gas solubilityand volumetricbehaviour of carbon dioxide ...€¦ · como contraindicaciones,...

72
Colloquium Prof. Richon Paris, September 3 Colloquium Prof. Richon Paris, September 3-4, 2009 4, 2009 Gas Solubility and Volumetric Behaviour of Carbon Dioxide + Lubricant Systems [email protected] Thermophysical Properties Laboratory, University of Santiago de Compostela, Spain Josefa Fernández Dr. Olivia Fandiño Ms. Teresa Regueira Dr. Luis Lugo Dr. Enriqueta Lopez Dr. María J. P. Comuñas Dr. Alfonso Pensado Dr. Josefa García

Upload: others

Post on 04-Apr-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Colloquium Prof. Richon Paris, September 3Colloquium Prof. Richon Paris, September 3--4, 20094, 2009

Gas Solubility and Volumetric Behaviour ofCarbon Dioxide + Lubricant Systems

[email protected] Properties Laboratory,University of Santiago de Compostela, Spain

Josefa Fernández

Dr. Olivia Fandiño

Ms. Teresa Regueira

Dr. Luis Lugo

Dr. Enriqueta Lopez

Dr. María J. P. Comuñas

Dr. Alfonso Pensado

Dr. Josefa García

Density of lubricants and their CO2 mixtures

Experimental technique

Results

Index

Density Solubility ConclusionsIntroduction

Introduction

Solubility of CO2 in lubricants

Experimental technique

Results

Conclusions

Introduction Density Solubility Conclusions

Environmental problemsOzone Depletion

Problem CO2 Systems of refrigeration Products

Global warming

Colloquium Prof. Richon Paris, September 3Colloquium Prof. Richon Paris, September 3--4, 20094, 2009

Introduction Density Solubility Conclusions

CO2 AS ALTERNATIVE REFRIGERANT

Natural refrigerant: low cost

Low GWP (Global Warming Potential )

GWP(HFC) ≈1000·GWP(CO2)

Null ODP (Ozone Depletion Potential )

No flammable

Slight or no toxic action

High thermal conductivity

Low critical temperature: 30.976 ºC

High working pressure (Critical pressure: 73.77 bar)

Problem CO2 Systems of refrigeration Products

o6

Diapositive 4

o6 La principal ventaja de la utliización del CO2 como refrigerante alternativo es su bajo coste, puesto que como todos sabemos es un productonatural que no necesita de síntesis.Además, una molécula de dióxido de carbono contribuye al calentamiento global unas 1000 veces menos que una molécula de HFC (que sonlos actuales refrigerantes en uso). Otra característica importante es que el CO2 tiene un potencial de destrucción de la capa de ozono nulo.Otras ventajas son la no inflamabilidad y su muy baja toxidad.A todo esto debes añadir que este fluido presenta una alta conductiv idad térmica.

Como contraindicaciones, señalar que posee un muy baja temperatura crítica, lo que ha obligado a rediseñar los ciclos de refrigeración,dando lugar a los ciclos transcríticos. Por otro lado resaltar la necesidad de utilizar mayores medidas de seguridad en estos equipos que lapresión de trabajo para los equipos que trabajan con CO2 es mucho más elevada que la de los aparatos que utilizan HFCs.Finalmente decir que estas contraindicaciones ya han sido superadas porque ya se están probando máquinas que emplean el CO2 comorefrigerante.Olivia, 4/22/2009

Introduction Density Solubility Conclusions

Problem CO2 Systems of refrigeration Products

Basic diagram of a refrigeration circuit

)

“The choice of lubricant has a great

impact on energy efficiency, reliability,

lifetime and noise levels of various

refrigeration systems”

High solubility of the refrigerant

Viscosity wear Performance

Heat transfercoefficients

Viscosity gradesAntiwear additives

Introduction Density Solubility Conclusions

Basic circuit for CO2

Oil accumulationHeat transfer coefficients

Phase separationPoor oil return

Compressor wear

Oil accumulation

Introduction Density Solubility Conclusions

Basic circuit for CO2

High MiscibilityHigh Miscibility

Presence of compressor oil in cooling system

Presence of refrigerant dissolved in the lubricant

ImmiscibilityImmiscibility

No return of oil to the compressor

Accumulation of oil within the circuit

Barotropic effect (density inversion of the phases)

