chchyshcv approximations for an inhomogcncously broadencd … · 2008-06-30 · chchyshcv...

7
INVESTiGACiÓN REVISTA MEXICANA DE FisICA'¡'¡ (4) :\H)-J9] AGOSTO /99H Chchyshcv approximations for an inhomogcncously broadencd linc-shapc in Mossbaucr spectroscopy ll. Flores Llamas /nstitu/O Nacional de /"restigaciofll's Nuclcares Mártires de la Conquista y Carlos B. Zetifla, Col. ESClJlldáfl,IJelex{/cián M. Hidalgo Apartado postal/8-/027, //801 México, /JF, Mcxico Recibido el 19 de junio de 1997: aceptado el 20 de rnay() de 199X \Ve preselH Ihe analysis of an inhomogeneously broadened Mossbaucr Jine-shape, from which wl' obtainl'd a power series expansiono thal il1l:ludes Ih!..':lhsorber Ihickness (~.) and Ihe interferellcl' effects (~o). Al the samc limc. \Ve givc (he arca and deplh depcndcncy formulae as fUIl('lion nI' the T,. and ~o pararneters. A new line.shapc is huill as a lineal combination of the Iratl1(ional transmission integral (TI) \Vith the IIlhornogeneously hroadened linc-shape. which is uscful for ahsorbcr~ that ha ve partial or lolal inhomogcncous hroadening. Finally, a cOlllpara(ivl' analysis of the ohtained resulls for lhe potassium ferrocyanide compoumJ amI the stainlcss slccl foil is carried out using Ihe new linc-shapc wilh rcspcct lo the TI to sllow its rcliability. K('.I.\nmls: Chebyshcv polynomials: Mosshauer spcctrosl:0py: lír:e-shape and absorht'r !hickness parallleter Presultamos el análisis de una forma de línea ~lüssballer ensanchada inhomogéneamente, llegando a una expansión en serie de potencias que incluye el grueso del absorbedor (Ta) y los efectos de interferencia (~o). Asimismo. presentamos fórmulas de la dependencia del ~írea y la profundidad como función de los parámetros T" y ~(J, Una nucva forma de línea es construida a partir de una combinación lineal dc la ilHcgr~lldc transmisión (IT) tradicional COIlla forma dc línea ensanchada inhomogéneamcntc, b \.'ual es títil para absorbcclores '-t ue t¡cncllulI cnsanchamicnto inhomogéneo parcial o total. Una comparación dc los resultados ohtenidos Pilfa el compuesto de ferrocianuro de potasio y una l:ímina de :lCl'ro inoxidable, usando la nueva forma de línea con respecto a IT. cs lIL'v~Kld clho mostrando su contiabilidad. /)('srripI0rr.{: Polinomios de Chebyshev: espcctroccopía ~1osshaucr: forma de línea y par¡ímclro del grueso del absorbcdor PACS: 76.XO 1. Intrndllctinn A widely IreateJ topie since the beginning of Ihe rvlüsshauer spectroscopy has been the line-shape 01' Ihe ohservcd spcc- (mm II-I:n Thc Iille-shape routincly analyzed has been rcp- resenled by the so called transmission inlcgral (TI). which as- sumcs a cross-scction of Lorentzian linc-shapes in lhe emis- sion and ahsorption 11-3,5-9.11,13-261. The model repre- sellled hy the TI has heen used successfully, sinee specific in- formation aholll the dependence 01'the reeoillcss fraclion on Icmperalure has been obtained for experimental spectra ana- IY/etl with the TI [13.27]. However. lhe spcclroseopists who have lIscd Ihe TI have not been able lO analyze sOllle line- shapcs. such as Ihose coming [mm substances that present a hroadening due lo a dislribution 01' ilS hyperfinc paramc- Icrs [28-:3:21. Due lo Ihe anomalous line-shapes preselll in alternalive experimental spectra, models Iike lhe (lile repre- selllcd by the TI have heen proposed. /\n altcrnalivc model ror lhe linc-shapc has heen sug- gcsled hy several authors [7,33,341; this model eontains the TI as a particular case when lhere is no selfahsortion in lhe somce. This linc-shape is obtained by the suhstitution 01'Ihe Lorelltlians (cmission and absorplion cross-scctions) from lhe TI hy Voigt line-shapcs. In this model, thal can he callcd Voigt transmission integral (VTI). only its full widlh has heen analY7.ed nUlllerically as a function o[ the Ihickness param- eter Ta [3'11. The Voigt line-shape contains the Lorellll.ian and Gaussian line-shapes as limit cases [3[,], ami experi- mental evitlcllce or Ibis line-shapes has bccn reportctl in Ihe source 13G[ and in Ihe absorher [321. A particular case ()f the VTI Illotlel was used formcrly hy t\1argulies el al, IG1. rOl"lhe stainless sleel speclrum, which is Ilol adjuslahle hy Ihe TI. These aUlhors obtaincd scveral experimental spcctra using a snurce and an absorher of slain- less steel. Thc spcctra wcrc analyzcd with the 11',and with an allcrnative line-shape ohtained from the substitulion of lhe Lorenlzians hy Gallssians. inlhc emission and absorption cross-seclions of Ihe 11'.For this lalter line-shape. Margulies et al. calculalcd an cxact annlylienl expansiono They analYl.cd lhe widlhs ()f lhe linc-shape as functions 01'lhe Ihickness pa. rameler T" lIsing Ihe TI and its alternalive line-shape. and al lasl Ihey fOlllld, ror cach Dnc of lhe lwo Il1cthods, dilTerent rcsults. Thererorc, lhcy cOllcludcd that "when dealing with oroadened Müsshaucr lilles. analysis oascd on simple spcc- Iral shapc must be applicd willl t1iserimination" [61. Anolher particular case 01'lhe VTI, analyzed hy Lang 171 and O'Connor and Skyrmc [33]. consists of a Lorctllzian emission and a Voigt absorplion line-shapcs. This model is

