documento sistemas estructurales con elementos prefabricados

40
UNIVERSIDAD DE LOS ANDES Documento Sistemas Estructurales con Elementos Prefabricados Limitaciones y propuestas a nivel mundial Armando Sierra Ruiz 20/06/2014 El presente documento contiene en primer lugar un resumen de la información encontrada a nivel mundial sobre limitaciones que deben contemplarse al implementar un sistema estructural que utilice elementos prefabricados en concreto. Posteriormente se exponen diferentes propuestas encontradas en estudios internacionales que solucionan dichas limitaciones.

Upload: others

Post on 16-Oct-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Documento Sistemas Estructurales con Elementos Prefabricados

UNIVERSIDAD DE LOS ANDES

Documento Sistemas Estructurales con

Elementos Prefabricados Limitaciones y propuestas a nivel mundial

Armando Sierra Ruiz

20/06/2014

El presente documento contiene en primer lugar un resumen de la información encontrada a nivel mundial sobre limitaciones que deben contemplarse al implementar un sistema estructural que utilice elementos prefabricados en concreto. Posteriormente se exponen diferentes propuestas encontradas en estudios internacionales que solucionan dichas limitaciones.

Page 2: Documento Sistemas Estructurales con Elementos Prefabricados

Tabla de contenido 1 LIMITACIONES DE SISTEMAS PREFABRICADOS EN CÓDIGOS DE DISEÑO ................................. 1

1.1 Reglamento Colombiano de Construcción Sismo Resistente (NSR-10) ............................. 1

1.1.1 Ley 400 de 1997 ...................................................................................................... 1

1.1.2 Homologación de Regímenes de Excepción ............................................................. 2

1.1.3 Limitaciones en la NSR-10 ....................................................................................... 3

1.2 International Building Code (IBC-12) ............................................................................... 6

1.3 Concrete Structures Standard Part 1 - The Design of Concrete Structures (NZS 3101-1) .. 8

1.4 FEMA 356 - Prestandard and Commentary for the Seismic Rehabilitation of Buildings .... 9

1.5 Minimum Design Loads for Buildings and Other Structures (ASCE 7-10) ........................ 10

1.5.1 NEHRP Recommended Provisions for Seismic Regulations for New Buildings and

Other Structures (FEMA 450)................................................................................................ 11

1.5.2 PCI DESIGN HANDBOOK ........................................................................................ 12

2 SISTEMAS UTILIZADOS A NIVEL MUNDIAL ............................................................................ 13

2.1 Smart Green Frame (SGF) ............................................................................................. 13

2.1.1 Proceso Constructivo ............................................................................................ 13

2.1.2 Resultados experimentales ................................................................................... 16

2.2 Project SAFECAST ......................................................................................................... 19

2.2.1 Metas del proyecto ............................................................................................... 19

2.2.2 Ensayo pseudo-dinámico ...................................................................................... 19

2.3 Multipanel Precast Hollowcore Walls ............................................................................ 29

2.3.1 Montaje experimental .......................................................................................... 30

2.3.2 Resultados ............................................................................................................ 31

2.4 Ventajas y Desventajas de los sistemas ......................................................................... 34

2.4.1 Smart Green Frame ............................................................................................... 34

2.4.2 Project SAFECAST .................................................................................................. 35

2.4.3 Multipanel Precast Hollowcore Walls .................................................................... 36

3 Conclusión ........................................................................................................................... 36

4 Bibliografía ........................................................................................................................... 37

Page 3: Documento Sistemas Estructurales con Elementos Prefabricados

Página | 1

1 LIMITACIONES DE SISTEMAS PREFABRICADOS EN CÓDIGOS DE

DISEÑO

1.1 Reglamento Colombiano de Construcción Sismo Resistente (NSR-10) El Título A del Reglamento Colombiano de Construcción Sismo Resistente contiene los requisitos

generales de diseño y construcción sismo resistentes que todas las estructuras construidas dentro

del territorio colombiano deben cumplir. En este Título del Reglamento se encuentran dos

secciones que son claves para el uso de sistemas estructurales prefabricados.

En la sección A.1.4.2 del Reglamento se establecen las condiciones bajo las cuales pueden

utilizarse sistemas de resistencia sísmica que sean conformados por elementos estructurales

prefabricados. Los sistemas estructurales prefabricados pueden implementarse siempre y cuando

se satisfaga una de las siguientes condiciones:

- Se utilicen las provisiones contenidas en la sección A.3.1.7.

- Se obtenga una autorización especial de la Comisión Asesora Permanente para el Régimen

de Construcciones Sismo Resistentes, según lo establecido en la Ley 400 de 1997.

La sección A.3.1.7 inicialmente condiciona el uso de estructuras prefabricadas a situaciones donde

se espera que la estructura incursione en el rango de deformaciones inelásticas brevemente antes

de fallar, pues se establece que el diseño de estructuras con sistemas estructurales de resistencia

sísmica prefabricados debe cumplir con todas las provisiones contenidas en el Reglamento

utilizando un coeficiente de capacidad de disipación de energía básico (R0) igual a 1.5. Todo lo

anterior quiere decir que el diseño de la estructura debe ejecutarse suponiendo que la capacidad

de disipar energía de los sistemas prefabricados es inferior a la de los sistemas homólogos

construidos monolíticamente. Esta sección del Reglamento provee como alternativa demostrar

por medios experimentales y analíticos que el sistema que se desea implementar tiene una

capacidad de disipación de energía igual o superior a la capacidad de un sistema construido in-situ,

según lo estipulado en la Ley 400 de 1997.

1.1.1 Ley 400 de 1997

La Ley 400 de 1997 establece los requisitos mínimos para el diseño, construcción y supervisión de

edificaciones nuevas, resaltando que el propósito principal de los sistemas de resistencia sísmica

debía ser minimizar el riesgo de la pérdida de vidas humanas ante un evento de sismo. En tres

Artículos del documento se mencionan las condiciones que deben cumplirse para diseñar

estructuras con elementos alternativos a los establecidos en el Reglamento:

- Artículo 11°: Permite la implementación de metodologías constructivas alternativas

siempre y cuando tanto el constructor como el diseñador estructural acepten toda la

responsabilidad, por medio de un documento escrito, sobre cualquier eventualidad

generada por el uso de la metodología alternativa.

Page 4: Documento Sistemas Estructurales con Elementos Prefabricados

Página | 2

- Artículo 12°: Establece los mismos parámetros contenidos dentro de la sección A.3.1.7 del

Reglamento acerca del uso de sistemas prefabricados.

- Artículo 13°: Permite el uso de cualquier sistema de diseño y construcción del cual exista

evidencia experimental y/o analítica que demuestre su capacidad para cumplir sus

propósitos pese a que no cumpla con uno o más requisitos específicos de la ley y sus

reglamentos. Se debe presentar una autorización especial expedida por la Comisión

Asesora Permanente para el Régimen de Construcciones Sismo Resistentes y debe tenerse

en cuenta que la responsabilidad del correcto funcionamiento de la estructura recaerá

sobre el diseñador estructural y el constructor.

1.1.2 Homologación de Regímenes de Excepción

Anteriormente se mencionó que la normativa vigente establecida por medio del Reglamento

Colombiano De Construcción Sismo Resistente (NSR-10) contiene un procedimiento establecido

para obtener la aprobación de materiales, métodos de análisis, métodos de diseño y metodologías

constructivas alternativas. Dicho procedimiento es consistente con los requisitos establecidos en

la Ley 400 de 1997 y ha sido descrito en documentos publicados por la Comisión Permanente para

el Régimen de Construcciones Sismo Resistentes.

Para solicitar una homologación de régimen de excepción se deben presentar los siguientes

documentos:

Carta solicitando la aprobación del sistema en la cual: se relacionen todos los documentos

adjuntos, se provea una lista de los profesionales que intervinieron en las etapas de

análisis y experimentación, y se mencionen las fechas de inicio y finalización de los

ensayos experimentales.

Informe detallado del procedimiento experimental, en el cual se establezca claramente la

metodología utilizada para aplicar las cargas requeridas y para realizar las mediciones

pertinentes.

Informe de interpretación de resultados que demuestre la pertinencia de los ensayos y la

validez de sus resultados.

Propuesta de régimen de excepción en la cual se identifiquen claramente las secciones del

Reglamento (NSR-10) que el sistema no cumple y se describan las provisiones alternativas

que se pretenden utilizar.

Descripción del proceso constructivo y del control de calidad, dentro de lo estipulado por

las Normas Técnicas Colombianas (NTC).

Certificación de los experimentos realizados en la cual una entidad independiente de los

interesados en el estudio compruebe la fiabilidad de los resultados presentados.

Una vez se entreguen estos documentos a la Comisión, esta creara una subcomisión que estudie la

propuesta presentada y genere un concepto sobre ella. Cuando se finalicen los trámites

requeridos, el solicitante debe presentar un memorial ante el Ministerio de Vivienda en el que

asuma toda la responsabilidad por el uso del sistema alternativo. Finalmente, cuando la

subcomisión genere un veredicto positivo y se haya entregado el memorial ante el Ministerio, la

Page 5: Documento Sistemas Estructurales con Elementos Prefabricados

Página | 3

Comisión recomendará al Ministerio de Vivienda la expedición de la Resolución Aprobatoria del

sistema constructivo propuesto. En la siguiente ilustración se esquematiza el procedimiento:

Ilustración 1. Procedimiento para solicitar la homologación de Régimen de Excepción

1.1.3 Limitaciones en la NSR-10

En el Título A de la NSR-10 se presentan las Tablas A.3-1, A.3-2, A.3-3 y A.3-4, las cuales contienen

los coeficientes de disipación de energía básicos R0 y las alturas máximas permitidas

correspondientes a cada sistema estructural.

En estas tablas no se encuentran explícitamente limitaciones para el caso de sistemas

estructurales constituidos parcial o totalmente por elementos prefabricados. Con el fin de estimar

las limitaciones que rigen estos sistemas se realizan cuatro estimaciones: tres por similitud del

coeficiente de disipación de energía básico y otra por similitud del sistema estructural. Las

condiciones evaluadas corresponden a las limitaciones más restrictivas que se encuentren en cada

categoría, con el fin de obtener una estimación conservadora.

En primer lugar se evalúan las limitaciones que aplican para sistemas estructurales con

coeficientes de disipación de energía igual a uno (R0=1.0), las cuales se presentan en la Tabla 1.

Como estos sistemas no poseen capacidad para soportar deformaciones en el rango inelástico, su

uso está restringido a zonas de amenaza sísmica baja y únicamente están permitidos para

estructuras que pertenezcan al grupo de importancia I, es decir, estructuras de ocupación normal.

Tabla 1. Límites de altura (Criterio R0=1.0)

Zona Altura Máxima

Alta No se permite

Intermedia No se permite

Baja Máx. 2 pisos. Edificaciones del grupo I

En segundo lugar se evalúan las limitaciones que aplican para sistemas estructurales con

coeficientes de disipación de energía igual al establecido inicialmente en la sección A.3.1.7 para

sistemas estructurales prefabricados (R0=1.5), las cuales se presentan en la Tabla 2. Estos sistemas

poseen una capacidad mínima para soportar deformaciones en el rango inelástico y en

Comisión asigna la solicitud a subcomisión

Presentar un memorial ante el Ministerio de Vivienda

Entregar documentos a la Comisión

Comisión recomienda la expedición de una resolución aprobatoria

Page 6: Documento Sistemas Estructurales con Elementos Prefabricados

Página | 4

consecuencia no pueden ser implementados en zonas de amenaza sísmica alta o intermedia. Estos

sistemas estructurales únicamente pueden utilizarse para zonas de amenaza sísmica baja en

estructuras cuya altura no supere los doce metros, es decir, estructuras de tres o cuatro pisos

aproximadamente.

