biología molecular (transcripción de arn y adn)

44
1 Dr. Antonio Barbadilla Expresión génica: transcripción

Upload: abraxas72

Post on 24-Sep-2015

76 views

Category:

Documents


0 download

DESCRIPTION

Curso de Biología Molecular, proceso de transcripción de RNA y DNA.

TRANSCRIPT

Tema 7. Expresión génica: Trancripción*
*
Azúcar ribosa (OH en el carbono 2’)
Esqueleto azúcar-fosfato en posiciones 5’-3’ del azúcar como DNA
Uracilo en vez de Timina, se empareja con Adenina, y también con Guanina cuando se pliega (no en la transcripción).
Catalizador biológico -> Ribozima
*
*
*
*
TRANSCRIPCIÓN
Función: la formación del transcrito de RNA mediante la catálisis de la unión de nucleótidos libres a la cadena molde del DNA formando una monohebra de RNA.
Propiedades que hacen posible la síntesis del transcrito de RNA
1. COMPLEMENTARIEDAD ENTRE BASES
A-U, C-G, G-C, T-A
*
*
*
*
(5’) CGCUAUAGCG (3’) transcrito de RNA
*
*
Depende de cada gen, no es un propiedad del cromosoma.
¿Qué cadena de la doble hélice es la codificadora?
Orientación de la transcripción
Dr. Antonio Barbadilla
*
RNA polimerasa
Enzima compleja, no requiere primer (cebador), no funciona la corrección de errores
Procariotas: sólo un tipo. Con múltiples subunidades.
E. Coli :
Eucariotas: 3 tipos
*
*
PROCARIOTAS
En procariotas una sola polimerasa (RNA Polimerasa) se encarga de transcribir el DNA en las diferentes clases de RNA
ESTRUCTURA (E. coli)
Se compone de 5 subunidades: 2 subunidades idénticas, , ’, ω, más el cofactor .
El cofactor tiene la propiedad de disociarse del resto de subunidades durante el proceso dejando el núcleo central de la enzima al descubierto.
HOLOENZIMA = 5 subunidades (con cofactor ) ACTIVA
APOENZIMA = 4 subunidades ( el cofactor disociado) INACTIVA
RNA polimerasa
= actividad catalítica
ω = ensamblaje y regulación expresión
*
RNA polimerasa
Secuencias promotoras (se une la RNA polimerasa)
*
*
Secuencias promotoras (se une la RNA polimerasa)
Procariotas: Secuencias consenso Pribnow (-10 pb aguas arriba) y región -35 pb
Eucariotas: Caja TATA (-25 pb) y CAAT (-70 pb)
*
*
Procariotas: Secuencias consenso Pribnow (-10 pb) y región -35 pb
Eucariotas: Caja TATA (-25 pb) y CAAT (-70 pb)
Elongación:
5’->3’
Enrollamiento aguas arriba (5’) y desenrollamiento aguas abajo (3’) del DNA
Terminación:
Procariotas: Secuencias consenso Pribnow (-10 pb) y región -35 pb
Eucariotas: Caja TATA (-25 pb) y CAAT (-70 pb)
Elongación:
5’->3’
Enrollamiento aguas arriba (5’) y desenrollamiento aguas abajo (3’) del DNA
Terminación:
Palíndrome:
*
estructura tallo-bucle
*
*
*
*
1- Existen tres tipos de RNA polimerasa
La I, la II y la III
RNA polimerasa I, 13 subunidades. Se localiza en el núcleo y en el nucleolo. -> Síntesis de rARN 45S.
RNA polimerasa II, 12 subunidades. Se localiza en el nucleoplasma. -> Síntesis de los hnRNA (transcrito primario), los precursores de los mRNA.
RNA polimerasa III, 17 subunidades. Se localiza en el nucleoplasma. -> Síntesis rRNA 5S y tRNA.
Transcripción Eucariotas
Reacción transesterificación
RIBOZIMA
*
*
3 RNA polimerasas.
El RNA recién transcrito, no tiene.
Contiene, al comienzo de la cadena, 7-metil-guanosina o CAP, y al final de la cadena, una secuencia poli A.
Comienzo
RNA pol, se autoacopla al promotor
RNA pol, necesita la presencia de proteínas de iniciación, que se unan antes que ella al ADN.
Intrones
Lugar de acción
*
A group of small RNA molecules, distinct from but related to siRNAs, have been identified in a variety of organisms. These small RNAs, called microRNAs (miRNAs), are transcribed as parts of longer RNA molecules that can be as long as 1000 nt. The RNAs are processed in the nucleus into hairpin RNAs of 70-100 nt by the dsRNA-specific ribonuclease Drosha.  The hairpin RNAs are transported to the cytoplasm via a transportin-5 dependent mechanism where they are digested by a second, double-strand specific ribonuclease called Dicer.  The resulting 19-23 mer miRNA is bound by a complex that is similar to the RNA-Induced Silencing Complex (RISC) that participates in RNA interference (RNAi).  In animals, the complex-bound, single-stranded miRNA binds specific mRNAs through sequences that are significantly, though not completely, complementary to the mRNA.  By a mechanism that is not fully characterized— but which apparently does not involve mRNA degradation as in RNAi— the bound mRNA remains untranslated, resulting in reduced expression of the corresponding gene.
The function of most miRNAs is not known. A number of miRNAs, however, seem to be involved in gene regulation. Some of these miRNAs, including lin-4 and let-7, inhibit protein synthesis by binding to partially complementary 3' untranslated regions (3' UTRs) of target mRNAs. Others, including the Scarecrow miRNA found in plants, function like siRNA and bind to perfectly complementary mRNA sequences to destroy the target transcript (1).
*
*
A group of small RNA molecules, distinct from but related to siRNAs, have been identified in a variety of organisms. These small RNAs, called microRNAs (miRNAs), are transcribed as parts of longer RNA molecules that can be as long as 1000 nt. The RNAs are processed in the nucleus into hairpin RNAs of 70-100 nt by the dsRNA-specific ribonuclease Drosha.  The hairpin RNAs are transported to the cytoplasm via a transportin-5 dependent mechanism where they are digested by a second, double-strand specific ribonuclease called Dicer.  The resulting 19-23 mer miRNA is bound by a complex that is similar to the RNA-Induced Silencing Complex (RISC) that participates in RNA interference (RNAi).  In animals, the complex-bound, single-stranded miRNA binds specific mRNAs through sequences that are significantly, though not completely, complementary to the mRNA.  By a mechanism that is not fully characterized— but which apparently does not involve mRNA degradation as in RNAi— the bound mRNA remains untranslated, resulting in reduced expression of the corresponding gene.
The function of most miRNAs is not known. A number of miRNAs, however, seem to be involved in gene regulation. Some of these miRNAs, including lin-4 and let-7, inhibit protein synthesis by binding to partially complementary 3' untranslated regions (3' UTRs) of target mRNAs. Others, including the Scarecrow miRNA found in plants, function like siRNA and bind to perfectly complementary mRNA sequences to destroy the target transcript (1).