cambio de fase

76
Termodinámica Aplicada Enunciados (Tema 3) Página 1 Universidad Nacional de Educación a Distancia Escuela Técnica Superior de Ingenieros Industriales Departamento de Ingeniería Energética INTRODUCCIÓN TERMODINÁMICA A LA ENERGÍA TÉRMICA APLICADA I.T.I. Electrónica Industrial (621110) I.T.I. Mecánica (631112) I.T.I. Electricidad (641114) TEMA 3: PROPIEDADES DE UNA SUSTANCIA PURA. Ejercicios Propuestos: Enunciados Solución: a) 4 1 2,787·10 x - = b) 1 1 0,4757 f g V V = 1.- Una mezcla líquido vapor de agua se mantiene en un recipiente rígido a 60˚C. El sistema se calienta hasta que su estado final es el punto crítico. Determínense: a) la calidad (o título) inicial de la mezcla líquido – vapor b) la relación inicial entre los volúmenes ocupados por las fases líquido y vapor.

Upload: talvcmk

Post on 12-Aug-2015

125 views

Category:

Presentations & Public Speaking


1 download

TRANSCRIPT

Termodinámica Aplicada

Enunciados (Tema 3) Página 1

Universidad Nacional de Educación a Distancia

Escuela Técnica Superior de Ingenieros Industriales

Departamento de Ingeniería Energética

INTRODUCCIÓN TERMODINÁMICA A LA ENERGÍA TÉRMICA APLICADA I.T.I. Electrónica Industrial (621110) I.T.I. Mecánica (631112) I.T.I. Electricidad (641114)

TEMA 3: PROPIEDADES DE UNA

SUSTANCIA PURA.

Ejercicios Propuestos: Enunciados

Solución:

a) 4

1 2,787·10x −=

b) 1

1

0,4757f

g

V

V=

1.- Una mezcla líquido – vapor de agua se mantiene en un recipiente rígido a 60˚C. El

sistema se calienta hasta que su estado final es el punto crítico.

Determínense:

a) la calidad (o título) inicial de la mezcla líquido – vapor

b) la relación inicial entre los volúmenes ocupados por las fases líquido y vapor.

Termodinámica Aplicada

Enunciados (Tema 3) Página 2

Solución:

a) =1

0,3238x

b) 1.511,2 /u kJ kg∆ =

1.629,7 /h kJ kg∆ =

4.- Un recipiente rígido contiene inicialmente agua con un volumen específico de 1,694

m3/kg a 0,3000 bar, suministrándose calor hasta que se alcanza una presión de 1,000

bar.

Determínense:

a) el título o calidad inicial de la mezcla líquido – vapor;

b) las variaciones en la energía interna y en la entalpía del agua, en kJ/kg.

NOTA: Represéntese, esquemáticamente, el proceso en un diagrama P-v.

Solución:

a) mg = 0,0780 kg

b) = 0,0294f

V

V

3.- Un depósito rígido, cuyo volumen interior es de 8,00 L, contiene refrigerante 134a a

200 kPa en forma de una mezcla líquido – vapor con una calidad del 20,00%.

Determínense:

a) la masa de vapor inicialmente presente;

b) la fracción del volumen total ocupado inicialmente por el líquido.

Solución:

a) T1 = 372,8 ˚C

b) u2 –u1 = -322 kJ/kg

2.- Un recipiente rígido contiene vapor de agua a 15 bar y a una temperatura

desconocida. Cuando el vapor se enfría hasta 180˚C, éste comienza a condensar.

Estímense:

a) la temperatura inicial, en grados Celsius;

b) la variación en la energía interna, en kJ/kg.

Termodinámica Aplicada

Enunciados (Tema 3) Página 3

Solución:

a) 2

10,16P bar=

b) 190 /u kJ kg∆ = −

200 /h kJ kg∆ = −

6.- Una cierta masa de refrigerante 134a experimenta un proceso isotermo a 40˚C. La

presión inicial es de 4,0 bar y el volumen específico final de 0,010 m3/kg.

Determínense:

a) la presión final, en bar;

b) las variaciones en su energía interna y entalpía específicas, en kJ/kg.

NOTA: Represéntese, esquemáticamente, el proceso en un diagrama P-v.

5.- Una cierta cantidad de agua, que se encuentra inicialmente a 10 bar y cuyo volumen

específico inicial es de 0,02645 m3/kg, experimenta una expansión isobárica hasta

0,2060 m3/kg.

Determínense:

a) las temperaturas inicial y final del agua;

b) las variaciones en su energía interna y entalpía específicas, en kJ/kg.

NOTA: Represéntese, esquemáticamente, el proceso en un diagrama P-v.

Solución:

a) 1

179,9T C= °

2200T C= °

b) ∆ =1.631,0 /u kJ kg

∆ =1.811,6 /h kJ kg

Termodinámica Aplicada

Enunciados (Tema 3) Página 4

Solución:

a) 2

99,63ºT C=

b) 2

0,2208x =

c) 2

2

3,529f

g

m

m=

d) 11.490Q kJ= −

8.- Un tanque de paredes rígidas, cuyo volumen interior es de 2.560 L, contiene

inicialmente vapor de agua saturado a 5,00 bar. Un enfriamiento del agua origina una

caída de presión hasta 1,00 bar.

Determínense, para el estado final de equilibrio:

a) la temperatura, en grados Celsius;

b) el título o calidad final del vapor;

c) el cociente entre la masa de líquido y la masa de vapor;

d) la cantidad de calor intercambiada entre el agua y su ambiente.

NOTA: Represéntese, esquemáticamente, el proceso en un diagrama P-v.

Solución:

a) 1

320T C= °

2179,9T C= °

b) ∆ = −1,117U kJ

∆ = −1,455H kJ

c) = −1,455Q kJ

= 0,338W kJ

7.- Se considera un cilindro fijo y rígido, de paredes metálicas, provisto de un pistón

también rígido y que puede desplazarse en el interior del cilindro con rozamiento

despreciable. El cilindro contiene una cierta cantidad de agua, que inicialmente, a la

presión de 1,0 MPa, ocupa un volumen de 1.234 cm3, siendo el volumen específico inicial

de 0,2678 m3/kg. El agua se comprime a presión constante, según un proceso

cuasiestático, hasta que se convierte en vapor saturado.

Hállense:

a) Las temperaturas inicial y final, en grados Celsius.

b) Las variaciones en la energía interna y entalpía, en kJ.

c) El trabajo desarrollado y el calor absorbido, en kJ.

NOTA: Represéntese, esquemáticamente, el proceso en un diagrama P-v.

Termodinámica Aplicada

Enunciados (Tema 3) Página 5

11.- Se considera un cilindro fijo y rígido, de paredes metálicas, provisto de un pistón

también rígido y que puede desplazarse en el interior del cilindro con rozamiento

despreciable. El cilindro contiene 1,36 g de agua que inicialmente, a la presión de 2,00

bar, ocupan un volumen de 233 cm3. El pistón está apoyado sobre unos resaltes y sobre

él actúa un muelle, de forma que no puede desplazarse hasta que la presión interior

alcance un valor mínimo de 10,0 bar. Se transfiere al agua un flujo de calor constante de

250 kJ/min.

Determínense:

a) el calor suministrado hasta que el pistón comienza a moverse;

b) el tiempo transcurrido, en minutos, hasta que el pistón comienza a moverse.

NOTA: Represéntese, esquemáticamente, el proceso en un diagrama P-v.

Solución:

a) −

∆ = × ∆ = ∆ =5 3

1,90 10 / ; 166,16 / ; 171,28 /v m kg u kJ kg h kJ kg

b) −

∆ × ∆ ∆� � �5 3

2,13 10 / ; 167,30 / ; 167,34 /v m kg u kJ kg h kJ kg

10.- Se comprime agua líquida saturada a 40˚C hasta una presión de 50 bar y

temperatura de 80˚C. Determínense las variaciones en el volumen específico, energía

interna y entalpía:

a) utilizando la tabla de líquido comprimido;

b) utilizando como aproximación los datos de saturación a la misma temperatura.

NOTA: Represéntese, esquemáticamente, el proceso en un diagrama P-v.

Solución:

a) ∆ =3

0,05319 /v m kg

b) ∆ =

∆ =

70 /

79 /

u kJ kg

h kJ kg

9.- Una cierta cantidad de refrigerante 134a tiene un volumen específico de 0,02500

m3/kg a la presión de 0,5000 MPa (estado 1). Se expansiona a temperatura constante

hasta que la presión cae a 0,2800 MPa (estado 2). Finalmente, se enfría a presión

constante hasta que se convierte en vapor saturado (estado 3). Para cada una de las

etapas del proceso descrito, determínense:

a) Las variaciones en el volumen específico, en m3/kg.

b) Las variaciones en la energía interna y en la entalpía, en kJ/kg.

NOTA: Represéntese, esquemáticamente, el proceso en un diagrama P-v.

Termodinámica Aplicada

Enunciados (Tema 3) Página 6

Solución:

a) =2

71,99P bar

b) = −10.120Q kJ

14.- Un depósito de paredes metálicas, cuyo volumen interior es de 1,0 m3, contiene

agua, inicialmente a 10 MPa y 480 ˚C. El agua se enfría hasta que la temperatura alcanza

los 320 ˚C.

Determínense:

a) presión final, en bar;

b) calor transferido al ambiente, en kJ.

Solución:

a) 63,10 min

b) 3,70 bar

13.- Un recipiente de paredes rígidas y térmicamente aisladas, contiene 2,000 kg de

agua, que inicialmente ocupan un volumen de 1,000 m3 a 30,00˚C. Una rueda de paletas

situada en el interior del recipiente, movida por un motor, gira a 50,00 rpm con un par

aplicado constante de 50,00 N·m, a la vez que una resistencia eléctrica, también situada

en el interior del recipiente, recibe una corriente de 100,0 A desde una fuente de 10,00 V.

Determínense:

a) el tiempo, en minutos, requerido para evaporar todo el líquido contenido en el

recipiente;

b) la presión, en bar, en el interior del recipiente en ese instante.

Solución:

∆ = =7,13min 0,119t h

12.- Un recipiente de paredes rígidas, insuficientemente aislado, contiene 100 L de

nitrógeno en equilibrio, inicialmente a 77,24 K, y está dotado de una cápsula de cierre

que rompe cuando la presión interior alcanza un valor de 400 kPa. El 91,5 % del volumen

está inicialmente ocupado por líquido. El nitrógeno absorbe calor del ambiente a un

ritmo de 300 J/min. Hállese el tiempo, en horas, que debe transcurrir hasta la rotura de

la cápsula de cierre.

Solución:

a) 1 2

2,00Q kJ−=

b) 3

8,00 10t min−∆ = ×

Termodinámica Aplicada

Enunciados (Tema 3) Página 7

18.- Se necesita almacenar 1.500 kg de propano (C3H8) en un depósito de gas a 42 ˚C y

450 kPa.

a) Calcúlese el volumen interior del depósito, en metros cúbicos;

b) Si posteriormente se añaden 500 kg de gas, pero la temperatura se mantiene

constante, calcúlese la presión final, en kilopascales.

NOTA: Supóngase comportamiento de gas ideal.

Solución:

7,0 bar

17.- Se coloca medio kilogramo de helio en un depósito de paredes rígidas, cuyo volumen

interior es de 0,500 m3. Si la temperatura es de 112 ˚C y la presión barométrica es de 1,0

bar, determínese la lectura, en bar, que indicaría un manómetro conectado al depósito.

NOTA: Supóngase comportamiento de gas ideal.

Solución:

0,2161kg

16.- Un recipiente, de paredes rígidas y térmicamente aisladas, se encuentra dividido en

dos compartimentos por medio de un tabique interior, también rígido y adiabático. Una

de las cámaras contiene 0,50 kg de agua a 20 ˚C y la otra contiene vapor saturado de

agua, siendo en ambas la presión de 25 bar. Determínese la masa de agua contenida en

la segunda cámara si, al romper el tabique, el estado final del agua es una mezcla líquido

vapor con una calidad del 30 % y una presión de 25 bar.

Solución:

=66,09V L

15.- Un depósito, de paredes rígidas y térmicamente aisladas, está inicialmente dividido

en dos compartimentos mediante un tabique rígido. Uno de ellos contiene 1,0 kg de

vapor saturado de agua a 60 bar y el otro está vacío. Se rompe el tabique interior de

separación y el agua se expande por todo el depósito, de modo que la presión final es de

30 bar. Determínese el volumen interior total del depósito.

Termodinámica Aplicada

Enunciados (Tema 3) Página 8

Solución:

a)

b)

20.- Un depósito rígido de almacenamiento de agua para una vivienda tiene un volumen

interior de 400 L. El depósito contiene inicialmente 300 L de agua a 20 ˚C y 240 kPa. El

espacio libre sobre el agua contiene aire a las mismas temperatura y presión. Se

bombean muy lentamente otros 50 L de agua al depósito, de manera que la temperatura

permanece constante.

Determínense:

a) la presión final en el depósito, en kilopascales;

b) el trabajo comunicado al aire en julios.

Solución:

a)

b)

c)

d)

19.- Una determinada cantidad de nitrógeno ocupa inicialmente un volumen de 0,890 m3

a una presión de 2,00 bar y una temperatura de 27,0˚C. Si se comprime hasta un

volumen de 0,356 m3 y una presión de 12,5 bar, calcúlese:

a) la temperatura final, en grados Celsius;

b) la masa de gas, en kilogramos;

c) la variación en su energía interna, en kilojulios, utilizando datos de la tabla A.3;

d) la variación en su energía interna, en kilojulios, utilizando datos de la tabla A.6.

NOTA: Supóngase comportamiento de gas ideal.

Solución:

a) 198 m3

b) 6,00 bar

Termodinámica Aplicada

Enunciados (Tema 3) Página 9

Solución:

a)

b)

22.- Un depósito de paredes rígidas contiene inicialmente 0,800 g de aire a 295 K y 1,50

bar. Con una fuente de 12,0 V se hace pasar una corriente eléctrica de 600 mA, durante

30,0 s, a través de una resistencia eléctrica situada en el interior del depósito. A la vez,

tiene lugar una pérdida de calor de 156 J.

Determínense:

a) la temperatura final del gas, en kelvin;

b) la presión final, en bar.

NOTA: Supóngase comportamiento de gas ideal.

Solución:

a)

b)

c)

21.- Se considera un cilindro fijo y rígido, de paredes metálicas, provisto de un pistón

también rígido y que puede desplazarse en el interior del cilindro con rozamiento

despreciable. El cilindro contiene 0,0140 kg de hidrógeno, que inicialmente ocupan un

volumen de 100 L a 210 kPa. El hidrógeno intercambia calor con su entorno muy

lentamente, de modo que la presión en el interior del cilindro permanezca constante y

hasta que el volumen sea el 80 por 100 de su valor inicial. Determínese:

a) La temperatura final, en grados Celsius.

b) El calor absorbido por el hidrógeno, en kilojulios, utilizando datos de la Tabla de

hidrógeno (H2) gas ideal.

c) El calor absorbido por el hidrógeno, en kilojulios, utilizando datos de

capacidades térmicas del hidrógeno (H2) gas ideal en función de la temperatura

absoluta.