Upload: others

Post on 19-Jun-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Chchyshcv approximations for an inhomogcncously broadencd … · 2008-06-30 · Chchyshcv approximations for an inhomogcncously broadencd linc-shapc in Mossbaucr spectroscopy ll

INVESTiGACiÓN REVISTA MEXICANA DE FisICA'¡'¡ (4) :\H)-J9] AGOSTO /99H

Chchyshcv approximations for an inhomogcncously broadencd linc-shapc inMossbaucr spectroscopy

ll. Flores Llamas/nstitu/O Nacional de /"restigaciofll's Nuclcares

Mártires de la Conquista y Carlos B. Zetifla, Col. ESClJlldáfl,IJelex{/cián M. HidalgoApartado postal/8-/027, //801 México, /JF, Mcxico

Recibido el 19 de junio de 1997: aceptado el 20 de rnay() de 199X

\Ve preselH Ihe analysis of an inhomogeneously broadened Mossbaucr Jine-shape, from which wl' obtainl'd a power series expansiono thalil1l:ludes Ih!..':lhsorber Ihickness (~.) and Ihe interferellcl' effects (~o).Al the samc limc. \Ve givc (he arca and deplh depcndcncy formulaeas fUIl('lion nI' the T,. and ~o pararneters. A new line.shapc is huill as a lineal combination of the Iratl1(ional transmission integral (TI) \Viththe IIlhornogeneously hroadened linc-shape. which is uscful for ahsorbcr~ that have ;¡ partial or lolal inhomogcncous hroadening. Finally, acOlllpara(ivl' analysis of the ohtained resulls for lhe potassium ferrocyanide compoumJ amI the stainlcss slccl foil is carried out using Ihe newlinc-shapc wilh rcspcct lo the TI to sllow its rcliability.

K('.I.\nmls: Chebyshcv polynomials: Mosshauer spcctrosl:0py: lír:e-shape and absorht'r !hickness parallleter

Presultamos el análisis de una forma de línea ~lüssballer ensanchada inhomogéneamente, llegando a una expansión en serie de potenciasque incluye el grueso del absorbedor (Ta) y los efectos de interferencia (~o).Asimismo. presentamos fórmulas de la dependencia del ~íreay la profundidad como función de los parámetros T" y ~(J, Una nucva forma de línea es construida a partir de una combinación lineal dc lailHcgr~lldc transmisión (IT) tradicional COIlla forma dc línea ensanchada inhomogéneamcntc, b \.'ual es títil para absorbcclores '-tue t¡cncllulIcnsanchamicnto inhomogéneo parcial o total. Una comparación dc los resultados ohtenidos Pilfa el compuesto de ferrocianuro de potasio yuna l:ímina de :lCl'ro inoxidable, usando la nueva forma de línea con respecto a IT. cs lIL'v~Kld;¡ clho mostrando su contiabilidad.

/)('srripI0rr.{: Polinomios de Chebyshev: espcctroccopía ~1osshaucr: forma de línea y par¡ímclro del grueso del absorbcdor

PACS: 76.XO

1. Intrndllctinn

A widely IreateJ topie since the beginning of Ihe rvlüsshauerspectroscopy has been the line-shape 01' Ihe ohservcd spcc-(mm II-I:n Thc Iille-shape routincly analyzed has been rcp-resenled by the so called transmission inlcgral (TI). which as-sumcs a cross-scction of Lorentzian linc-shapes in lhe emis-sion and ahsorption 11-3,5-9.11,13-261. The model repre-sellled hy the TI has heen used successfully, sinee specific in-formation aholll the dependence 01'the reeoillcss fraclion onIcmperalure has been obtained for experimental spectra ana-IY/etl with the TI [13.27]. However. lhe spcclroseopists whohave lIscd Ihe TI have not been able lO analyze sOllle line-shapcs. such as Ihose coming [mm substances that presenta hroadening due lo a dislribution 01' ilS hyperfinc paramc-Icrs [28-:3:21. Due lo Ihe anomalous line-shapes preselll inalternalive experimental spectra, models Iike lhe (lile repre-selllcd by the TI have heen proposed.

/\n altcrnalivc model ror lhe linc-shapc has heen sug-gcsled hy several authors [7,33,341; this model eontains theTI as a particular case when lhere is no selfahsortion in lhesomce. This linc-shape is obtained by the suhstitution 01'IheLorelltlians (cmission and absorplion cross-scctions) fromlhe TI hy Voigt line-shapcs. In this model, thal can he callcd

Voigt transmission integral (VTI). only its full widlh has heenanalY7.ed nUlllerically as a function o[ the Ihickness param-eter Ta [3'11. The Voigt line-shape contains the Lorellll.ianand Gaussian line-shapes as limit cases [3[,], ami experi-mental evitlcllce or Ibis line-shapes has bccn reportctl in Ihesource 13G[ and in Ihe absorher [321.

A particular case ()f the VTI Illotlel was used formcrly hyt\1argulies el al, IG1. rOl"lhe stainless sleel speclrum, whichis Ilol adjuslahle hy Ihe TI. These aUlhors obtaincd scveralexperimental spcctra using a snurce and an absorher of slain-less steel. Thc spcctra wcrc analyzcd with the 11', and withan allcrnative line-shape ohtained from the substitulion oflhe Lorenlzians hy Gallssians. inlhc emission and absorptioncross-seclions of Ihe 11'.For this lalter line-shape. Margulieset al. calculalcd an cxact annlylienl expansiono They analYl.cdlhe widlhs ()f lhe linc-shape as functions 01'lhe Ihickness pa.rameler T" lIsing Ihe TI and its alternalive line-shape. and allasl Ihey fOlllld, ror cach Dnc of lhe lwo Il1cthods, dilTerentrcsults. Thererorc, lhcy cOllcludcd that "when dealing withoroadened Müsshaucr lilles. analysis oascd on simple spcc-Iral shapc must be applicd willl t1iserimination" [61.