Tabla 2. Límites de altura (Criterio R0=1.5)

Zona Altura Máxima

Alta No se permite

Intermedia No se permite

Baja 12 m

Adicionalmente se evalúan las limitaciones que aplican para sistemas estructurales con

coeficientes de disipación de energía igual a dos (R0=2.0), las cuales se presentan en la Tabla 3.

Estos sistemas poseen una capacidad para soportar deformaciones en el rango inelástico

comparativamente baja, en relación a todos los sistemas permitidos por la NSR-10 y por lo tanto

solo se permiten en zonas de amenaza sísmica baja. Gracias a su mayor capacidad de disipar

energía en comparación a los sistemas anteriormente mencionados, estos sistemas pueden ser

implementados en edificaciones de hasta dieciocho metros de altura, la cual corresponde a

estructuras de cinco o seis pisos aproximadamente.

Tabla 3. Límites de altura (Criterio R0=2.0)

Zona Altura Máxima

Alta No se permite

Intermedia No se permite

Baja 18 m

Finalmente se evalúan las limitaciones que rigen para dos sistemas estructurales que son

homólogos a los sistemas estructurales prefabricados: los Muros Estructurales de Concreto

(Muros) y los Pórticos Resistentes a Momento de Concreto (PRM). En la Tabla 4 se presentan las

limitaciones que rigen sobre estos dos sistemas para las tres diferentes capacidades de disipación

de energía: Capacidad Especial de Disipación de Energía (DES), Capacidad Moderada de Disipación

de Energía (DMO) y Capacidad Mínima de Disipación de Energía.

Tabla 4. Sistemas estructurales

ID-Sistema Sistema resistencia sísmica Sistema resistencia de cargas verticales

M-DES 1 Muros de Concreto (DES) El mismo

M-DES 2 Muros de Concreto(DES) Pórticos de concreto DES

M-DES 3 Muros de Concreto (DES) Pórticos de concreto DMO

M-DMO 1 Muros de Concreto (DMO) El mismo

M-DMO 2 Muros de Concreto (DMO) Pórticos de concreto DMI

M-DMI Muros de Concreto (DMI) El mismo

PRM-DES Pórticos Resistentes a Momento (DES) El mismo

Page 7: Documento Sistemas Estructurales con Elementos Prefabricados

Página | 5

PRM-DMO Pórticos Resistentes a Momento (DMO) El mismo

PRM-DMI Pórticos Resistentes a Momento (DMI) El mismo

Tabla 5. Límites de altura (Criterio: Similitud del sistema estructural)

Zonas de amenaza sísmica

Alta Intermedia Baja

ID-Sistema R0 Altura Máxima Altura Máxima Altura Máxima

M-DES 1 5 50 m Sin límite Sin límite

M-DES 2 7 72 m Sin límite Sin límite

M-DES 3 5 No se permite 72 m Sin límite

M-DMO 1 4 No se permite 50 m Sin límite

M-DMO 2 2,5 No se permite No se permite 72 m

M-DMI 2,5 No se permite No se permite 50 m

PRM-DES 7 Sin límite Sin límite Sin límite

PRM-DMO 5 No se permite Sin límite Sin límite

PRM-DMI 2,5 No se permite No se permite Sin límite

En el caso de los muros estructurales se observa que las limitaciones están regidas por dos

factores: su capacidad de disipación de energía y el sistema de resistencia a cargas verticales que

se implemente. Los muros estructurales de capacidad especial pueden utilizarse prácticamente en

cualquier zona sin restricción, excepto cuando que se utilice un sistema resistente a cargas

verticales que no tenga la misma capacidad de disipación de energía. Los muros estructurales de

capacidad moderada podrán implementarse en zonas de amenaza sísmica intermedia y baja, pero

no en zonas de amenaza sísmica alta, siempre y cuando se utilice un sistema de resistencia a

cargas gravitacionales con la misma capacidad de disipación de energía. Por último, los muros

estructurales con capacidad mínima de disipación de energía pueden utilizarse únicamente en

zonas de amenaza sísmica baja para estructuras cuya altura sea inferior a cincuenta metros. En

relación a los casos evaluados anteriormente, la implementación de muros estructurales

construidos monolíticamente no tiene restricciones tan severas y poseen una amplia gama de

posibilidades de implementación.

En el caso de los pórticos resistentes a momento se observa que dependiendo de su capacidad de

disipación de energía, pueden ser utilizados en estructuras sin límite de altura ubicadas en

diferentes zonas de amenaza sísmica. Los pórticos resistentes a momento con capacidad especial

no tienen ninguna restricción. Los pórticos resistentes a momento con capacidad moderada

pueden utilizarse tanto en zonas de amenaza sísmica intermedia como en zonas de amenaza

sísmica baja sin restricción de altura. Por último, los pórticos resistentes a momento con capacidad

mínima solo pueden ser usados para estructuras ubicadas en zonas de amenaza sísmica baja.

Es importante resaltar las evidentes diferencias en las restricciones que aplicarían para sistemas

estructurales prefabricados dependiendo del criterio de evaluación que se utilice. En caso de optar

por cumplir con la recomendación de la sección A.3.1.7 de la NSR-10 sobre un coeficiente R0 igual

a 1.5, las opciones de diseño se ven drásticamente limitadas por suponer que la capacidad de la

estructura de alcanzar deformaciones inelásticas es muy baja. Si se decide utilizar el segundo

Page 8: Documento Sistemas Estructurales con Elementos Prefabricados

Página | 6

mecanismo permitido por la NSR-10 (Homologación de Régimen de Excepción) se podría llegar a

demostrar que un sistema estructural prefabricado posee la misma capacidad que el sistema

homólogo construido monolíticamente, lo cual implica un esfuerzo superior en términos de

experimentación detallada y análisis complejos, pero abre la posibilidad a restricciones

considerablemente menos severas.

1.2 International Building Code (IBC-12) El documento International Building Code 2012 desarrollado por el Consejo Internacional de

Códigos (ICC por sus siglas en inglés) tiene como objetivo satisfacer la necesidad de lineamientos

actualizados que se enfoquen en el diseño y la instalación de diferentes sistemas constructivos. En

la sección 3 del Capítulo 5 del documento se presenta una tabla que resume las limitaciones de

altura y área por piso en función del grupo de uso y el tipo de construcción al cual pertenezca la

estructura evaluada.

La clasificación de uso y ocupación (grupo de uso) es definida en el Capítulo 3 por medio de 10

grupos caracterizados por su inicial en inglés: Asamblea (A), Empresarial (B), Educación (E),

Fabricas e Industrial (F), Alto Riesgo (H), Institucional (I), Mercantil (M), Residencial (R),

Almacenamiento (S) y Utilidad y Varios (U). Se hace énfasis en cinco de los grupos anteriores con el

fin de tener un espectro amplio de usos en los cuales podrían implementarse sistemas

estructurales prefabricados:

Grupo Empresarial (B): Incluye las edificaciones utilizadas para oficinas, servicios

profesionales almacenamiento de registros.

Grupo Educación (E): Incluye las estructuras utilizadas simultáneamente por seis o más

personas para propósitos educacionales.

Grupo Fabricas e Industrial (F): Incluye todo tipo de construcciones dentro de las cuales se

lleven a cabo operaciones de ensamble, desensamble, fabricación, terminación,

empaquetado, reparación o procesamiento industrializado que no tenga implicaciones

riesgosas que apliquen a las condiciones del grupo de Alto Riesgo (H). Este grupo está

constituido por dos subgrupos: Bajo Riesgo (F-1) y Riesgo Moderado (F-2), siendo ambos

definidos a partir de los procesos que se lleven a cabo al interior de la construcción.

Grupo Residencial (R): Incluye cuatro subcategorías de ocupaciones residenciales:

o Ocupaciones residenciales constituidas por unidades donde los ocupantes son

transitorios (R-1).

o Ocupaciones residenciales conformadas por unidades en las cuales los ocupantes

son permanentes (R-2).

o Unidades dentro de las cuales habitan entre cinco y dieciséis personas

autosuficientes en turnos de veinticuatro horas (R-4).

o Ocupaciones residenciales que no clasifican en los tres grupos anteriores (R-3).

Grupo Almacenamiento (S): Incluye todas las estructuras de almacenamiento que no

pueden ser clasificadas como una ocupación riesgosa o nociva.

Page 9: Documento Sistemas Estructurales con Elementos Prefabricados

Página | 7

o En particular se observan las limitaciones asociadas al subgrupo de

almacenamiento de Bajo Riesgo (S-2) pues este incluye las estructuras de

parqueaderos abiertos y cerrados, según la sección 406.3.5 del documento

La clasificación de los tipos de construcción es definida en el Capítulo 6 del documento. Los cinco

tipos de construcción dependen principalmente de la resistencia al fuego que posean los

elementos que conforman la edificación:

Tipo I y II: Construcciones en las cuales elementos tanto estructurales como no

estructurales son fabricados con materiales no combustibles.

Tipo III: Construcciones en las cuales las paredes exteriores deben construirse con

materiales no combustibles, mientras que el resto de elementos internos pueden

construirse con cualquier material.

Tipo IV: Construcciones en las cuales las paredes exteriores se construyen con materiales

no combustibles y los elementos internos se construyen con madera laminada.

Tipo V: Los elementos son construidos con cualquiera de los materiales cubiertos por el

documento IBC 12.

A continuación se presenta una tabla que contiene las limitaciones establecidas para grupos de

uso que pueden ser asociados con sistemas estructurales prefabricados. Esta información es

tomada de la Tabla 503 del documento IBC 12, donde se estipulan límites de altura y de número

de pisos.

Tabla 6. Alturas permitidas según tipo de construcción y grupo de uso (IBC-12 Tabla 503)

Tipo de Construcción

Tipo I Tipo II Tipo III Tipo IV Tipo V

A B A B A B HT A B

Altura (m) UL 49 20 17 20 17 20 15 12

Grupo de Uso

Empresarial UL 11 5 3 5 3 5 3 2

Educación UL 5 3 2 3 2 3 1 1

Fabricas e Industrial - 1 UL 11 4 2 3 2 4 2 1

Fabricas e Industrial - 2 UL 11 5 3 4 3 5 3 2

Residencial - 1 UL 11 4 4 4 4 4 3 2

Residencial - 2 UL 11 4 4 4 4 4 3 2

Residencial - 3 UL 11 4 4 4 4 4 3 3

Residencial - 4 UL 11 4 4 4 4 4 3 2

Almacenamiento - 2 UL 11 5 3 4 3 5 4 2

Las limitaciones observadas en la Tabla 7 permiten concluir que según las provisiones del

documento IBC 12 la característica dominante que limita el número de pisos de una estructura es

su clasificación de tipo de construcción. Se observa que el número de pisos permitidos para cada

tipo de construcción es prácticamente independiente de los grupos de uso, pero a medida que los

requerimientos de la resistencia al fuego de los materiales de construcción se vuelven menos

Page 10: Documento Sistemas Estructurales con Elementos Prefabricados

Página | 8

restrictivos, el número de pisos se reduce drásticamente. Esta particularidad evidencia que el ICC

considera especialmente relevante el efecto de resistencia al fuego que deben tener las

estructuras, en contraste al caso colombiano donde estos efectos pasan a un segundo plano.

