG fueron del orden de 25cm!s 2 , que se registraron en la estación ARC, localizada en Guadalajara, en la superficie de una estratigrafia con profundidad a la roca de 48m (Fig 2). Ambas informaciones son de interés y utilidad, debido a que con ella se puede correlacionar la información subjetiva (IMIIVI), sobre el efecto de los sismos en las construcciones de la ZMG, con información objetiva (Amax) sobre el movimiento del suelo de la ZMG. Es decir, se tiene que para el sismo del 9 de octubre de 1995 se observaron IMM de ffl-1V asociados a una Amax de 6cmIs2 , e IMM de VT-Vll asociados a una Amax de 25cm/s 2 .

En la Fig. 26 se presentan varias curvas que relacionan IMirvi con Amax propuestas por varios autores, así como las observaciones correspondientes a la ZMG, para el sismo del 9 de octubre de 1995. Nótese que estas últimas se encuentran dentro de la banda de las curvas propuestas por los diversos autores, y que dos de las observaciones se localizan muy cerca de la curva propuesta por Richter. Las curvas mencionadas son de gran utilidad para sitios en los cuales la información instrumental es muy escasa y principalmente se cuenta con información subjetiva, del tipo que proporcionan las observaciones de IMM, esta situación es la que se tiene para la ZMG.

Tomando en consideración: 1) la información histórica sobre la ocurrencia repetida, en la zona vecina a la ZMG, de sismos de gran magnitud y distancia epicentral de cientos de Kni, o de sismos de magnitud intermedia a distancias epicentrales de decenas de Km, los cuales han generado IMIM de hasta IX-X en la ZMG; Así como, 2) los resultados del capitulo 3, sobre la influencia de la geología superficial en la respuesta sísmica de los suelos de la ZMG, la cual se traduce en amplificaciones de importancia de las

10

Page 12: Geología superficial y su impacto en la vulnerabilidad sísmica de las construcciones de la zona metropolitana de Guadalajara

señales sísmicas en los suelos de la ZMG, con respecto a las registradas en roca; En este trabajo se propone (en primera aproximación) como un escenario sísmico plausible, que represente el riesgo (peligro) sísmico para la ZMG, la ocurrencia en un futuro próximo, de un sismo tal que genere lMiMmax de 6, 8, 8.5, y 9, para las subzonas 1, II, III, y IV, de la microzonación sísmica de la ZMG mostrada en la Fig. 27. Si se adopta la curva propuesta por Richter en la Fig. 26, como representativa para la ZMG, se tiene que las Amax esperadas para los IlMlMmax propuestos serían: 35, 160, 230, y 340cm1s 2 respectivamente. Los puntos correspondientes a estas lMMmax y Amax se identifican con una estrella vacía en la Fig 26. Nótese que la curva propuesta por Richter se encuentra muy cerca de las observaciones para el sismo del 9 de octubre en la ZMG, así como que se puede considerar como un promedio de las curvas propuestas por otros autores.

S. IMPACTO DE LA GEOLOGIA SUPERFICIAL EN LA VLJLNERABILII)AD SLSMICA DE LAS CONSTRUCCIONES DE LA ZMG

La estimación de la vulnerabilidad sísmica de las construcciones existentes en la ZMG, es decir la estimación del nivel de daño esperado en esas construcciones, para un sismo con probabilidad de exceder una intensidad dada para un lapso de interés, fue llevada a cabo en este trabajo combinando: la microzonación de la ZMG propuesta en el capítulo 3; el escenario sísmico propuesto en el capítulo 4; la estadística de las construcciones existentes en la ZMG; una versión modificada del índice de daño medio por sismo, (D), propuesto por Cocbrane y Schaad (1992). La decisión para utilizar este último se adoptó tomando en cuenta que no se cuenta con información disponible sobre la vulnerabilidad sísmica de las construcciones de la ZMG, así como que el índice D, fue obtenido con información sobre los daños sufridos en construcciones durante los sismos de Popayán, Colombia de 1983, de Chile de 1985, de Mexico de 1985, las cuales tienen prácticas constructivas y utilizan materiales similares a los de la ZMG (García-Rubio, 1994, Chávez, 1997)

La estadística de las construcciones existentes en la ZMG (hasta 1995) fue obtenida tomando en consideración información como la que se presenta en la Fig. 26a, en la cual se muestra la evolución de la ZMG desde su fundación en 1542. De esa Fig conviene señalar que el crecimiento ms importante de la ZMG se ha dado en los últimos 60 años, durante los cuales solo el sismo del 9 de octubre de 1995 ha generado IMM de VI-VII. También se utilizó información estadística del INEGI, y se efectuaron varias campañas de trabajo de campo en la ZMG (García-Rubio, 1994; Mier, 1995; Chávez, 1997). Finalmente se obtuvo una estadística que incluyo: la estructuración y tipo de construcción; la edad promedio de la construcción; y la subzona (de la microzonación sísmica propuesta en este trabajo) en la cual se localizaba la construcción.

