atrapar un fotón

14
Introducción El siguiente trabajo resumirá brevemente el libro de Como Atrapar un fotón de Virgilio Beltrán donde nos expone temas como: Rayos táctiles Rayos luminosos Óptica geométrica Reflexión y refracción de la luz La difracción de la luz La óptica ondulatoria Las ondas electromagnéticas Las fuentes de la luz ¿Ondas o partículas? Para atrapar un fotón El fotón Con este libro se abarcan los fenómenos que tienen una relación muy cercana del fotón, que es la cantidad mínima de energía de la luz u otra radiación electromagnética. Max Planck y Albert Einstein obtuvieron el Premio Nobel de Física por su descubrimiento de que la luz, que muchas veces se comporta como una onda, a veces se comporta como si estuviera compuesta por un haz de pequeñas partículas o cuantos de energía. La energía E de un fotón se expresa mediante la ecuación E = h u, donde h es una constante universal (la constante de Planck) y u es la frecuencia (número de oscilaciones por segundo) de la luz. Las ideas sobre la luz han dependido, pues, de los fenómenos luminosos que se ha pretendido explicar con ellas. Cuando se conocían sólo los fenómenos luminosos más comunes, las ideas sobre la naturaleza de la luz eran muy simples; pero a medida que se fueron conociendo fenómenos luminosos más complejos, esas ideas cambiaron para adaptarse a los fenómenos ya conocidos y a los nuevos dentro de una misma teoría. Por

Upload: daidoyi-san

Post on 04-Aug-2015

253 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Atrapar un fotón

Introducción

El siguiente trabajo resumirá brevemente el libro de Como Atrapar un fotón de Virgilio Beltrán donde nos expone temas como:

Rayos táctiles Rayos luminosos Óptica geométrica Reflexión y refracción de la luz La difracción de la luz La óptica ondulatoria Las ondas electromagnéticas Las fuentes de la luz ¿Ondas o partículas? Para atrapar un fotón El fotón

Con este libro se abarcan los fenómenos que tienen una relación muy cercana del fotón, que es la cantidad mínima de energía de la luz u otra radiación electromagnética. Max Planck y Albert Einstein obtuvieron el Premio Nobel de Física por su descubrimiento de que la luz, que muchas veces se comporta como una onda, a veces se comporta como si estuviera compuesta por un haz de pequeñas partículas o cuantos de energía. La energía E de un fotón se expresa mediante la ecuación E = h u, donde h es una constante universal (la constante de Planck) y u es la frecuencia (número de oscilaciones por segundo) de la luz.

Las ideas sobre la luz han dependido, pues, de los fenómenos luminosos que se ha pretendido explicar con ellas. Cuando se conocían sólo los fenómenos luminosos más comunes, las ideas sobre la naturaleza de la luz eran muy simples; pero a medida que se fueron conociendo fenómenos luminosos más complejos, esas ideas cambiaron para adaptarse a los fenómenos ya conocidos y a los nuevos dentro de una misma teoría. Por estas mismas razones no es posible comprender las ideas modernas sobre la luz sin conocer los fenómenos luminosos que les dieron origen. En esta obra se desarrollan las ideas sobre la luz a partir de la discusión de algunos de los fenómenos y experimentos más importantes sobre ella; desde las primeras ideas griegas acerca de la luz hasta las contemporáneas, en las que intervienen fenómenos a escala atómica y el concepto del fotón.

Resumen de los Temas

Rayos Táctiles

Page 2: Atrapar un fotón

Los griegos no distinguían claramente la luz de la vista y basaban sus ideas sobre ambas en la hipótesis de los rayos visuales táctiles atribuida a Pitágoras. Según esta hipótesis, el ojo emite rayos rectos infinitamente tenues que al ser interrumpidos por los objetos producen la sensación de ver. Estos rayos táctiles deberían ser rectos para explicar la propagación rectilínea de la luz; o sea, para explicar el hecho de que podemos ver a través de un popote sólo si éste es recto. La propagación rectilínea de la luz se puede demostrar con este sencillo experimento. La vela se ve por el popote sólo si está derecho.