También es necesario resaltar que el IBC 12 no contempla explícitamente las características de

disipación de energía propias de cada sistema estructural para establecer los límites de altura, lo

cual también constituye una postura radicalmente diferente al caso colombiano.

1.3 Concrete Structures Standard Part 1 - The Design of Concrete

Structures (NZS 3101-1) El documento Concrete Structures Standard Part 1 - The Design of Concrete Structures (NZS 3101-

1) desarrollado por el grupo desarrollador de estándares Standards New Zealand tiene como

objetivo establecer los requerimientos mínimos para el diseño de estructuras construidas

utilizando tanto concreto fundido in situ como elementos de concreto prefabricado.

Este documento no presenta información acerca de limitaciones geográficas o limitaciones de

altura que apliquen en sistemas estructurales prefabricados, pero si presenta definiciones que

pueden servir para clasificar dichos sistemas. En la sección 8.2 del Capítulo 18 del documento NZS

3101-1 se establecen dos categorías que clasifican los sistemas estructurales de muros

estructurales y pórticos resistentes a momento que incorporan elementos prefabricados. Las dos

categorías de sistemas son “Equivalent Monolithic” y “Jointed”.

Los sistemas de la categoría “Equivalent Monolithic” se caracterizan por tener una resistencia y

tenacidad equivalente a la resistencia y tenacidad provista por un sistema estructural construido

monolíticamente. Las conexiones de estas estructuras pueden clasificarse en dos categorías:

Conexiones fuertes de ductilidad normal: aseguran que la fluencia a flexión ocurrirá lejos de la zona de conexión.

Conexiones dúctiles: incorporan barras longitudinales de refuerzo a la conexión que deben entrar al rango inelástico durante un evento sísmico severo.

Los sistemas de la categoría “Jointed” se caracterizan porque sus conexiones son más débiles que

los elementos prefabricados cercanos y porque su comportamiento no busca simular el

comportamiento de una estructura similar construida monolíticamente. En este sistema las

deformaciones inelásticas se concentran en la interfaz de conexión de los elementos por medio de

fisuras. Las conexiones se dividen en tres categorías:

Ductilidad limitada: conexiones secas formadas por soldadura o por medio de pernos.

Conexiones dúctiles: Usan cables de presfuerzo para realizar las conexiones. La inelasticidad se concentra en la interfaz entre elementos por medio de fisuras mientras que los cables se mantienen en el rango elástico. Poca deformación residual después de un sismo.

Dúctiles hibridas: Combinan cables de presfuerzo con barras longitudinales en la conexión.

Page 11: Documento Sistemas Estructurales con Elementos Prefabricados

Página | 9

1.4 FEMA 356 - Prestandard and Commentary for the Seismic

Rehabilitation of Buildings El documento FEMA 356 - Prestandard and Commentary for the Seismic Rehabilitation of Buildings

fue desarrollado gracias a un esfuerzo conjunto entre la Sociedad Americana de Ingenieros Civiles

(ASCE por sus siglas en inglés) y la Agencia de Manejo de Emergencia Federal (FEMA por sus siglas

en inglés) con el fin de actualizar el documento predecesor (FEMA 273) incluyendo nuevas

provisiones que contemplan investigaciones recientes.

Este documento no contiene limitaciones geográficas o de altura que apliquen en sistemas

estructurales prefabricados, pero si presenta definiciones que pueden servir para clasificar dichos

sistemas. En la sección 6.1 del Capítulo 6 del documento FEMA 356 se definen tres tipos de

sistemas estructurales que son conformados por elementos prefabricados.

En la sección 6.6.1.1 se definen los pórticos de concreto prefabricado que simulan el

comportamiento de los pórticos fundidos en sitio como sistemas estructurales prefabricados viga-

columna que se conectan por medio de barras de refuerzo y concreto húmedo para asegurar una

resistencia similar a los sistemas homólogos construidos monolíticamente.

En la sección 6.6.1.2 se establece que los pórticos resistentes a momento de concreto

prefabricados construidos utilizando juntas secas, deben armarse con el fin de obtener una

resistencia a las cargas laterales importante. Esta clasificación aplica tanto para pórticos que

resistan independientemente las cargas laterales como para pórticos que funcionen en conjunto

con otros sistemas estructurales, como muros portantes o pórticos arriostrados.

En la sección 6.6.1.3 se definen los pórticos de concreto prefabricado que no aportan resistencia

ante cargas laterales. Se supone que estas estructuras solamente resistirán cargas verticales, ya

que las cargas horizontales deberán ser totalmente asumidas por otros sistemas. Se debe asegurar

que la deformación de los pórticos prefabricados sea compatible con la deformación general de la

estructura.

Adicionalmente, en la sección 9 del Capítulo 6 se definen dos casos de muros estructurales. El

primer caso corresponde al uso de muros prefabricados cuyas conexiones son especialmente

resistentes con el fin de asegurar que el sistema se comporte como un sistema similar fundido in

situ. El segundo caso, llamado “Jointed construction”, hace referencia a las estructuras en las

cuales se permite que ocurran desplazamientos inelásticos en la zona de conexión entre paneles.

Finalmente, en la sección 12 del Capítulo 6 se definen dos tipos de diafragmas conformados por

elementos prefabricados de concreto.

Page 12: Documento Sistemas Estructurales con Elementos Prefabricados

Página | 10

1.5 Minimum Design Loads for Buildings and Other Structures (ASCE 7-

10) El documento ASCE 7-10 fue desarrollado por la Sociedad Americana de Ingenieros Civiles (ASCE

por sus siglas en inglés) con el fin de proveer un estándar de cargas y requerimientos mínimos

para el diseño de edificaciones y otras estructuras. En el Capítulo 12, sección 2, se presentan tanto

las pautas para seleccionar el sistema estructural como la Tabla 12.2-1, la cual contiene la

información asociada a las limitaciones de uso de cada uno de los sistemas cubiertos por el

documento. En la siguiente tabla se presenta información extraída de la Tabla 12.2-1 relacionada

con sistemas estructurales prefabricados.

Tabla 7. Límites de altura según sistema estructural (ASCE 7-10 Tabla 12.2-1)

Límites de altura (m)

Sistema resistencia sísmica R B C D E F

Sistema resistencia de cargas verticales: Muros Cargueros

Muros de Concreto (Capacidad Especial)

5 SL SL 49 49 30

Muros de Concreto (Capacidad Moderada)

4 SL SL 12 12 12

Muros de Concreto (Capacidad Mínima)

3 SL NP NP NP NP

Sistema resistencia de cargas verticales: Pórticos

Muros de Concreto (Capacidad Especial)

6 SL SL 49 49 30

Muros de Concreto (Capacidad Moderada)

5 SL SL 12 12 12

Muros de Concreto (Capacidad Mínima)

4 SL NP NP NP NP

Sistema resistencia de cargas verticales: Pórticos Resistentes a Momento

Pórticos Resistentes a Momento (Capacidad Especial)

8 SL SL SL SL SL

Sistema resistencia de cargas verticales: Columnas en voladizo

Pórticos Resistentes a Momento (Capacidad Especial)

2.5 11 11 11 11 11

En la Tabla 7 se encuentran los límites de altura de todos los sistemas estructurales que pueden

ser implementados utilizando elementos prefabricados según las provisiones del documento ASCE

7-10. En esta tabla la sigla SL quiere decir “Sin Límite” mientras que la sigla NP quiere decir “No

Permitida”. Dado que los límites de altura dependen de la categoría de diseño sísmico, es

importante entender esta clasificación; según la sección 2 del Capítulo 11 del documento ASCE 7-

10 la clasificación de las categorías de diseño sísmico está basada en la categoría de riesgo de la

estructura y a la severidad del sismo de diseño en el lugar donde esta se ubique, es decir que

caracteriza una estructura en términos geográficos y de vulnerabilidad sísmica. La categoría de

diseño sísmico menos crítica es la A, mientras que la categoría de diseño sísmico más crítica es la

F. Las categorías de riesgo se definen por medio de la Tabla 1.5-1 del documento en función del

Page 13: Documento Sistemas Estructurales con Elementos Prefabricados

Página | 11

riesgo hacia el bienestar, la salud y la vida humana asociado a la naturaleza del uso de la

estructura.

En la Tabla 7 se observa que en el caso de seleccionar muros de concreto resistiendo las cargas

horizontales los límites de altura son independientes del sistema de resistencia de cargas

verticales, pese a que los coeficientes de disipación de energía R no lo son. En primer lugar, los

muros de concreto de capacidad de disipación especial pueden ser implementados en estructuras

pertenecientes a todas las categorías de diseño sísmico, pero se restringe su uso en dos casos:

edificaciones con alturas inferiores a 49 metros (14 o 15 pisos de altura aproximadamente) para

las categorías D y E y edificaciones con alturas menores a 30 metros (9 o 10 pisos de altura

aproximadamente) para la categoría E. En segundo lugar, los muros de concreto de capacidad de

disipación moderada también pueden ser implementados en estructuras pertenecientes a todas

las categorías de diseño sísmico pero bajo restricciones más severas para las categorías D, E y F,

pues en estas categorías solo se permite este sistema en edificaciones con alturas inferiores a 12

metros (3 o 4 pisos de altura aproximadamente). Finalmente, los muros de concreto de capacidad

de disipación mínima se permiten únicamente para estructuras de categoría B. Cabe resaltar que a

pesar de no incidir en los límites de altura permitidas, el efecto del sistema de resistencia de

cargas verticales debe ser tenido en cuenta para definir el coeficiente de disipación de energía con

el cual se diseñara la estructura.

Del mismo modo, en la Tabla 7 se observa que en el caso de optar por utilizar pórticos resistencias

a momento los límites de altura máxima permitida dependen drásticamente del sistema de

resistencia de cargas verticales. Si se utiliza el mismo sistema para resistir las cargas en ambas

direcciones, el documento ASCE 7-10 permite utilizar los pórticos resistentes a momento de

capacidad especial en estructuras clasificadas en cualquier categoría de diseño sísmico sin

imponer restricciones sobre la altura de la estructura. En caso de utilizar un sistema diferente,

como por ejemplo columnas en voladizo, los límites se vuelven muy restrictivos ya que solo se

permitirían edificaciones con una altura máxima de 11 metros (3 o 4 pisos aproximadamente) para

todas las categorías de diseño sísmico.

En la sección 2.1 del Capítulo 12 se estipula que en caso que se quiera utilizar una estructura que

no se encuentre cubierta por la Tabla 12.2-1, debe entregarse a la autoridad competente

documentación analítica y experimental suficiente que demuestre que la resistencia a cargas

laterales y la capacidad de disipación de energía de la estructura es equivalente a las propiedades

de sistemas estructurales que si estén contenidos en la Tabla 12.2-1.

1.5.1 NEHRP Recommended Provisions for Seismic Regulations for New Buildings and

Other Structures (FEMA 450)

El documento FEMA 450 fue desarrollado por la Agencia de Manejo de Emergencia Federal (FEMA

por sus siglas en inglés) en conjunto con el Programa Nacional de Reducción de la Amenaza

Sísmica (NEHRP por sus siglas en inglés) con el fin de promover el diseño y la ejecución de obras de

ingeniería estructural que busquen enfrentar el problema de amenaza sísmica para minimizar el

riesgo de daño a las estructuras y lesión de las personas.