La síntesis de la estadística mencionada se presenta en la Fig. 27 y en la Tabla 1, Nótese que en el tipo de construcción se tienen los de A, B, y C, que corresponden a construcciones: con marcos de concreto reforzado (C/R) y muros de tabique lleno; con muros de tabique lleno y algunos elementos de C/R; y muros de tabique hueco sin elementos de C/R, respectivamente. En cuanto a las edades promedio de las construcciones estas se dividieron en las edades E 1 , E2, y E3 , las cuales corresponde a edades promedio: menores de 15 años, entre 15 y 40 años, y mayores de 40 años, respectivamente. Finalmente, en cuanto a la localización de la construcción se consideraron las subzonas 1, 11, ifi, y IV, incluidas en la Fig. 27. De la parte de la Tabla 1 encabezada por Aij, se puede concluir que en la ZMG se tienen aproximadamente 300Km2 de construcciones existentes. Las estadísticas especificas de los tipos A, B, C, de las tres edades

Page 13: Geología superficial y su impacto en la vulnerabilidad sísmica de las construcciones de la zona metropolitana de Guadalajara

mencionadas, y que se localizan en las subzonas indicadas, se encuentran en cada una de las celdas correspondientes.

Para estimar la vulnerabilidad sísmica de las construcciones existentes en la ZMG, se hicieron las siguientes hipótesis: el índice D tiene la forma básica indicada en la Fig. 28, la cual corresponde a los suelos de la subzona H y una edad promedio de la construcción de 30años; que el índice Dij específico (con i = tipo de construcción, j = subzona, para una edad promedio seleccionada) esta uniformemente distribuido por unidad de superficie (En la parte media de la Tabla 1, encabezada por Dij, se incluyen los valores específicos de dicho parámetro); El índice Dij puede ser asociado a una fracción de superficie dañada por un sismo que genera una IMM en la subzona correspondiente, dicha fracción dañada se denominara Sij; Sij puede ser calculado como el producto Aij x Dij.

Los resultados del cálculo de Sij se incluyen en la parte inferior de la Tabla 1, identificada por Sij. Entre otros resultados que se incluyen en esa parte de la Tabla 1, el principal es que si el escenario sísmico propuesto en el estudio ocurriera, alrededor de un 30%, es decir, unos 90Km2 , de los 280Km2 de la superficie construida en la ZMG, resultaría seriamente dañada. Otros resultados de interés son los siguientes: De los 38, 120, 56, y 64Km2 , de las construcciones de la ZMG localizadas en las subzonas 1, II, III, y IV, respectivamente, las superficies dañadas serían 0.4, 36, 22, y 32Km2 , respectivamente; Con relación a los porcentajes de construcciones que resultarían dañadas, 33, 36, y 22Km 2 , corresponderían a las tipo A, B, y C, respectivamente; En cuanto a las edades promedio de las construcciones que resultarían dañadas, estas serían de 32, 26, y 33, para las edades, E 1 E2

, y E3, respectivamente.

Finalmente, si los resultados incluidos en la Tabla 1 estuvieran sobrestimados por un factor de 10, principalmente debido a los valores adoptados para el parámetro Dij, la superficie total de la ZMG que se esperaría resultara dañada, de ocurrir el escenario sísmico propuesto, sería de 9Km 2 .