Termodinámica Aplicada

Enunciados (Tema 3) Página 10

25.- Dos depósitos idénticos, ambos térmicamente aislados y con un volumen interior de

1,0 m3, están comunicados por medio de una válvula. Inicialmente la válvula está

cerrada y el depósito A contiene aire a 10 bar y 350 K, mientras que el depósito B

contiene aire a 1,0 bar y 300 K. Se abre la válvula y se permite que se alcance el

equilibrio. Determínense la temperatura final, en kelvin, y la presión final, en bar.

NOTA: Supóngase comportamiento de gas ideal.

Solución:

24.- En un depósito se almacenan 0,81 kg de nitrógeno a 3,0 bar y 50 ˚C. Mediante una

válvula adecuada, este depósito está conectado a un segundo depósito de 0,50 m3, que

inicialmente se encuentra vacío. Ambos depósitos están perfectamente aislados. Si se

abre la válvula y se permite que se alcance el equilibrio, ¿cuál será la presión final, en

bar?.

NOTA: Supóngase comportamiento de gas ideal.

Solución:

a)

b)

c)

d)

e)

23.- En el interior del cilindro de un compresor alternativo hay encerrados inicialmente

100 L de aire a 0,950 bar y 67,0 ˚C. El proceso de compresión es cuasiestático y está

representado mediante la ecuación P·V1,3

= constante. El volumen final es de 20,0 L.

Determínense:

a) la masa de aire, en kilogramos, que se está comprimiendo;

b) la temperatura final, en kelvin;

c) la variación en la energía interna del aire, en kilojulios;

d) el trabajo mínimo necesario, en kilojulios;

e) el calor absorbido por el aire, en kilojulios.

NOTA: Supóngase comportamiento de gas ideal.

Termodinámica Aplicada

Enunciados (Tema 3) Página 11

Solución:

26.- Se tienen dos depósitos conectados entre sí por medio de una válvula. Inicialmente

la válvula está cerrada y el depósito A contiene 2,0 kg de monóxido de carbono gaseoso

a 77 ˚C y 0,70 bar, mientras que el depósito B contiene 8,0 kg del mismo gas a 27 ˚C y 1,2

bar. Se abre la válvula y se permite que se mezclen los contenidos de ambos depósitos,

mientras que el monóxido de carbono intercambia calor con el ambiente. La temperatura

final de equilibrio es de 42 ˚C. Suponiendo comportamiento de gas ideal, determínense la

presión final, en bar, y el calor absorbido por el CO, en kilojulios.

Solución:

Termodinámica Aplicada

Propiedades de una sustancia pura: primera parte Página 1

Universidad Nacional de Educación a Distancia

Escuela Técnica Superior de Ingenieros Industriales

Departamento de Ingeniería Energética

INTRODUCCIÓN TERMODINÁMICA A LA ENERGÍA TÉRMICA APLICADA I.T.I. Electrónica Industrial (621110) I.T.I. Mecánica (631112) I.T.I. Electricidad (641114)

TEMA 3A: PROPIEDADES DE UNA

SUSTANCIA PURA, SIMPLE Y

COMPRESIBLE

Objetivos

Encontrar métodos que permitan estimar los valores de algunas propiedades de una sustancia

pura, tales como el volumen específico (v), la energía interna específica (u) o la entalpía

específica (h), en función de propiedades directamente medibles, tales como la presión (P) y la

temperatura (T).

Termodinámica Aplicada

Propiedades de una sustancia pura: primera parte Página 2

Contenido

3.1.- EL POSTULADO DE ESTADO ........................................................................................... 3

3.1.1.- Postulado de Estado para sustancias puras compresibles .................................... 3

3.2.- LA SUPERFICIE PvT ......................................................................................................... 4

3.2.1.- Transiciones de fase en sustancias puras compresibles ....................................... 6

3.1.- DIAGRAMAS DE FASE .................................................................................................... 6

3.1.1.- Diagrama presión - volumen específico ................................................................ 6

3.1.1.- Punto crítico .......................................................................................................... 8

3.1.2.- Punto triple ............................................................................................................ 9

3.1.3.- Diagrama presión-temperatura .......................................................................... 10

3.1.4.- Diagrama temperatura – volumen específico ..................................................... 11

3.2.- TABLAS DE PROPIEDADES DE LAS SUSTANCIAS PURAS .............................................. 12

3.2.1.- La función entalpía .............................................................................................. 12

3.2.2.- Tablas de vapor sobrecalentado. ........................................................................ 12

3.2.3.- Tablas de propiedades de saturación ................................................................. 13

3.2.4.- Tabla de líquido comprimido o subenfriado ....................................................... 15

3.2.5.- Selección de los datos apropiados de las propiedades ....................................... 15

3.3.- LAS CAPACIDADES TÉRMICAS ESPECÍFICAS ................................................................. 16

3.3.1.- Capacidad térmica específica a volumen constante ........................................... 16

3.3.2.- Capacidad térmica específica a presión constante ............................................. 17

Termodinámica Aplicada

Propiedades de una sustancia pura: primera parte Página 3

3.1.- EL POSTULADO DE ESTADO

El Postulado de Estado expresa un comportamiento de la materia, observado

experimentalmente: Cualquier estado de equilibrio de un sistema cerrado, homogéneo y de

composición constante queda determinado cuando se especifican los valores de r + 1 variables

intrínsecas del mismo, en donde r es el número de formas posibles de intercambio de trabajo

entre el sistema y su entorno.

1

·r

i i

i

W Y dX=

δ =∑

Por consiguiente, el número de grados de libertad de un sistema cerrado, homogéneo y de

composición constante es r + 1.

Un sistema simple es aquél que sólo puede intercambiar trabajo con su entorno de una única

forma.

Un tipo de sistema simple de particular interés es el caso de una sustancia pura compresible:

sólo puede intercambiar con su entorno trabajo de dilatación,

δ = − ·W P dV

Por tanto un sistema cerrado y homogéneo constituido por una sustancia pura compresible

tiene dos grados de libertad.

3.1.1.- Postulado de Estado para sustancias puras compresibles

La determinación de cualquier estado de equilibrio de una masa dada de una sustancia pura

compresible y homogénea requiere la especificación de dos propiedades intensivas

independientes.

O lo que es lo mismo:

Cualquier propiedad intensiva (incluidas también las específicas) de una sustancia pura

compresible es función, a lo sumo, de sólo dos de sus propiedades intensivas independientes.

Las tres propiedades P, v y T son de particular interés, a la hora de escoger variables de

estado, porque:

Termodinámica Aplicada

Propiedades de una sustancia pura: primera parte Página 4

• Son propiedades intrínsecas.

• Son propiedades directamente medibles.

Es frecuente, por tanto, que se consideren como variables de estado alguna de las siguientes

parejas:

• P y v.

• v y T.

• T y P.

3.2.- LA SUPERFICIE PvT

De acuerdo con el Postulado de Estado, para cualquier estado de equilibrio de un sistema

homogéneo constituido por una sustancia pura compresible, ha de existir una relación

funcional entre P, v y T,

( , , ) 0F P v T =

Es decir:

Cada uno de los posibles estados de equilibrio de la sustancia pura compresible considerada

corresponde a un único punto de una superficie en el espacio P,v,T.

La expresión analítica de dicha relación funcional se denomina ecuación térmica de estado de

la sustancia considerada.

Figura 1. Superficie PvT de una sustancia que se contrae al solidificar.

Termodinámica Aplicada

Propiedades de una sustancia pura: primera parte

Cuando las propiedades específicas de un sistema dado presentan discontinuidades en ciertas

superficies interiores al mismo, se dice que éste es

el sistema es homogéneo. Los sistemas heterogéneos están formados por la reunión de varios

sistemas homogéneos distintos, cada uno de los cuales recibe el nombre de

La materia se presenta en tres estados de agr

Así, por ejemplo, la sustancia química de fórmula molecular H

hielo (sólido), en forma de agua

• Sólidos: Los sólidos se caracteriza

aproximadamente constantes para diferentes valores de la presión y de la

temperatura. Este comportamiento de los sólidos se expresa diciendo que son

prácticamente incompresibles

• Líquidos y gases: Los líqu

su forma a la del recipiente que los contiene, debido a que presentan la propiedad de

fluir, es decir de deformarse continuamente bajo la acción de cualquier fuerza cortante

exterior, por pequeña que ésta sea; por esta razón los líquidos y los gases se

denominan conjuntamente

incompresibles (su volumen depende poco de la temperatura y casi nada de la

presión), mientras que los gases son fluidos

En un sistema heterogéneo constituido por una única sustancia pura compresible, cada una de

las fases está integrada por la misma sustancia pura compresible pero en distinto estado de

agregación.

Figura 2. Superfici

Propiedades de una sustancia pura: primera parte

Cuando las propiedades específicas de un sistema dado presentan discontinuidades en ciertas

superficies interiores al mismo, se dice que éste es heterogéneo; en caso contrario, se dice que

. Los sistemas heterogéneos están formados por la reunión de varios

sistemas homogéneos distintos, cada uno de los cuales recibe el nombre de fase

La materia se presenta en tres estados de agregación diferentes: sólido, líquido y gas (o vapor).

Así, por ejemplo, la sustancia química de fórmula molecular H2O puede existir en forma de

agua (líquido) o en forma de vapor de agua (gas):

Los sólidos se caracterizan por tener un volumen y una forma

aproximadamente constantes para diferentes valores de la presión y de la

temperatura. Este comportamiento de los sólidos se expresa diciendo que son

incompresibles e indeformables.

Los líquidos y los gases, por el contrario, son deformables

su forma a la del recipiente que los contiene, debido a que presentan la propiedad de

, es decir de deformarse continuamente bajo la acción de cualquier fuerza cortante

ña que ésta sea; por esta razón los líquidos y los gases se

denominan conjuntamente fluidos. Sin embargo, los líquidos son fluidos

incompresibles (su volumen depende poco de la temperatura y casi nada de la

presión), mientras que los gases son fluidos muy compresibles.

En un sistema heterogéneo constituido por una única sustancia pura compresible, cada una de

las fases está integrada por la misma sustancia pura compresible pero en distinto estado de

Superficie PvT de una sustancia que se expande al solidificar.

Página 5

Cuando las propiedades específicas de un sistema dado presentan discontinuidades en ciertas

; en caso contrario, se dice que

. Los sistemas heterogéneos están formados por la reunión de varios

fase.

egación diferentes: sólido, líquido y gas (o vapor).

O puede existir en forma de

n por tener un volumen y una forma

aproximadamente constantes para diferentes valores de la presión y de la

temperatura. Este comportamiento de los sólidos se expresa diciendo que son

deformables, adaptando

su forma a la del recipiente que los contiene, debido a que presentan la propiedad de

, es decir de deformarse continuamente bajo la acción de cualquier fuerza cortante

ña que ésta sea; por esta razón los líquidos y los gases se

. Sin embargo, los líquidos son fluidos

incompresibles (su volumen depende poco de la temperatura y casi nada de la

En un sistema heterogéneo constituido por una única sustancia pura compresible, cada una de

las fases está integrada por la misma sustancia pura compresible pero en distinto estado de

Termodinámica Aplicada

Propiedades de una sustancia pura: primera parte Página 6

Algunos comentarios sobre las superficies PvT

• Las regiones de una sola fase en la superficie están separadas necesariamente por

regiones de 2 fases.

• Cualquier estado representado por un punto que se encuentre sobre la línea que

separe una región de una sola fase de una región de 2 fases recibe el nombre de

estado de saturación.

• El volumen (por tanto, la separación entre partículas) sufre sólo un pequeño cambio

durante una transformación de fase de sólido a líquido.

• En la transición de fase de líquido a gas el cambio de volumen es mucho mayor.

3.2.1.- Transiciones de fase en sustancias puras compresibles

La transición de fase desde sólido a líquido se denomina fusión. La transición de fase inversa,

de líquido a sólido, se denomina congelación.

La transición de fase desde líquido a gas (vapor) se denomina vaporización. La transición de

fase inversa, desde gas (vapor) a líquido, se denomina condensación.

Cuando la muestra se mantiene a una presión suficientemente baja, puede observarse el

cambio de fase desde sólido directamente a vapor, sin pasar por una fase líquida, transición de

fase que recibe el nombre de sublimación.

La experiencia indica que si se mantiene constante la presión de una muestra de materia,

mientras dura un cambio de fase no es posible modificar la temperatura del sistema

constituido por el conjunto de ambas fases. Sólo se produce un cambio en la cantidad de cada

fase presente en el conjunto.

3.1.- DIAGRAMAS DE FASE

Los diagramas de fase son proyecciones de la superficie PvT sobre cada uno de los planos

coordenados.

3.1.1.- Diagrama presión - volumen específico

Éste es el diagrama de fase más utilizado. Es la proyección de la superficie PvT sobre el plano

Pv (es decir, se obtiene proyectando dicha superficie ortogonalmente sobre el plano Pv, es

decir según la dirección del eje T).

Termodinámica Aplicada

Propiedades de una sustancia pura: primera parte Página 7

En la figura 3 se aprecian dos tipos de zonas: regiones monofásicas y regiones bifásicas. En las

regiones bifásicas el sistema es heterogéneo y está constituido por una mezcla en equilibrio

termodinámico de dos fases diferentes de la misma sustancia.

Para que sea posible el equilibrio termodinámico entre dos fases diferentes de una misma

sustancia pura, se requiere que ambas se encuentren a la misma presión (equilibrio mecánico)

y a la misma temperatura (equilibrio térmico).

Saturación: Indica la coexistencia en equilibrio termodinámico de fases distintas de una misma

sustancia.

Figura 3. Diagrama P-v de una sustancia que se contrae al congelarse.

Cuando se suministra calor a presión constante a un sólido se observa un aumento de su

temperatura y, en general, un pequeño aumento de su volumen específico, hasta alcanzar la

curva de fusión, momento en el que aparece una primera gota de líquido (con un volumen

específico dado por la curva de congelación); a partir de este momento, y mientras coexistan

en equilibrio las fases sólido y líquido, el suministro de calor modifica las proporciones en que

ambas fases están presentes pero no la temperatura a la que coexisten; una vez desaparecida

totalmente la fase sólida, se observa que la aportación de calor determina de nuevo un

aumento de temperatura y, en general, un pequeño aumento del volumen específico, hasta

alcanzar la curva de líquido saturado o curva de puntos de burbuja, momento en el que

aparece una primera burbuja de vapor (con un volumen específico dado por la curva de vapor

saturado o curva de puntos de rocío); a partir de este momento, y mientras coexistan en

equilibrio las fases líquido y vapor, el suministro de calor modifica las proporciones en que

ambas fases están presentes pero no la temperatura a la que coexisten; una vez desaparecida

totalmente la fase líquida, se observa que la aportación de calor determina de nuevo un

aumento de la temperatura y también notables aumentos en el volumen específico del vapor.