La hipótesis de los rayos táctiles explicaba también la aparente disminución de tamaño de un objeto al alejarse, ya que los rayos táctiles interrumpidos por el objeto formarían un ángulo menor y menor, hasta reducirse a cero, al alejarse el objeto del observador. Esto explicaría por qué las líneas paralelas que se alejan indefinidamente parecen converger en un punto; el que posteriormente se llamaría "punto de fuga" por los artistas del Renacimiento.

Los Rayos LuminososAlhazán árabe que pudo hacer un importante trabajo de investigación en la óptica, o ciencia de la luz. En su principal obra, titulada Kitab al-Manzir en árabe y traducida al latín como Opticae Thesaurus, Alhazán demuestra que la visión no puede deberse a rayos que partan del ojo al objeto, sino del objeto al ojo. De esta manera, distinguió claramente la luz del sentido de la vista. Un sencillo experimento que demuestra esto es el muy conocido de producir fuego enfocando por medio de una lupa la imagen del Sol sobre un papel.La propagación rectilínea de la luz, la reflexión de imágenes en espejos, la refracción de la luz en agua, el poder calorífico de los rayos solares concentrados por una lente y la aparición del arcoiris. Otro experimento que también demuestra la existencia de la luz independientemente del sentido de la vista es la formación de imágenes en el sencillo instrumento llamado "cámara oscura". La cámara oscura forma sobre una pantalla imágenes invertidas de los objetos situados frente a su pupila. Esto demuestra que la hipótesis de los rayos visuales es falsa.

Óptica GeométricaLa suposición de que cada punto de un objeto luminoso o iluminado emite rayos rectos de luz en todas direcciones es la hipótesis principal de una teoría de la luz extraordinariamente fructífera que, hasta la fecha, se llama óptica geométrica.La hipótesis básica de la óptica después de Alhazán. Cada punto de un objeto luminoso emite rayos rectos de luz en todas direcciones.

Page 3: Atrapar un fotón

La óptica geométrica explica la forma de la sombra producida por un cuerpo opaco. Esta región se llama sombra geométrica. En la figura (a) es el cono formado por las tangentes de la esfera. A esta zona no llega ningún rayo de luz; se llama "umbra". En la figura (b) la umbra es el cono formado por las tangentes exteriores a las dos esferas; fuera de ésta hay una zona donde llega luz, pero sólo de algunas partes

del objeto luminoso. Esta región, llamada prenumbra, está incluida entre la umbra y el cono de las tangentes interiores a las dos esferas. El ojo funciona como una cámara oscura. Los rayos luminosos que pasan por la pupila forman una imagen (invertida) del objeto sobre la retina. Ésta, que se encuentra en el fondo del ojo, la trasmite al cerebro por el nervio óptico.

Experimento para demostrar la reinversión de imágenes por el cerebro. La sombra del objeto proyectada al fondo del ojo se percibe como si apareciera por arriba, y no por abajo, del orificio en la tarjeta.

Reflexión y refracción de la luz La óptica geométrica explica este familiar fenómeno suponiendo que los rayos luminosos cambian de dirección al llegar al espejo. La forma precisa en que ocurre este cambio se conoce como ley de la reflexión de la luz. Es una ley muy sencilla: los rayos incidente y reflejado hacen ángulos iguales con el espejo; o con la perpendicular al espejo, que es como suelen medirse estos ángulos.

Un experimento para demostrar la refracción de la luz. En (a) la moneda está apenas oculta por una orilla de la taza. En (b) la moneda aparece al llenar lentamente la taza con agua. Los rayos luminosos cambian de dirección al pasar del agua al aire.La ley de la refracción de la luz también puede ser deducida aplicando la ley de variación del tamaño aparente con la distancia.

Un experimento para comprobar la ley de la refracción. La moneda sumergida en el agua se ve más grande porque los rayos que parten de ella se abren al salir al aire y parecen llegar de una moneda más cercana. Relacionando los tamaños aparentes con los ángulos de los rayos se obtiene la ley de la refracción, o ley de Snell.

Page 4: Atrapar un fotón

Una lupa intercepta rayos divergentes emitidos por un punto luminoso y los reúne en otro punto. Los rayos reunidos parecen salir de este lugar. Se dice que aquí se

forma una imagen real del punto luminoso.

Un telescopio sencillo se compone de una lente, llamada objetivo, que forma cerca de ella una imagen real de un objeto lejano, y de una lente de aumento, llamada ocular, con la que se examina esta imagen.