6. CONCLUSIONES Y RECOMENDACIONES

Entre las conclusiones más relevantes de este trabajo se pueden mencionar las siguientes:

A partir del procesamiento y análisis de información histórica sobre las Intensidades de Mercalli Modificada (llvÍM) observadas en la Zona Metropolitana de Guadalajara (ZMG) para sismos ocurridos en su vecindad, así como de los resultados obtenidos de la aplicación de las técnicas de los cociente espectrales y de Nakamura a los registros obtenidos en la Red Acelerográfica de la ZMG para el sismo del 9 de octubre de 1995, se puede afirmar la existencia de importantes efectos de sitio en la ZMG, es decir, de la amplificación de los movimientos sísmicos en los suelos superficiales de la ZMG con respecto a los registros en suelo firme o roca, especialmente en suelos con espesores H a la roca, iguales o mayores a 18m. A partir de los resultados anteriores, así como del procesamiento de la información disponible sobre la geología superficial de la ZMG (la cual indica que, en una primera aproximación, sus suelos están uniformemente distribuidos en planta y principalmente constituidos por arenas y jales de origen piroclástico y aluvial) se propone una microzonación sísmica preliminar de la ZMG. Esta incluye cuatro subzonas como sigue: la 1 con H :5: Sm; la II con 5 :! ~ H :!~ 30m; la ifi con 30 :~ H :!~ 50m; y la IV con H> 50iii Para analizar el efecto de la geología superficial en la vulnerabilidad sísmica de las construcciones de la ZMG, se propuso un escenario sísmico plausible para la ZMG (apoyado tanto en la información sísmica histórica, como en los resultados del procesamiento y análisis de los registros de las aceleraciones del terreno del sismo del 9 de octubre de 1995, de magnitud Ms = 7.4 y distancia

12

Page 14: Geología superficial y su impacto en la vulnerabilidad sísmica de las construcciones de la zona metropolitana de Guadalajara

epicentral = 240Km, obtenidos en la Red Acelerográfica de la ZMG) en el cual, en un futuro próximo se pudiese generar un sismo tal que, en la ZMG se presentaran IiMMmax de 6, 8, 8.5 y 9, para las subzonas 1, II, 111, y 1V, respectivamente. Este escenario fue combinado con funciones de vulnerabilidad sísmica apropiadas para los diferentes tipos de estructuraciones, materiales, y edades, de las construcciones existentes en la ZMG.

4) El resultado principal del estudio es que si el escenario sísmico propuesto ocurriera, de 9 a 90Km 2 , de los aproximadamente 300Km 2 de construcciones existentes en la ZMG, resultarían seriamente dañados. La distribución en planta de las construcciones dañadas dependerá de la subzona en que se localizen, es decir, de la geología superficial de la ZMG.

Las recomendaciones más importantes de este trabajo son:

La incorporación de la microzonación sísmica preliminar de la ZMG propuesta en este trabajo, en el reglamento de construcciones de la ZMG. La implantación de un programa en la ZMG para el reforzamiento de las construcciones existentes, que así lo requieran, para reducir su vulnerabilidad sísmica, antes de que ocurra un sismo como el del escenario propuesto.

7. REFERENCIAS

Bard, P.Y., (1998). "Microtremor measurements: a tool for site effect estimation", 2d ESG, Symposium, Yokohama, Japan. Campos-Enriquez, J.O., Alatorre-Zamora, M.A. (1998), "Shallow crustal structure of the junction of the grabens of Chapala, Tepie-Zacoalco and Colima, Mexico", Geojisica Internacional, 37-4, pp 263-282. Chávez, M. (1993), "Red acelerografica de la Zona Metropolitana de Guadalajara", Memoria X Congreso Nal. Ing. Sismica, SMIS, pp 292-300, Puerto Vallarta Mexico. Chávez, M., (1997), "Geotecnia, riesgo y seguridad sismica de la zona metropolitana de Guadalaj ara", Conferencia de Bienvenida, Proceedings X Panamerican Congress Qn soll mechanics and foundations, 4, pp 30-90, Guadalajara, Mexico. Chávez, M., Martínez, A., "Isoseists of the 9 of october 1995, Mw= 8, Colima-Jalisco earthquake" (sometido al Earthquake Spectra) Cochrane, S.W. and Schaad, W.H., (1992), "Assesment of earthquake vulnerability of buildings", Proceedings XWCEE, 1, pp 497-502, Madrid, Spain. Figueroa, J., (1989), "Isosistas de grandes temblores mexicanos ", Instituto de Ingenieria, UNAM, Mexico. García-Acosta, y, Suárez, G., (1996), "Los sismos en la historia de México", Fondo de la Cultura Económica, México D.F. García-Rubio, L., (1994), "Caracterizacion de las construcciones de la zona metropolitana de Guadalajara para evaluar su vulnerabilidad ante sismo", Tesis de Maestría, Universidad de Guadalajara, Guadalajara, Mexico. Mier, A., (1995), "Las construcciones de Guadalajara ante movimientos telúricos", Tesis de Licenciatura, Universidad de Guadalajara, Guadalajara, México. Nakamura, Y., (1989), "A method for dynamic characteristics estimation of subsurface using microtremors 011 the ground surface", QrofRTRI, 30, No 1, 25-3 5. Ortiz, M., Efectos costeros del Tsunami del 9 de octubre de 1995 en la costa Colima-Jalisco (en preparación)