Anolher particular case 01'lhe VTI, analyzed hy Lang 171and O'Connor and Skyrmc [33]. consists of a Lorctllzianemission and a Voigt absorplion line-shapcs. This model is

Page 2: Chchyshcv approximations for an inhomogcncously broadencd … · 2008-06-30 · Chchyshcv approximations for an inhomogcncously broadencd linc-shapc in Mossbaucr spectroscopy ll

JX6 H. FLORES LLAl\.lAS

whcre T1

: are lile shined Chchyshev polynomials, In arc lhemoditled Bessel fllllclions. and

C" (E) = (-"'" - _2~nE) <'XI' [- ( Er.cco) '] o

/1'" lI!a/vl1l2

x ('XI' [- ( , ~) '] } + N11 /l 111_

To calclllatc the abo ve expression. f1rsl lhe exponcnlial func-tion in thc intcgral is oevcloped as a series 01' Chehyshevpoiynolllials 1,Jl)I:

<,xp(-7~,Ga(E)} = ('xI' ( - ~,)

x [1()(~')+2~(-1)"I"C:a )T,;[C,,(E)]] (3)

(2)X ('XI' { _ T" (_"'_o _-_,_2'_'o_E_')/l'a

"'_1 I+~' ,,',dE",,(V,T,,) =" o _= "'; + (E - 1')'

more rcalistic than the one ilnalyzcd by Margulies el l/l., sincclhe cmission linc-shape for thin sourccs is rcprescntcd hylhe Lorcntlian lillc-shapc more ordinarily Ihan by a Gaus-sian one. This lllodel has heen scarccly uscd due Lo the lackof a powcr series expansivo that allows to cvaluatc its I¡ne-share. rhe <lnalysis al' this Iinc-shapc has heen exiguous. itsarca [7. :3:3] and width [7] parametcrs have on1y been numCf-

ically ca1culatcd as fUl1ctions of TIl.

In Ihe Scct. 2 01' ¡his paper a powcr series cxpansion fora particular VTI case. which cOl1sidcrs a Lorcntzian cmis-SiOll and a Gaussian absorplion, is prcsentcd. A Gaussian ah-sorption is rcfcrred lo un ahsorber wilh an inholllogcncouscompletely hroadcncd linc-shape. Lang calculatcd analyti-call)' only the area [jI I'or this line-shapc.ln the presenl anal-ysis tllc intcrfcrence parameter (~o) [37] is also included, 1'01'\vhich cxperimcnlal and lheorctical values have hecn givenfOl" dilTerenl rv1()ssbauer isotopes [38,391. In Ihe Sect. 3, aHew linc-shapc for l\1üsshaucr spectroscopy is cxpressed as alineal comhinatioll 01' tlle former line-shape with the TI. ThisHew line-shape is userul in the analysis 01' absorbers \",ith aninholllogencolls hroadening as it will he seen.

2. Analytical calclllation 01' the completely in-hOlllogeneolls case

'JI 1+= (r /?)' lE, ~ sl10 s - (

IId",1,,) = f,Jl' 0_= (f,/2)' + (E - 11)'

Considering Lorentzian emission and Gaussian ahsorptionwith an inlerfercnce para meter ~o, tlle lransmission linc-shape for a single line in Müssbaucr spectroscopy, is givcn by

(6)

To calclllate lhe PI/(v), we transl'mm Eq. (5) by suhstitutingy" = £'/111112/11'" inlO Eq. (5), ohtaining

(/ 1+= (I - 2~y,,)H (,Xl' (-y:,)Pn(a,l') = ~ .) ( )') riYn,

Jr . -00 (/- + 11 -./Jn -

Eqllalion (3) is only v¡¡lid when () :::; Gu(£) :::;1. Il is eas)'to delllonstratc that whell ~() « 1, (the orlirr 01' our approx-illlation) lhe inequality is flllfil1ed. Sllhstiluling ElJ.(3) inlOEq. (1) and rearranging the resul!, the fol!owing cquation isohlaincd:

xexl'[- ( ~)'II]O (5)wa/ 1112

r (.) = ~ 1+= /lO,dE o ("'a - 2~oE)"H " .) (E )0'Jr 11I- + - ",- '111

.-~ s "

IId(',1;.) =i\l<,XI'(-T,,/2) (4)

x [fJo(T,,/2) + ~ Da (Ta/2)f',,(V)] + N.

wherc the Dn anO PI! are delined hyi) DoCf,,/2) = ln(T"J2)+2L:;O~1 I"CJ'a/2) = eXI'(T,,/2);ii) D,¡(T"I2) are SUlllS 01' hinary products frolll shiftedChehyshcv polynomials coefticients (()¡¡/.:) and frolll:2(_1)11 JI! (TII/:2). A gcneral Illelhod for calculating the D'lis nol feasihle, since there is nol any closeJ analytic rclationlo calculale the coertkienls rJrl~" Using tlle coeflicients ÚIII.:

givcn in Lukc's book [41], and lhe similar fmm employedin Appendix A 01' Re!'. 26, we calculate lhe tirst twelve DncocrtkicnlS listed in Tahle l.iii) The Pn(v) integrals in Eq. (4) are given by

(i)

{ (ra/2-2~()E)

x exp -T(¡ fa/2

+ (1 - 1,)110 + lIa•

wherc E is lhe integralion variahle (mm/s), /! the sourcc ve-locity, 11(,'(l!,T(l) tlle l1umber 01' counlS ohservcd at each vc-locity l' in the spectrum, Ta = (fO!atad the effective absorberlhickness, in lhe numbcr 01' Móssbauer atoms per unit arca inthe absorber, el the fraction 01' abundance of the MbssbauerisolOPC, 00 lhe absorption cross-section, !s, fn the sourcc anoahsorpliol1 rccoilless fraclions, l'.~, el emission anO ahsorp-tion fuI! widths al hall' maximum (fwhm), /lo lhe Ilumher nI'gamma rays 01' the Mósshauer transition, and nalhe numbcr01' additional counts due to other transitions,