Page 14: Documento Sistemas Estructurales con Elementos Prefabricados

Página | 12

El Capítulo 4 se enfoca en los criterios de diseño estructural. La sección 4.2 presenta una tabla que

coincide con la Tabla 12.2-1 del documento ASCE 7-10, por lo tanto todas las consideraciones

asociadas a estructuras prefabricadas en términos de los límites de uso de este tipo de sistemas

corresponden a aquellas analizadas a partir de la información del documento expedido por la

ASCE.

1.5.2 PCI DESIGN HANDBOOK

El documento PCI Design Handbook – Precast and Prestressed Concrete fue desarrollado por el

Instituto de Concreto Prefabricado/Presforzado (PCI por sus siglas en inglés) con el propósito de

propagar los descubrimientos de las investigaciones modernas sobre técnicas de diseño de

estructuras prefabricadas.

En la sección 4.6 del documento se establece que el sistema de resistencia a fuerzas laterales de

columnas en voladizo puede ser considerado un sistema de pórticos de capacidad mínima

únicamente en estructuras clasificadas en las categorías de diseño A y B. También se establece que

la altura máxima permitida para edificaciones que implementen este sistema estructural será de

11 metros, lo cual equivale a estructuras de aproximadamente 3 pisos.

En la sección 5.10 del documento se establecen límites específicos para el uso de muros

estructurales prefabricados como sistema principal de resistencia a cargas laterales. En estructuras

pertenecientes a las categorías de diseño B y C pueden implementarse muros estructurales de

capacidad de disipación de energía moderada sin límite de altura. Por otro lado, para edificaciones

pertenecientes a las categorías de diseño sísmico D, E y F se establece un límite de 14 metros de

altura, lo cual equivale aproximadamente a estructuras de 4 pisos.

El documento PCI Design Handbook presenta información que resume los coeficientes de diseño y

las limitaciones que aplican sobre los sistemas estructurales que contempla. Esta información se

encuentra contenida en la tabla Design Aid 4.11.8, la cual corresponde a la Tabla 12.2-1 del

documento ASCE 7-10.

Page 15: Documento Sistemas Estructurales con Elementos Prefabricados

Página | 13

2 SISTEMAS UTILIZADOS A NIVEL MUNDIAL

2.1 Smart Green Frame (SGF)

2.1.1 Proceso Constructivo

El sistema Smart Green Frame (SGF), el cual es un subgrupo de las estructuras que pertenecen a

los sistemas Modularized Hybrid System (MHS) provee una solución económica y eficiente

utilizando las bondades de la construcción en acero con los bajos costos de las construcciones de

concreto. Este sistema constructivo permite reducir las cantidades de obra en comparación a

sistemas convencionales (Kim, Hong, Kim, & Kim, 2013).

El sistema SGF utiliza elementos prefabricados conectados por medio de secciones metálicas de

perfil W pernadas. La estructura se compone por medio de dos unidades principales: viga-columna

(Ver Figura 1) y viga (Ver Figura 2).

Figura 1. Unidad viga-columna (Kim, Hong, Kim, & Kim, 2013)

Figura 2. Unidad viga (Kim, Hong, Kim, & Kim, 2013)

En las figuras anteriores se observa que las conexiones componen una fracción pequeña del

material ya que los perfiles metálicos se ubican exclusivamente en los extremos de la viga y en la

ubicación de la conexión sobre la columna. Se ha realizado estudios sobre el comportamiento de

estas conexiones pernadas se ha concluido que responden similarmente a las conexiones

utilizadas en estructuras de acero convencionales y por lo tanto tienen la capacidad de transmitir

las fuerzas cortantes del sistema de piso correctamente (Jurkiewiez & Hottier, 2004). El uso de

estas conexiones permite armar la estructura principal con la velocidad de la construcción en

acero sin sacrificar los beneficios económicos que genera utilizar perfiles en concreto

prefabricado.

Las unidades viga-columna es conectan entre si verticalmente por medio de placas de acero

(Figura 3), asegurando la continuidad del refuerzo longitudinal de la columna y permitiendo

Page 16: Documento Sistemas Estructurales con Elementos Prefabricados

Página | 14

mantener la velocidad de construcción constante. Se ajusta la conexión de las dos unidades por

medio de pernos de conexión. Los espacios vacíos que existan en los puntos de conexión se llenan

con concreto al terminar el proceso de conexión. Las conexiones entre las unidades viga-columna

se ubican en los lugares donde el momento a flexión es cero, con el fin de reducir posibles

esfuerzos y asegurar que el proceso sea rápido y seguro.

Figura 3. Unión entre las unidades viga-columna (Kim, Hong, Kim, & Kim, 2013)

Figura 4. Conexiones columna – columna (Hong, Lim, Park, & Kim, 2012)

En la Figura 4 se presentan las tres posibilidades de conexiones columna-columna, las cuales

varían según se conecten las barras de refuerzo para asegurar su continuidad (Hong, Lim, Park, &

Kim, 2012). La figura izquierda muestra la conexión tipo sleeve, en la cual la columna superior y la

inferior son conectadas llenando la conexión con mortero sin retracción luego de insertar el final

del refuerzo de la columna inferior en la cara inicial de la columna superior. La figura central

muestra la conexión tipo coupler, en la cual se conectan las barras de refuerzo de la columna

superior a la placa de conexión de la columna inferior por medio de acopladores. La última figura

muestra el esquema de la conexión tipo pressure welding, en la cual la conexión se los refuerzos

de ambas columnas se unen por medio de soldadura de presión.

Page 17: Documento Sistemas Estructurales con Elementos Prefabricados

Página | 15

Una limitación presente en la construcción de muros o pórticos prefabricados es la necesidad de

arriostrar lateralmente los elementos para soportar cargas horizontales durante la etapa de

construcción de la estructura y en particular antes de formar el sistema de piso. El sistema SGF

soluciona esta limitación por medio de las conexiones que utiliza, pues aumentan la estabilidad de

la estructura durante el proceso de construcción. Un estudio en el cual se comparó la duración de

construcción de sistemas con muros portantes con la duración de construcción del SGF concluyó

que a medida que la altura de la estructura aumenta, el SGF se vuelve más atractivo. Para un

edificio de 30 pisos se observó lo siguiente:

- Para construir un piso con muros portante se necesitan aproximadamente 7 días para

terminar un nivel. Proyectando esta información se estima que esta estructura se

terminará en 210 días.

- Por otra parte, para construir tres pisos con el sistema SGF se requieren

aproximadamente 10 días de trabajo. Utilizando este estimado inicial se calcula que la

estructura principal estaría lista en 100 días.

Estos resultados indican que el sistema SGF puede constituir una alternativa competitiva, pues

construir un edificio de 30 pisos el sistema de muros portantes requiere un periodo total de

construcción 52.4% más largo que el sistema SGF (Kim, Hong, Kim, & Kim, 2013). Uno de los

factores que genera esta variación en los tiempos constructivos es que el sistema SGF reduce el

uso de encofrados al utilizar elementos fabricados en plantas especializadas y no dentro de la

obra. El uso de encofrados es además es una causa de incertidumbre durante la programación de

la obra, pues el tiempo asociado a los procesos de encofrado y desencofrado dependen en gran

medida de la habilidad y velocidad de la mano de obra disponible (Hong, y otros, 2009).

Por otra parte, el sistema SGF no solo reduce los costos de la obra gracias a la reducción en los

tiempos constructivos sino que además también genera una disminución en las cantidades de

obra. Estudios realizados han concluido que el implementar el sistema SGF permite reducir en

aproximadamente un 30% la cantidad de concreto y de acero requerida, y gracias a esto se logra

disminuir en un 30% el consumo energético en obra (Hong, Lim, Park, & Kim, 2012).

El efecto ambiental de la obra se reduce al implementar el sistema SGF, ya que al tener una obra

programada que difícilmente se retrasará se puede optimizar el uso de toda la maquinaria

utilizada, lo que reduce desperdicios de energía y material y minimiza la emisión de gases

contaminantes (Hong, y otros, 2009).

Adicionalmente, la construcción del sistema SGF reduce el tamaño del sitio de construcción ya una

gran porción del proceso se lleva a cabo en plantas industrializadas, minimizando los procesos que

involucran a los obreros y reduciendo la probabilidad de accidentes.

Otra ventaja de implementar el sistema SGF en comparación a sistemas convencionales es la

amplificación del periodo fundamental de la estructura. Al presentar un periodo fundamental más

largo se obtienen valores de respuesta espectral menores, lo cual se traduce en solicitaciones

sísmicas menos críticas (Hong, y otros, 2009).

Page 18: Documento Sistemas Estructurales con Elementos Prefabricados

Página | 16

2.1.2 Resultados experimentales

2.1.2.1 Vigas de sección compuesta

En el 2008 se llevó a cabo una investigación experimental para determinar la capacidad de una

sección compuesta por un perfil metálico de sección W y concreto prefabricado. Gracias a los

beneficios propios de este tipo de sección se consiguió una reducción en la altura del perfil W y en

consecuencia se disminuyó la altura del sistema de piso sin comprometer la capacidad del

elemento. Esta investigación se enfocó en evaluar el efecto del tamaño de la sección y del refuerzo

longitudinal en el comportamiento del elemento.

En la siguiente figura se muestra el elemento terminado. El perfil de acero ya ha sido perforado

para la conexión con la unidad viga-columna y el concreto sea fundido sobre la aleta inferior el

perfil.

Figura 5. Viga compuesta (Hong, y otros, Composite beam composed of steel and precast concrete (modularized

hybrid system, MHS), 2008)

Se evaluaron cuatro vigas compuestas en escala real para determinar la carga de fluencia y la

carga máxima que soporta el elemento. El montaje utilizado para las pruebas consistió en ubicar

actuadores dinámicos con capacidad de 2000 kN en los tercios de la longitud libre de las vigas de

10 metros de longitud. Por medio de actuadores se aplicaron cargas cíclicas.

Durante las pruebas de las vigas se observó que la capacidad de disipación de energía de estos

elementos es aceptable ya que la ductilidad fue suficiente para soportar todo el ciclo de carga

dinámica a la cual se sometieron los elementos evaluados.

Una observación relevante obtenida de los ensayos fue que la deformación correspondiente a la

capacidad máxima de la sección fue el doble de la deformación correspondiente a la carga de

fluencia. Lo anterior se concluyó ya que las grietas desarrolladas bajo el límite de servicio

(deflexión igual a L/360) fueron aceptables. En el momento de falla la viga presento aplastamiento

y descascaramiento del concreto, lo cual permite que tanto el refuerzo a tensión como la aleta

inferior del perfil embebido queden expuestos. En este estado también se presentan rotaciones

plásticas importantes.

Page 19: Documento Sistemas Estructurales con Elementos Prefabricados

Página | 17

Figura 6. Viga deformada en el estado límite de falla

Este estudio demostró que implementar estas secciones compuestas no implica un

incumplimiento en los lineamientos de la normatividad vigente, ya que gracias a la ductilidad que

genera la integración de los materiales la viga logró llegar a deflexiones mayores a las mínimas en

términos de serviciabilidad, demostrando así un comportamiento adecuado para soportar las

solicitaciones a las que estaría expuesta. Adicionalmente, es importante resaltar que el estudio

demostró que no hay implicaciones negativas al utilizar secciones compuestas con el fin de

obtener una solución económica por medio de una reducción en la altura del sistema de piso.

2.1.2.2 Diseño de un edificio de 19 pisos

En 2009 el mismo grupo de investigadores decidió poner en práctica el uso del sistema hibrido.