En las regiones en las que coexisten en equilibrio dos fases de una misma sustancia, las curvas

isotermas deben coincidir con las isóbaras, lo que determina que en el diagrama Pv ambas

sean rectas horizontales en estas regiones. Por idéntica razón, las zonas bifásicas de la

superficie PvT son necesariamente superficies regladas de directriz paralela al eje v.

Termodinámica Aplicada

Propiedades de una sustancia pura: primera parte Página 8

Cuando se produce la coexistencia en equilibrio de dos fases diferentes de la misma sustancia

la temperatura y presión de equilibrio no son independientes, sino que entre ambas existe una

relación funcional (característica de la sustancia considerada),

( , ) 0sat sat

T Pφ =

Dentro de la región húmeda (o campana húmeda) lo que se tiene es una mezcla en equilibrio

de líquido saturado y vapor saturado, que recibe el nombre de vapor húmedo.

Para hallar el valor medio de cualquier propiedad específica de la mezcla líquido-vapor se

necesita conocer la proporción de líquido y de vapor en la mezcla. Para ello se introduce el

concepto de calidad (también recibe el nombre de título del vapor húmedo): la calidad, o

título, es la relación entre la masa de vapor y la masa total de la muestra,

vapor g

total g f

m mCalidad x

m m m= = =

+

Subíndice g: estado de vapor saturado Subíndice f: estado de líquido saturado.

La calidad siempre es un número comprendido entre 0 y 1. Frecuentemente se expresa en

tanto por ciento.

El valor medio de cualquier propiedad específica z de un vapor húmedo con calidad x viene

dada por

(1 )· · ·( )f g f g f

z x z x z z z x z z= − + ⇔ = + −

El agua es una sustancia con un comportamiento anómalo: se dilata al congelar; además, su

densidad aumenta de forma monótona entre 0˚C y 4˚C y después ya disminuye

monótonamente con la temperatura.

3.1.1.- Punto crítico

Durante los cambios de fase líquido - vapor a bajas presiones, el volumen específico de la fase

gaseosa es muy superior al de la fase líquida, por lo que se produce una separación de fases

claramente observable. Sin embargo, a medida que crece la presión el volumen específico del

vapor saturado disminuye y el del líquido saturado aumenta, de modo que la diferencia entre

ambos es cada vez menor y, por tanto, la separación entre fases se hace cada vez menos

nítida.

Al alcanzarse una determinada presión, denominada presión crítica (que es característica de

cada sustancia) los volúmenes específicos de ambas fases se igualan y no se produce

Termodinámica Aplicada

Propiedades de una sustancia pura: primera parte Página 9

separación de fases alguna. La temperatura de saturación que corresponde a la presión crítica

se denomina temperatura crítica y ambas determinan el punto crítico de la sustancia en

cuestión.

En el diagrama Pv el punto crítico corresponde al vértice de la campana líquido – vapor y la

isoterma crítica presenta en él un punto de inflexión de tangente horizontal,

2

20

c cT T T T

P P

v v= =

∂ ∂ = = ∂ ∂

Si se comprime un gas, manteniendo constante su temperatura en un valor por encima de la

crítica, no es posible proceder a su licuación; es decir, un gas puede licuarse por compresión

isoterma sólo si su temperatura es inferior a la crítica.

3.1.2.- Punto triple

Se denominan así a los estados en los que coexisten en equilibrio tres fases de la misma

sustancia.

En la superficie PvT se aprecia que todos los estados triples están situados sobre una recta, de

presión y temperatura constantes, denominada línea triple.

La coexistencia en equilibrio termodinámico de tres fases diferentes de la misma sustancia sólo

se puede dar a una temperatura y presión determinadas.

Como ya se mencionó en el tema 1, el punto triple del agua se utiliza como punto de referencia

para establecer la escala kelvin de temperatura (273,16K)

Tabla 1. Datos del punto triple de algunas sustancias.

Sustancia Temperatura (K) Presión (atm)

Agua (H2O) 273,16 0,006

Amoníaco (NH3) 195,40 0,061

Dióxido de carbono (CO2) 216,55 5,10

Helio 4 2,17 0,050

Hidrógeno (H2) 13,84 0,070

Nitrógeno (N2) 68,18 0,124

Oxígeno (O2) 54,36 0,0015

Termodinámica Aplicada

Propiedades de una sustancia pura: primera parte Página 10

3.1.3.- Diagrama presión-temperatura

Es la proyección de la superficie PvT sobre el plano PT (es decir, se obtiene proyectando dicha

superficie ortogonalmente según la dirección del eje v).

Figura 4. Diagrama P-T de una sustancia que se contrae al solidificar.

(La línea a trazos es la curva de fusión / congelación para una sustancia que se expansiona al solidificar)

Las regiones bifásicas de la superficie se proyectan sobre el plano PT como líneas, al tratarse

de superficies regladas con directriz paralela al eje v.

• La línea triple se proyecta sobre el plano PT como un punto, denominado punto triple

de la sustancia en cuestión.

• La línea comprendida entre el punto triple y el punto crítico se denomina curva de

vaporización o curva de presión de vapor y separa la región correspondiente a estados

en fase líquida de la región correspondiente a estados en fase gaseosa (o fase vapor),

expresando la relación existente entre la presión y la temperatura durante la

coexistencia en equilibrio de ambas fases.

• La línea que termina en el punto triple se denomina curva de puntos de sublimación y

separa la región correspondiente a estados en fase sólida de la región correspondiente

a estados en fase gaseosa (o fase vapor), expresando la relación existente entre la

presión y la temperatura durante la coexistencia en equilibrio de ambas fases.

• La tercera línea, situada por encima del punto triple, se denomina curva de puntos de

fusión y separa la región correspondiente a estados en fase sólida de la región

correspondiente a estados en fase líquida, expresando la relación existente entre la

presión y la temperatura durante la coexistencia en equilibrio de ambas fases. Aunque

la curva de puntos de fusión es siempre casi vertical (lo que indica que la presión

influye poco en este cambio de fase, por ser el sólido y el líquido poco compresibles),

Termodinámica Aplicada

Propiedades de una sustancia pura: primera parte Página 11

su pendiente es positiva (curva creciente) cuando el volumen específico del líquido es

superior al del sólido (el líquido se contrae al congelar) y es negativa (curva

decreciente) cuando el volumen específico del líquido es inferior al del sólido (el

líquido se dilata al congelar).

Puesto que se podría llegar a un estado determinado en la región del líquido bien por

compresión isoterma de un vapor hasta alcanzar una presión superior a la de saturación a la

temperatura considerada o bien por enfriamiento isobárico de un vapor hasta una

temperatura inferior a la de saturación a la presión considerada, los estados incluidos en esta

región se denominan indistintamente de líquido comprimido (P>Ps) o de líquido subenfriado

(T<Ts).

Un estado situado en la zona gaseosa, al estar situado siempre a la derecha de la línea formada

por el conjunto de las curvas de puntos de vaporización y de puntos de sublimación,

representa siempre un vapor que se encuentra a una temperatura superior a la de saturación a

la presión considerada, por lo que los estados incluidos en esta región se denominan de vapor

sobrecalentado (T>Ts).

3.1.4.- Diagrama temperatura – volumen específico

Es la proyección de la superficie PvT sobre el plano Tv (es decir, se obtiene proyectando

ortogonalmente, según la dirección del eje P, dicha superficie).

Algunos comentarios sobre el diagrama T - v:

Las regiones monofásica y bifásica tienen posiciones similares a las correspondientes al

diagrama P v

Como en el caso anterior, en la región bifásica la presión y la temperatura no son propiedades

independientes entre sí. Por eso, las líneas de presión constante corresponden también a

líneas de temperatura constante y en el interior de la campana las isóbaras son rectas

horizontales.

Termodinámica Aplicada

Propiedades de una sustancia pura: primera parte Página 12

Figura 5. Diagrama T-v para el agua

3.2.- TABLAS DE PROPIEDADES DE LAS SUSTANCIAS PURAS

Las tablas de propiedades de las distintas sustancias han sido construidas a partir de

información experimental y proporcionan métodos para determinar los valores de

propiedades tales como el volumen específico, la densidad, la energía interna, la entalpía o la

entropía, en función de la presión y la temperatura.

3.2.1.- La función entalpía

La función termodinámica entalpía se define con la siguiente relación:

H U PV= +

La entalpía específica vendrá dada por:

h u P v= + ⋅

Por ser u, P y v propiedades termodinámicas, también lo será h. Es decir, para la

entalpía se cumple que es una característica del sistema y que su valor es independiente de

la historia del mismo.

3.2.2.- Tablas de vapor sobrecalentado.

Según se ha visto en el apartado anterior, la región de vapor sobrecalentado es una región

monofásica. Por ello, para determinar el estado de equilibrio serán necesarias 2 variables

intensivas. En general, se suele tomar la presión y la temperatura:

Termodinámica Aplicada

Propiedades de una sustancia pura: primera parte Página 13

( )( )( )( )

,

,

,

,

v f P T

u f P T

h f P T

s f P T

==

=

=

Las tablas proporcionan los valores de las propiedades termodinámicas en determinados

estados. De forma gráfica, es como si se dividiese la región de vapor sobrecalentado en una

cuadrícula. La tabla nos proporciona información sobre el valor de las propiedades

termodinámicas en los nodos de la cuadrícula.

Para calcular un estado no situado en uno de los nodos de la cuadrícula será necesario hacer

una interpolación lineal entre dos estados próximos, lo cual constituye habitualmente una

aproximación razonable.

Las tablas de vapor sobrecalentado aparecen al final del libro. Las más utilizadas en esta

asignatura son las que vienen dadas en unidades del SI:

• Vapor de agua: tabla A.14

• Refrigerante R134a: tabla A.18

• Nitrógeno N2: Tabla A.20

• Potasio K: tabla A.21

3.2.3.- Tablas de propiedades de saturación

En las tablas de saturación aparecen tabulados los valores de una propiedad específica (como

v, u, h y s) para los estados de líquido saturado y vapor saturado, bien sea en función la

temperatura o bien considerando como variable independiente la presión.

Para la unidad de masa de 2 fases, el valor medio de una propiedad (z) se determina sumando

la contribución de la fase vapor, ⋅g

x z y la de la fase líquida ( )− ⋅1f

x z :

( )= ⋅ + − ⋅( ) 1g f

z x x z x z

De forma alternativa, si se designa la diferencia entre las propiedades del líquido saturado y

del vapor saturado por el símbolo zfg, se tiene:

= −fg g f

z z z

Como combinación de las dos ecuaciones anteriores, se tiene:

Termodinámica Aplicada

Propiedades de una sustancia pura: primera parte Página 14

( )= + ⋅ − ⇒ = + ⋅( ) ( )f g f f fg

z x z x z z z x z x z

Para la energía interna y la entalpía:

( )( )1

1

x f g f fg

x f g f fg

u x u x u u x u

h x h x h h x h

= − ⋅ + ⋅ = + ⋅

= − ⋅ + ⋅ = + ⋅

La magnitud hfg se llama entalpía de vaporización, o calor latente de vaporización. Representa

la cantidad de energía requerida para vaporizar una unidad de masa de líquido saturado a una

temperatura o presión dadas.

Para el volumen específico, se tiene:

( )1x f g f fg

v x v x v v x v= − ⋅ + ⋅ = + ⋅

O reagrupando términos:

=−

x f

g f

v vx

v v

Esta ecuación tiene una clara interpretación gráfica: la calidad representa la razón entre

distancias horizontales en la región húmeda (regla de la palanca).

En sistemas de dos fases, fijada la temperatura queda automáticamente fijada la presión. Por

eso, los datos de saturación para v, u, h y s encuentran tabulados tomando como variable

independiente:

• O bien la temperatura de saturación.

• O bien la presión de saturación.

La variable independiente aparece siempre como un número entero, que se considerará un

valor exacto.

Las tablas de saturación aparecen al final del libro. Las más utilizadas en esta asignatura son las

que vienen dadas en unidades del SI:

• Agua en saturación:

o En función de la temperatura: tabla A.12

o En función de la presión: tabla A.13

• Refrigerante R134a:

Termodinámica Aplicada

Propiedades de una sustancia pura: primera parte Página 15

o En función de la temperatura: tabla A.16

o En función de la presión: tabla A.17

• Nitrógeno N2: tabla A.19

• Potasio: tabla A.21

3.2.4.- Tabla de líquido comprimido o subenfriado

No hay muchas tablas de líquido comprimido, sin embargo, como en las plantas de potencia se

suele emplear agua como fluido de trabajo, los valores del agua como líquido comprimido sí

son conocidos. En el texto base de la asignatura aparecen tabulados en la tabla A.15.

A una temperatura dada, la variación con la presión de los valores de las propiedades del

líquido comprimido es pequeña.

Los datos de líquido comprimido pueden aproximarse en muchos casos por los valores de la

propiedad en el estado de líquido saturado a la temperatura dada.

Para grandes diferencias de presión entre los estados de líquido saturado y líquido

comprimido, deben corregirse los valores de la entalpía del líquido saturado por su

dependencia con la presión.

3.2.5.- Selección de los datos apropiados de las propiedades

Los datos de entrada para leer en tablas suelen ser la presión o la temperatura y otro valor de

una propiedad, como v, u, h, o s, que en lo que sigue designaremos con el nombre genérico de

z.

Se recomienda en primer lugar examinar las tablas de saturación.

Tablas de Saturación

A una presión (o temperatura) dada, se utilizan las tablas de saturación para determinar zf y zg.

• Si zf < z < zg : el sistema es una mezcla de 2 fases.

La temperatura (o presión) es la correspondiente a su valor en saturación, que estará

fijado al habernos dado como dato la otra propiedad, es decir la presión (o

temperatura).

La calidad y otras propiedades se calculan con la ecuación ya conocida:

( )= + ⋅ − = + ⋅f g f f fg

z z x z z z x z

Termodinámica Aplicada

Propiedades de una sustancia pura: primera parte Página 16

• Si z<zf: el estado en estudio es un líquido subenfriado (o líquido comprimido).

• Si z > zg: el estado en estudio es un vapor sobrecalentado.

3.3.- LAS CAPACIDADES TÉRMICAS ESPECÍFICAS

De acuerdo con el postulado de estado, la relación entre una propiedad z y las propiedades

independientes x, y es:

( )= ,z f x y

Esta expresión es especialmente útil para la energía interna y la entalpía. Puesto que no son

directamente mensurables, el cambio en estas propiedades se podrá obtener en función del

cambio en las variables de estado adoptadas.

3.3.1.- Capacidad térmica específica a volumen constante

Para la energía interna:

( ),v T

u uu f T v du dT dv

T v

∂ ∂ = ⇒ = + ∂ ∂

La capacidad térmica específica a volumen constante, cv, se define como:

v

v

uc

T

∂ ≡ ∂

El valor de cv se mide experimentalmente. En un balance energético de un sistema cerrado,

homogéneo y de composición constante, que sólo puede intercambiar trabajo de expansión y

que experimenta un proceso a volumen constante ha de ser w=0, por lo que se tiene:

q u= ∆

Por tanto, los valores de cv pueden obtenerse midiendo el calor que es necesario transferir

para elevar en una unidad la temperatura de la unidad de masa de la sustancia considerada,

mientras se mantiene su volumen constante.