Problems in refrigeration systems

Introduction Density Solubility Conclusions

Problem CO2 Systems of refrigeration Products

Lubricant Miscibilitywith CO2

Mineral oils Immiscible

PAOs Immiscible

Alkylbenzenes Immiscible

Ester Miscible

PAG PartiallyMiscible

0.7

0.8

0.9

1.0

1.1

10 20 30 40 50 60

p/MPa

r/g

·cm

-3

CO2 con 8% PEC9

PEC9

CO2

Pensado et al. J. Sup. Fluids 2007T=303.15 K

Introduction Density Solubility Conclusions

0

25

50

75

100

0 0,2 0,4 0,6 0,8 1

Oil Content

Tem

pera

ture

[°C

] p = 40 bar

p = 50 bar

p = 60 bar

Temperatura de saturación CO2-aceiteFauser et al. VTMS6 ConferenceConference 2003

0.05

0.08

0.10

0.13

0.15

20 30 40 50 60 70 80 90

T/ºC

h/m

Pa·

s

CO2 con 8% PEB8

CO2 puro

CO2 + 8% PEC5

0.05

0.08

0.10

0.13

0.15

20 30 40 50 60 70 80 90

T/ºC

h/m

Pa·

s

CO2 con 8% PEB8

CO2 puro

CO2 + 8% PEC5

Pensado et al.Pensado et al. J. Sup.J. Sup. FluidsFluids 20072007

p=25 MPa

Vaporization TemperatureFauser et al. VTMS6 ConferenceConference 2003

The thermophysical properties of the circulating fluid (refrigerant withsmall quantíties of the lubricant) are different of the pure refrigerant:tranfer coeficient, viscosity, vaporization temperature, enthalpy,….Similarly, the real lubricant has different properties than the purelubricant.

Name Pure SubstanceMw

g·mol-1

Pentaerythritol esters

PEC5 Pentaerythritol tetrapentanoate 472.61

PEC7 Pentaerythritol tetraheptanoate 584.82

PEB8 Pentaerythritol 2-ethylhexanoate 640.93

PEC9 Pentaerythritol tetranonanoate 697.04

Introduction Density Solubility Conclusions

Problem CO2 Systems of refrigeration Products

Indications POE. For medium an big refrigeration systems, for semi-hermetic compressors

Name Pure SubstanceMw

g·mol-1

DiPentaerythritol esters

DiPEC5 Dipentaerythritol hexapentanoate 758.98

DiPEC7 Dipentaerythritol hexaheptanoate 927.29

DiPEiC9 Dipentaerythritol hexaisononanoate 1095.61

Introduction Density Solubility Conclusions

Problem CO2 Systems of refrigeration Products

Viscosities of DIPEs are around ten times bigger that those of PEs.

Pensado et al. Ind. End. Chem. Res 2006a 2006b

Introduction Density Solubility Conclusions

Name SubstanceMw

g·mol-1

Polyalkylene glycols

PAG1 Poly(propylene glycol) dimethyl ether ~ 1700

PAG2 Poly(propylene glycol) dimethyl ether ~ 1400

PAG3 Poly(propylene glycol) monomethyl ether ~ 1200

Problem CO2 Systems of refrigeration Products

Small polymers or propylene oxide are used in refrigeration mainly in automotive airconditioning and heat pumps.

Introduction Density Solubility Conclusions

Name of mixture Components Viscosity (mPa·s)

PEB8 + PEC5 PEB8 and PEC5 32

PEB8 + PEC7 PEB8 and PEC7 32

POE0 From PEC5 to PEC9 32

POE1From PEC5 to PEC9

From DiPEC5 to DiPEC968

POE2From PEC5 to PEC9

From DiPEC5 to DiPEC9100

POE3 From DiPEC5 to DiPEC9 220

POE4 From TMPC16 to TMPC20 91

Problem CO2 Systems of refrigeration Products

TMP

j

p1

Diapositive 13

p1 Ver trabajo Teresapepa, 8/11/2009

Colloquium Prof. Richon Paris, September 3Colloquium Prof. Richon Paris, September 3--4, 20094, 2009