13

Page 15: Geología superficial y su impacto en la vulnerabilidad sísmica de las construcciones de la zona metropolitana de Guadalajara

Seo, K., (1997), "Comparison of measured microtremors with damage distribution", JICA Research and Development project mi Earthquake Disaster Prevention, 306-320. Suárez, G., García-Acosta, V., Gaulon, R., (1995), Active crustal deformation m the jalisco biock: evidence of a great historical earthquake iii the l6 century", Tectonophysics.

RECONOCIMffNTOS

Este trabajo se dedica a Brigitte, Erik, y Claire, gracias por su apoyo y comprensión!.

Se agradece la colaboración de J. Saborio U., J. Saborio O., R. Ramírez, A. Martínez, L. García-Rubio, A. Mier y N. Perea. Se agradece el apoyo de los directivos del Instituto de Investigaciones para la Ingeniería A.C. y del Colegio de Ingenieros Civiles de Jalisco, A. C., en particular a JA. Duarte A., A. Gómez L., y H. Villaseñor M.

14

Page 16: Geología superficial y su impacto en la vulnerabilidad sísmica de las construcciones de la zona metropolitana de Guadalajara

ZMG Toba y

Riolita

* Andesita

Granito 1 13

5 0 10

DISTANCIA (1(m)

Fig, 1 Estructura de la corteza superficial en la Zona Metropolitana de Guadalajara (ZMG) (Modificada de Campos y Alatorre, 1998).

1_

• 1

II *

1

Fig. 2 Profundidad a la roca de los suelos superficiales de la ZMG y en las estaciones de la Red Acelerográfica de la ZMG (Chávez, 1997).

Page 17: Geología superficial y su impacto en la vulnerabilidad sísmica de las construcciones de la zona metropolitana de Guadalajara

Relleno artticial

Poco limosa, de compacidad media a compacta, de Color

Arena pumilica café-amarillo y amarillo castaño.

(Jales)

Poco Ilmosa, muy compecta, color gris, café-amarillo y

Arena pumitica rojo-amarillo, con algunas gravas pumiticas.

(Jales)

Roca basáltica Gris oscuro, poco vesicular, fracturada.

Material Descripción

'0

10

20

• 30

.40

1

o, o e E c e

o, -o c o o-

Fig. 3 Estratigrafia de los suelos en la estación COL de la Red Acelerográfica de la ZMG (Chávez, 1997).

PLACA o NORTE AMERICA

(7J

Dirección del movimiento de las placas

a

Dirección de Movimiento

PLJA DE ,..

relativo RIVERA

A A 4 ,.

A

'LACA DEL 4CARIBE

Zona de subducción - -

PLACA DE — LACA

COCOS 4 t

t DE SUR AMERICA

Fallas trasnformadas 4

4 Fosa Costa Oaxaca Costa

4

t

4 Fallas Dorsales 2rmales

200 300 4CI X

Fig. 4 Tectónica Regional de México (Modificado de Suarez, 1991).

Page 18: Geología superficial y su impacto en la vulnerabilidad sísmica de las construcciones de la zona metropolitana de Guadalajara

- -

-,..

•; : (

Sa t1LIT4kL1p — -

1111)111114 E

:

vil <

iov

« E

Page 19: Geología superficial y su impacto en la vulnerabilidad sísmica de las construcciones de la zona metropolitana de Guadalajara

0A4G f

?Ç CLrAO ic rna

ZACAT(CAS

• N UAI POTO •

o 100 200 300 400 300

kltdm •troi

+ Epicentro

r GOLFO DE MEX/CO

PtI LA

• VLIAHLOUOSA

ÉLL6E AUCA Tl.rtTL* GUT

B

GUATEMALA

OCE ANO PACIFICV

10• 'o.