El cambio diferencial de la energía interna de una sustancia pura compresible en cualquier fase

vendrá dado por:

Termodinámica Aplicada

Propiedades de una sustancia pura: primera parte Página 17

v

T

udu c dT dv

v

∂ = + ∂

3.3.2.- Capacidad térmica específica a presión constante

Para la entalpía:

( ),P T

h hh f T P dh dT dP

T P

∂ ∂ = ⇒ = + ∂ ∂

la capacidad térmica específica a presión constante, cp, se define como:

p

P

hc

T

∂ ≡ ∂

El valor de cp se mide experimentalmente. En un balance energético de un sistema cerrado,

homogéneo y de composición constante, que sólo puede intercambiar trabajo de expansión y

que experimenta un proceso a presión constante, al ser

w P v= − ∆

se tiene

q P v u q h− ∆ = ∆ ⇒ =∆

Por tanto, los valores de cp se pueden obtener midiendo el calor que es necesario transferir

para elevar en una unidad la temperatura de la unidad de masa de la sustancia considerada,

mientras se mantiene la presión constante.

Por tanto, el cambio diferencial de la entalpía de una sustancia simple compresible en

cualquier fase vendrá dado por:

P

T

hdh c dT dP

P

∂ = + ∂

NOTA 1: Debe ponerse de manifiesto que las derivadas de propiedades con respecto a otras

propiedades son también propiedades del sistema.

Termodinámica Aplicada

Propiedades de una sustancia pura: primera parte Página 18

NOTA 2: Téngase en cuenta que “la unidad de temperatura” empleada para definir las

capacidades térmicas específicas es realmente “una unidad de diferencia de temperaturas”, y

no un valor de temperatura. Por ello, la capacidad específica puede expresarse indistintamente

en función de kelvin o grados Celsius, puesto que ambas unidades de temperatura tienen el

mismo tamaño. El mismo razonamiento se aplica obviamente a los grados Rankine frente a los

grados Fahrenheit.

Termodinámica Aplicada

Propiedades de una sustancia pura: segunda parte Página 1

Universidad Nacional de Educación a Distancia

Escuela Técnica Superior de Ingenieros Industriales

Departamento de Ingeniería Energética

INTRODUCCIÓN TERMODINÁMICA A LA ENERGÍA TÉRMICA APLICADA I.T.I. Electrónica Industrial (621110) I.T.I. Mecánica (631112) I.T.I. Electricidad (641114)

TEMA 3B: PROPIEDADES DE UNA

SUSTANCIA PURA. GASES IDEALES

Objetivos

Establecer relaciones entre presión, volumen, temperatura, energía interna, entalpía,

capacidad térmica específica a presión constante y capacidad térmica específica a volumen

constante, para:

• Gases ideales

• Sustancias incompresibles

Termodinámica Aplicada

Propiedades de una sustancia pura: segunda parte Página 2

Contenido

3.7.- ECUACIÓN TÉRMICA DE ESTADO DE GAS UN IDEAL ......................................................... 3

3.7.1.- Expresiones de la ecuación de los gases ideales (en moles): .................................... 4

3.7.2.- Expresiones de la ecuación de los gases ideales (en masa): ...................................... 4

3.7.- ENERGÍA INTERNA, ENTALPÍA Y CAPACIDADES TÉRMICAS ESPECÍFICAS DE LOS GASES

IDEALES...................................................................................................................................... 6

3.7.1.- Energía interna de un gas ideal .................................................................................. 6

3.7.2.- Entalpía de un gas ideal ............................................................................................. 7

3.7.3.- Relación de Mayer ..................................................................................................... 9

3.8.- ESTIMACIÓN DE PROPIEDADES DE GASES IDEALES .......................................................... 9

3.8.1.- Capacidades térmicas específicas de gases monoatómicos ...................................... 9

3.8.2.- Integración de expresiones algebraicas con cp y cv .................................................. 10

3.8.3.- Tablas de gas ideal ................................................................................................... 10

3.8.4.- Aproximación con valores medios de las capacidades térmicas ............................. 11

3.9.- ANÁLISIS ENERGÉTICO DE SISTEMAS CERRADOS Y EL MODELO DE GAS IDEAL ............. 12

3.10.- El factor de compresibilidad ......................................................................................... 14

3.11.- PROPIEDADES DE SUSTANCIAS INCOMPRESIBLES ........................................................ 14

3.11.1.- Variaciones de energía interna y entalpía ............................................................. 16

3.11.2.- Aproximaciones para sustancias incompresibles .................................................. 16

Termodinámica Aplicada

Propiedades de una sustancia pura: segunda parte Página 3

3.7.- ECUACIÓN TÉRMICA DE ESTADO DE GAS UN IDEAL

Como ya se indicó en el tema 1 (cuando se estableció la escala de temperatura del gas ideal),

todos los gases reales tienden al mismo comportamiento límite cuando la presión se hace

suficientemente pequeña:

0

·u

P

P vlím R

T→=

en donde u

R es una constante universal (es decir una constante cuyo valor sólo depende del

sistema de unidades empleado y no del gas considerado), que recibe el nombre de constante

de los gases ideales y cuyo valor es el siguiente

3

3

3

3

8,3147 ( · )

0,083147 · ( · )

8,3147 · ( · )

0,082060 · ( · )

1,9859 ( · )

0,7300 · / ( ·º )

1545 · / ( ·º )

1,986 / ( ·º )

u

f

kJ kmol K

bar m kmol K

kPa m kmol K

ata m kmol KR

kcal kmol K

ata ft lbmol R

ft lb lbmol R

Btu lbmol R

=

Un gas ideal es una sustancia hipotética que se comporta para cualquier valor de la presión y

de la temperatura como lo hacen los gases reales a presión nula. Evidentemente, para un gas

ideal, la relación entre las variables P, v y T, en todos los posibles estados de equilibrio, viene

dada por

· ·u

P v R T=

que recibe el nombre de ecuación térmica de estado del gas ideal. Aunque el concepto de gas

ideal es en realidad un modelo matemático y no algo con existencia real en la naturaleza, la

ecuación anterior describe con bastante aproximación el comportamiento térmico de los gases

reales a presiones bajas (para temperaturas del orden de la temperatura ambiente, la

aproximación suele ser aceptable en algunos casos para presiones de incluso 10 bar).

Termodinámica Aplicada

Propiedades de una sustancia pura: segunda parte Página 4

3.7.1.- Expresiones de la ecuación de los gases ideales (en moles):

Magnitudes extensivas

u

P V n R T⋅ = ⋅ ⋅

Magnitudes intensivas

uP v R T⋅ = ⋅

Siendo:

• n = número de moles del gas

• v = volumen molar

• Ru = constante universal de los gases, cuyo valor es el mismo independientemente del

gas ideal que se trate. Dicho valor dependerá únicamente de las unidades en que

venga expresado.

3.7.2.- Expresiones de la ecuación de los gases ideales (en masa):

Teniendo en cuenta que el número de moles viene dado por:

m

nM

=

Donde:

• n = número de moles

• m = masa

• M = masa molar

Se define la constante específica de cada gas como:

u

RR

M=

De esta forma, la ecuación de estado del gas ideal en unidades másicas queda:

Termodinámica Aplicada

Propiedades de una sustancia pura: segunda parte Página 5

· ·P v R T=

o bien

· · ·P V m R T=

Otras formas de escribir, en unidades másicas, la ecuación térmica de estado de un gas ideal

son

· u

P R T

RP V m T

M

= ρ⋅ ⋅⋅ = ⋅

Siendo:

• v = volumen específico, en kg/m3

• ρ= densidad, en m3/kg

• m = masa del gas, en kg

NOTA 1: El valor de la constante específica R es distinto dependiendo del gas del que se trate,

ya que esta constante depende de la masa molar de la sustancia.

Ejemplos:

• Para el aire

( ) 8,314 / ( · )28,97 / 29 / 0,2870 / ( · )

28,97 /aire aire

kJ kmol KM kg kmol kg kmol R kJ kg K

kg kmol= ≈ ⇒ = =

• Para el hidrógeno

2

8,314 / ( · )2,016 / 4,124 / ( · )

2,016 /H aire

kJ kmol KM kg kmol R kJ kg K

kg kmol= ⇒ = =

En la tabla A.2 del texto base aparece la masa molar de algunas sustancias.

NOTA 2: El valor de la temperatura que se utiliza en la ecuación de estado del gas ideal tiene

que estar SIEMPRE expresado en una escala absoluta, es decir o bien en la escala Kelvin o bien

en la escala Rankine (K ó ˚R)

Termodinámica Aplicada

Propiedades de una sustancia pura: segunda parte Página 6

Algunos comentarios sobre la ecuación de estado de los gases ideales

De acuerdo con la ecuación de estado del gas ideal, si un gas se comporta como gas ideal a

cualquier presión debe verificar que a temperatura constante, el producto de P·v es constante

e independiente de la presión (Ley de Boyle - Mariotte). Para un valor dado de la temperatura,

la diferencia entre el valor del producto ·P v a cada presión y el valor límite de este producto a

presión nula ( ·R T ) indica la discrepancia entre el comportamiento real del gas y el

correspondiente al modelo de gas ideal.

A veces no es necesario conocer la constante específica del gas, R, para calcular el valor de una

propiedad, simplemente hay que conocer el cociente de 2 valores de una propiedad a una

temperatura determinada:

2 2 1 1 2 2 1

2 1 1 1 2

· ··

P V P V V T P

T T V T P= ⇒ =

3.7.- ENERGÍA INTERNA, ENTALPÍA Y CAPACIDADES TÉRMICAS ESPECÍFICAS DE LOS GASES IDEALES

3.7.1.- Energía interna de un gas ideal

La experiencia indica que para cada una de las posibles fases de una sustancia pura

compresible (postulado de estado), la energía interna se puede expresar por medio de una

función del volumen específico y de la temperatura:

P·v

P

A una temperatura dada:

Gas Ideal

Gases

no ideales

En el límite,

todos los gases

se comportan como

un gas ideal

Termodinámica Aplicada

Propiedades de una sustancia pura: segunda parte Página 7

( , )u u v T=

que recibe el nombre de ecuación calórica de estado de la sustancia. Por otra parte, dentro

del conjunto de valores del volumen específico y de la temperatura que determinan la

existencia de la fase considerada, esta función es diferenciable, por lo que el cambio en la

energía interna viene dado por

· · · ·v

v T T

u u udu dT dv du c dT dv

T v v

∂ ∂ ∂ = + ⇒ = + ∂ ∂ ∂

En general, la capacidad térmica específica a volumen constante cv de una sustancia pura

compresible es una función de estado que depende, además de la naturaleza de la sustancia

considerada, del volumen específico y de la temperatura de la sustancia. El segundo término

de esta ecuación se refiere al cambio producido en la energía interna cuando el volumen se

incrementa en una unidad, manteniendo la temperatura constante, y también depende, en

general, del volumen específico y de la temperatura.

La experiencia indica que la energía interna de cualquier gas sólo depende de su temperatura

cuando la presión se hace suficientemente pequeña (Efecto Joule - Thomson); es decir, la

energía interna específica de un gas ideal es una función exclusiva de su temperatura y no

depende del volumen ocupado por el gas ideal,

( )u f T=

Por lo que, necesariamente, en cualquier cambio de estado infinitesimal ha de ser

( )·v

du c T dT=

o bien para un cambio de estado finito

2

12 1 ( )·

T

vT

u u u c T dT∆ = − = ∫

NOTA: El uso de esta ecuación no está restringido a procesos a volumen constante.

3.7.2.- Entalpía de un gas ideal

La experiencia indica que para cada una de las posibles fases de una sustancia pura

compresible (postulado de estado), la entalpía se puede expresar por medio de una función de

la temperatura y de la presión

Termodinámica Aplicada

Propiedades de una sustancia pura: segunda parte Página 8

( , )h h P T=

Por otra parte, dentro del conjunto de valores de la presión y de la temperatura que

determinan la existencia de la fase considerada, esta función es diferenciable, por lo que el

cambio en la entalpía viene dado por

· · · ·P

P T T

h h hdh dT dP dh c dT dP

T P P

∂ ∂ ∂ = + ⇒ = + ∂ ∂ ∂

En general, la capacidad térmica específica a presión constante cp de una sustancia pura

compresible es una función de estado que depende, además de la naturaleza de la sustancia

considerada, de la presión y de la temperatura. El segundo término de esta ecuación se refiere

al cambio producido en la entalpía cuando la presión se incrementa en una unidad,

manteniendo la temperatura constante, y también depende, en general, de la presión y de la

temperatura.

La entalpía de un gas ideal es función exclusivamente de su temperatura y no de su presión.

Esto se puede demostrar de forma muy sencilla:

Por definición:

Para un gas ideal se cumple:

h u P v

P v R T

= + ⋅

⋅ = ⋅

Por tanto, puesto que la energía interna de un gas ideal es una función exclusiva de su

temperatura, se tiene

( ) · ( ) ( )p p

h u T R T h h T c c T= + ⇒ = ⇒ =

Por lo que, necesariamente, en cualquier cambio de estado infinitesimal ha de ser

( )·P

dh c T dT=

o bien para un cambio de estado finito

2

12 1 ( )·

T

PT

h h h c T dT∆ = − = ∫

NOTA: El uso de esta ecuación no está restringido a procesos a presión constante.

Termodinámica Aplicada

Propiedades de una sustancia pura: segunda parte Página 9

3.7.3.- Relación de Mayer

v

p p v

du c dT

dh c dT c c R

dh du R dT

=

= ⇒ − = = + ⋅

Cuando las capacidades térmicas específicas vienen dadas en valores molares, el valor de R de

esta ecuación es Ru, la constante universal de los gases:

p v u

c c R− =

3.8.- ESTIMACIÓN DE PROPIEDADES DE GASES IDEALES

Se van a presentar a continuación distintas formas de evaluar las integrales que nos permiten

calcular los cambios en la energía interna y en la entalpía de un gas ideal:

2

1

2

1

2 1

2 1

( )·

( )·

T

vT

T

PT

u u u c T dT

h h h c T dT

∆ = − =∆ = − =

3.8.1.- Capacidades térmicas específicas de gases monoatómicos

Las capacidades térmicas específicas de los gases a presiones muy bajas reciben el nombre de

capacidades térmicas específicas de gas ideal o a presión cero. Se representan con el

subíndice cero:

,0

,0

P

v

c

c

Por la teoría cinética de los gases y la mecánica cuántica estadística se sabe que para un gas

ideal monoatómico ha de ser

( )

( )

= ⋅ = = ⋅ =

,0 _ _

,0 _ _

520,8 / ( · )

23

12,5 / ( · )2

P ugas monoatómico ideal

v ugas monoatómico ideal

c R kJ kmol K

c R kJ kmol K

Termodinámica Aplicada

Propiedades de una sustancia pura: segunda parte Página 10

En el caso particular de gases ideales monoatómicos, como P

c y v

c son constantes, pueden

sacarse fuera de la integral y se tiene

∆ = ∆ ⇒∆ = ∆∆ = ∆ ⇒∆ = ∆

3· ·

25

·2

v u

p u

u c T u R T

h c T h R T

3.8.2.- Integración de expresiones algebraicas con cp y cv

En otros casos, la integral anterior puede resolverse utilizando datos experimentales que

permiten expresar la capacidad térmica específica a presión constante de un gas ideal como

una función polinómica de la temperatura, del tipo

= + + + +,0 2 3 4· · · ·P

u

ca b T c T d T e T

R

donde los coeficientes del polinomio son constantes características del gas ideal considerado.