Density of lubricants and their CO2 mixtures

Experimental technique

Results

Index

Density Solubility ConclusionsIntroduction

Introduction

Solubility of CO2 in lubricants

Experimental technique

Results

Conclusions

Colloquium Prof. Richon Paris, September 3Colloquium Prof. Richon Paris, September 3--4, 20094, 2009

Solubility ConclusionsIntroduction Density

Experimental technique

Mechanical oscillator densimeter

DMA HPM

Colloquium Prof. Richon Paris, September 3Colloquium Prof. Richon Paris, September 3--4, 20094, 2009

Solubility ConclusionsIntroduction Density

Experimental technique

278.15 K < T < 373.15 KLagourette et al. (1992)

Vacuum and water

T ≥ 373.15 KLagourette et al. modified by Comuñas et al. JCED (2008)

Vacuum, water and n-decane

),(),(),(),( 2 pTBpTpTApT

),( pTA

Calibration

)MPa1.0,T(B)0,T(B

O1

Diapositive 16

O1 Poner 0 K me parecía un poco exagerado.

Quizás quedaría mejor poner T< 373.15 KOlivia, 8/28/2009

Solubility ConclusionsIntroduction Density

Experimental technique

2

1

2

0

2

0

2

2

2

2

2

u

TAu

TAu

TATAU w

w

w

w

2

1

2

0

2

02

2

222

222

2

u

TAu

TAu

TATAU

w

w

w

ww

w

pTBTA ,2

Uncertainty Calculation

T < 373.15 K : Vacuum and water

Applying the uncertainty propagation law:

TT

TTA

vacuumw

w

22 MPa1.0,

MPa1.0,

Solubility ConclusionsIntroduction Density

Experimental technique

B(T,p) can be written as:

Applying the uncertainty propagation law:

2

1

2

0

2

0

2

2

2

2

,,,2,

u

pTBu

pTBu

pTBpTBU w

w

w

w

2

1

02

22202

22202

22 )(2)(21

)(2,

u

TAu

TAu

TApTBU

w

ww

w

ww

w

w

Uncertainty Calculation

pTpTTApTB ww ,,, 2

),(),(

MPa1.0,

MPa1.0,, 2

20

2pTpT

TT

TpTB ww

w

w

Solubility ConclusionsIntroduction Density

Experimental technique

Units Estimate Divisor u(x)kg/m3

u(ref) Referencematerial

kg/m3 0.01 3 0.006

Calibration 0.020 2

Resolution 0.010 23 0.0025u(T)

Repeatability

K

0.005 1

Calibration 0.02 2Resolution 0.01 23 0.014u(p)

Repeatability

MPa

0.01 1

u() Repeatability s 5 10-4 1 0.0075

Resolution 1 10-3

23U(A(T)) kg/m3

s2 k=2 7 10-8

Uncertainties: A(T)

2

1

2

0

2

02

2

222

222

2

u

TAu

TAu

TATAU

w

w

w

ww

w

EA_4/02 Guide

Expression of the Uncertainty of Measurement in Calibration, European Cooperation forAccreditation, EA-4/02, 1999.

Colloquium Prof. Richon Paris, September 3Colloquium Prof. Richon Paris, September 3--4, 20094, 2009

Solubility ConclusionsIntroduction Density

Experimental technique

Uncertainties: B(T,p)

EA_4/02 Guide

2

1

02

22202

22202

22 )(2)(21

)(2,

u

TAu

TAu

TApTBU

w

ww

w

ww

w

w

Units Estimate Divisor u(x)kg/m3

u(ref) Referencematerial

kg/m3 0.01 3 0.006

Calibration 0.020 2

Resolution 0.010 23 0.0025u(T)

Repeatability

K

0.005 1

Calibration 0.02 2Resolution 0.01 23 0.014u(p)

Repeatability

MPa

0.01 1

u() Repeatability s 5 10-4 1 0.0075

Resolution 1 10-3

23U(B(T,p)) kg/m3 k=2 0.5

kg/m3

Colloquium Prof. Richon Paris, September 3Colloquium Prof. Richon Paris, September 3--4, 20094, 2009

Solubility ConclusionsIntroduction Density

Experimental technique

pTBTA ,2

2

1

2

2

22

2

2

,,

2

pTBu

pTBuTAu

TAU

21

222222 ,22 pTBuuATAuU

Uncertainties: ρ

Applying the uncertainty propagation law:

Segovia et al. J. Chem. Thermodyn., 41, 632, 2009.