Fig. 6 Isosistas del sismo del 7 de abril de 1845 (Modificado de Figueroa J. 1987).

uc.

s sir. o

• IX 200 300 400 300

corLO 1CVA

4 Epicentro

O LIJO PQTCII

• L AG A A ION (3 GOLFO DE MEX/CO

O A

o j3tT0AO PoC3IXA

30 e

LAXCOLA JALi.t. IT

- Cc . CU4

LLAHt01dOSA

.1

GUACA T1L& GUTIOAR(Z \

IBELICE I4LPLCNGG e •

01 1 GUATEMALA

OCEANO PA dPi CO

50

g. 7 Isosistas del sismo del 11 de febrero de 1875 (Modificado de Figueroa J. 1987).

rÇ)

tos.

19

Page 20: Geología superficial y su impacto en la vulnerabilidad sísmica de las construcciones de la zona metropolitana de Guadalajara
Page 21: Geología superficial y su impacto en la vulnerabilidad sísmica de las construcciones de la zona metropolitana de Guadalajara

L O $00 $00 $00 400 000

1 i 1 I

MANGO kilo, titos

+ Epicentro

PQTO5

MEX/CO

fJ0. 1

. LAHLJEMO$A

—Ii'- 1 IBELICE

ZACA ?:TLA GUT.Cuez

GUATEMALA

QCEANOIPAC/F/CO L FIG 3

± '0$.

Fig. 9 Isosistas del sismo del 19 de mayo de 1979 (Modificado de Figueroa J. 1987).

Page 22: Geología superficial y su impacto en la vulnerabilidad sísmica de las construcciones de la zona metropolitana de Guadalajara

WXiCO

I1

12t*

f

20'

•ve 1 mi.

.x. ,

X. ® ' ,> Gvodaioora \\

•vI II.

m

\\

Ø k.r

•v' • ' vn-vm !4 ve

O Vff•YIII , -. - vl vw

I ,O\YV y, Ø ° y

ve ' 310611932 1 .SvI s - "O

O VI evi

V1VI•

1 A ev SISMO Ct 1932

ÇU ovm / VI.0 * 3 de IM

m \ rt II P

\ \ vil

( #18 de

tj' 1 Vv

Coqn J°\vrn

\jve vm

1

ix

ix lx 1810611932 19, -

91

o - 105' 04' 103' 102° lOt'

Fig. 10 Isosistas del sismo del 9 de octubre de 1995. Se incluyen valores de lMMmax observados en algunos sitios para los sismos del 3 y 18 de junio de 1932 (Chávez y Martínez, sometido al Earthquake Spectra).

Page 23: Geología superficial y su impacto en la vulnerabilidad sísmica de las construcciones de la zona metropolitana de Guadalajara

ovi Zapopan ZMG

Guadalajam (I!I-IVyVI-VII) ffl-WyVI-VJI)

.v.vn OVI

VI VI.

Lid II

O Laguna de Chapaia

viivm o

Fig. lOa Intensidades de Mercalli Modificada (IIMM) observadas en la ZMG para el sismo del 9 de octubre de 1995 (Chávez y Martínez, sometido a Earthquake Spectra)

Page 24: Geología superficial y su impacto en la vulnerabilidad sísmica de las construcciones de la zona metropolitana de Guadalajara

22 '\ Placa Norte Americana

A J A

21 / A r ;."Pto. V1lHa— .

\ 4fJ Bloque Jalisco / 20 / o

yCharne1a Placa Rivera

H. Barra le avid

,•;:-•! Ma aniIo o 19 .. u"élan

.''

(

18

Placa del Pacifico 4"17 Placa de Cocos

17 -108 -107 -106 -105 -104 -103

A

A

-102

Latitud (0)

Fig. 11 Areas de ruptura de los sismos del 3 y 18 de junio de 1932 y del 9de octubre de 1995 (lineas punteadas) Triángulos : Volcanes; EPR e Cordillera del Pacifico Este; ECG; Graben el Gordo; MAT Trinchera Mesoamericana (Modificado de Ortiz et al, en preparación).

Page 25: Geología superficial y su impacto en la vulnerabilidad sísmica de las construcciones de la zona metropolitana de Guadalajara

/ orn.O

CO

O GRAN ARC

71

Pl

r' RTO~T OBL

çSuR/I

\V +30 ca-

301

t(s)r 160

AMIR

.

Ç)\>s 50~ll>3Oni

irt'Ti 1 - OTON

pIou lOCA fl<5m

Fig. 12 Acelerogramas obtenidos en la RAZMG en la dirección N-S durante el sismo deI 9 de octubre de 1995 (Chávez, 1997).