Algunas de estas expresiones aparecen en la tabla A.3 del texto base.

En muchas tablas se indica el intervalo de temperatura en el que es aplicable la ecuación.

También, el tanto por ciento máximo de error de una ecuación cuando se utiliza dentro del

intervalo de temperatura prescrito.

Nótese que, de acuerdo con la Relación de Mayer

= − + + + +,0 2 3 4( 1) · · · ·v

u

ca b T c T d T e T

R

3.8.3.- Tablas de gas ideal

Los cambios en la energía interna y la entalpía se pueden calcular directamente a partir de

valores tabulados de dichas magnitudes. Hay veces que es necesario interpolar linealmente en

dichas tablas.

Las tablas que aparecen en el texto son:

• Tabla A.5: aire.

• Tablas A.6 a A.11: nitrógeno (N2), oxígeno (O2), monóxido de carbono (CO), dióxido de

carbono (CO2), agua (H2O) e hidrógeno (H2).

Termodinámica Aplicada

Propiedades de una sustancia pura: segunda parte Página 11

¡OJO! En el texto base, los valores de u y h del aire están tabulados en base masa mientras que

para el resto de los gases ideales vienen tabulados en base molar.

Estos valores tabulados se han obtenido integrando las ecuaciones exactas de las capacidades

térmicas específicas:

ref

ref

T

ref v

T

T

ref p

T

u u c dT

h h c dT

= +

= +

Como se puede observar, siempre hay que fijar una referencia (como para cualquier otro tipo

de energía). La entalpía de referencia para los gases ideales del apéndice es: ( )0 0h T K= = ,

con lo cual la ecuación de la entalpía queda:

= + ∫0

( ) 0T

ph T c dT

Los valores de energía interna específica se generan a partir de los valores de entalpía

específica:

u h P v h R T= − ⋅ = − ⋅

3.8.4.- Aproximación con valores medios de las capacidades térmicas

El teorema de la media establece que

= −

= −

2

1

2

1

, 2 1

, 2 1

· ·( )

· ·( )

T

v v mT

T

P p mT

c dT c T T

c dT c T T

en donde cv,m y cp,m son respectivamente los valores medios de la capacidad térmica

específica a volumen constante y de la capacidad térmica específica a presión constante. Sin

embargo, el problema en la práctica real es la estimación de estos valores medios (puesto que,

de hecho, para conocer el valor exacto de la media resulta preciso conocer la variación de la

energía interna o de la entalpía en el correspondiente intervalo de temperatura).

Termodinámica Aplicada

Propiedades de una sustancia pura: segunda parte Página 12

En este caso, utilizando el subíndice “m” para el valor estimado de la capacidad térmica, es:

( ) ( )( ) ( )

2 1 ,

2 1 ,

v m

p m

u u T u T c T

h h T h T c T

∆ = − = ⋅∆∆ = − = ⋅∆

Existen 3 tipos de aproximaciones usualmente empleadas:

1.- Utilizar como valor promedio la media aritmética de las capacidades térmicas específicas a

las temperaturas extremas del intervalo considerado:

1 2,

1 2

,

( ) ( )

2( ) ( )

2

v v

v m

p p

p m

c T c Tc

c T c Tc

+ = + =

2.- Igual que en el caso anterior, pero evaluando las capacidades térmicas específicas a la

temperatura media del intervalo:

1 2,

1 2,

2

2

v m v

p m p

T Tc c

T Tc c

+ =

+ =

3.- Utilizando el valor de la capacidad térmica específica en el estado inicial, suponiéndolo

constante. Esto es útil cuando se desconoce el valor de la temperatura final:

( )

( )

,

,

v media v inicial

p media p inicial

c c T

c c T

= =

3.9.- ANÁLISIS ENERGÉTICO DE SISTEMAS CERRADOS Y EL MODELO DE GAS IDEAL

Las relaciones básicas que se emplearán en problemas para las propiedades de un gas ideal

son la ecuación térmica de estado, las ecuaciones calóricas de estado (para la energía interna o

para la entalpía) y la relación de Mayer:

Termodinámica Aplicada

Propiedades de una sustancia pura: segunda parte Página 13

v

p

p v

P v R T

du c dT

dh c dT

c c R

⋅ = ⋅ = = − =

Para gases monoatómicos y biatómicos, las expresiones anteriores pueden utilizarse hasta una

presión de 10 a 20 bar (o incluso presiones superiores cuando la temperatura es la ambiente o

superior a ésta).

Si el intervalo de temperatura es pequeño, las variaciones de energía interna y entalpía pueden

determinarse con bastante exactitud con capacidades térmicas específicas promedio:

,

,

v m

p m

u c T

h c T

∆ = ⋅∆∆ = ⋅∆

Para muchos gases, se han integrado las ecuaciones de du y dh, empleando datos precisos de

capacidades térmicas específicas y los resultados se han presentado en forma de tabla.

Con los datos de u, h, P

c y v

c , ya se puede aplicar el principio de conservación de la energía a

sistemas cerrados con gases a presiones relativamente bajas:

Q W U+ = ∆

Con variables específicas:

q w u+ = ∆

NOTA: una característica importante del diagrama Pv para gases ideales es que las líneas

isotermas son también líneas de energía interna constante y entalpía constante, ya que, según

se ha visto, estas dos funciones de estado dependen exclusivamente de la temperatura en el

caso de gases ideales.

Como consecuencia, las cinco propiedades importantes: P, v, T, u, h pueden representarse con

facilidad en el diagrama Pv de un gas ideal.

Termodinámica Aplicada

Propiedades de una sustancia pura: segunda parte Página 14

3.10.- EL FACTOR DE COMPRESIBILIDAD

No entra en el curso 2007/2008

3.11.- PROPIEDADES DE SUSTANCIAS INCOMPRESIBLES

Para muchos sólidos y líquidos, existen amplias zonas de la superficie PvT en las que la

variación del volumen específico resulta despreciable.

Hipótesis (buena aproximación): el volumen específico y la densidad para sólidos y líquidos

permanecen constantes.

Consecuencias

1. Ecuación de estado para estas dos fases:

v = constante

ó

ρ = constante

2. El trabajo PdV asociado con el cambio de estado de una sustancia incompresible es siempre

cero (al ser dV = 0).

3. La variación de energía interna de una sustancia incompresible viene dada por

P

v

Exclusivo del Gas Ideal!

T2(>T1)

T1

h2=constante

u2=constante

h1=constante

u1=constante

Termodinámica Aplicada

Propiedades de una sustancia pura: segunda parte Página 15

v v

T

udu c dT dv du c dT

v

∂ = + ⇒ = ∂

ya que al ser v constante es dv = 0, por lo que la energía interna de una sustancia

incompresible ha de ser función exclusiva de su temperatura.

En forma integral, por tanto:

2

12 1 ·

T

vT

u u u c dT∆ = − = ∫

4. Por definición de entalpía:

( )2 1 2 1 2 1h h u u v P P− = − + ⋅ −

Para un cambio de estado diferencial, a partir de la ecuación anterior:

( ) vdh du d P v du v dP c dT v dP= + ⋅ = + ⋅ = ⋅ + ⋅

O bien, comparando este resultado con la ya conocida expresión general del cambio de

entalpía:

· ·p

T

hdh c dT dP

P

∂ = + ∂

se deduce que para una sustancia incompresible es

P v

T

c c

hv

P

∂ ≈ ∂

5. De las dos ecuaciones anteriores, se deduce que las capacidades térmicas específicas a

volumen y a presión constante de una sustancia incompresible coinciden.

p v

c c c= =

Termodinámica Aplicada

Propiedades de una sustancia pura: segunda parte Página 16

3.11.1.- Variaciones de energía interna y entalpía

Las variaciones integrales de energía interna y entalpía vendrán dadas por:

( )

( ) ( )

2 1

1 2

2 1 2 1

1 2

inc

inc

u u c dT

h h c dT v P P

− = ⋅

− = ⋅ + ⋅ −

En la mayoría de sólidos y líquidos, la variación de c con la temperatura es muy pequeña. Por

eso, se puede poner:

( ) ( )( ) ( ) ( )

− ⋅ −

− ⋅ − + ⋅ −

2 1 2 1

2 1 2 1 2 1

minc

minc

u u c T T

h h c T T v P P

3.11.2.- Aproximaciones para sustancias incompresibles

Debido a que son prácticamente incompresibles, la energía interna de los líquidos subenfriados

puede considerarse función exclusiva de su temperatura (esta aproximación es aceptable para

presiones de hasta 25 bar). Por tanto, la energía interna de un líquido comprimido es muy

aproximadamente igual a la del líquido saturado a la misma temperatura. Esto es:

( )=�, , , , ,líq comp T líq sat T f Tu u u

En la entalpía, esta aproximación no es tan buena, puesto que hay que tener en cuenta el

término ( )2 1v P P⋅ − . Sin embargo, si el estado 2 representa el estado de líquido comprimido y

el estado 1 es el correspondiente al líquido saturado, se tiene:

( ) ( )+ ⋅ −� ,líquido comprimido a T, Pf T sat

h h v P P

Cuando se considera un líquido comprimido a una presión próxima a la de saturación

correspondiente a su temperatura (es decir cuando P – Psat no es muy grande), puede

despreciarse el producto ·( )sat

v P P− frente a la entalpía del líquido saturado a la misma

temperatura (puesto que el volumen específico del líquido es pequeño) y también se puede

considerar

( ) � ,líquido comprimido a T, Pf T

h h

Termodinámica Aplicada

Soluciones (Tema 3) Página 1

Universidad Nacional de Educación a Distancia

Escuela Técnica Superior de Ingenieros Industriales

Departamento de Ingeniería Energética

INTRODUCCIÓN TERMODINÁMICA

A LA ENERGÍA TÉRMICA APLICADA

I.T.I. Electrónica Industrial (621110) I.T.I. Mecánica (631112)

I.T.I. Electricidad (641114)

TEMA 3: PROPIEDADES DE UNA

SUSTANCIA PURA.

Ejercicios Propuestos: Soluciones

Solución:

Se considerará el sistema integrado por la masa total de agua contenida en el depósito,. Se

trata de un sistema cerrado. Puesto que las paredes del depósito son rígidas, el volumen del

sistema permanecerá constante y éste no podrá intercambiar trabajo de dilatación con su

entorno.

1.- Una mezcla líquido – vapor de agua se mantiene en un recipiente rígido a 60˚C. El

sistema se calienta hasta que su estado final es el punto crítico.

Determínense:

a) la calidad (o título) inicial de la mezcla líquido – vapor

b) la relación inicial entre los volúmenes ocupados por las fases líquido y vapor.

Termodinámica Aplicada

Soluciones (Tema 3) Página 2

DATOS:

Estado inicial:

Mezcla agua líquida – vapor de agua, es decir vapor húmedo, a T1 = 60 ˚C.

De acuerdo con las tablas de propiedades de saturación del agua:

1 1

3 31

31

( ) 0,1994

1,0172·10 /

7,671 /

s

f

g

P P T bar

v m kg

v m kg

= =

= =

Estado final:

Punto crítico.

De las tablas de propiedades de saturación del agua:

2

2

32

374,14

220,9

0,003155 /

T C

P bar

v m kg

= °

= =

PROCESO:

Se trata de un proceso de calentamiento isométrico (también llamado isocórico), es decir a

volumen constante, desde el estado inicial 1 hasta el estado final 2. Por tanto, el volumen

específico del vapor húmedo inicial será

31 2 0,003155 /v v m kg= =

P

V

P11

2

c 1

T=T1

f1 g1

a) La calidad (o título) del vapor húmedo inicial, viene dada por

31 1

1 1

1 1

0,0031551 0,0010172 2,138·10

7,671 0,0010172 7,670

f

g f

v vx x

v v

−− −= ⇒ = = ⇒

− −4

1 2,787·10x −=

b) El volumen inicialmente ocupado por la fase líquida viene dado por

1 1 1·(1 )·f fV m x v= −

mientras que el volumen inicialmente ocupado por la fase vapor es

Termodinámica Aplicada

Soluciones (Tema 3) Página 3

1 1 1· ·g gV m x v=

por tanto, dividiendo miembro a miembro ambas ecuaciones, se tiene

4 31 1 1 1

41 1 1 1

(1 )· (1 2,787·10 )·1,0172·10

· 2,787·10 ·7,671

f f f

g g g

V x v V

V x v V

− −

− −= ⇒ = ⇒ 1

1

0,4757f

g

V

V=

Solución:

Se considerará el sistema integrado por la masa de vapor de agua contenida inicialmente en el recipiente rígido. Se trata de un sistema cerrado. Puesto que el recipiente es rígido, el sistema no podrá intercambiar con su entorno trabajo de dilatación.

Si el vapor, que inicialmente se encuentra a una presión P1 = 15 bar y una temperatura T1

desconocida, comienza a condensar cuando se ENFRÍA hasta T2 = 180 ˚C (de acuerdo con las

tablas de propiedades de saturación del agua):

a) Inicialmente es vapor sobrecalentado, es decir 1 1 1( ) 198,3s

T T P T C> ⇔ > ° .

b) Finalmente se encontrará a una presión que será la de saturación a 180˚C:

2 2( ) 10,02s

P P T bar= = .

c) Puesto que el depósito (sistema cerrado ⇒ masa constante) es rígido (volumen constante), el volumen específico no varía durante el proceso, luego

31 2 1 2 1( ) 0,1941 /gv v v v T v m kg= ⇒ = ⇒ =

P

V

P2

1

2

c 1f1 g1

T=T1

T=198,3ºC

P1

Entrando en la Tabla de vapor de agua sobrecalentado (A.14) con P1 = 15 bar y v1 = 0,1941

m3/kg, se encuentra que la temperatura inicial buscada debe estar comprendida entre 360 ˚C

(v = 0,1899 m3/kg) y 400 ˚C (v = 0,2030 m3/kg). Interpolando se tiene

2.- Un recipiente rígido contiene vapor de agua a 15 bar y a una temperatura

desconocida. Cuando el vapor se enfría hasta 180˚C, éste comienza a condensar.

Estímense:

a) la temperatura inicial, en grados Celsius;

b) la variación en la energía interna, en kJ/kg.