Colloquium Prof. Richon Paris, September 3Colloquium Prof. Richon Paris, September 3--4, 20094, 2009

Solubility ConclusionsIntroduction Density

Experimental technique

EA_4/02 Guide

21

222222 ,22 pTBuuATAuU 0.7 kg·m-3 (T<373.15 K, and p ≥0.1 MPa)

5 kg·m-3 (T=(373.15 and 398.15) K, and p =0.1 MPa)

3 kg·m-3 (T=(373.15 and 398.15) K, and p >0.1 MPa)(k=2)

u(x)Units Estimate Divisorkg/m3

u() Repetibility s 5 10-4 1

Resolution 1 10-3

230.0075

u(A(T)) kg/m3s2 7 10-8 2 0.25

u(B(T,p)) kg/m3 0.5 2 0.25

u() kg/m3 k=1 0.35

U() kg/m3 k=2 0.7

U() kg/m3/kg/m3 k=2 8 10-4

Segovia et al. J. Chem. Thermodyn., 41, 632, 2009.

Expression of the Uncertainty of Measurement in Calibration, European Cooperation forAccreditation, EA-4/02, 1999.

Solubility ConclusionsIntroduction Density

Experimental technique

Toluene: 283.15-398.15 K up to 70 MPa

() Cibulka and Takagi. J.Chem. Eng. Data, 1999,44, 411-429.

() Assael et al. Int. J.

Thermophys., 2001, 22,789-799.

() Lemmon and Span. J.Chem. Eng. Data, 2006,51, 785-850.

Bias (%) AAD (%) Dmax (%)

Cibulka and Takagi 0.002 0.03 0.09

Assael et al. 0.04 0.05 0.13

Lemmon and Span 0.02 0.03 0.08

DMA HPM: experimental deviations

Solubility ConclusionsIntroduction Density

Experimental technique

AAD %

0.06

0.02

0.03

0.03

( ) Cibulka and Takagi. J. Chem. Eng. Data, 1999, 44, 411-429.

() Lemmon and Span. J. Chem. Eng. Data, 2006, 51, 785-850.

(●) Troncoso et al. J. Chem. Eng. Data, 2004, 49, 923-927.

() Zúñiga-Moreno et al. J. Chem. Eng. Data, 2005, 50, 1030-1037.

DMA HPM: experimental deviationsn-Decane: 283.15-398.15 K up to 130 MPa

Solubility ConclusionsIntroduction Density

Experimental technique

Correction due to the viscosity for HPM densimeter

4105.7

HPM

HPM

4101627.04482.0

HPM

HPM

Fandiño et al. J: Chem. Thermodyn. 2009, ASAP

Solubility ConclusionsIntroduction Density

Experimental technique

4

512

512 1045.05.0

P

realP

DMA 512P

• η<100 mPa·s

• η>400 mPa·s

4

512

512 105

P

realP

4105.7

HPM

HPM

4101627.04482.0

HPM

HPM

• η<289 mPa·s

DMA HPM

• η>289 mPa·s

DMA HPM

DMA 512P

DMA 602H

DMA HPM

DMA 512P

DMA 602H

Correction due to the viscosity for several densimeters

Solubility ConclusionsIntroduction Density

Experimental technique

Squalane: 298.15-398.15 K up to 60 MPawith correction term due to the viscosity

(□) Fandiño et al. J. Chem. Eng.Data, 2005, 50, 939-946

() Kuss y Taslimi. Chem. Ing.Tech., 1970, 42, 1073-1081

(♦) Fermeglia y Torriano. J.Chem. Eng. Data, 1999, 44,965-969

() Kumagai et al. Int. J.Thermophys., 2006, 27,376-393

Bias (%) AAD (%) Dmax (%)

Kuss and Taslimi 0.02 0.03 0.05

Fandiño et al. -0.02 0.02 0.03

Kumagai et al. 0.08 0.09 0.19

Fermeglia and Torriano 0.005 0.005 0.005

DMA HPM: experimental deviations

Solubility ConclusionsIntroduction Density

Results

Fandiño et al. J. Chem. Eng. Data 2005, Green Chemistry 2006, Ind. Eng. Chem. Res. 2006