/ OBR , h i-

/(

( COL GRAN AC - ROT

OBL

RAF SUR

o

-- -

- --

TON 30

• 0 80 160 . ---

/(t(s)r \ 1 Oimt 1

/p. ROCA IEE<5m 3WH>5m

/ R>50m \ 50>-H>30m

Fig. 13 Acelerogramas obtenidos en la RAZMG en la dirección E-O durante el sismo del 9 de octubre de 1995 (Chávez, 1997).

Page 26: Geología superficial y su impacto en la vulnerabilidad sísmica de las construcciones de la zona metropolitana de Guadalajara

SUR

1 -/ \

C\ 160

1 OMIR

\\ 30->ll>5inh-'

5Wfl>30m

' +301 . isWJ.L..

o

/H>,5101x» t(5),

'-. /

OTON

PQ. lOCA HL<5m

- .- •Ei;ii;

I111111U11M1U1N loop, __._.- RAF

I_ T H.OU - -'

Fig. 14 Acelerogramas obtenidos en la RAZMG en la dirección V durante el sismo del 9 de octubre de 1995 (Chávez, 1997).

— ---. ' •'..'?

TON

L5 5m i- O -991

MIR

/H>5OM

\2o.H.l

Frec. F[HzJ

'S\ 50~]EI>30m

Fig. 15 Espectros de amplitudes de Fourier de los acelerogramas de la Fig. 12 (dirección N-S).

Page 27: Geología superficial y su impacto en la vulnerabilidad sísmica de las construcciones de la zona metropolitana de Guadalajara

Fig. 16 Espectros de amplitudes de Fourier de los acelerogramas de la Fig. 13 (dirección E-O).

Fig. 17 Espectros de amplitudes de Fourier de los acelerogramas de la Fig. 14 (dirección y).

Page 28: Geología superficial y su impacto en la vulnerabilidad sísmica de las construcciones de la zona metropolitana de Guadalajara

—III.

. . IN UuIUSi

b1 *

__ * • *

* -! -- -

N111. 1!

l.VYtT I UUI

lee

fi

•.IIII 1

II

Fig. 18 Cocientes espectrales (EstaciónfFON) de Fourier correspondientes a la Fig. 12 (dirección N-S).

OBL

TON o

Fig. 19 Cocientes espectrales (EstaciónlTON) de Fourier correspondientes a la Fig. 16 (dirección E-O).

Page 29: Geología superficial y su impacto en la vulnerabilidad sísmica de las construcciones de la zona metropolitana de Guadalajara

Fig. 20 Cocientes de Nakamura (HIV) correspondientes a las Figs. 12 y 14 (dirección N-S).

• Esi

•UlUI

Fig. 21 Cocientes de Nakamura (HJV) correspondientes a las Figs. 13 y 14 (dirección E-O).

Page 30: Geología superficial y su impacto en la vulnerabilidad sísmica de las construcciones de la zona metropolitana de Guadalajara

o Q. u,

c

o o o

(5

o o-

w c a o o o

100

10

0.1

10

0.1

rivís.

-

TI

:H L

r4 --

—C95 Sup/Ton

—C95 Sup/35m

—Na95

—C95 sup/Ton

—C95 Sup/35m

—Na 95

0.01

0.1 1 10

Frecuencia F [Hz]

Fig. 22 Comparación de los cocientes espectrales (EstaciónrrON), (Sup/35 m) y de Nakamura (HIV), para los acelerogramas de la estación COL del sismo del 9 de octubre de 1995, dirección (N-S).

100

0.1 1 10

FrecuenciaF [Hz]

Fig. 23 Comparación de los cocientes espectrales (Estacióníl'ON), (Sup/35 m) y de Nakamura (HJV), para los acelerogramas de la estación COL del sismo del 9 de octubre de 1995, dirección (E-O).

Page 31: Geología superficial y su impacto en la vulnerabilidad sísmica de las construcciones de la zona metropolitana de Guadalajara

Fig. 24 Cocientes de Nakamura (H/V) de ruido ambiental de la ZMG, dirección N-S.

Fig. 25 Cocientes de Nakamura (HIV) de ruido ambiental de la ZMG, dirección E-O.

Page 32: Geología superficial y su impacto en la vulnerabilidad sísmica de las construcciones de la zona metropolitana de Guadalajara

1

Hershberger (1956) / , /

/ /

100 Trifunac y Brady (1975) (horizontal) -.7

Trifunac y Brady (1975) (verucal)

/ ....