Termodinámica Aplicada

Soluciones (Tema 3) Página 4

v (m3/kg) T (˚C)

0,1899 360

0,1941 T1

0,2030 400

1 360 0,1941 0,1899

400 360 0,2030 0,1899

T − −=

− −

luego

1 372,8T C= °

Por otra parte, también de la Tabla A.14, se tiene:

v

(m3/kg)

U (kJ/kg)

0,1899 2.884,4

0,1941 u1

0,2030 2.951,3

1 2.884,4 0,1941 0,1899

2.951,3 2.884,4 0,2030 0,1899

u − −=

− −

de donde

u1 = 2.906 kJ/ kg

De la Tabla A.12

2 (180º )gu u C= ⇒ u2 = 2.584 kJ/kg

de donde

2 1– 322 /u u kJ kg= −

Obsérvese que, al encontrarse el agua en el interior de un depósito rígido, no ha

intercambiado trabajo con su entorno durante el proceso y, por tanto, la disminución de

energía interna (322 kJ/kg) coincidirá con el calor CEDIDO por el vapor de agua hacia su

entorno al enfriarse.

Termodinámica Aplicada

Soluciones (Tema 3) Página 5

Solución:

Se considerará el sistema constituido por la masa total de refrigerante contenido en el

depósito. Se trata de un sistema cerrado. Puesto que las paredes del depósito son rígidas, el

sistema no podrá intercambiar trabajo de dilatación con su entorno.

Sean mf y mg, respectivamente, las masa de líquido y de vapor presentes en el interior del

depósito.

Puesto que V = 8,00 L, x = 0,20 y P = 200 kPa = 2,00 bar, de la Tabla A.17, se tiene

vf = 0,7532 · 10-3 m3/kg y vg = 0,0993 m3/kg

por lo que

= − + ⇒ = 3(1 )· · 0,0205 /f g

v x v x v v m kg

Luego

= ⇒ = 0,390V

m m kgv

a) Por tanto

= ⇒ =· 0,0780g gm x m m kg

Análogamente

= − ⇒ =

= ⇒ = =3

(1 )· 0,312

· 0,000235 0,235

f

f f f f

m x m m kg

V m v V m L

b) Finalmente

= 0,0294fV

V

Obsérvese que el líquido contenido en el depósito supone el 80% de la masa total de

refrigerante, pero sólo ocupa el 2,94% del volumen interior del depósito.

3.- Un depósito rígido, cuyo volumen interior es de 8,00 L, contiene refrigerante 134a a

200 kPa en forma de una mezcla líquido – vapor con una calidad del 20,00%.

Determínense:

a) la masa de vapor inicialmente presente;

b) la fracción del volumen total ocupado inicialmente por el líquido.

Termodinámica Aplicada

Soluciones (Tema 3) Página 6

Solución:

Se considerará el sistema constituido por la masa de agua contenida en el recipiente; se trata

de un sistema cerrado. Puesto que las paredes del recipiente son rígidas, el sistema no podrá

intercambiar trabajo de dilatación con su entorno.

DATOS:

Estado inicial:

31 11,694 / 0,3000v m kg P bar= ∧ =

De las tablas de propiedades de saturación del agua, se obtiene

3 3 31 1 1 1 1( ) 69,1º 1,0223·10 / 5,229 /s f gT T P T C v m kg v m kg

−= ⇒ = ∧ = ∧ =

a) Puesto que 1 1 1f gv v v< < , se trata de un vapor húmedo con un título o calidad dado

por

1 1

1 1

1 1

1,694 0,0010223 1,693

5,229 0,0010223 5,228

f

g f

v vx x

v v

− −= ⇒ = = ⇒

− − 1 0,3238x =

De las tablas de propiedades de saturación del agua, se obtiene

1 1289,20 / 2.468,4 /f gu kJ kg u kJ kg= ∧ =

Por tanto

1 1 1 1 1 1

1

(1 )· · (1 0,3238)·289,20 / 0,3238·2.468,4 /

994,9 /

f gu x u x u u kJ kg kJ kg

u kJ kg

= − + ⇒ = − + ⇒

⇒ =

y

1 1 1 1 1 1

1

(1 )· · (1 0,3238)·289,23 / 0,3238·2.625,3 /

1.045,7 /

f gh x h x h h kJ kg kJ kg

h kJ kg

= − + ⇒ = − + ⇒

⇒ =

4.- Un recipiente rígido contiene inicialmente agua con un volumen específico de 1,694

m3/kg a 0,3000 bar, suministrándose calor hasta que se alcanza una presión de 1,000

bar.

Determínense:

a) el título o calidad inicial de la mezcla líquido – vapor;

b) las variaciones en la energía interna y en la entalpía del agua, en kJ/kg.

NOTA: Represéntese, esquemáticamente, el proceso en un diagrama P-v.

Termodinámica Aplicada

Soluciones (Tema 3) Página 7

Estado final:

32 21,000 1,694 /P bar v m kg= ∧ =

De las tablas de propiedades de saturación del agua, se obtiene

3 32 2 2( ) 99,63º 0,0010432 / 1,694 /s f gT P C v m kg v m kg= ∧ = ∧ =

Puesto que 2 2gv v= , se trata de vapor saturado, luego

2 2 2 2.506,1 /g

u u u kJ kg= ⇒ =

y

2 2 2 2.675,5 /g

h h h kJ kg= ⇒ =

P

V

P2

P11

2

1

T1=69,1ºC

T2=99,6ºC

P1=0,300 bar

P2=1,000 bar

PROCESO:

Se trata de un proceso de calentamiento a volumen constante (isométrico o isocóro), por lo que el volumen específico del sistema habrá de permanecer constante. Durante el proceso el sistema recibe calor desde el entorno, pero no intercambia trabajo alguno.

b) Por tanto

1.511,2 /u kJ kg∆ =

y

1.629,7 /h kJ kg∆ =

Termodinámica Aplicada

Soluciones (Tema 3) Página 8

Solución:

Se considera el sistema cerrado constituido por la masa de agua considerada.

DATOS:

Estado inicial:

31 110 0,02645 /P bar v m kg= ∧ =

De las tablas de propiedades de saturación del agua se obtiene

31 1 1( ) 179,9º 0,0011273 / 0,1944 /s f gT P C v m kg v kJ kg= ∧ = ∧ =

Puesto que 1 1 1f gv v v< < , se trata de un vapor húmedo, con un título o calidad

− −= ⇒ = = ⇒ =

− −1 1

1 1 1

1 1

0,02645 0,0011273 0,025320,1310

0,1944 0,0011273 0,1933

f

g f

v vx x x

v v

Por tanto, de las tablas de propiedades de saturación del agua se obtiene

1 1 1 1761,68 / 2.583,6 / 762,81 / 2.778,1 /f g f gu kJ kg u kJ kg h kJ kg h kJ kg= ∧ = ∧ = ∧ =

Luego

= − + ⇒ =1 1 1 1 1 1(1 )· · 1000,38 /f g

u x u x u u kJ kg

y

= − + ⇒ =1 1 1 1 1 1(1 )· · 1.026,85 /f g

h x h x h h kJ kg

Estado final:

32 1 210 0,2060 /P P bar v m kg= = ∧ =

Puesto que 2 2gv v> , se trata de un vapor sobrecalentado. De la tabla de vapor

sobrecalentado, a 10,0 bar, se obtiene

2 2 2200º 2.621,9 / 2.827,9 /T C u kJ kg h kJ kg= ∧ = ∧ =

PROCESO:

5.- Una cierta cantidad de agua, que se encuentra inicialmente a 10 bar y cuyo volumen

específico inicial es de 0,02645 m3/kg, experimenta una expansión isobárica hasta

0,2060 m3/kg.

Determínense:

a) las temperaturas inicial y final del agua;

b) las variaciones en su energía interna y entalpía específicas, en kJ/kg.

NOTA: Represéntese, esquemáticamente, el proceso en un diagrama P-v.

Termodinámica Aplicada

Soluciones (Tema 3) Página 9

Se trata de un proceso de expansión isobárica (a presión constante).

P

V

1 2

1 g1

P1 P1= 10 bar

f1

T2=200ºCT1=180ºC

a) La temperatura inicial es, por tanto, la temperatura de saturación a P1 = 10 bar

1 179,9T C= °

mientras que la temperatura final es

2 200T C= °

b) La variación de energía interna es

∆ = 1.621,5 /u kJ kg

mientras que la variación de entalpía es

∆ = 1.801,04 /h kJ kg

Solución:

Se considerará el sistema constituido por la masa considerada de refrigerante; se trata de un

sistema cerrado.

DATOS:

6.- Una cierta masa de refrigerante 134a experimenta un proceso isotermo a 40˚C. La

presión inicial es de 4,0 bar y el volumen específico final de 0,010 m3/kg.

Determínense:

a) la presión final, en bar;

b) las variaciones en su energía interna y entalpía específicas, en kJ/kg.

NOTA: Represéntese, esquemáticamente, el proceso en un diagrama P-v.

Termodinámica Aplicada

Soluciones (Tema 3) Página 10

Estado inicial:

1 140º 4,0T C P bar= ∧ =

De las tablas de propiedades de saturación del refrigerante 134 a, se obtiene que

1( ) 8,93ºs

T P C= . Puesto que 1 1( )s

T T P> se trata de un vapor sobrecalentado. De las tablas de

vapor sobrecalentado de refrigerante 134 a, se obtiene:

31 1 10,05917 / 258,47 / 282,14 /v m kg u kJ kg h kJ kg= ∧ = ∧ =

Estado final:

32 240º 0,010 /T C v m kg= ∧ =

De las tablas de propiedades de saturación del refrigerante 134 a, se obtiene que 3 3 3

2 20,8714·10 / 0,0199 /f gv m kg v m kg−= ∧ = . Puesto que 2 2 2f gv v v< < , se trata de un

vapor húmedo, con un título o calidad dado por

−= = ⇒ =

−2 2

0,010 0,0008714 0,0090,5

0,0199 0,0008714 0,0190x x

De las tablas de propiedades de saturación del refrigerante 134 a, a T1 = 40˚C, se obtiene

2 2 2 2105,30 / 248,06 / 106,19 / 268,24 /f g f gu kJ kg u kJ kg h kJ kg h kJ kg= ∧ = ∧ = ∧ =

Por tanto

= − + ⇒ =2 2 2 2 2 2(1 )· · 177 /f g

u x u x u u kJ kg

y

= − + ⇒ =2 2 2 2 2 2(1 )· · 187 /f g

h x h x h h kJ kg

PROCESO:

Se trata de una compresión isoterma (es decir, a temperatura constante), en la que se

aumenta la presión del vapor sobrecalentado, y se disminuye su volumen específico, hasta

alcanzar la saturación a 40˚C (estado de vapor saturado), prosiguiendo después con la

disminución de volumen específico (a medida que se va produciendo la condensación del

vapor saturado) hasta alcanzar el estado final.

Termodinámica Aplicada

Soluciones (Tema 3) Página 11

P

V

2

1

2f2 g2

T=40ºC

1

P1

a) La presión final corresponde al valor de saturación a 40˚C, por tanto 2 10,16P bar=

b) Las variaciones en la energía interna y entalpía son:

∆ = −81 /u kJ kg

y

∆ = −95 /h kJ kg

Solución:

Se considerará el sistema formado por la masa de agua contenida en el interior del cilindro; se

trata de un sistema cerrado. Puesto que las paredes del cilindro son rígidas, y también lo es el

pistón de cierre, el único tipo de trabajo que el sistema puede intercambiar con su entorno es

el de expansión debido al desplazamiento del pistón. Puesto que las paredes del cilindro son

metálicas, por tanto buenas conductoras del calor, el sistema podrá intercambiar calor con su

entorno.

DATOS:

• La sustancia considerada es agua.

7.- Se considera un cilindro fijo y rígido, de paredes metálicas, provisto de un pistón

también rígido y que puede desplazarse en el interior del cilindro con rozamiento

despreciable. El cilindro contiene una cierta cantidad de agua, que inicialmente, a la

presión de 1,0 MPa, ocupa un volumen de 1.234 cm3, siendo el volumen específico inicial

de 0,2678 m3/kg. El agua se comprime a presión constante, según un proceso

cuasiestático, hasta que se convierte en vapor saturado.

Hállense:

a) Las temperaturas inicial y final, en grados Celsius.

b) Las variaciones en la energía interna y entalpía, en kJ.

c) El trabajo desarrollado y el calor absorbido, en kJ.

NOTA: Represéntese, esquemáticamente, el proceso en un diagrama P-v.

Termodinámica Aplicada

Soluciones (Tema 3) Página 12

• El proceso es cuasiestático y no hay rozamiento entre el cilindro y el pistón de cierre. Por tanto, puesto que también el pistón de cierre se debe encontrar permanentemente en equilibrio, la presión exterior ejercida por el entorno sobre el pistón de cierre habrá de ser siempre idéntica a la presión ejercida por el agua sobre la cara interna de aquél.

P· A Pext · A

Estado inicial:

1 1,000 10,00 1.000P MPa bar kPa= = =

31 0,2678 /v m kg=

−− −= = ⇒ = ⇒ = ⇒ =

3 33 6 3 31

1 31

1,234·101.234 1,234·10 4,608·10

0,2678 /

mVV cm m m m m kg

v m kg

De las tablas de propiedades de saturación del agua se obtiene que a 1 10,00P bar=

es

3 3 31 11,1273·10 / 0,1944 /f gv m kg v m kg

−= ∧ =

Puesto que 1 1gv v> , se trata de un vapor sobrecalentado.

Estado final:

Vapor saturado

2 1P P=

P

V

P12 1

1

PROCESO:

Se trata de un proceso cuasiestático, sin efectos disipativos (no hay rozamientos) e isobárico (a

presión constante).

Termodinámica Aplicada

Soluciones (Tema 3) Página 13

a) De las tablas de vapor de agua sobrecalentado, se obtiene

1 320T C= °1 12.826,1 / 3.093,9 /u kJ kg h kJ kg∧ = ∧ =

Mientras, que de las tablas de propiedades de saturación del agua, se obtiene

2 2 1( ) ( )s s

T T P T P= = ⇒ 2 179,9T C= °

2 22.583,6 / 2.778,1 /u kJ kg h kJ kg= ∧ =

b) Por tanto

242,5 / 315,8 /u kJ kg h kJ kg∆ = − ∧ ∆ = −

∆ = ∆ ⇒·U m u ∆ = −1,117U kJ

∆ = ∆ ⇒·H m h ∆ = −1,455H kJ

c) Puesto que se trata de un proceso cuasiestático, sin efectos disipativos e isobárico, en

el que sólo se puede intercambiar trabajo de dilatación, habrá de ser

= ∆ = ∆ ⇒·Q H m h31,455·10Q kJ−= −

Efectuando un balance energía, se tiene

·U Q W W U Q W m u Q∆ = + ⇒ = ∆ − ⇒ = ∆ −

por tanto

−= − − − ⇒34,608·10 ·( 242,5 / ) ( 1,455 )W kg kJ kg kJ = 0,338W kJ

Obsérvese que el trabajo es realizado por el entorno sobre el sistema (entrante en el

sistema), mientras que el calor es cedido por el sistema a su entorno (saliente del sistema).