Solubility ConclusionsIntroduction Density

Results

Fandiño et al. J. Chem. Thermodyn. ASAP 2009

Solubility ConclusionsIntroduction Density

rr(alkanes)<<(alkanes)<< rr(POE4) <(POE4) < rr(PEs)(PEs) < r(DiDP) < r(PAG) << rr(DiPEs)(DiPEs)

Summary Density for all Fluids

-COO- r

For esters

-CH2- r

Branched r

For endcapped PAGs

-PO- r

Solubility ConclusionsIntroduction Density

Results

kkTT(POE4) <(POE4) < kkTT((DiDPDiDP) <) < kkTT((DiPEDiPE)) < kkTT(PEPE) < kkTT(PAGPAG) << kkTT(alkanes)

Isothermal Compressibility

-COO- kT

For PEs, DiPEs

-CH2- kT

Branched kT

For endcapped PAGs

-PO- kT

323,15 K

Solubility ConclusionsIntroduction Density

Results

Isobaric Thermal Expansivity

PAG1

Crossing pointThe crossing point of theisothermal of ap has beenfound for the most of the

fluids except for the DiPEs.

aapp(DiPE)<(DiPE)< aapp(POE4) <(POE4) < aapp(DiDP)(DiDP) < aapp(PAG) << aapp(alkanes)

-COO- ap??

For PEs, DiPEs,alkanes

-CH2- ap

Branched ap

For PAGs (dialkylated)

-PO- ap

323,15 K

High PressureDensimetry

Solubility ConclusionsIntroduction Density

Lubricant + Refrigerant MixturesB)

Solubility ConclusionsIntroduction Density

Experimental technique

The sample is a mixture of two components:

lubricant: liquid at atmospheric pressure

refrigerant: gas at atmospheric pressure

Transfer the sample must be carried outthrough enclosed recipient

Solubility ConclusionsIntroduction Density

Experimental technique

The new transfersystem

Measurements: DMA HPM

Solubility ConclusionsIntroduction Density

Experimental technique

Syringe pumpsSyringe pumps

Teledyne ISCOTeledyne ISCO

Grove regulatorGrove regulator

PressurePressurelimiting valvelimiting valve

Thermostatic bathsThermostatic baths

Transfer system

Solubility ConclusionsIntroduction Density

Experimental technique

Transfer system

Thermostatic bathsThermostatic baths

i

iii

M

pTn

)·,(

Moles of the fluid i in time unit

Grove regulatorGrove regulator

PressurePressurelimiting valvelimiting valve

Syringe pumpsSyringe pumps

Teledyne ISCOTeledyne ISCO

Solubility ConclusionsIntroduction Density

Experimental technique

Units Estimation Divisoru(x)

xCO2≤0.8 xCO2

≥0.8

u(T) K 0.5 √3 0.0003 0.0004

u(p) MPa 0.05 √3 8·10-5 4·10-5

u(rCO2) 0.05% r 2 0.0001 2·10-5

u(fCO2) 0.5% f 2 0.001 0.0004

u(ri) kg·m-3 0.7 2 0.0001 2·10-5

u(fi) 0.5% f 2 0.001 0.0004

u(xCO2) 0.002 0.001

U(xCO2) (k=2) 0.004 0.002

Uncertainties: mole fraction

Expression of the Uncertainty of Measurement in Calibration, European Cooperation forAccreditation, EA-4/02, 1999.

EA_4/02 Guide

Solubility ConclusionsIntroduction Density

Results

x Carbon dioxide + (1-x) n-decane

Solubility ConclusionsIntroduction Density

Results

Uncertainty AAD (%)

Zúñiga-Moreno et al. (2005) 0.2 kg·m-3 0.1

Bessières et al. (2001) 0.2 kg·m-3 0.1

Cullick and Mathis (1984) 0.5 kg·m-3 0.2

Crossing point of lines of

constant concentration

x Carbon dioxide + (1-x) n-decane

Solubility ConclusionsIntroduction Density

Results

x Carbon dioxide + (1-x) n-decane

),(

1

),(

1)1(

),(

1

),(

1),,(

2

2 pTpTMx

pTpTMxxpTv

oil

oil

CO

COE

For T>314 K is not correct to name excessproperties since the CO2 is a supercritical fluid

(,, ,) Zúñiga-Moreno et al. J. Chem. Eng. Data, 2005, 50, 1030-1037.