Para evaluar los resultados rediseñaron un edificio de 18 pisos cuya altura estaba restringida por la

normatividad local. En el nuevo diseño la estructura se construiría con el sistema de pórticos MHS,

con lo que se espera reducir la altura de entrepiso a tal punto que el nuevo diseño defina una

estructura de 19 pisos, sin aumentar la altura de la estructura.

Para lograr la disminución del entrepiso deseada se diseñan las vigas para que las placas se

construyan sobre los bordes del concreto fundido en forma U (Ver Figura 7) y no sobre la aleta del

perfil metálico. Este detalle de diseño aseguro que el entrepiso sufriera una reducción de 0.22

metros por piso.

Figura 7. Viga Forma U

La Tabla 8 (tomada del documento original) contiene una comparación entre las alturas de los

niveles y el espesor del sistema de piso según los diseños de la estructura en acero y los diseños de

la estructura implementando el sistema MHS. El detalle más relevante de dicha comparación es

Page 20: Documento Sistemas Estructurales con Elementos Prefabricados

Página | 18

que con el nuevo sistema se logró reducir la altura del sistema de piso hasta el punto en que el

nuevo diseño agrega una planta adicional, reduciendo la altura total de la estructura y sin

sacrificar la altura de piso de manera importante.

Tabla 8. Comparación de la altura de entrepiso entre los dos sistemas (Hong, y otros, 2009)

En la Figura 8 se presentan dos fotografías tomadas en el sitio de la construcción durante el

montaje de las columnas y las vigas; el montaje de la columna se realiza rápidamente ya que se

instalan cuatro pisos de columnas cada vez, solo volviendo a la instalación de las columnas cuando

las vigas ya han sido instaladas. En la Figura 9 se observa un instante del procedimiento de

conexión de la viga con pernos de alta resistencia y capacidad; gracias a estas conexiones

prefabricadas y estandarizadas la construcción de la estructura es limpia, rápida, generadora de

muy poco desperdicio de material y con altos estándares de calidad.

Figura 8. Montaje de las columnas y de la viga (Hong, y otros, 2009)

Page 21: Documento Sistemas Estructurales con Elementos Prefabricados

Página | 19

Figura 9. Conexión con pernos de alta resistencia (Hong, y otros, 2009)

2.2 Project SAFECAST

2.2.1 Metas del proyecto

El proyecto SAFECAST es la última etapa de una serie de investigaciones que buscan estandarizar

en la normativa europea el uso de estructuras prefabricadas en todas las zonas de amenaza

sísmica (Toniolo, 2014). La motivación de este proyecto desarrollado por la institución “Europan

Commission Joint Research Centre” se encuentra en la falta de conocimiento profundo del

comportamiento de sistemas estructurales prefabricados en concreto, en particular con respecto a

las conexiones y la interacción entre los elementos fundidos en sitio y los prefabricados.

Los objetivos principales del proyecto fueron:

- Generar conocimiento más apropiado sobre el comportamiento sísmico de estructuras

prefabricadas.

- Desarrollar herramientas útiles, adecuadas y verificadas para el diseño estructuras

prefabricadas.

- Lograr incluir en los códigos de diseño especificaciones que permitan utilizar este tipo de

estructuras y aprovechar las propiedades de las conexiones innovadoras.

Para alcanzar estas metas, el proyecto culminó con el estudio de una estructura de tres pisos

prefabricada por medio de varios ensayos pseudo-dinámicos.

2.2.2 Ensayo pseudo-dinámico

Se construyó un prototipo en escala real con el fin de evaluar el comportamiento sísmico de una

estructura de varios pisos construida con elementos prefabricados. Se decidió estudiar una

estructura de tres pisos con luces libres de siete metros. Inicialmente se contempló la posibilidad

de construir el montaje con dos luces en una dirección y tres en la dirección perpendicular pero los

estudios previos revelaron que los modos de vibración superiores tendría un efecto importante, lo

cual generaba fuerzas en los algunos pisos que no podían ser soportadas por los actuadores

utilizados en el montaje. En consecuencia, se tomó la decisión de construir el espécimen con dos

luces en ambas direcciones (Ver Figura 10).

Page 22: Documento Sistemas Estructurales con Elementos Prefabricados

Página | 20

Figura 10. Estructura estudiada (Negro, Bournas, & Molina, 2013)

En la figura anterior se presentan las dimensiones de la estructura. La altura total del espécimen

estudiado se compone de 1.0 metros de cimentación y alturas entre pisos de 3.5 metros, 3.2

metros y 3.2 metros para el primer, segundo y tercer nivel, respectivamente. Todos los elementos

de la estructura se fundieron utilizando concreto con resistencia superior a 60 MPa.

El prototipo fue construido para estudiar varios parámetros y en consecuencia se contemplaron

cuatro configuraciones dentro de la misma estructura.

Prototipo 1

Prototipo 2

Prototipo 3

Prototipo 4

Figura 11. Esquemas de los prototipos en la dirección estudiada

Page 23: Documento Sistemas Estructurales con Elementos Prefabricados

Página | 21

La primera configuración, denominada Prototipo 1, se concibió como un sistema dual que utiliza

pórticos con conexiones rotuladas y muros portantes. Esta configuración inicial pretendía evaluar

el comportamiento de la estructura contemplando elementos que la rigidizaran, por lo tanto las

conexiones entre la estructura y el muro pasaron a un plano secundario.

En la segunda configuración, denominada Prototipo 2, se desconectaron los muros de cortante

prefabricados para evaluar el comportamiento de la estructura típica de conexiones con rotación

libre.

La siguiente configuración, denominada Prototipo 3, se evaluó el uso de conexiones que lograran

emular una conexión resistente a momento en los elementos de la placa de la cubierta

únicamente.

La última configuración, denominada Prototipo 4, evaluó las mismas conexiones que el Prototipo 3

pero en todos los niveles del espécimen construido.

El funcionamiento y comportamiento de las conexiones se explica en detalle en el documento

complementario “Pseudodynamic tests on a full-scale 3-storey precast concrete building: Behavior

of the mechanical connections and floor diaphragms” (Bournas, Negro, & Molina, 2013)

2.2.2.1 Especificaciones del ensayo

El modelo utilizado para los ensayos combino las bondades de la experimentación física y la

modelación computacional. La ecuación de movimiento que gobierna el comportamiento del

modelo es la siguiente:

( ) ( ) ( ) ( )

Donde M representa la matriz de masa de la estructura; C representa la matriz de amotiguamiento

de la estructura; R(t) representa las fuerzas restauradoras en el tiempo t; a(t) representa la

aceleración de la estructura en el tiempo t; v(t) representa la velocidad de la estructura en el

tiempo t; I representa un vector de ceros y unos asociados a la dirección de la señal de entrada

con respecto a los grados de libertad de la estructura; y ag(t) es el registro de aceleraciones de

entrada al sistema.

Dado que este montaje experimental pretendía lograr llevar a la estructura al rango inelástico y

observar su comportamiento, la matriz de amortiguamiento C se supuso nula ya que la disipación

histerética de energía se contempla por medio de la relación entre las fuerzas restauradoras y los

desplazamientos.

La matriz de masa de la estructura en la simulación se construyó utilizando valores superiores a los

reales con el fin de contemplar la masa de elementos adicionales que pudieran estar ubicados

sobre la estructura. En el análisis pseudo-dinámico no es necesario que las masas adicionales se

encuentren realmente sobre el modelo experimental, tan solo deben ser contempladas en el

modelo número; claramente la decisión anterior supone una magnitud de carta axial ligeramente

inferior sobre las columnas.

Page 24: Documento Sistemas Estructurales con Elementos Prefabricados

Página | 22

El ensayo pseudo-dinámico funciona siguiendo los siguientes pasos teniendo en cuenta que se

espera que las fuerzas restauradoras R(t) presenten un comportamiento no lineal con respecto a

los desplazamientos de la estructura:

1. El vector de las fuerzas restauradoras R(t) asociadas a los grados de libertad seleccionados

se mide directamente en el modelo físico de la estructura.

2. En cada instante de tiempo t se soluciona la ecuación de movimiento por medio del

modelo computacional con el fin de obtener: la aceleración en el tiempo t (vector a(t)), la

velocidad en el tiempo t (vector v(t)) y los desplazamientos en el instante de tiempo

siguientes (vector d(t+Δt)).

3. Los desplazamientos calculados para el instante siguiente (t+Δt) se imponen sobre el

modelo físico por medio de los actuadores instalados y se obtienen las fuerzas

restauradoras del instante siguiente R(t+Δt), con lo cual se cierra el ciclo correspondiente

al instante t.

Los desplazamientos calculados para el primer piso se aplicaron por medio de cuatro actuadores

hidráulicos con capacidad máxima de 500 kN, mientras que los desplazamientos de los dos pisos

superiores fueron aplicados utilizando dos actuadores hidráulicos por piso con capacidad máxima

de 1000 kN. Con el fin de distribuir los desplazamientos uniformemente se utilizaron vigas de

acero que conectaban los ejes de aplicación de la carga de los actuadores.

2.2.2.2 Señal de entrada

La señal de entrada seleccionada para realizar los ensayos pseudo-dinámicos fue un registro

tomado durante un evento sísmico real (Tolmezzo, Italia en 1976). La señal se modificó para

ajustar el espectro de respuesta al espectro de diseño del Eurocode 8. Las figuras presentadas a

continuación muestran la señal de entrada seleccionada escalada para que el pico de la señal sea

de 1.00 g y su respectivo espectro de respuesta.

Figura 12. Señal de entrada escalada (Negro, Bournas, &

Molina, 2013)

Figura 13. Espectro de respuesta de la señal de entrada (Negro, Bournas, & Molina, 2013)

Page 25: Documento Sistemas Estructurales con Elementos Prefabricados

Página | 23

El registro de aceleraciones de la Figura 12 se escaló para tres situaciones:

- Aceleración máxima del registro igual a 0.15 g para el estado límite de servicio. Se

realizaron ensayos con esta versión del registro utilizando el Prototipo 1 (Prot1_0.15g) y el

Prototipo 2 (Prot2_0.15g)

- Aceleración máxima del registro igual a 0.30 g para el estado límite de prevención del

colapso. Se realizaron ensayos con esta versión del registro utilizando el Prototipo 1

(Prot1_0.30g), el Prototipo 2 (Prot2_0.30g), el Prototipo 3 (Prot3_0.30g) y Prototipo 4

(Prot4_0.30g).

- Aceleración máxima del registro igual a 0.45 g para superar el estado límite de prevención

del colapso. Se realizó un ensayo con esta versión del registro utilizando el Prototipo 4

(Prot4_0.45g).

Se añadieron algunos segundos adicionales al registro de entrada con aceleración igual a cero, con

el fin de permitir que la estructura responda en vibración libre por unos instantes.

Es importante aclarar que los ensayos se realizaron consecutivamente sobre el mismo prototipo,

por lo cual el daño a la estructura fue acumulativo.

2.2.2.3 Resultados obtenidos

2.2.2.3.1 Prototipo 1

Durante el ensayo para el estado límite de servicio se encontró que el periodo fundamental de

vibración de la estructura era de 0.30 segundos y en consecuencia la estructura puede clasificarse

como rígida, lo cual es consistente con las suposiciones iniciales ya que los muros deberían reducir

la flexibilidad del espécimen evaluado. Al incrementar el pico de la señal de entrada para alcanzar

el estado límite de prevención del colapso se determinó que el periodo fundamental de la

estructura se incrementó a 0.46 segundos, cambio que responde a la perdida de tensión en los

elementos verticales como consecuencia del ensayo anterior.