Richter (1958)

Medvedev y Sponheuer (1

19 ,10

¡/ ¿,'-'--- Savarensky y Kirnos (1955)

E

1

0.1

Kawuuzni (1951)

/ Ishimoto(1932)

Agencia Meteorológica del Japón (Okamoro, 1973)

I Observaciones

Escenario

II IV VI VIII X

Intensidad de Mercalli Modificada (IMM)

Fig. 26 Aceleraciones máximas (Arnax) e Intensidades de Mercalli Modificada máxinias (IMIVI)max, observados en la ZMG para el sismo del 9 de octubre de 1995 (e), y para el escenario sísmico propuesto (x ). Se incluyen curvas IMM vs Amax propuestas por varios autores (Modificada de Tnfunac y Brady, 1975).

Page 33: Geología superficial y su impacto en la vulnerabilidad sísmica de las construcciones de la zona metropolitana de Guadalajara

1_e,

;' ••

9-0

• ,r'

SIM8OL GIA Ep.

A 1242 1724

fi 1724 1800

S24,d.

C 800 1884

D 884 1907

Tcr. E90

E 1907 7940

F 1940 7960

G 1960 1976

Fig. 26a Desarrollo de la Zona Metropolitana de Guadalajara de 1542 a 1976 (Adaptado del plano de la zona conurbada de Guadalajara, 1988).

Page 34: Geología superficial y su impacto en la vulnerabilidad sísmica de las construcciones de la zona metropolitana de Guadalajara

. •• I•

— p l

III III /

1

u. uf1iuuuq

: i 1

Fig. 27 Microzonación sísmica preliminar de la ZMG y distribución de sus construcciones por tipo de estru cturación y material, edad y profundidad a la roca de sus suelos.

Tipo construcuón Edad construcaón

E3 A -

E 1

B E3 E2 E1

c. E 3

E2 E1 UIIIIJ

Page 35: Geología superficial y su impacto en la vulnerabilidad sísmica de las construcciones de la zona metropolitana de Guadalajara

Tipo de construcaón 1

/1

c

5 6 7 8 9 10 11 Intensidad de Mercalli Modificada (JIMIM)

Fig. 28 Relación de daño medio (0) VS Intensidad de Mercalli Modificada (IMM) para construcciones de la ZMG tipo A, B y C (Ver Fig. 27 para su definición).

mi

Page 36: Geología superficial y su impacto en la vulnerabilidad sísmica de las construcciones de la zona metropolitana de Guadalajara

'.'. 5•

Tabla 1 Vulnerabilidad sísmica esperada de las construcciones de la Zona Metropolitana de Guadalajara suponiendo un sismo

que genera intensidades de Mercalli modificada de 6, 8, 8.5 y 9, en las subzonas 1, II, III y IV, respectivamente.

Aij (1(m2 ) ( Supeficie construida) Subzona

T. Construcción 1 (IM1v16) II (1MM8) III (IMTVI=8.5) 'V (IMM=9)

E 1 E2 E3 E 1 E2 E 3 E 1 E2 E 3 E 1 E2 E3

A 0.68 0.27 0.14 3.16 8.35 18.83 0.57 14.50 19.44 7.66 20.10 5.50 99.20

B 10.77 3.55 2.73 48.13 14.04 16.62 4.89 6.35 3.88 5.45 6.26 1.18 123.85

C 17.82 0.65 1.15 9.50 1.64 6.14 0.42 15.52 0.89 1.34 55.07

37.76 120.27 56.19 - 63.90 278.12

Marcos de CIR y muros de tabique lleno

Muros de tabique lleno y algunos elementos de C/R

Muros de tabique hueco sin elementos de C/R

Dij (Relación de daño medio) %

E 1 : (Edad <15 años)

E.2 :(Edadentrel5y4oaños)

E3 : (Edad >40 años)