With the following substitutiolls in Eq. (1): N = Ha +1I()(1 - 1,). i\l = no!." IV, = r,/2 and IVa = ra/2. thisexpression can be rewrilten as

Re\'. A1ex. Fú. 4-t (4) (ll}l}X) 3X5-391

Page 3: Chchyshcv approximations for an inhomogcncously broadencd … · 2008-06-30 · Chchyshcv approximations for an inhomogcncously broadencd linc-shapc in Mossbaucr spectroscopy ll

CIIEHYSIIEV AI'I'J{OXI~1ATIONS FOf{ AN INHOMOnE!':EOUSLY BI{{)AIJENED L1NE-SHAI'E. .IX7

TABI.E 1. Coeflicicnts for expansion 01' ¡he fJ" polYl1omials lJ,,(T.,/2) = 2¿~'~,,(-lV''',,)\.Id7~,/2). where m is Ihe order 01' Ihe;lpproximJtion. for exalllple. if 1ll = ,1 then: DI = 2( -'21¡ - SI! - 18/-1 ~ 32/.1); D! = 2(SI,!+ .l8h + 1GOJ.¡); D

J= 2( -321

3_ 25G/¡);

D, ~ 2(128/,).

" IJ,,] 1),,] b'13 bn4 bn5 b"c, ".1 "; bnfl, 11"", b"IO hn]] bn12I 2 X IX 32 50 n 9H 12X 162 21X) 242 2XX2 K 4X 160 400 X40 1568 26XX 4320 6600 96XO 1372X3 J2 256 1120 35X4 940X 215()..f 44352 X44XO 15100X 2562564 12X 12XO 6912 2(,RXO X44XO 22XOlJ6 549120 120X064 24710405 512 6144 39-l20 1X022-l 65X9-W 205(XJ40 56376J2 14057472ro 2(J4X 2X672 2129lJ2 IIIX20X -l6jlJ200 lro4(103R4 506920967 Xl92 1310n 1105910 h5SVJ()() 3063XOXO 120J240lJ(¡X J27()X 5Xt)Xl-l. 5570560 .16765696 190513152'!131072 2621440 273'!404X 1'J'Jn944010

5242XX I 1534336 13212057(,II2()<)27I52 5033164R12

K3XR60X

\vhcre (1 = (1/ls//l-'f1)J'IIu2. é, == é,o/J,¿ln2 and 11 =~/Il'fll' (a. é,. and It are succcssiolls of 11 and lheyshollld carry sllhindex /l, hut n has heen ollliUcd in order 10a\'oid making the Ilolatioll confusing). Nc\'erthelcss. ilS de-pendcncy should he kep[ in mind in the n:maining calcula-liolls. Developing the numeralor 01" Ihe integral in Eq. (6) tolcrms 01' order ~2, we llave

(7)where:

are gi\'cn hy

(1 1 )

PII:da.lI) = [u:!_(/]I}IlI(a.II)-'2(fIlA'(a,II)+a¡.jii. (12)

whcre 1\' ((/. 11) is dclincd hy

1"( ) 1 ¡+=(u-y)exp(-¡/) 1\ 11.11 = - .) .) (_/1

7r._x (I-+(u-.II)- .

11"I}"I. ['112. and PII:~, given hy Eqs. O'q, (11) ¡¡nd (12)are sUbslilllled iUlo Eq. (7). and ir Pn(a. v) thus ohlained issllhstitllled into Eq. (4). [hen \Ve ohlain (he following powerseries:

"',~ ~(l = -vnin2 = vlIln2.

11'11

Equation nn is lhe Voigl linc-shape, which in our con-[exl reprcsents a Lorentzian line-shape source of half-width11'1<.¡Ji <lnd a Gaussian line-shape ahsorher 01' half-width W(I'The ratio "a" determines lhe proportionaJity bclween IheLorentzian and lhe Gaussian characlerislics of the Iinc-shape.so thal if ([ = (J, Eq. (X) is reduced lo apure Gaussian, hUI ir1/ = 00 apure Lorcntzian is obtained, as il has heen shO\\/nby Elste 142/. II r.,(= 2w,) and r,,(~ 2w,,) are (aken equallo lhe natural width ro. then the ralio ha" is rcduccd to

"1+00 exp(-y~)PHI ((J, u) =- ') r d!Jn,

7r _(Xl 0- + (/1 -,1/" -

+= (.')n ( .) _ u j !in eX}) -y;¡ 1J-1I2 a,u -- 2 ( )2 (,1)11'

7f -00 (l + /1 - !In

(X)

('J )

(10)

oc

ud".T,,) ~ "'{ 1+ ,'xl'(-7;'¡2) I: D,,(T .•/2)n=1

x (/'111 + '211£.(U/l'Ji - 01\') + 2//{1I - 1)(

x [(,,' - "')/'",-2,,,,¡," + ,,/0Tj) } + N. (1.1)

\\'here ti. 11. allll ~ as delined in Eq. (6). Thc dependency on"a" all(l /1 01"P(a, l/,) and 1\.(a, u) has heen omitted. Equa-tion ( 13) represellls the l\ldsshaucr linc-shape of a Lorentziansource wilholll sel!' ahsorption, \virh a Gaussian absorber andl!le interl"ercnce cffecl. Equatioll (13) can he used as a triallünction in a slandard Icast squarcs fitting lo an experimentalspectrurn. F{)r [Ile case whcrc E. =: 0, Eq. (13) hecollles

1Ir;(,'.T,,) ~.\¡[l +l'xp(-Ta/2)

~xI: D,,(7:./2)[',,¡(II. 11)] + X (14)1/=1

For lhc case whL'1l T« L Eq. (14) hccomcs

11 (; (". 7:.) ~ .\1 [1 - T,. [',,' (". ,,)] + x. (15)Thc minimum value 0("0." occurs when n = 1, \vhich corrc-sponds lo a = Jiu 2. Using lhe derivatives 01' lhe Voigt line-shapc [.l:q (lile can easily show lhat lhe inlegral (9) ami (10)

sinceti =

111 (T,,/'2) =(••..,/"',,))ln2.