Figura 14. Cortante en la base vs. desplazamiento en

cubierta (Prot1_0.15g) (Negro, Bournas, & Molina, 2013)

Figura 15. Cortante en la base vs. desplazamiento en

cubierta (Prot1_0.30g) (Negro, Bournas, & Molina, 2013)

Page 26: Documento Sistemas Estructurales con Elementos Prefabricados

Página | 24

En la Figura 14 se observa que la estructura tuvo la capacidad de mantenerse en el rango elástico

bajo la influencia del sismo de diseño para el estado límite de servicio. Esta situación no se

presentó para el sismo del estado límite de prevención del colapso, pues al graficar la respuesta de

la estructura en términos del cortante en la base contra el desplazamiento en la cubierta se

evidencia un comportamiento no lineal.

Una inspección visual permitió concluir que el segundo ensayo generó fisuras en las zonas de

momento máximo en los muros prefabricados. Dichas fisuras se presentaron cerca de la base de

los muros. Pese a que los muros no alcanzaron su máxima capacidad se logró obtener un resultado

satisfactorio al obtener evidencia del impacto que este tipo de elementos tiene sobre la rigidez

global de la estructura.

2.2.2.3.2 Prototipo 2

El periodo fundamental de la estructura constituida únicamente por los pórticos con conexiones

que permiten el giro para e ensayo para el estado límite de servicio fue de 1.10 segundo, lo cual

evidentemente implica que esta segunda configuración presenta una flexibilidad superior en

relación a la configuración del Prototipo 1. Se encontró un incremento importante al evaluar el

periodo fundamental de la estructura bajo el sismo con aceleración máxima de 0.30g, pues en este

caso el periodo calculado fue de 1.40 segundos. Este incremento pudo haber sido causado por el

leve daño acumulativo que ha estructura sufrió durante los ensayos anteriores.

La respuesta de la estructura con la segunda configuración presentó una diferencia importante

con respecto a la configuración anterior: los modos de vibración altos tienen una influencia

importante sobre la respuesta del prototipo. La afirmación anterior se basa en el comportamiento

observado en las curvas “Cortante en la base vs. Desplazamiento en cubierta” presentadas a

continuación:

Figura 16. Cortante en la base vs. desplazamiento en

cubierta (Prot2_0.15g) (Negro, Bournas, & Molina, 2013)

Figura 17. Cortante en la base vs. desplazamiento en

cubierta (Prot2_0.30g) (Negro, Bournas, & Molina, 2013)

Aparentemente la estructura se mantuvo en el rango lineal para el ensayo Prot2_0.15g, pero los

registros que se salen de la tendencia lineal son la consecuencia del efecto de los modos

superiores, que desfasan la respuesta de la estructura. En la Figura 17 se observa el mismo

fenómeno producido por los modos superiores, pero también se observa que las deformaciones

Page 27: Documento Sistemas Estructurales con Elementos Prefabricados

Página | 25

de la cubierta durante el segundo ensayo de la configuración 2 son considerablemente superiores

a las obtenidas durante los ensayos anteriores.

Durante ambos ensayo la estructura no logró cumplir con los límites de derivas de piso máximas

establecidos en el documento Eurocode 8 (Δpiso max=1%). Es más, en el ensayo Prot2_0.30g la

respuesta de la estructura se caracterizó por deformaciones excesivas.

A pesar de no respetar los límites de derivas establecidos por la normatividad de referencia y de

que la estructura se sometiera a deformaciones importantes, los resultados de la prueba son

satisfactorios ya que tras una inspección visual se determina que los daños que presenta el

espécimen de estudio son poco significantes.

2.2.2.3.3 Prototipo 3

La tercera configuración estudiada solo se somete a la señal del estado límite de prevención del

colapso. Este prototipo presenta un cambio con respecto al Prototipo 2: Se emulan conexiones

resistentes a momento por medio del sistema de conexión mecánica implementado únicamente

para los elementos de la cubierta. Este cambio en el último piso genera un aumento en la rigidez

de la estructura y por lo tanto una reducción en el periodo fundamental de vibración, el cual se

calculó en 1.08 segundos.

Pese a esta reducción, se descubrió que activar las conexiones resistentes a momento que emulan

el comportamiento de una estructura monolítica únicamente en la cubierta no resulta efectivo. Lo

anterior se concluye a partir del aumento en las derivas de piso con respecto al ensayo anterior

(Prot2_0.30g). Adicionalmente, se concluye que la estructura continua siendo influenciada por los

modos superiores ya que las fuerzas y los desplazamientos siguen estando fuera de fase como se

observa en la siguiente figura.

Figura 18. Cortante en la base vs. Desplazamiento en cubierta (Prot3_0.30g)

A partir de este ensayo se concluyó que esta configuración no resulta ser una buena solución para

reducir las derivas de piso ya que a pesar de lograr una reducción importante en las derivas del

tercer piso, la magnitud de las derivas aumentó en los dos primeros pisos de la estructura.

Page 28: Documento Sistemas Estructurales con Elementos Prefabricados

Página | 26

2.2.2.3.4 Prototipo 4

La última configuración estudiada consistió en activar las conexiones que emulen una unión entre

elementos fundidos monolíticamente en los elementos de todos los pisos de la estructura. Este

prototipo fue sometido a dos registros de aceleración escalados con respecto a la aceleración

máxima: 0.30g y 0.45g. Al someter a la estructura a la primera señal se obtuvo un periodo

fundamental de vibración de 0.66 segundos, con lo cual se confirmó que el efecto de las

conexiones es suficiente para lograr aumentar la rigidez de la estructura. Cuando se sometió la

estructura al segundo registro de aceleraciones el periodo calculado fue de 1.25 segundos, lo cual

implicó una reducción importante de la rigidez causada por las gritas y los daños que la estructura

sufrió durante el ensayo anterior.

Figura 19. Cortante en la base vs. Desplazamiento en

cubierta (Prot4_0.30g) (Negro, Bournas, & Molina, 2013)

Figura 20. Cortante en la base vs. Desplazamiento en

cubierta (Prot4_0.45g) (Negro, Bournas, & Molina, 2013)

En las figuras anteriores se presentan las curvas “Cortante en la base vs. Desplazamiento en

cubierta” correspondientes a los dos ensayos realizados sobre la cuarta configuración. Se observa

que los desplazamientos del ensayo Prot4_0.30g resultaron ser menores a los del ensayo realizado

sobre el Prototipo 3 para la misma señal de entrada. También es importante resaltar que las

fuerzas inerciales resultaron ser mucho mayores a las obtenidas anteriormente. Lo anterior

confirma que la configuración resultó más rígida que la configuración anterior y gracias a ello su

respuesta estuvo dominada por el primer modo de vibración.

Una inspección visual después del primer ensayo concluyó que no se habían generado daños

adicionales. Por el contrario, al realizar la inspección visual sobre la estructura luego del segundo

ensayo se encontraron daños en la base de las columnas y en la zona inferior de las vigas. En las

columnas el daño observado se limitó a la aparición de fisuras adicionales, pero en las vigas el

daño indicó que en la zona cercana a la conexión viga-columna se presentó fluencia de la sección

transversal.

Page 29: Documento Sistemas Estructurales con Elementos Prefabricados

Página | 27

2.2.2.3.5 Resumen de resultados

En la tabla presentada a continuación se muestra un resumen de los resultados de los ensayos

descritos en las secciones anteriores.

Tabla 9. Resumen de los resultados obtenidos (Negro, Bournas, & Molina, 2013)

ID Ensayo Periodo

fundamental (s)

Cortante en la base máximo (kN) Desplazamiento máximo en la

cubierta (mm)

Sentido positivo Sentido negativo Sentido positivo Sentido negativo

Prot1_0.15g 0,30 1340 -1457 21,90 -16,80

Prot1_0.30g 0,46 1780 -2146 48,20 -60,30

Prot2_0.15g 1,09 500 -442 97,40 -86,60

Prot2_0.30g 1,41 882 -895 208,20 -172,90

Prot3_0.30g 1,08 889 -859 198,70 -148,40

Prot4_0.30g 0,66 1715 -1454 132,50 -121,20

Prot4_0.45g 1,25 1846 -1902 189,30 -206,50

Según los resultados anteriores, la configuración que provee a la estructura con la mayor rigidez es

la del Prototipo 1 ya que está asociada al periodo fundamental de vibración más bajo. La

configuración del Prototipo 2 y del Prototipo 3 resultaron ser más flexibles que la primera. La

última configuración logra incrementar la rigidez nuevamente y a la vez genera desplazamientos

inferiores a los obtenidos en las dos configuraciones anteriores bajo la misma señal, pero a cambio

de generar las fuerzas inerciales mayores.

En la Figura 21 se presenta una comparación gráfica entre las derivas de piso máximas obtenidas

como respuesta de los prototipos sometidos a la señal con aceleración del suelo máxima (PGA por

su nombre en inglés) igual a 0.15g. Es claro que el efecto de los muros prefabricados es

fundamental, ya que gracias a ellos las derivas se reducen y permiten cumplir el límite impuesto

por la normatividad utilizada como referencia en la investigación realizada. Independientemente

del sentido de aplicación de la carga, siempre el Prototipo 2 genera derivas superiores a las del

Prototipo 1.

Figura 21. Derivas de piso por prototipo (PGA=0.15g)

0,12

0,24

0,31

0,58

1,12

1,28

1

2

3

Derivas de piso (%) PGA=0.15g Sentido Positivo

Prototipo 2 Prototipo 1

0,15

0,19

0,21

0,57

0,99

1,08

1

2

3

Derivas de piso (%) PGA=0.15g Sentido Negativo

Prototipo 2 Prototipo 1

Page 30: Documento Sistemas Estructurales con Elementos Prefabricados

Página | 28

En la figura a continuación se comparan las derivas de piso máximas obtenidas como respuesta de

los prototipos sometidos a la señal con aceleración del suelo máxima (PGA por su nombre en

inglés) igual a 0.30g. De acuerdo con las relaciones entre la rigidez de las diferentes

configuraciones se esperaría que el Prototipo 1 y el Prototipo 4 respondieran con derivas inferiores

a aquellas de los otros dos prototipos. Según los resultados obtenidos, la suposición inicial es

correcta ya las derivas más bajas corresponden al sistema con muros prefabricados, seguido por el

sistema que en todas las conexiones emula a las estructuras monolíticas. También se observa que

gracias a las conexiones que restringen el giro en la cubierta del Prototipo 3 la situación más crítica

en términos de derivas no se presenta en el tercer piso (como es el caso del Prototipo 2) sino en el

segundo.

Figura 22. Derivas de piso por prototipo (PGA=0.30g)

2.2.2.3.6 Último ciclo

El Prototipo 4 fue sometido a un ciclo final para lograr evaluar la capacidad última de la estructura,

dado que los ensayos anteriores no lograron alcanzar ese nivel de solicitaciones. Se ejecutó un

ciclo controlando los desplazamientos, empezando por un desplazamiento cercano al

desplazamiento máximo de los ensayos anteriores y escogiendo un ciclo progresivo de aumentos

de 90 mm. En la figura a continuación se presenta la curva “Cortante en la base vs.

Desplazamiento en la cubierta” en la cual se puede apreciar claramente el comportamiento

histerético del espécimen evaluado así como la caída de la rigidez progresiva y la generación de

deformaciones permanentes.