La difracción de la luz

Francesco Grimaldi (1618-1663), físico y astrónomo, quien en 1651 dio los nombres que hasta ahora conservan los accidentes del lado visible de la Luna, descubría un importante fenómeno óptico llamado por él mismo difracción de la luz. Este fenómeno se presenta siempre que de la luz emitida por una fuente se separa una fracción interponiendo un cuerpo opaco y esto es lo que da origen a su nombre: división en fracciones. La difracción se puede observar interponiendo, justo frente a un ojo, una ranura muy estrecha recortada en una lámina opaca; o bien, una ranura formada por los filos de dos hojas de afeitar pegadas con durex sobre una ranura más ancha recortada en una tira de cartoncillo. El fenómeno de la difracción de la luz y otros análogos se observan más nítidamente en un cuarto oscuro y si en vez de la flama de una vela empleamos como fuente de luz un solo punto luminoso. Se consigue uno fácilmente pasando luz de la flama de una vela por un orificio pequeño perforado en un cartoncillo grueso, negro de preferencia, en la forma que muestra la figura

Óptica OndulatoriaLos fenómenos de interferencia son típicos del llamado movimiento ondulatorio de un medio, como el aire o el agua. El impacto del objeto produce una pequeña deformación, compuesta por una depresión y una elevación de la superficie, que aumenta de diámetro propagándose a su alrededor como una onda de forma circular. Las oscilaciones posteriores del agua en el sitio del impacto producen otras ondas similares que siguen a la primera a intervalos iguales de distancia y de tiempo. Si se producen ondas circulares como éstas en dos puntos cercanos del medio, en ciertos lugares suman sus efectos y producen una deformación mayor de la superficie porque las depresiones y las elevaciones de las dos ondas coinciden, mientras que en otros sus efectos se cancelan porque la depresión de una onda coincide con la elevación de la otra. Diagrama de Young para observar las zonas de interferencia constructiva de ondas circulares. Viendo el diagrama en un ángulo oblicuo desde el extremo opuesto a los centros estas zonas son las que aparecen más oscuras.

Page 5: Atrapar un fotón

La óptica ondulatoria, o teoría ondulatoria de la luz, nació de analogías como éstas entre fenómenos ópticos y fenómenos propios de movimientos ondulatorios conocidos como el de las ondas en líquidos, o el aún más conocido de las ondas acústicas que producen el sonido. Un movimiento ondulatorio muy simple se puede observar en una manguera de jardín fija a la pared por un extremo y movida rítmicamente hacia arriba y hacia abajo por el extremo suelto al tiempo que se le mantiene tensa.Estas analogías entre fenómenos ópticos y acústicos fueron demostradas por los experimentos con ranuras realizados por Thomas Young hacia 1815 y dieron una gran fuerza a la hipótesis de que la luz, como el sonido, es un fenómeno ondulatorio que resulta de ondas esféricas que se producen en cada punto de los cuerpos luminosos y se propagan en los medios transparentes, como el aire, el agua, el vidrio o el vacío.

Ondas ElectromagnéticasLa fuerza magnética producida por cargas eléctricas en movimiento aparece alrededor de las cargas, en donde antes no había ninguna fuerza magnética, al empezar éstas a moverse. Es una propiedad del medio, que cambia si las cargas eléctricas se mueven. La magnitud de la fuerza magnética cambia desde el valor cero, cuando las cargas están en reposo, hasta valores distintos de cero, que alcanza cuando las cargas se mueven, y que dependen de la velocidad de las cargas. En otras palabras, las cargas en movimiento perturban el medio en una forma parecida a la forma en que la presión y la densidad del aire son perturbadas por la vibración de una campana. Se puede pensar, entonces, que la fuerza magnética producida por el movimiento de cargas eléctricas se propaga alrededor de las cargas en forma análoga a como se propagan en el aire los cambios de presión que constituyen el sonido; es decir, por ondas. Si las cargas vibran cambiando la dirección de su movimiento continuamente, la fuerza magnética que producen también cambia de valor y de dirección continuamente, produciendo a su alrededor zonas de fuerza magnética con distintos valores y direcciones opuestas. Así pues, se puede hablar de ondas de fuerza magnética producidas por cargas en movimiento de la misma forma en que se habla de ondas acústicas de presión, producidas por objetos en vibración como campanas o bocinas. Estas ondas se llaman ondas electromagnéticas porque junto con la fuerza magnética se propaga también la fuerza eléctrica producida por las cargas.