Solución:

8.- Un tanque de paredes rígidas, cuyo volumen interior es de 2.560 L, contiene

inicialmente vapor de agua saturado a 5,00 bar. Un enfriamiento del agua origina una

caída de presión hasta 1,00 bar.

Determínense, para el estado final de equilibrio:

a) la temperatura, en grados Celsius;

b) el título o calidad final del vapor;

c) el cociente entre la masa de líquido y la masa de vapor;

d) la cantidad de calor intercambiada entre el agua y su ambiente.

NOTA: Represéntese, esquemáticamente, el proceso en un diagrama P-v.

Termodinámica Aplicada

Soluciones (Tema 3) Página 14

Se considerará el sistema constituido por la masa de agua contenida en el interior del tanque;

se trata de un sistema cerrado. Puesto que las paredes del tanque son rígidas, el volumen

permanecerá constante durante el proceso.

DATOS:

• La sustancia considerada es agua.

• Volumen del sistema: 32.560 2,560V L m= = (constante)

Estado inicial:

• 1 5,00P bar=

• Vapor saturado 31 1 1 1 1 1( ) 151,9º 0,3749 /

s gT T P T C v v v m kg⇒ = ⇒ = ∧ = ⇒ =

3

31

2,5606,828

0,3749 /

mVm m m kg

v m kg= ⇒ = ⇒ =

Estado final:

• 2 1,00P bar=

• 2 1v v=

De las tablas de propiedades de saturación del agua, se obtiene que, a 2 1,00P bar= ,

es

3 3 32 21,0432·10 / 1,694 /f gv m kg v m kg

−= ∧ =

Puesto que 2 2 2f gv v v< < , se trata de un vapor húmedo.

PROCESO:

Se trata de un proceso isométrico (proceso a volumen constante, también llamado isócoro),

puesto que las paredes del recipiente son rígidas. Por tanto, al no poder variar el volumen total

ocupado por el agua, ésta no podrá intercambiar con su entorno trabajo de expansión.

P

V

P12

1

1

T2=99,6ºC

T1=152ºC

P=P2=1,000 bar

P=P1=5,000 bar

a) Por tratarse de un vapor húmedo, se tiene

Termodinámica Aplicada

Soluciones (Tema 3) Página 15

2 2( )s

T T P= ⇒ 2 99,63T C= °

b) El título de este vapor es

32 2

2 2 32 2

0,3749 1,0432·10

1,694 1,0432·10

f

g f

v vx x

v v

− −= ⇒ = ⇒

− − 2 0,2208x =

c) Para el estado final, se tiene

2 2

2 2

(1 )·

·

f

g

m x m

m x m

= −

=

2 2

2 2

1f

g

m x

m x

−⇒ = ⇒ 2

2

3,529f

g

m

m=

d) Efectuando un balance de energía, al ser 0W = , se tiene

·Q U m u= ∆ = ∆

De las tablas de propiedades de saturación del agua, se obtiene

1 2.561,2 /gu kJ kg=

2 2417,36 / 2.506,2 /f gu kJ kg u kJ kg= ∧ =

Por tanto

1 1 1

2 2 2 2 2 2

2.561,2 /

(1 )· · 878,5 /

g

f g

u u u kJ kg

u x u x u u kJ kg

= ⇒ =

= − + ⇒ =

luego

1.682,7 /u kJ kg∆ = −

y

11.490Q kJ= −

Solución:

9.- Una cierta cantidad de refrigerante 134a tiene un volumen específico de 0,02500

m3/kg a la presión de 0,5000 MPa (estado 1). Se expansiona a temperatura constante

hasta que la presión cae a 0,2800 MPa (estado 2). Finalmente, se enfría a presión

constante hasta que se convierte en vapor saturado (estado 3). Para cada una de las

etapas del proceso descrito, determínense:

a) Las variaciones en el volumen específico, en m3/kg.

b) Las variaciones en la energía interna y en la entalpía, en kJ/kg.

Termodinámica Aplicada

Soluciones (Tema 3) Página 16

Solución:

P(bar)

v

80°C

40°C

2

1

50

0,07384

0,4739

SISTEMA:

La masa de agua objeto de estudio.

DATOS:

Estado Inicial:

○1

1 1 1

3 31 1

1 11

1 1

( ) 0,07384

( ) 1,0078 10 /

( ) 167,56 /40

( ) 167,57 /

s

f

f

f

P P T P bar

v v T m kgLíquido Saturado

u u T kJ kgT C

h h T kJ kg

= ⇒ = = ⇒ ×

⇒ = ⇒= ° = ⇒

Estado Final:

○2 2

2

2

50( ) 264

80 s

P barT P C

T C

=⇒ = °

= °

2 2( )s

T T P< ⇒ Se trata de LÍQUIDO SUBENFRIADO O COMPRIMIDO.

(a) Utilizando las tablas de propiedades del agua, líquido subenfriado, se tiene:

10.- Se comprime agua líquida saturada a 40˚C hasta una presión de 50 bar y

temperatura de 80˚C. Determínense las variaciones en el volumen específico, energía

interna y entalpía:

a) utilizando la tabla de líquido comprimido;

b) utilizando como aproximación los datos de saturación a la misma temperatura.

NOTA: Represéntese, esquemáticamente, el proceso en un diagrama P-v.

Termodinámica Aplicada

Soluciones (Tema 3) Página 17

3 3 5 32

2

2

1,0268 10 / 1,90 10 /

333,72 / 166,16 /

338,85 / 171,28 /

v m kg v m kg

u kJ kg u kJ kg

h kJ kg h kJ kg

− − = × ⇒ ∆ = ×

= ⇒ ∆ = = ⇒ ∆ =

(b) Utilizando como aproximación, los datos del líquido saturado a 80˚C: 3 3 5 3

2

2

2

1,0291 10 / 2,13 10 /

334,86 / 167,30 /

334,91 / 167,34 /

v m kg v m kg

u kJ kg u kJ kg

h kJ kg h kJ kg

− − × ⇒∆ = ×

⇒ ∆ = ⇒ ∆ =

Como puede observarse el error cometido es en todos inferior al 1,5%.

Solución:

P V , m, FresQ

DATOS:

• Estado inicial: m = 1,36 g = 1,36x10-3 kg; P1 = 2,00 bar; V1 = 233 cm3 = 2,33x10-4 m3

• Estado final: P2 = 10,0 bar; V2 = V1 = 2,33x10-4 m3

• Proceso: Calentamiento a volumen constante de un sistema cerrado, por la aportación

de un flujo de calor constante Q� = 250 kJ/min.

REPRESENTACIÓN ESQUEMÁTICA EN DIAGRAMA P-v:

11.- Se considera un cilindro fijo y rígido, de paredes metálicas, provisto de un pistón

también rígido y que puede desplazarse en el interior del cilindro con rozamiento

despreciable. El cilindro contiene 1,36 g de agua que inicialmente, a la presión de 2,00

bar, ocupan un volumen de 233 cm3. El pistón está apoyado sobre unos resaltes y sobre

él actúa un muelle, de forma que no puede desplazarse hasta que la presión interior

alcance un valor mínimo de 10,0 bar. Se transfiere al agua un flujo de calor constante de

250 kJ/min.

Determínense:

a) el calor suministrado hasta que el pistón comienza a moverse;

b) el tiempo transcurrido, en minutos, hasta que el pistón comienza a moverse.

NOTA: Represéntese, esquemáticamente, el proceso en un diagrama P-v.

Termodinámica Aplicada

Soluciones (Tema 3) Página 18

El volumen específico del agua durante el proceso es

4 331

1 13

2,33 100,171 /

1,36 10

V mv v m kg

m kg

×= = ⇒ =

×

A la presión inicial 1 2,00P bar= es

3 3 31 1 1120,2º 1,0605 10 / 0,8857 /s f gT C v m kg v m kg

−= ∧ = × ∧ =

y puesto que

1 1 1f gv v v< <

el agua en el estado inicial es un vapor húmedo con un título (o calidad)

1 1

1 1

1 1

0,171 0,00106050,192

0,8857 0,0010605

f

g f

v vx x

v v

− −= = ⇒ =

− −

A la presión final 2 10,0P bar= es

3 3 32 2 2179,8º 1,1273 10 / 0,1944 /s f gT C v m kg v m kg

−= ∧ = × ∧ =

y puesto que

2 1 2f gv v v< <

en el estado final el agua también es un vapor húmedo, pero ahora su título es

1 2

2 2

2 2

0,171 0,00112730,879

0,1944 0,0011273

f

g f

v vx x

v v

− −= = ⇒ =

− −

P

V

P2

P11

2

c 1

T=TS2

T=TS1

Obsérvese que el volumen específico crítico del agua es

310,003155 /cv m kg v= <

luego la línea de volumen constante considerada es una recta vertical situada a la derecha del punto crítico.

RESOLUCIÓN DEL PROBLEMA:

Efectuando un balance de energía, se tiene

Termodinámica Aplicada

Soluciones (Tema 3) Página 19

1 2 1 2 1 2 2 1 1 2·( )U Q W U Q m u u Q− − − −∆ = + ⇒ ∆ = ⇒ − =

puesto que al mantenerse el volumen constante durante el proceso ha de ser

1 2 0W − =

Por otra parte, puesto que

1 1

2 2

504,49 / 2.529,5 /

761,68 / 2.583,6 /

f g

f g

u kJ kg u kJ kg

u kJ kg u kJ kg

= ∧ =

= ∧ =

se tiene

1 1 1 1 1

1

(1 )· · (0,808·504,49 0,192·2.529,5) /

893 /

f gu x u x u kJ kg

u kJ kg

= − + = + ⇒

⇒ =

y

2 2 2 2 2

2

(1 )· · (0,121·761,68 0,879·2.583,6) /

2.363 /

f gu x u x u kJ kg

u kJ kg

= − + = + ⇒

⇒ =

a) Por tanto

31 2 1,36 10 ·(2.363 893) /Q kg kJ kg−− = × − ⇒ 1 2 2,00Q kJ− =

b) Puesto que

1 2 ·Q Q t− = ∆�

siendo t∆ el tiempo transcurrido, se tiene

1 2 2,00

250 / min

Q kJt

Q kJ

−∆ = = ⇒�

38,00 10 mint−∆ = × ⇒∆ =( 0,48 )t s

Solución:

DATOS:

Estado inicial:

Puesto que una parte del volumen inicial (91,5%) es líquido, el resto del volumen inicial (

1 100V L= ) estará constituido por vapor, ambos saturados a 1 77,24T K= . Luego la presión en

12.- Un recipiente de paredes rígidas, insuficientemente aislado, contiene 100 L de

nitrógeno en equilibrio, inicialmente a 77,24 K, y está dotado de una cápsula de cierre

que rompe cuando la presión interior alcanza un valor de 400 kPa. El 91,5 % del volumen

está inicialmente ocupado por líquido. El nitrógeno absorbe calor del ambiente a un

ritmo de 300 J/min. Hállese el tiempo, en horas, que debe transcurrir hasta la rotura de

la cápsula de cierre.

Termodinámica Aplicada

Soluciones (Tema 3) Página 20

el estado inicial será la de saturación a 1T , es decir 1 1,00P bar= . El volumen inicialmente

ocupado por el vapor saturado de nitrógeno es

1 1 1 1100 91,5 8,5g f g

V V V L L V L= − = − ⇒ =

De la Tabla de Propiedades del nitrógeno en saturación, se obtiene

1 1 1 11,238 / 219,1 / 22,0 / 154,9 /f g f gv L kg v L kg u kJ kg u kJ kg= ∧ = ∧ = − ∧ =

luego

1

1 1

1

1

1 1

1

91,573,9

1,238 /

8,50,039

219,1 /

f

f f

f

g

g g

g

V Lm m kg

v L kg

V Lm m kg

v L kg

= = ⇒ =

= = ⇒ =

por tanto

1 1 73,9 0,039 73,9f gm m m kg kg m kg= + = + ⇒ =

Por otra parte, es

[ ]1 1 1 1 1

1

· · 73,9·( 22,0) 0,039·154,9

1620

f f g gU m u m u kJ

U kJ

= + = − + ⇒

⇒ = −

PROCESO:

Puesto que durante el proceso aún no ha roto la cápsula de cierre, dicho proceso consiste en el

calentamiento de una masa 73,9m kg= de nitrógeno líquido (sistema cerrado) desde el

estado inicial dado hasta que se alcance la presión 2 400 4,00P kPa bar= = de rotura de la

cápsula de cierre. Durante este proceso el volumen permanece constante, puesto que el

recipiente es de paredes rígidas.

NOTA: El proceso considerado en este problema se emplea con frecuencia (como alternativa a

una válvula de seguridad, puesto que resulta más económico) para proteger un recipiente

contra posibles sobrepresiones: la cápsula de cierre (también conocida como disco de rotura)

está construida con un material cuya resistencia a la rotura es inferior a la del recipiente, de

modo que al romper la cápsula permite la evacuación a la atmósfera de parte del contenido

del recipiente, aliviando así la presión interior e impidiendo la rotura del mismo; de este modo,

después del incidente basta con reponer el disco de rotura y no todo el depósito. La rotura de

la cápsula de cierre también puede producirse por fusión de la misma al alcanzarse una

determinada temperatura, denominándose entonces tapón fusible.

Estado final:

En el estado final es 2 4,00P bar= . Por otra parte, durante todo el proceso, según se ha dicho,

el volumen permanece constante, por lo que

Termodinámica Aplicada

Soluciones (Tema 3) Página 21

Obsérvese que el volumen específico crítico del nitrógeno es 13,202 /c

v L kg v= > , por lo que

la línea de volumen constante, en el diagrama P-v, será una recta vertical situada a la izquierda

del punto crítico.

De la tabla de propiedades del nitrógeno en saturación, se tiene

2 2 2 21,352 / 60,0 / 7,1 / 161,5 /f g f gv L kg v L kg u kJ kg u kJ kg= ∧ = ∧ = ∧ =

luego

2 2

2 2 2 2

2 2

1,353 1,3520,00

60,0 1,352

f

f

g f

v vx x u u

v v

− −= = ⇒ = ⇒ ≅

− −

Por tanto

2 2 2· 73,9 ·7,1 / 520U m u kg kJ kg U kJ= = ⇒ =

P

V

P2

P11

2

T=TS1

1 c

RESOLUCIÓN DEL PROBLEMA:

Efectuando un balance de energía, se tiene

1 2 1 2 1 2U Q W U Q− − −∆ = + ⇒∆ =

puesto que al permanecer el volumen constante durante el proceso no hay intercambio alguno

de trabajo ( 1 2 0W − = ), por tanto

1 2 2 1 1 2520 ( 1620 ) 2.140Q U U kJ kJ Q kJ− −= − = − − ⇒ =

Puesto que

1 2 ·Q Q t− = ∆�

siendo t∆ el tiempo transcurrido desde que comienza el calentamiento, se tiene

= = = ⇒ =2 1 2

1001,35 /

73,9

V Lv v v L kg

m kg

Termodinámica Aplicada

Soluciones (Tema 3) Página 22

1 2 2.140

300 / min

Q kJt

Q kJ

−∆ = = ⇒�

∆ = =7,13min 0,119t h

Solución:

ε

Ι

τ

n

SISTEMA:

El agua contenida en el recipiente. Es un sistema cerrado y adiabático (Q=0).