() Bessières et al. J. Chem. Eng. Data, 2001, 46, 1136-1139

Colloquium Prof. Richon Paris, September 3Colloquium Prof. Richon Paris, September 3--4, 20094, 2009

Solubility ConclusionsIntroduction Density

Results

x CO2 + (1-x) DiPEC5

0.92

0.97

1.02

1.07

1.12

0 20 40 60 80 100 120

p, MPa

r,g

·cm

-3

398.15 K

278.15 K

0.1 MPa – 120 MPap

278.15 K – 398.15 KT

x= 0x= 0.209x= 0.597

x= 0.209

Colloquium Prof. Richon Paris, September 3Colloquium Prof. Richon Paris, September 3--4, 20094, 2009

Solubility ConclusionsIntroduction Density

Results

x CO2 + (1-x) DiPEC5

0.2

0.4

0.6

0.8

1.0

1.2

0 20 40 60 80 100 120p, MPa

r,

g·c

m-3

0.94

0.98

1.02

1.06

1.10

1.14

273.15 303.15 333.15 363.15 393.15

T, K

r,

g·c

m-3

CO2

() x= 0.209

333.15 K x= 0.597

() x= 0.597

() x= 0

10 MPa

120 MPa

() x= 1

Solubility ConclusionsIntroduction Density

Results

x CO2 + (1-x) DiPEC7

Solubility ConclusionsIntroduction Density

Results

0.000 0.301 0,701 0.984 1.000

Crossing point of lines of

constant concentrationSame behaviourfor other

asymmetricmixtures. as found

by Marchi et al.,Comuñas et al.

and Pensado et al.

x CO2 + (1-x) DiPEC7

Colloquium Prof. Richon Paris, September 3Colloquium Prof. Richon Paris, September 3--4, 20094, 2009

Solubility ConclusionsIntroduction Density

Results

CO2 + PEs

0.75

0.80

0.85

0.90

0.95

1.00

1.05

10 20 30 40 50 60

p / MPa

/g

·cm

-3

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

10 20 30 40 50 60

p / MPa

/m

Pa·

sat 303.15 K and 10 MPahPEB8 ~ 83 mPa·s

(■) xPEB8=0.0058

() xPEB8=0.0115

Pensado et al. J. Sup. Fluids 2007, AIChE 2008

Colloquium Prof. Richon Paris, September 3Colloquium Prof. Richon Paris, September 3--4, 20094, 2009

Solubility ConclusionsIntroduction Density

Results

CO2 + PEs

Pensado et al. J. Sup. Fluids 2007, AIChE 2008

Isothermal Compressibility

2

4

6

8

10

12

10 20 30 40 50 60

p / MPa

103

T/

MP

a-1

2

4

6

8

10

10 20 30 40 50 60

p / MPa

103

T/

MP

a-1

353.15 K

303.15 K

353.15 K

303.15 K

x PEB8 + (1-x) CO2

at 303.15 K and 15 MPakT CO2 ~ 13·10-3 MPa-1

kT PEB8 ~ 6·10-4 MPa-1

xPEB8 = 0.0058 xPEB8 = 0.0155

Colloquium Prof. Richon Paris, September 3Colloquium Prof. Richon Paris, September 3--4, 20094, 2009

Density of lubricants and their CO2 mixtures

Experimental technique

Results

Index

Density Solubility ConclusionsIntroduction

Introduction

Solubility of CO2 in lubricants

Experimental technique

Results

Conclusions

ConclusionsIntroduction Density

Experimental technique

Solubility

Ranges:

o Pressure 0.1 a 10 MPa

oTemperature 283-348 K

Isochoric technique

For non-volatile liquids

Fandiño et al. J. Chem. Eng. Data 2008, 53, 1854–1861

Whalström and Vamling J. Chem. Eng. Data 1999 44, 823–828.