Las fuentes de la luzLa onda electromagnética más sencilla se produce haciendo oscilar el sistema de cargas más sencillo. Este sistema, llamado dipolo eléctrico, está formado por dos cargas eléctricas iguales y de signos opuestos; esto es, por una carga positiva y otra igual pero negativa. Es el sistema más sencillo porque nuestro universo es eléctricamente neutro y al producirse una carga eléctrica de un signo siempre se produce una carga igual del signo opuesto.Las

Page 6: Atrapar un fotón

ondas de radio y de televisión son como éstas. Se generan haciendo oscilar cargas eléctricas por un conductor de cargas, generalmente vertical, llamado antena. Estas ondas difieren de las ondas de luz solamente en la frecuencia; las de radio tienen frecuencias entre millones y miles de millones de hertzios (megahertzios, MHz, a gigahertzios, GHz), y las de luz tienen frecuencias de decenas de billones de hertzios (tera hertzios, THz). Las ondas electromagnéticas de radio fueron producidas artificialmente por primera vez en 1887 por el físico alemán Heinrich Hertz, quien además midió su velocidad de propagación y comprobó que es igual a la de la luz; tal y como había predicho Maxwell. Todas las ondas electromagnéticas se generan por sistemas de cargas eléctricas en movimiento. En general, la longitud de la onda producida es comparable a las dimensiones del sistema de cargas; por ejemplo, las ondas de radio tienen longitudes de onda de más o menos 300 m y las antenas de transmisión de radio son también de unos 100 o 200 metros de longitud.Las fuerzas magnéticas en una onda electromagnética esférica. Las fuerzas avanzan a la velocidad de la luz ocupando esferas cada vez mayores.

¿Ondas o Partículas?El experimento más sencillo que muestra la naturaleza granular de la luz consiste simplemente en tomar fotografías de un objeto a diferentes grados de exposición de la película, desde uno muy bajo hasta el adecuado para obtener una buena foto. La figura 35 muestra el resultado de este experimento. La exposición en la primera foto fue 10 000 veces menor que en la última; o sea, que la cantidad de luz que llegó a la placa fotográfica en la primera foto fue también 10 000 veces menor que en la última. En la foto de menor tiempo de exposición, (a) y (b), se observa claramente que la película se va imprimiendo por puntos; como si la luz estuviera formada por gránulos o corpúsculos que llegan a ella separadamente y van dejando marcas individuales en la película. Esto contradice la idea de la luz como ondas esféricas porque éstas son continuas; su efecto en la película también debería ser continuo; y la imagen del objeto debería irse formando poco a poco pero toda completa y no por puntos individuales como se observa. La naturaleza corpuscular de la luz se observa en fotos de objetos iluminados muy débilmente. La imagen se forma punto a punto, y muestra que la luz llega a la película fotográfica por unidades separadas que los producen. En las mismas fotos (a) y (b) se puede notar que los puntos que forman la imagen son esencialmente iguales; simplemente hay más puntos en las partes brillantes que en las oscuras. Esto sugiere que los supuestos gránulos o corpúsculos de luz son también esencialmente iguales puesto que producen

Page 7: Atrapar un fotón

los mismos efectos en la placa fotográfica. Cada una de estas unidades es indivisible. Esto se demuestra también fácilmente con una variante del mismo experimento. Se divide en dos la luz que llega a la cámara en el experimento anterior por medio de un semiespejo; esto es, por un espejo que refleja la mitad y trasmite la otra mitad de la luz que le llega. Tomando dos fotografías simultáneamente, una con la luz trasmitida y otra con la luz reflejada, se encuentra que las imágenes en ambas fotos se integran por puntos idénticos a los de las fotos de la figura. La única diferencia es que en este experimento las imágenes se integran en el doble del tiempo. Es decir, el semiespejo simplemente reduce a la mitad el número de unidades indivisibles de luz que llegan a la primera cámara y refleja la otra mitad del número de corpúsculos a la segunda cámara.

Experimento para observar la división de la luz en partes iguales. El semiespejo refleja la mitad de la luz que le llega y transmite la otra mitad.