1 1

50,00

2 5050,00 5,236

60

100,0

10,00

N m

n rpm s s

I A

V

− −

=

= ⇒ = =

=

=

i

i�

τπ

ω

ε

DATOS:

13.- Un recipiente de paredes rígidas y térmicamente aisladas, contiene 2,000 kg de

agua, que inicialmente ocupan un volumen de 1,000 m3 a 30,00˚C. Una rueda de paletas

situada en el interior del recipiente, movida por un motor, gira a 50,00 rpm con un par

aplicado constante de 50,00 N·m, a la vez que una resistencia eléctrica, también situada

en el interior del recipiente, recibe una corriente de 100,0 A desde una fuente de 10,00 V.

Determínense:

a) el tiempo, en minutos, requerido para evaporar todo el líquido contenido en el

recipiente;

b) la presión, en bar, en el interior del recipiente en ese instante.

Termodinámica Aplicada

Soluciones (Tema 3) Página 23

3 3

3

2,0000,5000 / 0,003155 / ( )

1,000c

m kg Vv m kg v m kg volumen crítico

mV m

= ⇒ = = > =

=

Estado inicial:

3 31

1 31

( ) 1,0043 10 /30,00

( ) 32,894 /fo

g

v T kg mT C

v T kg m

− = ×= ⇒

=

1 1( ) ( )f gv T v v T< < ⇒ vapor húmedo de título 1

1

1 1

0,5000 0,00100,01517

32,894 0,001

f

g f

v vx

v v

− −= = =

− −.

( )1

1 1 1 11

125,78 /160,53 /

2.416,6 /f

f g f

g

u kJ kgu u x u u kJ kg

u kJ kg

=⇒ = + − = =

i

P

v

T2

T1=30°C

2

1

P2

P1

vc

Estado final:

2 1v v

vapor saturado

=

gv P sT gu

0,5243 3,50 138,9 2546,9

0,5000 2P ( )2sT P 2u

0,4625 4,00 143,6 2553,6

Interpolando:

22 2( ) 138,93,50 2.546,9 0,02430,393

0,50 4,7 6,7 0,0618s

T PP u−− −= = = =

Termodinámica Aplicada

Soluciones (Tema 3) Página 24

De donde

(b)

2 3,70P bar=

Y además

( )2 140,7sT P C= °

2 2.549,5 /u kJ kg=

(a)

( )pal el pal el

pal el

U Q W U W W W U W W t

m ut

W W

∆ = + ⇒∆ = = + ⇒∆ = + ∆

∆⇒∆ =

+

� � i

� �

1

2.389,0 /

50,00 5,236 0,2618

100,0 10,00 1,000

pal

el

u kJ kg

W Nm s kW

W I A V kW

∆ =

= = =

= = =

� i i

� i i

τ ω

ε

2,000 2,389 / 4.778,0

1,000 0,2618 1,262

kg kJ kg kJt

kW kW kW∆ = =

+i

3.786 63,10mint s⇒∆ = =

Solución:

Se considerará como sistema el agua contenida en el depósito. Se trata de un sistema cerrado,

con volumen interior constante.

DATOS:

= =31,000 1.000V m L

Estado inicial:

P1=10 MPa = 100 bar ⇒ =1( ) 311,1o

sT P C

T1=480 ˚C > Tsat ⇒ vapor sobrecalentado

14.- Un depósito de paredes metálicas, cuyo volumen interior es de 1,0 m3, contiene

agua, inicialmente a 10 MPa y 480 ˚C. El agua se enfría hasta que la temperatura alcanza

los 320 ˚C.

Determínense:

a) presión final, en bar;

b) calor transferido al ambiente, en kJ.

Termodinámica Aplicada

Soluciones (Tema 3) Página 25

De las tablas de propiedades del vapor de agua sobrecalentado, se obtiene:

v1=0,03160 m3/kg

u1=3005,4 kJ/kg

Por tanto

= ⇒ =1

31,65V

m m kgv

Estado final:

= =

= ⇒ = × ∧ =

32 1

3 3 32 2 2

0,03160 /

320 ( ) 1,4988 10 / ( ) 0,01549 /o

f g

v v m kg

T C v T m kg v T m kg

Puesto que >2 2( )gv v T se trata de un vapor sobrecalentado.

PROCESO:

Enfriamiento a volumen constante.

RESOLUCIÓN DEL PROBLEMA:

a) A partir de la temperatura y el volumen específico podemos deducir la presión final,

utilizando las tablas de propiedades del vapor de agua sobrecalentado, obteniéndose

Tabla A-14.

Temperatura (˚C) Volumen específico (m3/kg) Presión (bar) Energía interna (kJ/kg)

320˚C 0.02682 80 2720.0

320˚C 0.03876 60 2662.7

=2 71,99P bar

=2 2.685,6 /u kJ kg

b) Teniendo en cuenta que la frontera es rígida y que por tanto no se intercambiará trabajo de

dilatación habrá de ser = 0W , por lo efectuando un balance de energía se tiene

= ∆ = ∆ ⇒Q U m u = −10.120 Q kJ

15.- Un depósito, de paredes rígidas y térmicamente aisladas, está inicialmente dividido

en dos compartimentos mediante un tabique rígido. Uno de ellos contiene 1,0 kg de

vapor saturado de agua a 60 bar y el otro está vacío. Se rompe el tabique interior de

separación y el agua se expande por todo el depósito, de modo que la presión final es de

30 bar. Determínese el volumen interior total del depósito.

Termodinámica Aplicada

Soluciones (Tema 3) Página 26

Solución:

SISTEMA:

Se considerará el sistema constituido por el agua contenida en el interior del depósito. Se trata

de un sistema cerrado.

DATOS:

Estado inicial:

m=1,000 kg;

vapor saturado

P1=60 bar

De las tablas de propiedades de saturación del agua

= ∧ = ∧ =31 1 1275,6 0,03244 / 2.589,7 /oT C v m kg u kJ kg

Proceso:

Al romper el tabique interior, se produce una expansión adiabática del vapor (puesto que las

paredes del depósito están térmicamente aisladas) y, puesto que las paredes del depósito son

rígidas, tampoco habrá intercambio de trabajo con el exterior del depósito, es decir la

expansión será libre.

Al efectuar un balance de energía, se tendrá ∆ = + ⇒ ∆ = ⇒ =2 10u q w u u u

Estado final:

= ⇒ = ∧ =2 2 230 ( ) 1.004,8 / ( ) 2.604,1 /f gP bar u P kJ kg u P kJ kg

Puesto que < <2 2 2( ) ( )f gu P u u P , se trata de un vapor húmedo, cuyo título es

−= ⇒ =

−2 2

2 2

2 2

0,99100f

g f

u ux x

u u

Puesto que

vf2=1,2165×10-3 m3/kg

vg2=0,06668 m3/kg

Por tanto

= − + ⇒ = 32 2 2 2 2 2(1 )· · 0,06609 /

f gv x v x v v m kg

RESOLUCIÓN DEL PROBLEMA:

El volumen interior del recipiente habrá de ser igual al volumen ocupado por el agua después

de romper el tabique interior, luego

= ⇒ =i 2 66,09V m v V L

Termodinámica Aplicada

Soluciones (Tema 3) Página 27

Solución:

Solución:

= = ∧ = 3112 385 0,500oT C K V m

La masa molecular del helio es M=4,003 kg/kmol, por tanto

= ⇒ = 0,1249m

n n kmolM

Luego, la presión absoluta ejercida por el helio es

= ⇒ = ⇒ =

3

3

·0,1249 ·0,08314 ·385

· · · 8,000,500

bar mkmol K

n R T kmol KP P P barV m

Por tanto, la presión manométrica habrá de ser

= − ⇒ = 7,0man oP P P P bar

17.- Se coloca medio kilogramo de helio en un depósito de paredes rígidas, cuyo volumen

interior es de 0,500 m3. Si la temperatura es de 112 ˚C y la presión barométrica es de 1,0

bar, determínese la lectura, en bar, que indicaría un manómetro conectado al depósito.

NOTA: Supóngase comportamiento de gas ideal.

16.- Un recipiente, de paredes rígidas y térmicamente aisladas, se encuentra dividido en

dos compartimentos por medio de un tabique interior, también rígido y adiabático. Una

de las cámaras contiene 0,5000 kg de agua a 20 ˚C y la otra contiene vapor saturado de

agua, siendo en ambas la presión de 25 bar. Al romper el tabique interior, el estado final

del agua es una mezcla líquido vapor con una calidad del 30,00%. Determínense: a) la

temperatura final del agua contenida en el recipiente; b) la masa de agua contenida

inicialmente en la segunda cámara.

NOTA: La presión en el estado final es bastante inferior a 25 bar.

Termodinámica Aplicada

Soluciones (Tema 3) Página 28

Solución:

=1 1.500m kg

Puesto que la masa molecular del propano es M=44,09 kg/kmol, se tiene

= ⇒ =11 1 34,02

mn n kmol

M

a) El volumen interior del depósito es

= ⇒ = ⇒ =

3

31

1

·34,02 ·0,08314 ·315

· · · 1984,50

bar mkmol K

n R T kmol KV V V mP bar

b) Si ahora se introduce más propano en el depósito, se tendrá

= + ⇒ =2 21.500 500 2.000m kg kg m kg

Por tanto

= ⇒ =22 2 45,36

mn n kmol

M

Luego

= ⇒ =22 1 2

1

· 6,00n

P P P barn

18.- Se necesita almacenar 1.500 kg de propano (C3H8) en un depósito de gas a 42 ˚C y

450 kPa.

a) Calcúlese el volumen interior del depósito, en metros cúbicos;

b) Si posteriormente se añaden 500 kg de gas, pero la temperatura se mantiene

constante, calcúlese la presión final, en kilopascales.

NOTA: Supóngase comportamiento de gas ideal.

= =

= =1 450 4,50

42 315o

P kPa bar

T C K

Termodinámica Aplicada

Soluciones (Tema 3) Página 29

21.- Se considera un cilindro fijo y rígido, de paredes metálicas, provisto de un pistón

también rígido y que puede desplazarse en el interior del cilindro con rozamiento

despreciable. El cilindro contiene 0,0140 kg de hidrógeno, que inicialmente ocupan un

volumen de 100 L a 210 kPa. Se El hidrógeno intercambia calor con el entorno muy

lentamente, de modo que la presión en el interior del cilindro permanezca constante,

hasta que el volumen sea el 80 por 100 de su valor inicial. Determínese:

a) La temperatura final, en grados Celsius.

b) El calor absorbido por el hidrógeno, en kilojulios, utilizando datos de la Tabla de

hidrógeno (H2) gas ideal.

c) El calor absorbido por el hidrógeno, en kilojulios, utilizando datos de

capacidades térmicas del hidrógeno (H2) gas ideal en función de la temperatura

absoluta.

20.- Un depósito rígido de almacenamiento de agua para una vivienda tiene un volumen

interior de 400 L. El depósito contiene inicialmente 300 L de agua a 20 ˚C y 240 kPa. El

espacio libre sobre el agua contiene aire a las mismas temperatura y presión. Se

bombean muy lentamente otros 50 L de agua al depósito, de manera que la temperatura

permanece constante.

Determínense:

a) la presión final en el depósito, en kilopascales;

b) el trabajo comunicado al aire en julios.

19.- Una determinada cantidad de nitrógeno ocupa inicialmente un volumen de 0,890 m3

a una presión de 2,00 bar y una temperatura de 27,0˚C. Si se comprime hasta un

volumen de 0,356 m3 y una presión de 12,5 bar, calcúlese:

a) la temperatura final, en grados Celsius;

b) la masa de gas, en kilogramos;

c) la variación en su energía interna, en kilojulios, utilizando datos de la tabla A.3;

d) la variación en su energía interna, en kilojulios, utilizando datos de la tabla A.6.

NOTA: Supóngase comportamiento de gas ideal.

Termodinámica Aplicada

Soluciones (Tema 3) Página 30

24.- En un depósito se almacenan 0,81 kg de nitrógeno a 3,0 bar y 50 ˚C. Mediante una

válvula adecuada, este depósito está conectado a un segundo depósito de 0,50 m3, que

inicialmente se encuentra vacío. Ambos depósitos están perfectamente aislados. Si se

abre la válvula y se permite que se alcance el equilibrio, ¿cuál será la presión final, en

bar?.

NOTA: Supóngase comportamiento de gas ideal.

23.- En el interior del cilindro de un compresor alternativo hay encerrados inicialmente

100 L de aire a 0,950 bar y 67,0 ˚C. El proceso de compresión es cuasiestático y está

representado mediante la ecuación P·V1,3

= constante. El volumen final es de 20,0 L.

Determínense:

a) la masa de aire, en kilogramos, que se está comprimiendo;

b) la temperatura final, en kelvin;

c) la variación en la energía interna del aire, en kilojulios;

d) el trabajo mínimo necesario, en kilojulios;

e) el calor absorbido por el aire, en kilojulios.

NOTA: Supóngase comportamiento de gas ideal.

22.- Un depósito de paredes rígidas contiene inicialmente 0,800 g de aire a 295 K y 1,50

bar. Con una fuente de 12,0 V se hace pasar una corriente eléctrica de 600 mA, durante

30,0 s, a través de una resistencia eléctrica situada en el interior del depósito. A la vez,

tiene lugar una pérdida de calor de 156 J.

Determínense:

a) la temperatura final del gas, en kelvin;

b) la presión final, en bar.

NOTA: Supóngase comportamiento de gas ideal.

Termodinámica Aplicada

Soluciones (Tema 3) Página 31

26.- Se tienen dos depósitos conectados entre sí por medio de una válvula. Inicialmente

la válvula está cerrada y el depósito A contiene 2,0 kg de monóxido de carbono gaseoso

a 77 ˚C y 0,70 bar, mientras que el depósito B contiene 8,0 kg del mismo gas a 27 ˚C y 1,2

bar. Se abre la válvula y se permite que se mezclen los contenidos de ambos depósitos,

mientras que el monóxido de carbono intercambia calor con el ambiente. La temperatura

final de equilibrio es de 42 ˚C. Suponiendo comportamiento de gas ideal, determínense la

presión final, en bar, y el calor absorbido por el CO, en kilojulios.

25.- Dos depósitos idénticos, ambos térmicamente aislados y con un volumen interior de

1,0 m3, están comunicados por medio de una válvula. Inicialmente la válvula está

cerrada y el depósito A contiene aire a 10 bar y 350 K, mientras que el depósito B

contiene aire a 1,0 bar y 300 K. Se abre la válvula y se permite que se alcance el

equilibrio. Determínense la temperatura final, en kelvin, y la presión final, en bar.

NOTA: Supóngase comportamiento de gas ideal.