Figura 23. Cortante en la base vs. Desplazamiento en cubierta (Ciclo final)

0,42

0,71

0,72

1,39

2,36

2,63

1,74

2,54

1,77

1,38

1,59

1,15

1

2

3

Derivas de piso (%) PGA=0.30g Sentido Positivo

Prototipo 4 Prototipo 3 Prototipo 2 Prototipo 1

0,3

0,54

0,63

1,19

1,99

2,1

1,37

1,91

1,23

1,32

1,43

0,95

1

2

3

Derivas de piso (%) PGA=0.30g Sentido Negativo

Prototipo 4 Prototipo 3 Prototipo 2 Prototipo 1

Page 31: Documento Sistemas Estructurales con Elementos Prefabricados

Página | 29

En la Figura 24 se observa un esquema del pórtico donde se han dibujado círculos de tamaños

variados para representar el nivel de daño presente en la estructura luego del ciclo final. La

formación de rótulas plásticas se concentró en los elementos de los primeros dos pisos, mientras

que en los elementos de cubierta no se formó ninguna rotula plástica. El nivel de daño observado

en la base de las columnas del primer piso evidenció que los requisitos de diseño en términos de

capacidad no han sido cumplidos ya que se espera que las rótulas plásticas se generen primero en

las vigas, lo cual en este caso no ocurrió.

Figura 24. Representación de la formación de rótulas plásticas

2.3 Multipanel Precast Hollowcore Walls En el año 2010 Hamid y Mander publicaron los resultados de un estudio que pretendía justificar el

uso de placas alveolares prefabricadas utilizadas como muros sin la necesidad de implementar

refuerzo transversal, práctica que se ha observado en zonas de niveles bajos o intermedios de

amenaza sísmica. Las ventajas provistas por este tipo de configuraciones que se han estudiado

incluyen: incremento en la velocidad de construcción; reducciones en los costos de la estructura;

eliminación del uso de encofrados; flexibilidad en el diseño estructural; y mayor creatividad en el

diseño arquitectónico por medio de la variedad de detalles que pueden obtenerse del concreto,

entre otras.

El criterio principal de diseño de los arreglos multipanel que se estudiaron es el diámetro de las

barras de refuerzo longitudinal en la sección que actuará como fusible, las cuales deberán tener un

diámetro inferior al resto de la barra de refuerzo. La capacidad que debe tener la barra fusible

debe ser suficiente para soportar el efecto de las cargas laterales que actúen sobre el muro, pero

debe evitarse que se genere un efecto de levantamiento que afecte la cimentación de los paneles.

Estudios previos han determinado que el mejor balance entre la capacidad de disipación de

energía y la capacidad de deformación se logra por medio de un presfuerzo inicial del 50% de la

carga de fluencia de la barra.

Page 32: Documento Sistemas Estructurales con Elementos Prefabricados

Página | 30

Existen dos razones que motivan la implementación de estas barras fusibles como parte del

refuerzo longitudinal del panel y como único medio de disipación de energía: en primer lugar son

elementos que pueden ser restaurados, presforzados o incluso reemplazados fácilmente una vez

hayan sobrepasado el punto de fluencia; en segundo lugar, gracias a que son barras que solo se

ven sometidas a tensión no son propensas a pandeo o a reducir rigidez a la estructura.

El sistema de placas alveolares multipanel se compone de “Placas Sísmicas” y de “Placas No-

Sísmicas”, como se presenta en la Figura 25. El estudio corroboro que este tipo de muros pueden

ser implementados en zonas de amenaza sísmica alta sin comprometer la integridad de la

estructura y la seguridad de las personas. Esta verificación se realizó construyendo el espécimen

que se observa en la siguiente figura sin utilizar refuerzo transversal. Se espera que durante un

evento sísmico la cimentación permita que los muros tambaleen pero que logren volver a su

posición original al terminar la excitación sísmica por medio de unas conexiones elásticas.

Figura 25. Montaje de la superestructura evaluada (Hamid & Mander, 2010)

Entre las placas sísmicas y las no-sísmicas se debe dejar un espacio que permita desplazamientos

pronunciados. Para rellenar dicho espacio se utiliza silicona sellante y bloques de caucho. Los

desplazamientos laterales se transfieren entre las placas sísmicas y las no-sísmicas por medio de

estos materiales y su magnitud se ve directamente afectada por la deriva objetivo.

2.3.1 Montaje experimental

Para simular el efecto de las cargas muertas que debería ser capaz de soportar el muro, se

ubicaron bloques macizos de concreto sobre las placas. Para aplicar la carga lateral se utilizó un

actuador con capacidad de 1000 kN, fuerza medida por medio de varias celdas de carga actuando

en serie.

Page 33: Documento Sistemas Estructurales con Elementos Prefabricados

Página | 31

Para evaluar la superestructura construida se determinaron tres fases:

1. Se implementan bloques de caucho para llenar el vacío entre las placas y se utilizan barras

de 20 milímetros de espesor y 500 milímetros de longitud como fusibles. Se evalúa el

comportamiento del muro para una deriva total de 0.1%, 0.5% y 1.0%.

2. Con el fin de reducir la probabilidad de un levantamiento en la cimentación, se

reemplazaron las barras de 20 milímetros de diámetro por barras con 13 milímetros de

diámetro. Se evalúa el comportamiento de la superestructura para un nivel de deriva de

0.1%, 0.5%, 1.0%, 1.5% y 2.0%.

3. Se instala la silicona sellante en las caras de las placas. Luego de esperar un periodo de dos

semanas para que secara la silicona se evalúa el comportamiento del muro para derivas de

0.5%, 1.0%, 2.0%,, 3.0% y 4.0%.

2.3.2 Resultados

2.3.2.1 Fase 1

En la Figura 26 se presenta el comportamiento de la superestructura sometida a una deriva

máxima de 1.0%. Se observa que la estructura entró ligeramente en el rango inelástico ya que se

evidencia un leve nivel de disipación de energía. Se observó un levantamiento en la cimentación

de 7 milímetros y así mismo se encontraron fisuras en formación en la zona aferente a la

cimentación.

Figura 26. Respuesta histeretica (fase 1)

2.3.2.2 Fase 2

En la Figura 27 se presenta el comportamiento de la superestructura con barras fusible de 13 mm

de diámetro sometida a una deriva máxima de 2.0%. Durante el ensayo se concluyó que las

conexiones de la cimentación fueron satisfactorias ya que lograron permitir movimiento pero

siempre volviendo al punto inicial de equilibrio. En la figura se observa claramente que el muro

logró disipar una cantidad importante de energía a través de sus ciclos histereticos.

Page 34: Documento Sistemas Estructurales con Elementos Prefabricados

Página | 32

Figura 27. Respuesta histeretica (fase 2)

2.3.2.3 Fase 3

En la Figura 28 se presenta el comportamiento de la superestructura, que utiliza barras fusible de 13 mm de diámetro y sellante de silicona, sometida a una deriva máxima de 4.0%. El cortante en la base correspondiente a un nivel de deriva del 2.0% fue de 94 kN, mientras que para la fase tres se alcanzó un cortante basal de 83 kN. En la figura a continuación se comprueba que la cantidad de energía disipada durante la fase 3 es mucho mayor a dicha cantidad durante la fase 2.

Figura 28. Respuesta histeretica (fase 3)

Page 35: Documento Sistemas Estructurales con Elementos Prefabricados

Página | 33

2.3.2.4 Generales

A continuación se presentan cuatro fotografías tomadas luego de la realización de los ensayos:

Figura 29. Deformación del bloque de caucho bajo una

deriva de 2.0% (Hamid & Mander, 2010)

Figura 30. Deformación por cortante de la silicona

sellante (Hamid & Mander, 2010)

Figura 31. Falla de la silicona sellante por exceso de

tensión (Hamid & Mander, 2010)

Figura 32. Falla de la silicona sellante entre un muro

sísmico y un muro no-sísmico (Hamid & Mander, 2010)

En la Figura 29 se observa el bloque de caucho ubicado en los espacios libres existentes entre los

muros que componen la superestructura a lo largo de las tres fases. Gracias a las propiedades de

este material se obtuvieron desplazamientos menores en los bloques no-sísmicos en relación a los

desplazamientos que sufrieron los muros sísmicos.

La Figura 30 muestra la forma en la que se deforma la silicona sellante que se instala durante la

tercera fase de los ensayos. Se observa que la distribución de deformaciones por cortante es lineal

entre los muros. Por otro lado, la Figura 31 muestra una falla de la silicona observada después de

los ensayos; este tipo de fallas fueron producidas por cargas de tensión que superaron la

capacidad del material. Las fallas observadas en la silicona se generaron en gran medida gracias a

la diferencia de derivas experimentada por los dos tipos de placas que conforman la

superestructura, como se mencionó anteriormente.

Page 36: Documento Sistemas Estructurales con Elementos Prefabricados

Página | 34

Fallas como la presentada en la Figura 32 se produjeron únicamente cuando el muro alcanzó una

deriva superior al 3.0%, ya que hasta ese punto no se observó ningún tipo de daño estructural o

no estructural en ninguno de los elementos que componen el muro. Esta inspección visual

demostró que el ensamblaje de placas alveolares como muros resistentes a carga lateral responde

mejor que los muros fundidos in situ, dado que este tipo de elementos no sufre perdidas de

rigidez ya que no se generan rótulas plásticas. La característica del muro que permitió evitar al

formación de rótulas plásticas en las placas sísmicas fue la posibilidad de tambalear sobre la

cimentación; en los muros no-sísmicos la absorción de energía durante un evento sísmico fue

provista por los materiales utilizados para llenar los espacios entre los muros.

En términos de capacidad de disipación de energía se concluyó que la configuración de la fase 1 es

la que disipa mejor la energía. Al someter a la estructura a una deriva de 1.0% se estimó que la

capacidad de disipación de energía asociada a la fase 1 es de 12.4%, mientras que para la fase 2 y

la fase 3 se obtuvo una capacidad del 7.4% y 8.2%, respectivamente. Esta evidente superioridad de

la configuración inicial se debe sacrificar para implementar barras fusible de menor diámetro (13

mm) ya que las barras fusible iniciales generaron un levantamiento de 7 milímetros en la

cimentación de los muros, lo cual resulta ser una situación no deseable. Adicionalmente, el

experimento evidenció que el uso de la silicona sellante constituye un mecanismo de disipación de

energía que contribuye de manera importante a la disipación de energía global de la estructura.

2.4 Ventajas y Desventajas de los sistemas

2.4.1 Smart Green Frame

Ventajas:

La principal ventaja que presenta este sistema proviene del esquema de conexiones que se

implementan en este tipo de estructuras. Dichas conexiones se realizan por medio de perfiles

metálicos embebidos en los elementos de concreto y dado que esos elementos en acero pueden

ser fabricados previamente en una planta la mano de obra no necesitaría ser calificada, lo cual

elimina un potencial inconveniente de utilizar este sistema estructural.

Otro beneficio implícito en este sistema se encuentra en términos de la velocidad de construcción.

Según los estudios realizados, el tiempo de construcción de una estructura con este sistema puede

llegar a ser un 50% más rápida gracias a los siguientes aspectos: no se requieren formaletas ni

encofrados; la eficiencia del sistema de conexiones; y se utiliza un esquema de erección de un

elemento columna por cada tres pisos.