Para atrapar un fotón

La composición granular de la luz, demostrada de múltiples formas, algunas de las cuales hemos descrito anteriormente, no puede ser puesta en duda. También queda demostrado por los descubrimientos de Einstein que la luz no es emitida por ondas esféricas. Sin embargo, el éxito de la óptica ondulatoria para explicar los fenómenos de refracción, difracción e interferencia de la luz no puede ser ignorado; así como tampoco puede pasar inadvertida la relación que establece la ecuación de Planck E=hf entre las "partículas de luz", o fotones, y alguna onda que tiene la frecuencia f. Esto es, el movimiento de los corpúsculos de luz, o fotones, debe estar asociado a la onda electromagnética que determina su energía y, en muchos experimentos, determina también su comportamiento.

Podemos intentar ahora hacernos una representación más completa de lo que ocurre en la producción de un fotón. Según el resultado de Einstein, el fotón es producido en un tiempo muy breve, como de una milmillonésima de segundo, por la agitación momentánea de las cargas eléctricas de una molécula; además, es emitido a la velocidad de la luz, pero no como una onda esférica, sino en una dirección bien definida. Simultáneamente las cargas producen una onda electromagnética que se propaga, también a la velocidad de la luz, junto con el fotón. La onda puede ser esférica o no, esto depende sólo del movimiento de las cargas, pero su extensión es limitada. La onda ocupa sólo la distancia que viaja la luz durante el movimiento de las cargas.

Page 8: Atrapar un fotón

El Fotón

El fotón es una partícula indivisible que se mueve, siempre, a la velocidad de la luz. Ésta es la máxima velocidad de propagación posible en el Universo. Ningún cuerpo material

puede alcanzarla porque la resistencia de la materia a ser acelerada, su inercia, aumenta con la velocidad, y se hace infinita a la velocidad de la luz. Para alcanzar esta velocidad sería necesario aplicar a ese cuerpo una fuerza de magnitud infinita, que no hay en la naturaleza. El fotón se mueve a la velocidad de la luz porque no es una partícula material; su masa es nula. Esto tiene la consecuencia adicional de que su velocidad no puede ser disminuida;

esto es, los fotones no pueden ser frenados, existen sólo en movimiento a la velocidad de la luz. Como además nosotros no podemos movernos a esa velocidad es imposible detener, o alcanzar, un fotón para examinarlo. No tiene siquiera sentido imaginarle un aspecto físico; si es redondo y con costuras como pelota de beisbol, o liso, blanco y con un punto negro como bola de billar. Los puntos que aparecen en las fotos de baja exposición de la figura 35 no son fotones, sino las huellas que éstos dejan al transformar en plata metálica los cristales de sales de este metal que los absorben. La posibilidad de que existieran partículas sin masa moviéndose a la velocidad de la luz fue anticipada por Einstein en la teoría de la relatividad. Por esto se llaman "partículas relativistas". Existen otras partículas relativistas con propiedades diferentes a las del fotón. Los neutrinos, por ejemplo, no son visibles por el ojo humano. Los fotones se manifiestan como partículas, ya que concentran sus energías, sus movimientos y sus efectos en regiones definidas y separadas. En una fotografía producen marcas localizadas como si la energía de cada fotón, que transforma los cristales de la emulsión fotográfica estuviera concentrada en un pequeño paquete. De hecho, el primer paso de esta transformación es un choque entre un fotón y una partícula de carga eléctrica del cristal, un electrón, que se desprende de éste a consecuencia del impacto como si se tratara del choque de dos canicas. Este fenómeno, llamado "efecto fotoeléctrico", encuentra un gran empleo en la producción de corriente eléctrica por medio de luz en las llamadas "celdas fotoeléctricas" . Observando las trayectorias de los electrones que chocan con fotones se encuentra que estos choques ocurren exactamente como si electrón y fotón fueran dos bolas de billar; esto es, los ángulos de las trayectorias y las energías de las dos partículas antes y después del choque son idénticas a las que tendrían dos bolas de billar microscópicas con las mismas energías (Figura 45). Este fenómeno, llamado efecto Compton, es el que mejor muestra al fotón como partícula en el sentido de una canica o de una bola de billar.

Page 9: Atrapar un fotón

Universidad Nacional Autónoma de México

Colegio de Ciencias y Humanidades Plantel Sur

Alumna: Fajardo Rojas María Sandra

Tema: Atrapar un fotón

Grupo: 413 B