CT,./.I)"/qu + 1) [4.1/. wbcreu ~ ()ln2/"."),,. Equation(15)

Rel'. A/('x. Fú. 4.t (4) ( IINX) JX5-.19 I

Page 4: Chchyshcv approximations for an inhomogcncously broadencd … · 2008-06-30 · Chchyshcv approximations for an inhomogcncously broadencd linc-shapc in Mossbaucr spectroscopy ll

H. FLORES LLAMAS

represcnls a Voigl line-shapc which does nol have Ihesal11e physical I11caning as the Voigl line-shapc prcscnled byKohayashi and Pukumura 1:3.1] for Ta « 1. In lhcir case, (heGaussian full widlh rcprescnts the source and absorher inho-l1logeneilies, and Ihe Lorcnlzian full width represenls lhe SUI1l01' lhe source and absorher widths. In Qur case, the Gaussianwidth is Ihe full width 01' lhe absorber, and Ihe Lorcnlzianv.'idlh is Lhe full widlh 01' Ihe source.

..,'.0

o.o,O'

02

2.1. I)epth ami arl'a 00-50 -JO -lO JO '0

2././. De!,l"

The dcp(h D ror 11',__ f- WIl deflned hy ti = O in Eq.coincides wilh the lIlaxil11ul11 deplh only for f. = O.cxpression for U is as I"ollows:

=D = -.\1 ,'xp (- To/2) L D" (To/2)

11=1

( 13)The

v

FI(;URE 1. (a) Eq. (14) calnllafcd lo un oH.ler of 111 = 12 ano'e, = l:j. M = 1. /1's = 1. .\' = n. ~o = O. ami 111" = 2. (b)inlcgr~ll transmission ca1culatcd wilh Ihe s;\mc p;¡ramclcrs valucsof (a) as givcll in fig. 1 of Ref. 26. The arca <lml t1cpth paramctcrsnr (he linc-shapc \\'ith ahsorption Lorentzian are grcalcr Ihan thosecorrcspomling 10 Ihe absorption Gaussi¡¡n.

X [P"l (,'- O)+ 211~ + 211(n - l)e

x (-a2P,,¡(a,0)+a/j7T)]. (16)

s¡nce/,(".O) = OI.I~I.whereP"I(a,O) = exp (,,2) l'r[,. (a).ami ('J"fe ((/) is the error function complementary.

2./.2. Area

The arca A rOl" w~ =1- lOa is oblained by direct inlcgration ofIhe sUlllll1•.l1ion in Eq. (13) in lhe following form:

'" ,'o

-2-20 O

v'O 20

( 17)

=A = -.\1 ('xp (-7;./2) L D" (To/2)

11=1

x l:= {P"l - 2,,< (uPol - aI\)

+ '21/(11 - 1)(! [(112 - (2)P'11 - 2au!\" + a/ JIT]} dI'.

To calcula(e (he abo ve integral, il is firsl intcgraled wilh re-sp,"c! lo Yn ami arter wiLh respect 10 v, obtaining the rollowing

result:

A = -M('XP(-To/2)1JJoJ," n2

~ D,,(T,,/2) [ "(,, - 1) .,]XL Vii 1+ 1" <li.n ll_

11=1

\,"'here f. has heen suhsLituled for its value ~ = f.o/~.

2.2. NUIlll'rkall'alcuhltion ofnG(v, Ta)

Figure lashows Eq. (14)calculatedloanordcrm = l'2,andTu = 15. ,U = 1/1,~ = 1, N = O, lVa = 2 and f.o = O. Thcline-shapc ealculated wilh Eg. ( 14) is very similar lo Ihe (lne

FI(;URE 2. AbsolulC error (simple diffcrcnccs) hctwccn Eqs. (1)

amI (14) for the spcctrum shown in Fig la

silllulaled wilh Eq. (1) as il can he sccn in Fig. 2. whcrc theahsolulC error is sho\Vll. Thc ahsolule error 01"ElI. (I ...l) \••..ilhrcspecl lo E4. (1), in the cases of T" < l:j, ¡s hm/cr Ihan LhatshO\vn in Fig. 2; for example. the case T(J = ,1, Wn = 2ws =2 amI én ;:: () prcsents a maxilllulll error of less than 0.17 pplllfor Ihe onlcr al' 111 = 10, as shown in Fig. 3c. To analyzc lheapproxilllulion ofEq. (13) 10 the intcrferencc lerm. the dilTcr-ellCC u,,(To = 4, <o = 0.01) - ud'!;, = 4, <o = O) wascalclllaled directly frolll Eq. (1) amI was coltlpared wilh Lhelerms thal involve f.o in Eq. (13) wilh /1/ = 12. The maxillllllllahsolulC error hetween hOlh calclllations was 01"n.7 ppm, asshown in Fig. 4. From the comparison of Fig .. k (111 = 10)and Fig. 4 (m ;:: 12) it can be sccn lhat the grcaler con(ri~hlllioll lo lhe error of Eq. (13) is givcn hy Ihe corrcspondinglenns 01"(he inlcrkrcnce parumctcr. Thus, lo reduce this er-ror in Eq. (13) f.-lcrms oí" higher ordcr 11I wi(h rcspect to Iheorder 01"Ihe no é-Ierms should he laken. To calculale Lhe wellknown funcLions P(a.u) and 1\"(0. /l) involvcd in 11[;(11, Tn).'',.'C lIsed the approximation of Gautschi's lo the complex errorfunClion H"(u. ia) (-151. The relalionships alllong \\'(u, la),Pul ((l, u) and 1\"(0" u) are given in Re!". 46.