ConclusionsIntroduction Density

Experimental technique

Solubility

PressureTransducer

CO2

V1

V2

V3

V4

V5

AuxiliaryThermostatic Bath

Gascylinder

Measurementcell

Lubricant

PC

ONOFF

Temperature

Transduce

CO2

V1

V2

V3

V4

V5

AuxiliaryThermostatic Bath

Environmental Chamber

Gascylinder

Measurementcell

Magnetic Stirrer

PCPC

ONOFF

VC Vacuumpump

±0.02 K

±0.003 MPa

283.15 ≤ T/K ≤ 348.15p/MPa ≤ 8.0

ConclusionsIntroduction Density

Experimental technique

Solubility

PressureTransducer

V1

V2

V3

V4

V5

AuxiliaryThermostatic Bath

PC

ONOFF

Temperature

Transduce

CO2CO2

V1

V2

V3

V4

V5

AuxiliaryThermostatic Bath

Environmental Chamber

Magnetic Stirrer

PCPC

ONOFF

VC

• Measured p, T for theCO2

• Known Vsystem

Equation of stateNumber of moles of

CO2 gas in the system

EquilibriumPressure const.

Temperature const.

Moles of CO2 absorbed in the lubricant =

= initial moles CO2 - moles CO2 gas equilibrium

)(. Tv absCO2

),(

)(1

),(

)()(

),(

)(

),(

)(

.

..

.

..

..

....

2

2

222

pTv

Tv

pTv

TVTV

pTv

TV

pTv

TV

n

l iqeqvCO

liqeqabsCO

liqeqvCO

liqeqliql iqeqcélula

gassisteqvCO

gassisteqgassist

inicinicvCO

inicgassist

g

),( pTvvCO2

)(. TV gassis

)T(Vcell

),( pTVliq

Volume of system gas

Volume of measurement cell

Volume of lubricant inside of measurement cell

Mole volume of CO2 in vapour phase

Mole volume of CO2 absorbed

ConclusionsIntroduction Density

Experimental technique

Solubility

Calculations

ggasg nMm

Solubility ConclusionsIntroduction Density

Experimental technique

Estimation Unitsu(x)

Low xCO2High xCO2

u(T) 0.02 K 0.0003

u(p) 0.0007 MPa 0.001 0.0001

u(rl) 0.0002 g·cm-3 2·10-5

u(vvg) 0.04% g·cm-3 0.0009

u(ml) 0.004 g 2·10-5

u(Vsist. gas) 0.1 cm-3 0.001 0.0001

u(Vmeas. cell) 0.2 cm-3 0.002 0.0001

u(Vgas abs) 50% cm-3 0.0004 0.007

u(xCO2) k=1 0.003 0.007

U(xCO2) k=2 0.006 0.01

U(xCO2) % k=2 6 2

Uncertainties: mole fraction

Colloquium Prof. Richon Paris, September 3Colloquium Prof. Richon Paris, September 3--4, 20094, 2009

Results

ConclusionsIntroduction Density Solubility

Vapor Pressures

-22

-20

-18

-16

-14

-12

-10

0.0020 0.0022 0.0024 0.0026 0.0028 0.0030 0.0032

1/T(K)

lnP

(bar)

PEC5

PEC7

PEC9

PEB8

Símbolos: puntos experimentales

(Razzouk et al. 2007)PC-SAFT

Razzouk et al. / Fluid Phase Equilibria 260 (2007) 248–261

Results

ConclusionsIntroduction Density Solubility

xCO2(PEC5) <xCO2

(PEC7) <xCO2(PEB8) <xCO2

(PEC9)

x CO2 + (1-x) PE

Comparison with literature

ConclusionsIntroduction Density Solubility

Results

AAD with

Bobbo et al.

