unidad iv qoi reacciones de oxidación

Post on 26-Jul-2015

678 Views

Category:

Education

1 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Unidad IV

Reacciones de Oxidación

Dr. Edgar García-HernándezDivisión de Estudios de Posgrado e Investigación/Departamento de Ingeniería Química y

Bioquímicae-mail: eddgarcia@hotmail.com

2015 ITZ

Tecnológico Nacional de México

• Adquirir el conocimiento de las reacciones de oxidación y vincularlo con fenómenos y procesos cotidianos e industriales.

• Diseñar y elaborar experimentos donde intervenga la oxidación, combustión y craqueo.

2

Contenido

4.1. Reacciones de oxidación en química orgánica

4.1.1. Oxidación de alcanos

4.1.1.1. Reacciones de combustión

4.1.1.2. Reacciones de halogenación (cloración).

4.1.2. Oxidación de alquenos

4.1.2.1. Reacciones de combustión

4.1.2.2. Reacciones de oxidación moderada con el reactivo de Baeyer y agua de bromo.

4.1.2.3. .Ruptura oxidativa con permanganato de potasio.

3

Contenido

4.1.2.4. Ruptura oxidativa con ozono.

4.1.3. Oxidación de alquinos

4.1.4. Oxidación de alcoholes

4.1.5. Oxidación de cadenas laterales de compuestos aromáticos

4.1.6. Oxidación de aminas

4

4.1. REACCIONES DE OXIDACIÓN EN QUÍMICA ORGÁNICA

5

6

Estados de Oxidación

• Fácil para sales inorgánicas:– CrO4

2- se reduce a Cr2O3

– KMnO4 se reduce a MnO2

• Oxidación: pérdida de H2, ganancia de O, O2, o X2

• Reducción: ganancia de H2 o H-, pérdida de O, O2, o X2

7

Árbol Redox

• Unas funciones orgánicas pueden obtenerse de otras por oxidación o reducción. Dependiendo de dónde nos encontremos en el "árbol redox" y a dónde queramos ir utilizaremos una u otra.

8

Carbonos 1º, 2º, 3º

4.1.1. Oxidación de alcanos• Combustión:

Alcano + O2 CO2 + H2O

• Cracking e hidrocracking:

Alcanos de cadena larga Alcanos de cadena corta

• Halogenación:

CH4 + Cl2 CH3Cl + CH2Cl2 + CHCl3 + CCl49

Calores de combustión (kJ/mol)

10

Cadena larga

157.4 157.4

166.6 164.0158.7 158.6158.3

11

Cloración del Metano

• Requiere calor o luz para la iniciación.• La longitud de onda más efectiva es la azul, la cual es absorbida

por el gas cloro.• La mayoría de los productos se forman por la absorción de solo

un fotón de luz (reacción en cadena).

C

H

H

H

H + Cl2Calor o luz

C

H

H

H

Cl + HCl

12

Reacción en cadena por radicales libres

• Iniciación: Genera un reactivo intermediario.• Propagación: El intermediario reacciona con una

molécula estable para producir otro intermediario (y una molécula del producto).

• Terminación: Reacciones laterales que destruyen el reactivo intermediario.

13

Etapa de Iniciación

Una molécula de cloro se rompe homolíticamente en átomos de cloro (radicales libres)

Cl Cl + fotón (hv) Cl + Cl

14

Etapa de Propagación (1)

El átomo de cloro colisiona con una molécula de metano y abstrae (remueve) un H, formando otro radical libre y uno de los productos (HCl).

C

H

H

H

H Cl+ C

H

H

H

+ H Cl

15

Etapa de Propagación (2)

El radical metilo colisiona con otra molécula de cloro, produciendo otra molécula de cloruro de metilo (producto) y generando otro radical cloruro.

C

H

H

H

+ Cl Cl C

H

H

H

Cl + Cl

16

Reacción Global

C

H

H

H

H Cl+ C

H

H

H

+ H Cl

C

H

H

H

+ Cl Cl C

H

H

H

Cl + Cl

C

H

H

H

H + Cl Cl C

H

H

H

Cl + H Cl

Cl Cl + fotón (hv) Cl + Cl

17

Etapas de Terminación

• Colisión de dos radicales cualquiera.• Combinación de radicales libres con contaminantes de

las paredes.

C

H

H

H

Cl+ C

H

H

H

Cl

¿Puede sugerir otras?

Ejercicio:

• Proponer el mecanismo de reacción para la cloración del etano y del propano.

• Investigue por qué el bromo es más selectivo en la reacción de bromación del propano para atacar los carbonos secundarios.

18

4.1.2. Oxidación de Alquenos

4.1.2.1. Reacciones de combustión.

19

20

4.1.2.2. Reacciones de oxidación moderada con el reactivo de Baeyer y agua de bromo.

• Reactivo de Baeyer: Permanganato de Potasio diluido y frio, en medio alcalino forma glicoles.

21

CCCH3 CH3

H CH3 KMnO /H2O4

(frio y diluido)C C

CH3

CH3

OHOH

H3C

H

+ KMn2 + KOH (café )

4.1.2.2. Reacciones de oxidación moderada con el reactivo de Baeyer y agua de bromo.• Prueba para la insaturación:

– Adicionar Br2 en CCl4 (oscuro, color café rojizo) a un alqueno en presencia de luz.

• El color rápidamente desaparece conforme el bromo se adiciona al doble enlace.

• “La decoloración del bromo” es la prueba química para verificar la presencia de un doble enlace.

22

Adición de Halogenos

• Cl2, Br2, y algunas veces el I2 se adicionan al doble enlace para formar dibromuros vecinales.