Rcl'. Mcx. Fí.\". .w (4) (11J9X) 3X5-J91

Page 5: Chchyshcv approximations for an inhomogcncously broadencd … · 2008-06-30 · Chchyshcv approximations for an inhomogcncously broadencd linc-shapc in Mossbaucr spectroscopy ll

C11EBYSHEV APPROXIMATIONS FOR AN INIlOMOGEI'EOUSLY BROAiJENED L1~E-SIlAPE. JX9(.\1, T", 1', .v, and S) are taken equa¡ as in Eq. (!4). andZ,/::) are the generalized Lorentl.ian functions ami are de-lined in Rel. 2("

0.02

~~ 000I

S'-.02

<rO<r -,04<rW

W~ -.06=>~OV><D -.08~

-,10-20 -'O O 10 20

V

Z,,(2) = 2ir n is odd,

(20)

0.08

3. Lineal Comhination

~lO 0.04

if TI is even,

\Ve nm\'! W:U1! lo show Eq. (1 X) in two practical examples,in which lheir spectra canllot he litled hy the TI. since aslrong inhomogeneolls broadening is presenl. Equalion (18)will show its utility in the case wherc To and w~ = Wo pa-ramcters are llllknO\\'n. Both spcclra wcre accumulated with asourcc 01" 20 mCi 01' eo'J' dillused iOIORodhium with a widthof 0.1 mm/s I-If)], anJ a maxilllulTl \'elocily of ~.O :i:: (UJOSmm/s l!elermined ny lhe laser interfcrornetric lIlethod. Thegamma ray COlll1ts were slored in 256 channels. The back-ground COllnls dile to high enert:Y gamma ray wcre Illeasuredhy the lllell10d descrihed in Rel". 50. Experimental spectra 01'potassium ferrocyanide compound anJ stainless steel foil alroom lemperalure were fitted wilil Eq. (18). The hesl fittingis shown in Figs. 5 and 6 with ti sol id line (-) and cxperi~Illental data are shown wilh dots ( ... ), As it can he scen, lhercis a good agreclIlenl hctweel1 lhe fitting curve and the expcri~lllental poinls. Thc relrieved M(issbauer parameters obtaincdfmm Ihe litling .••wilil Eqs. ( 14). (1X) ami (19) lo lhe experi-mental dala, are lisled in Tahlc 11. The so urce width r.~\Vaslixcd in al! the liltings lo Ihe valuc 0.1 film/s.

11" \ve compare lhe Trl pararnelers oblained hy lhe linealcomninalioll Eq. (18) will1 that ohlained hy TI. il can he seen(hat TI gi\'cs wr<lng fils willl a largcr \ 2. f-rom our analysisI"or Ihe pOlassiulIl f~rrocyanide. Tu = 0.83 and lhe ahsorherMüsshaucr fraclion Jo is O,2()2. for a valuc of Ihe cross scc-tion 01' a() ;;;: :LV, x 10-18 cm:? The ohtained value of Jois lhe arilhmclic average 01" lhe vallles oblained hy Ball andLyle [511 I" = 11.281. ami Kohayashi ami Fukulllura [J.IJ

whcre.:: =0 +ill!,~, Equa(ion (1 X) is similar to thal cmploycdas an approximalion ror lhe Voiglline-shapc [47.481. whcrcthe 2w~ (Lorenlzian) and 2wu (Gaussian) widlhs are takcnequal, and in principie different from 2ws' Equation (IR) isonly valid for the case 01' E.= O. since Eq. (19) is only validror lhis case. The /,' parameter in Eq. (18) is lhe ahsorherLoren(zian-Ciaussian fraclion, amI ils value is restricled he-lween () and 1; il is onviolls thal when /.; = 1 or /.;= ()lhe TIcase 01' the l'Olllplctcly inholllogcllcous case are rccovercd.

.'.1. EX(l<,'rilllcntal applicatiolls

20-10-.08

-20

<rO<r 0.00<rww~=>~O -.04V><D~

O

V

F¡(JURE 4. Absolutc error hctwecn HC(T" 4, ~o 0.01) _1I(¡(Ta = 4, ~o= O) and Eq. (13) fUf unly Ihe tcrms containing~()(= 0,01).

",(P.T,,) = M{ I +vxp(-T,,/2)1U~

FIGURE 3. Absolutc error (simple differcnccs) hctween Eqs. (1);md (14) \\/ith Ta. = .1. W(l = 2w., = 2. (n = O. N = O and,\1 = 1 fOf ¡he ordcr: (a) /TI. = 8. (b) 111 = 9. (e) m = 10. Curve(a) was multiplicd by lhe amollnt of 0.05. This changc is dile for(:(lIlvcnicncc 01' Jisplaying.

=x :L 21,,(T,,/2)IIlI[Z,,(z)]} + X (19)0=1

From lhe obSCfvation of lhe curves la and J b in Fig. J. ilis suggcsted thar lhe line-shape 01' a spcclrum that prcscntsa LOfcntzian-Gaussian mixture in lhe absorber could he ap-proximatcd Ihrough a lineal combinalion 01' lhe curves la andJ b as I'ollows:

"¡(¡'.T,,) = kl/,(v.T,,) + (1- k)l/r.(v.T,,). (IX)

where ",,(". T,,) is dciined hy Eq. (14) and 11,(V. T,.) is theIransmission il1legral given by [2G]

where w:¡ is lhe Lorenlzian half.width 01' lhe absorber. 111

are lhe Illodifjed Bcssel functions, aH lhe other parameters

Ni'l'. Mi'X. Ft\_.w (4) (199R) 3H5-.WI

Page 6: Chchyshcv approximations for an inhomogcncously broadencd … · 2008-06-30 · Chchyshcv approximations for an inhomogcncously broadencd linc-shapc in Mossbaucr spectroscopy ll

.wo H. FLORES LLAMAS

TABLE 11. RCl'uhs 01'litting proccdurc~ applicd lo (\\'0 samplcs.