Subzona T. Construcción 1 (1MM6) II (1MM8) III (IMM=8.5) 'V (IMM=9

E 1 E2 E3 E 1 E2 E3 E 1 E2 E3 E 1 E2 E3

A 0.34 0.85 2.55 4.20 14.00 42.00 7.00 20.00 52.00 12.80 32.00 70.40

B 0.60 1.50 3.00 21.60 27.00 42.50 34.00 40.00 58.00 54.00 60.00 84.00

C 0.80 2.00 4.00 32.00 40.00 60.00 46.75 55.00 79.75 67.50 75.00 100.00

Sij (Krn2) (Supeficie dañada) Subzona

T. Construcción 1 (IMM6) II (IMM8) III (1M1vF8.5) IV (1MM9

E 1 E2 E3 E 1 E2 E3 E 1 E2 E3 E 1 E2 E3

A 0.002 0.002 0.004 0.113 1.169 7.581 0.039 2.899 9.781 0.981 6.430 3.873 32.874

B 0.065 0.053 0.082 10.390 3.791 6.733 1.662 2.538 2.249 2.946 3.754 1.522 35.785

C 0.143 0.013 0.046 3.040 3.695 2.872 0.229 10.470 0.667 1.343 22.518

0.410 36.512 . 22.269 1 31.986 91.177

Page 37: Geología superficial y su impacto en la vulnerabilidad sísmica de las construcciones de la zona metropolitana de Guadalajara

GEOLOGIA SUPERFICL&L Y SU IMPACTO EN LA VULNERABflJu SISMICA DE LAS CONSTRUCCIOS DE LA ZONA METROPOLITANA DE GUADALAJtJ

MARIO CHÁVEZ

Instituto de Ingeniería, UNAM, México D.F.

RESUMEN

Se presenta un estudio sobre el impacto de la geología superficial en la vulnerabilidad sísmica de las construcciones de la Zona Metropolitana de Guadalajara (ZMG). El estudio incluye observaciones en la ZMG de las Intensidades de Mercaifi Modificada (IMM) y de registros de la Red Acelerográfica de la ZMG (RAZMG). Se utilizó información sobre la geología superficial y las construcciones de la ZMG, en combinación con un escenario sísmico plausible y funciones de vulnerabilidad sísmica apropiadas.

Para estudiar el efecto de la geología superficial en la respuesta sísmica de los suelos de la ZMG, se aplicaron las técnicas del cociente espectral y del cociente de Nakamura (también conocida como H/V), a registros sísmicos (especialmente los del sismo del 9 de octubre de 1995) y la segunda a registros de ruido ambiental de la ZMG. Los resultados de la aplicación muestran la existencia de importantes efectos de sitio en la ZMG, es decir, de amplificación de los movimientos sísmicos en los suelos superficiales de la ZMG con respecto a los registros en suelo firme o roca, especialmente en suelos con espesores, FI, hasta la roca, iguales o mayores a 18m. Este resultado coincide, cualitativamente, con las IMIM observadas en la ZMG para sismos históricos, algunas de las cuales han sido de hasta 9

- 10. A partir de los resultados anteriores, así como del procesamiento de la información disponible sobre la geología superficial de la ZMG (la cual indica que, en una primera aproximación, sus suelos están uniformemente distribuidos en planta y principalmente constituidos por arenas y jales de origen piroclástico y aluvial) se propone una microzonación sísmica preliminar de la ZMG. Esta incluye cuatro subzonas como sigue: la 1 con H :5 5m; lalicon 5:5H:~ 30m;lafflcon30<H<50m;ylawcoflH>5

Para analizar el efecto de la geología superficial en la vulnerabilidad sísmica de las construcciones de la ZMG, se propuso un escenario sísmico plausible para la ZMG (apoyado tanto en la información sísmica histórica, como en los resultados del procesamiento y análisis de los registros de las aceleraciones del teneno del sismo del 9 de octubre de 1995, de magnitud Ms = 7.4 y distancia epicentral = 240Km, obtenidos en la Red Acelerogrífica de la ZMG) en el cual, en un futuro próximo se pudiese generar un sismo tal que, en la ZMG se presentaran IMMmax de 6, 8, 8.5 y 9, para las subzonas 1, II, III, y IV, respectivamente. Este escenario fue combinado con funciones de vulnerabilidad sísmica apropiadas para los diferentes tipos de estructuraciones, materiales, y edades, de las construcciones existentes en la ZMG.

El resultado principal del estudio es que si el escenario sísmico propuesto ocurriera, de 9 a 90Km 2, de los aproximadamente 300Km2 de construcciones existentes en la ZMG, resultarían seriamente dañados. La distribución en planta de las construcciones dañadas dependerá de la subzona en que se localizen, es decir, de la geología superficial de la ZMG. Se recomienda: 1) la incorporación de la microzonación sísmica preliminar de la ZMG propuesta en este trabajo, en el reglamento de construcciones de la ZMG; así como, 2) la implantación de un programa en la ZMG para el reforzamiento de las construcciones existentes, que así lo requieran, para reducir su vulnerabilidad sísmica, antes de que ocurra un sismo como el del escenario propuesto.