• Es una adición Anti, por lo que la reacción es estereoespecífica.

23

CC + Br2 C C

Br

Br

Mecanismo de Halogenación

• Los electrones Pi atacan a la molécula de bomo.• Se genera un ion de bromo.• El Intermediario es un ion ciclico de bromo.

24

CC + Br Br CC

Br

+ Br

Continuación mecanismo…

El ion haluro se aproxima del lado opuesto al anillo de tres miembros.

25

CC

Br

Br

CC

Br

Br

Ejemplos de Estereoespecificidad

26

27

Rompimiento Oxidativo

• Ambos enlaces pi y sigma se rompen.• C=C se convierte en C=O.• Dos métodos:

– KMnO4.– Ozonólisis

• Utilizada para determinar la posición del doble enlace en un compuesto desconocido.

28

4.1.2.3. .Ruptura oxidativa con permanganato de potasio.

• El permanganato es un agente oxidante fuerte.• El glicol formado inicialmente se oxida posteriormente.• Los carbones disustituidos (C=C) se convierten en cetonas.• Los carbones monosustituidos (C=C) se convierten en ácidos

carboxílicos. • Los alquenos terminales (=CH2) se convierten en CO2.

29

Ejemplo:

CCCH3 CH3

H CH3 KMnO4

(warm, conc.)C C

CH3

CH3

OHOH

H3C

H

C

O

H3C

H

C

CH3

CH3

O

C

O

H3COH

+

30

Análisis Retrosintético

Otro ejemplo:

4.1.2.4. Ruptura oxidativa con ozono (Ozonólisis).

• La reacción con ozono forma un ozonuro.• Los ozonuros no se aislan, son tratados con un agente

reductor mediano como el Zn o sulfuro de dimetilo.• La oxidación no es tan fuerte como con el permanganato.• Los productos formados son cetonas o aldehídos.

Unidad I. Hidrocarburos Insaturados 31

Ejemplo de una Ozonólisis

32

CCCH3 CH3

H CH3 O3 C

H3C

H

O OC

CH3

CH3

O

Ozonuro

+(CH3)2S

C

H3C

HO C

CH3

CH3

O CH3 S

O

CH3

DMSO

33

34

35

4.1.3. Oxidación de alquinos

• Oxidación similar a la de los alquenos.• Una solución diluida y neutra de KMnO4 oxida a los

alquinos a dicetonas.• Una solución caliente y básica de KMnO4 rompe el triple

enlace.• Una ozonólisis, seguida de una hidrólisis, rompe el triple

enlace.

36

Reacción con KMnO4

• Condiciones suaves, diluido, neutro

• Condiciones más drásticas, caliente, básico

CH3 C

O

C

O

CH2 CH3H2O, neutral

KMnO4CH3 C C CH2 CH3

O C

O

CH2 CH3CH3 C

O

O +H2O, warm

, KOHKMnO4CH3 C C CH2 CH3

37

Ozonólisis

• La ozonólisis de alquinos produce ácidos carboxílicos (Los alquenos dan aldehídos y cetonas)

• Se utiliza para localizar la posición del triple enlace de un compuesto desconocido.

HO C

O

CH2 CH3CH3 C

O

OHH2O(2)

O3(1)CH3 C C CH2 CH3 +

38

4.1.4. Oxidación de alcoholes.

39

Oxidación de Alcoholes 2°

• Se convierten en cetonas• El reactivo es Na2Cr2O7/H2SO4

• Cambio de color de naranja a azul-verdoso

CH3CHCH2CH3

OHNa2Cr2O7 / H2SO4

CH3CCH2CH3

O

40

Oxidación de Alcoholes 1°

• Se convierte primero en aldehído y después en ácido carboxílico.• Difícil de detener en el aldehído.• Utiliza Clorocromato de piridinio (PCC) para limitar la oxidación.• PCC también puede utilizarse para oxidar alcoholes 2° a cetonas.

CH3CH2CH2CH2

OH N H CrO3Cl

CH3CH2CH2CH

O

41

Los Alcoholes 3° no se oxidan!

• No pueden perder 2 H’s

Para oxidar Utilizar Se obtieneAlcohol 2º Ácido Crómico (o PCC) CetonaAlcohol 1º PCC AldehídoAlcohol 1º Ácido Crómico Ácido

42

Otros Reactivos de Oxidación

• Reactivo de Collins: Cr2O3 en piridina

• Reactivo de Jones: Ácido crómico en acetona• KMnO4 (oxidante fuerte)

• Ácido nitrico (oxidante fuerte)• CuO, 300°C (deshidrogenación industrial)• Oxidación de Swern: dimetilsulfoxido, con cloruro de oxalilo y

una base impedida, oxida alcoholes 2 a cetonas y alcoholes 1 a aldehídos.

• Actividad: Investigar:

4.1.5. Oxidación de cadenas laterales de compuestos aromáticos

43

4.1.6. Oxidación de aminas.

• Las aminas se oxidan fácilmente, incluso en aire.

• Los agentes oxidantes comunes son: H2O2 , MCPBA.

• Las aminas 2 se oxidan a hidroxilamina (-NOH)

• Las aminas 3 se oxidan a oxido de amina (-N+-O-)

44

45

Eliminación Cope

Los óxidos de amina se someten a eliminación para formar el alqueno menos sustituido, bajo condiciones más suaves que la reacción de Hofmann.

CH2

N(CH3)2

CHCH2CH2CH3

HO O

H

CHCH2CH2CH3

N(CH3)2

CH2 CH2 CHCH2CH2CH3

N(CH3)2

HO+_

Fin de la unidad

46

top related