Par;¡melCr pO!<lssiUIll ferrocyanide slaínlcss stcel

Eq. (14) Eq. (IR) Eq (\ 'Ji El[. (14) Eq. (IX) Eq. (19)

¡ 0.603 0.167

T" 0.706 0.X30 0.77') 1.55 1790 2.71

'211',(,,,) (mm/s) 0.121 o(mr, 0.1 (/» O,IX6 0.167 0.107

l'entre (mm/s) -0.138 -0.139 -O.13~1 -0190 -0.190 -0190

dcpth (counts) 296050 314519 306XX2 24349 255RO 27745

hasclíne (counts) 3912040 3919XÚ2 392601(l 131081 131953 132679

\ :'!(I'} 17R8 546 lX(J7 4(XI 215 559

n Thc fwhm is fu = 2w".1, Yaluc all1l11lalously smal! of 1IJ" wa.s obtaincd whcn 111" wa.s left lo cunwrgc fn:cly. lhcll il'; illferior limil uf COllVl'll-'CIICt' was hxcd al 0.0) 111m/s

" Ttll..' lilling qmlity i~cakulatt'd lhrough lhe qUaIltity L: (cxpcrilllclltnl value-tittcd valuc):.! j(CXllC'rilllcmal valuc).

J,7[+06

3,9[+06

eo~ J,8E+06

É•eo~

,"'''1I 3£+05

~.,

oo

"•E ' 2£+05•o~

, 1[+0:>

36[+06 -, -2 _, O

Velocity (mm/s)

10[+0:> -, -2 -, oVelocily (mm/s)

FJ(;URE 5. Fitting result with Eq. (18). calculated for It = 8 terms.for Ihc speclrum of K4f'c(CNh;31hO compound with a Ihicknessnf 5.0 mglcm1.

fu = 0.311. For lhe slainless stccl, wilh líO modifled by Ihefactor: (nalUral widlh)/(2w(I) = 0.587, Ihe flt = O.G:J ob-lained is in agreement wilh the valuc obtaincd by Margulics et01. IG]. Thc fraclion k for pOlassium ferrocyanidc (k = O.G03)shows a Lorentzian component greater than Ihe Gaussiancomponent. and vice versa ror slainless stccl foil (1.: = 0.3G7).Thcrefore. due 10 the k value ohlained both samplcs prescnla slrong inhomogeneolls broadcning.

1. FJ. Lynch. R.E. Holland. and ~t.Hamcrmc~h. Phys. Rc\'. 120

(19(}0) 5)).

2 n.A. Shirley. t\t. Kaplan. and P. Axcl.l'hys. Rl'I'. 12.' (1961)X16.

:{, K.S. Singwi aml A. Sjolandcr. Phys. Re\'. 120 (1960) 1093.

4. 11, Fraucnfelder. TI/(' Ati;.\'.\'1Jlluer effect. (llcnjamin. Ncw York,IlJ(}3), p. 45.

.J. S. Margulies and J. Ehrman. Nucl. Instrum. Melh. 12 (1961)1.11.

FlOURE () Fitting rcsult with Eq. (1X). calculatcd for 11 = 8lcrllls.ror the spcctrulll 01"stainlcss stccl foil. with a Ihickncss of X.Smg/cm'2.

4. COIlc!usiolls

In l!lis work :111 exprcssion rOl" lhe inhomogcneolls broadcn-ing M(issballer linc-shapc has bccn dcrived. including lheTI as a particular case. This approximation is !lew bccauscit considcrs lhe whole !\1üsshaucr linc-shape. and jI is vaHorol' thickness ahsorbers wilh dilfcrenl Lorenrzian sourcc andLorenll.ian- Gaussian ahsorher wiJlhs. \Vith this methoJ ilis possihle 10 calculale Ihe Lorentzian and Gallssian mixturelhrollgh lhe l.: parameler.

G. S. \largulics, P. Dehrunncr. and H. f'rauenfelder. Nucl. Imlrum.

.\1r'Ih. 21 (1963) 217.

l. G. Lang, Nlle/. IlIs/mm. M(,/h 2-l (1 9(3) 425.

R. (r.A. Bykov ano P.Z.I~icll. 1. Phn. 4~' (1962) l)06: SOl'. I'lIy.\' ..11:'1'''' 1(. ( IlJ(3) 646.

9. E. Kankeleit. r=. Bochm, amI R. lIagcr. Phys. Rc\'. IJ-l (1964)B747.

10. \V. Kiindig. NI/el. IlIstrum. Akrh. 4K (1967) 219 .

11. J.lkhcrle.Nucf.lturrulIl. ,\krh. 5K (1968) 90.

R('\'.Mn. Fú. 4-l (4) (llJlJX) 3X5-391

Page 7: Chchyshcv approximations for an inhomogcncously broadencd … · 2008-06-30 · Chchyshcv approximations for an inhomogcncously broadencd linc-shapc in Mossbaucr spectroscopy ll

-- - - ._---------------

CHEBYSHEV APPROXIMATIONS FOfo{AN INHO~H)(iENEOUSLY BR.()ADENEI) LINE-SHAI'E. 391

12. M.lllumc and JA Tjun.!'''"s. Re" 165 (1968) 4-!6.13. D.J. Erickson ami L.D. Robcrts. Phys Re,', IJ 3 (1971) 2IRO.

1.:1. B.T ClcvelanJ anu 1. Hcocrlc, Phys. Ll'lt. A ..•.0 (1972) U.

1!j, 1. Slone. Nud Instrw11. A1elltot/s 11I7 (197.1) 2X5.

lG. S. ~h)rup anu E. Roth. Nucf. Imtrum. M('(JlOds JU (1975) 445.