IIR Conferences in Vicenza(2005)

2%

xCO2(PECn) ≈xCO2

(PEBn)

Comparison with literature

ConclusionsIntroduction Density Solubility

Results

PEC4. Bobbo et al. (2005)PEC5 PEBM5. Bobbo et al. (2007)PEC6. Bobbo et al. PEBM6. Bobbo et al. (2007) PEC7 PEBM7. Bobbo et al. (2007)

PEB8 Castrol Icematic SW32. Bobbo et al. (2006)

wCO2(PECn) < wCO2

(PEBn)

n wCO2(PECn)

ConclusionsIntroduction Density Solubility

Results

wCO2(POE3) <wCO2

(DiPEC7)< wCO2(PAG2)

Results

ConclusionsIntroduction Density Solubility

PEC7 PEB8DiPEC7PAG2 POE ISO56. Marcelino-Neto (2006) PAG. García et al. (2008) Squalane. Kukova (2003)

POE3

Colloquium Prof. Richon Paris, September 3Colloquium Prof. Richon Paris, September 3--4, 20094, 2009

ConclusionsIntroduction Density Solubility

Results

Ley de Raoult

Negative deviations show the presence of strongerinteractions between unlike molecules in the mixture

satii pxp CO2+PEs

A2

Diapositive 60

A2 La solubilidad aumenta ligeramente con la masa molecular de los aceites estudiados. El efecto es inverso pero mas claro si se observa enporcentaje en peso. Esto también ha sido encontrado por Bobbo y co. como veremos a continuación.

La solubilidad es mayor que la ideal. Desviación negativa de la ley de Raoult. (Ver que implicaciones tiene).avi, 9/7/2006

ConclusionsIntroduction Density Solubility

Results

experimental (Hauk 2001)PC-SAFT kij(T),

Garcia et al. J Sup. Fluids 2007,2008

0 0.2 0.4 0.6 0.8 1

fracción en peso de CO2 en PAG2

0

2

4

6

8

10

12

14

16

18

Pre

sió

n/M

Pa

CO2 + PAG2 (a)

278.15 K

298.15 K

31

3.1

5K

37

3.1

5K

ELLV

230

255

280

305

0 20 40 60 80 100

masa de CO2 % en PAG2

T/K

Fin ELLV

(b)

inmiscibleinmisciblemisciblemiscible

Conclusions

Introduction Density Solubility Conclusions

We have implemented a computer-operated-densimetricequipment and evaluated of the density uncertainty usingthe EA-4/02 Guide:

.

With (k=2),0.7 kg·m-3 (T<373.15 K, and p≥0.1 MPa)5 kg·m-3 (T=(373.15 and 398.15) K, and p=0.1 MPa)3 kg·m-3 (T=(373.15 and 398.15) K, and p>0.1 MPa)

We have presented a new loading system for gas + liquidcompressed systems, which consists in two syringe pumpsISCO Teledyne with electronic valves which deliver the gasand the liquid pure components at programmable constantflow rates.

New pVTx values were obtained for binary CO2 + (decane,

DiPEC7, DiPEC5) are presented.

Introduction Density Solubility Conclusions

Introduction Density Solubility Conclusions

The uncertainties of the solubility measurementsobtained, following the guide EA-4/02, are smaller than6% to low xCO2

and 2% to high xCO2

The solubility increases with the pressure and decreaseswith the temperature to all mixtures.

The solubilities, expressed in terms of mole fractions, donot change practically with the branching and the size ofthe acid chains

Negative deviations of Raoult’s law Strong interactionsbetween different fluids due to important quadrupolemomentum of the CO2

xPEs < xDiPEC7 < xPAG2

Dr. Steve J. Randles, UNIQEMA (now Croda)

• Prof. Agilio Padua, University Blaise Pascal

• Prof. Jacques Jose, Dra Mokbel and Razzouk, Un. Lyon 1

• Dr. M. Youbi-Iddrissi, Cemagref, Paris

• Prof. José Juan Segovia, University of Valladolid

• Ministerio Educación y Ciencia

• Xunta de Galicia

ACKNOWLEDGEMENTS

Happy Birthday, Dominique

Introduction Density Solubility Conclusions

ThanksThanksFor your attentionFor your attention

Colloquium Prof. Richon Paris, September 3Colloquium Prof. Richon Paris, September 3--4, 20094, 2009

Gas absorbed volume

1- Estimations

Experimental techniqueConclusionsIntroduction Solubility

Results

12

1

1

11 35,2095.0c

c

c

c

Tc

Tp

RT

Vp

Brelvi and O’Connell. AlChE J., 1972, 18, 1239-1243

Zellner et al. Ind. Eng. Chem. Fundam., 1970, 9, 549-564

Heidemann y Prausnitz. Ind. Eng. Chem. Process Des.

Dev., 1977, 16, 375-381