Un beneficio que puede ser poco evidente es la reducción de materiales de construcción que se

logra al utilizar el sistema SGF. Teniendo en cuenta que para realizar las conexiones se deben

ubicar perfiles de acero en los extremos de los elementos y que se requiere el típico refuerzo

longitudinal y transversal en el resto de la luz de los elementos se esperaría que se produzca un

aumento en la cantidad de acero a utilizar, pero un estudio realizado por los investigadores del

proyecto determinó que en realidad el uso de este sistema puede llegar a ahorrar un 30% de

material de construcción en concreto y acero.

Page 37: Documento Sistemas Estructurales con Elementos Prefabricados

Página | 35

Por otra parte, gracias a que el sistema permite tener un control más certero sobre el avance del

proyecto, se puede afirmar que existe una baja variabilidad en los tiempos esperados en la obra.

Esta característica resulta atractiva ya que genera un aumento en la eficiencia del alquiler y uso de

los equipos lo que reduce el costo de la obra, se impacta positivamente el medio ambiente por

medio de una disminución en la emisión de gases nocivos e inclusive se optimizar el consumo

energético.

Desventajas:

La principal desventaja de este sistema es la ausencia de un estudio dinámico que justifique su

uso. Según el Reglamento Colombiano de Construcción Sismo Resistente, para lograr obtener el

permiso requerido para implementar un sistema que salga de los lineamientos expuestos en dicho

documento se debe presentar evidencia experimental o analítica que justifique cualquier decisión

que no se encuentre aprobada en la norma colombiana. Por lo tanto, este sistema aun no podría

ser aprobado bajo la normativa actual en Colombia. Sería necesario llevar a cabo una investigación

que permita comprobar el correcto comportamiento de este sistema estructural bajo diferentes

solicitaciones y así poder asegurar que el sistema es suficiente para proteger la vida.

2.4.2 Project SAFECAST

Ventajas:

El proyecto SAFECAST logró generar una serie de ensayos que justifican el uso de la estructura

propuesta. Gracias a la evidencia experimental que se logró recolectar, se podría afirmar que este

sistema podría reunir los requisitos necesarios para que este sistema sea aprobado bajo la

normativa vigente en Colombia, lo cual implica que puede ser viable implementar una estructura

como la estudiada durante los ensayos.

Otro beneficio evidente de este tipo de estructuras es que logran alcanzar desplazamientos que

equivalen a derivas que alcanzan el doble del valor límite permitido por la norma NSR-10. Lo

anterior se convierte en un valor agregado al sistema cuando se tiene en cuenta que dichas

derivas se alcanzaron sin que la estructura colapsara. Como era de esperarse, algunos de los

elementos presentaron diferentes niveles de daño luego de los ensayos pseudo dinámicos, pero

ningún elemento falló bajo una excitación sísmica tres veces más fuerte que la correspondiente al

estado límite de servicio.

Desventajas:

Hasta el momento este sistema solo ha sido comprobado para edificaciones bajas, pues el

espécimen ensayado tenía tres pisos de altura. Seguramente es un concepto que puede ser

extendido a estructuras más complejas y de mayor altura, pero en ese caso también debería

realizarse una investigación para comprobar el correcto comportamiento de la estructura.

Page 38: Documento Sistemas Estructurales con Elementos Prefabricados

Página | 36

2.4.3 Multipanel Precast Hollowcore Walls

Ventajas:

La superestructura evaluada a través de los ensayos realizados presento una capacidad de

disipación de energía satisfactoria, lo que la convierte en un elemento atractivo para su aplicación

en proyectos reales. Adicionalmente, por medio de inspecciones visuales se comprobó que el

arreglo de los muros alcanza derivas del 3.0% sin presentar señales de daño importante en

ninguno de sus componentes.

Un beneficio importante de estos miembros es la posibilidad de reemplazar fácilmente los

elementos en los que se concentra la disipación de energía. Como se explicó anteriormente, el

ensamble disipa energía a través de unas secciones de las barras de refuerzo longitudinal

denominadas fusibles. Dichos fusibles pueden ser reemplazados fácilmente luego de un evento

sísmico que los lleve a la fluencia, lo cual implica que después de un sismo se puede reformar la

estructura sin requerir una inversión de capital alta y sin tener que sacrificar el resto del muro.

Desventajas:

El estudio realizado solo evaluó un elemento aislado. No es claro si su aplicación podría ampliarse

a estructuras de varios pisos y no se ha estudiado el efecto de implementar este tipo de muros en

dos direcciones perpendiculares. Sería necesario realizar pruebas dinámicas que justifiquen su uso

sobre una estructura tridimensional de varios pisos con el fin de obtener la evidencia experimental

requerida para lograr la aprobación de este sistema en Colombia.

3 Conclusión En torno a los sistemas estructurales que utilicen elementos prefabricados la normativa

colombiana no contiene límites de altura máxima o de área construida permitida. El Reglamento

Colombiano de Construcción Sismo Resistente se limita a castigar fuertemente el uso de este tipo

de sistemas imponiendo un coeficiente de disipación de energía muy bajo, lo cual implica que la

estructura se verá sometida a cargas sísmicas altas y por lo tanto reduce su aplicabilidad. En caso

que el diseñador considere apropiado utilizar otra metodología la norma lo obliga a justificar

analítica y experimentalmente su decisión, condición que también limita la aplicación de estos

sistemas en el contexto colombiano. En el contexto internacional las normas son

comparativamente más flexibles gracias a que la investigación en este campo se encuentra en un

estado más avanzado y a que se han realizado esfuerzos importantes para demostrar las bondades

de los sistemas prefabricados y para eliminar la desconfianza que estos generan. Por ejemplo, el

documento ASCE 7-10 establece tanto los límites de altura que deben respetar las estructuras

cuyo sistema de resistencia de cargas se componga por elementos prefabricados como el

coeficiente de disipación de energía correspondiente (Ver Tabla 7). En base a dichos valores se

puede concluir que el avance investigativo de ciertos países en este tema ha permitido que se

amplié la aplicación de estos sistemas estructurales.

Page 39: Documento Sistemas Estructurales con Elementos Prefabricados

Página | 37

Evidentemente este tipo de estructuras han logrado obtener la aprobación de importantes

asociaciones de diferentes lugares del mundo, y por lo tanto pareciera que el requisito más

importante (y la única limitación) para implementar un sistema estructural que no cumpla con

algunos requisitos de la norma colombiana es demostrar sus capacidades a través de ensayos o

modelaciones numéricas.

Teniendo en cuenta lo anterior, el sistema como el propuesto en el proyecto SAFECAST tendría

una ventaja importante sobre los otros dos sistemas evaluados gracias a que ya ha sido

demostrada su capacidad para soportar cargas sísmicas considerables a través de ensayos pseudo-

dinámicos, lo cual permitiría justificar fácilmente la aplicación de este tipo de sistemas fácilmente.

A pesar de dicha ventaja se recomendaría estudiar la posibilidad de implementar un sistema

estructural como el Smart Green Frame. Este sistema presenta todo tipo de beneficios: conexiones

prediseñadas con procedimientos de instalación poco complejos; reducción de la altura del

sistema de piso, lo cual incrementa la libertad para elegir la altura de piso; mejora las condiciones

del sitio de la obra haciendo el espacio más ordenado y limpio; minimiza el consumo de energía y

optimiza el uso de tanto la mano de obra como de la maquinaria; reduce los costos del proyecto

por medio de ahorros en las cantidades de material requeridas; y aumenta el control que puede

tenerse sobre las actividades del proyecto. Sería necesario investigar las propiedades

estructurales de este tipo de sistemas ya que por el momento solo se han publicado resultados de

ensayos realizados sobre elementos particulares y no sobre una estructura completa.

4 Bibliografía American Society of Civil Engineers (ASCE). (2010). Minimum Design Loads for Buildings and Other

Structures. ASCE 7-10. Reston, Virginia, United States of America.

Asociación Colombiana de Ingeniería Sísmica (AIS). (Marzo de 2010). Reglamento Colombiano De

Construcción Sismo Resistente (NSR-10). Bogotá D.C., Colombia.

Bournas, D., Negro, P., & Molina, F. (Diciembre de 2013). Pseudodynamic tests on a full-scale 3-

storey precast concrete building: Behavior of the mechanical connections and floor

diaphragms. Engineering Structures, 57, 609–627.

Comisión Asesora Permanente Para El Régimen De Construcciones Sismo Resistentes. (Junio de

2012). Requisitos Exigidos Por Esta Comisión Para La Homologación De Regímenes De

Excepción. Bogotá D.C., Colombia.

Federal Emergency Management Agency. (2003). NEHRP Recommended Provisions for Seismic

Regulations for New Buildings and Other Structures. Part 2: Commentary. Washington

D.C., United States of America.

Federal Emergency Management Agency; American Society of Civil Engineers. (Noviembre de

2000). Prestandard And Commentary For The Seismic Rehabilitation Of Buildings.

Washington D.C., United States of America.

Page 40: Documento Sistemas Estructurales con Elementos Prefabricados

Página | 38

Hamid, N., & Mander, J. (Julio de 2010). Lateral Seismic Performance of Multipanel Precast

Hollowcore Walls. Journal of Structural Engineering, 136(7), 795–804.

Hong, W., Kim, S., Park, S., Kim, J., Lee, S., Yoon, K., y otros. (25 de Marzo de 2009). Composite

beam composed of steel and pre-cast concrete (modularized hybrid system,MHS). Part IV:

Application for multi-residential housing. Seúl, Cores del Sur.

Hong, W., Lim, G., Park, S., & Kim, J. (Marzo de 2012). Energy efficiencies of linear-shaped multi-

residential apartment buildings built with hybrid structural systems. Seúl, Corea del Sur.

Hong, W.-K., Park, S.-C., Kim, J.-M., Lee, S.-G., Kim, S.-I., Yoon, K.-J., y otros. (13 de Noviembre de

2008). Composite beam composed of steel and precast concrete (modularized hybrid

system, MHS). Part I: Experimental investigation. Seúl, Corea del Sur.

Hong, W.-K., Park, S.-C., Kim, J.-M., Lee, S.-G., Kim, S.-I., Yoon, K.-J., y otros. (25 de Marzo de 2009).

Composite beam composed of steel and precast concrete (modularized hybrid system,

MHS). Part III: Application for a 19-storey building. Seúl, Corea del sur.

International Code Council, Inc. (Junio de 2011). International Building Code. Country Club Hills,

Illinois, United States of America.

Jurkiewiez, B., & Hottier, J. (7 de Julio de 2004). Static behaviour of a steel–concrete composite

beam with an innovative horizontal connection. Francia.

Kim, S., Hong, W.-K., Kim, J.-H., & Kim, J. T. (23 de Mayo de 2013). The development of

modularized construction of enhanced precast composite structural systems (Smart Green

frame) and its embedded energy efficiency. Seúl, Korea del Sur.

Negro, P., Bournas, D. A., & Molina, F. J. (23 de Julio de 2013). Pseudodynamic tests on a full-scale

3-storey precast concrete building:Global response. Engineering Structures Volume 57,

594–608.

Precast/Prestresed Concrete Institute (PCI). (2010). PCI Design Handbook. Séptima Edición. United

States of America.

Standards New Zealand. (17 de Marzo de 2006). Concrete Structures Standard. Part 1 - The Design

of Concrete Structures. New Zealand.

Toniolo, G. (18 de Febrero de 2014). SAFECAST Project: European research on seismic behaviour of

the connections of precast structures. Recuperado el 9 de Mayo de 2014, de European

Commission: http://ec.europa.eu/programmes/horizon2020/en/news/innovative-

inspection-system-make-buildings-safer