17. J.~1. \Villíams and J.S. Brooks. Nllcl. IlIstrum. Ml'lllOds 12M(1975) 363.

18. P,1. Blamey. Nlld IlIs/n//1/. Ml>/hod.\" 142 (1977) 553.

19 G,K. Shcnoy. F.E. Wagncr. and G.M. Kalvius. in .\lii.\'.\'baul'r

I.Wl1/l'r Slújts. cdi!cd by G.K. Shenoy iUH..I FE. Wagncr (Nonh-HolJand Puhlishing Company, NClhcrl:mtls. 197X), p. 97.

20. J. rricdt and 1. Danan in i\Jodem Physin ú, Cf¡emi.\/ry. cditedhy E. Fluck ami VI. Goldanskii. Vol. 2 (Acadcmic Prcss. t\ewYork. 1979). p. 209.

21. G. Longworlh. in MÓJJ!JlIIl('r Spec/msl"oPYApl'lif't! lo Inor-g(/1/i(' Chl'lnütry. cditcd hy G.1. Long. Vol. 1. (Ptenlltll. NewYork. 1984). p. 49.

22. P. Jernherg. Nucl. IflStrul1l. Mt'/IIOd.~H4 ( 191:\4) 412.

2.1. J.G. f\.lullcn ('1 al.. Phys. Rc!'. 1137 (19XH) 3226.

2..t. T.W. Guetlinger and D.L. Williamson. NI/el. hu/mm. MelllOd.~B42 (1989) 26X.

2,). D.G. Ram:ourl. Nucl. IlIStrum. MeJlwd\' H44 (19X9) t{)I).

2fi. 11.Flores-Llamas. Nucl. I/lstrum. Mt'/Iwds B94 (191J..t) 4H5.

27. B.R. Bullard. 1.G. ~111llcn. and G. Sdlllpp. Phys R('\'. n .1](19IJI) 7..t05.

28. IJ. Window. 1. IJhys. E 4 ([971) 401.

29. CL. Chien.I'hys. Rn'. n IX (1978) 1003.

30. (; Le Caer and J.M. Duhoi, . .I. Pln'.'. 1,'12 (1979) 10XJ.

31. (l. Le Caer ('f al.. N"e1. hl.\"trum. Melhot!s B5 (1984) 25.

32. O.G. Rallcollrt and 1.Y. Ping. Nud. IIlstnwl. Ml',/¡od~ B5X(1'191) X5.

:3:3. D.A. O'Collnor and G. Skyrme. Nucl. Ins/rwlI. ,\4efhods Hl(l(1t>73) 77.

J1. T. Kohayashi ;1lld K. Fukull1ur¡¡. N/lcI. Imlrum. Mefhot!.\. INO(19X1) .14'1

3S. D.\\'. Pmcllcr.AII.\'I . .I. Ph"s. 12 (1959) 184.

:~fi.\-1.1. Evans and P.J. !l[ack. 1. IJhy.l". C 3 (1970) LX 1: 1. Phy.\'. e.1(1970) 2167.

37. D.J. Eriekson. 1.F. I'rillec. ami LIJ. Roocns. Phys Re¡'. (' X(1973) [9[6.

:~8. H.C. CioldwiJ'e ami J.I'. Hannon./'hrs. Ri'l: n 16 (1977) IX75

:19. B.R. Da\'is. S.E. Koonin. and P. VogcJ. PhYJ. Re'!: e 22 (19XOI[233.

.10. M. Ave!"y S"ydcr. Cllt'hvsltl'l' M('llwds in NI/llla/ral A/J¡mni-mal/oll. (Prcntlec-lIalJ. 1\'cw Jersey. 19(6). p. ..t5.

11. y.L. I.uke. Tite SJJt'('ial Fun('fions (l1U1lheir Af'f'mxi"/(l1uJII.~.Vo!. 2. (Acadcmic I'ress. Ncw York. 1(69). p. 313.

12. G. ELste.Z. A!ilrof'hrs .. H (1953) 3'J.

.13. P. lIeirllel. 11/111.As/ron. In.H. Ca'cltosl. 29 (J 97X) 159.

.1.1. r:.W.J. n[vel". in II(/f/{Jhook O(M(lII1C/1/aticlIl FUlIctiollS. editedhy i\-I, ¡\hramO\ ••..ill. :llId L.A. Stcgun. (Dovcr. New Ynr~. 1(72).p.375.

.1.:>. \\'. Gautschi. SIAM.I NI/lllel: Al1al. 7 (1970) 1X7.

.lG. W. Ci;lUlschi. in I/afldlwok (JI MarlU'lIIllliclIJ F/lt/criofls. cditcdhy i\-1,Ahrarnowitl. ~lIlLlL.A. Stegun. (Dover. Ncw York. 1(72).p. J02.

¡7. J.J. PCYl'l' ;lnJ G. PrinL'ipi. Nlfcl. III.Hrlll1l. All'/ltOc/.\' 101 (llJ72)(JOS.

.18. G.K. \Vcnheim. .\1A. fhuler. K.\V. \Ves!. and D.N.E.BLIt:hanan. Rel: Sci.III.\'IrtllII. 45 (197..t) 1369.

.I!). Aeeol"ding lo the manufacturer: Tlle RaJiochcmical Centcr. [il-IIc Chalfollt. Al1lcrsh~lrn. England.

.')0 11. rJol"cs.Llamas. 11. Yce-madeira. G. Conlreras-Pucntc. amIR Zamorano- Ullo ••. l/Vil- 111/. (l7 ( 1991 ) 711.

.~J1. J. lIall and S.J. Lyle. Nue/. IflS/rtllll, MI'lllOd.l' 163 (1979) 177.

Rel'. J/('.\'. ¡:¡.~. .J.t (4) ( II)9X) 3X5-.N 1