un modelo para el cálculo del déficit de presión en un

95
50 Congreso Nacional de Matem´ aticas SMM 2017 Introducci ´ on Motivaci ´ on Solicitud de investigaci ´ on Modelaci ´ on Modelo en derivadas enteras Sistema de Ecuaciones Modelo matem ´ atico Derivadas Fraccionarias Ecuaci ´ on de difusi ´ on alculo Fraccionario Funciones de Bessel Ecuaci ´ on de flujo fraccional Soluci ´ on semianal´ ıtica Trabajos Futuros Referencias Un modelo para el c ´ alculo del d´ eficit de presi ´ on en un pozo petrolero usando derivadas Caputo de orden fraccionario Benito Fernando Mart´ ınez-Salgado Fernando Brambila-Paz Rolando Rosas-Sampayo Carlos Fuentes Facultad de Ciencias, Universidad Nacional Aut ´ onoma de M´ exico 25 de octubre de 2017 50 Congreso Nacional de Matem´ aticas SMM 2017 25 de octubre de 2017 1 / 48

Upload: others

Post on 30-Jul-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Un modelo para el calculo del deficit de presion en unpozo petrolero usando derivadas Caputo de orden

fraccionario

Benito Fernando Martınez-Salgado Fernando Brambila-Paz RolandoRosas-Sampayo Carlos Fuentes

Facultad de Ciencias,Universidad Nacional Autonoma de Mexico

25 de octubre de 2017

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 1 / 48

Page 2: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Contenido1 Introduccion

MotivacionSolicitud de investigacion

2 Modelacion del fenomeno fısicoModelo en derivadas enterasSistema de EcuacionesModelo matematico

3 Derivadas FraccionariasEcuacion de difusionCalculo FraccionarioEcuacion de flujo fraccionalSolucion semianalıtica

4 Trabajos Futuros

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 2 / 48

Page 3: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Introduccion Motivacion

Motivacion

En 2010 la companıa petrolera British Petroleum (BP), ocasiono un enormeaccidente durante perforaciones en una plataforma de exploracion de aguasprofundas provocando uno de los mayores desastres ecologicos del mundo.

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 3 / 48

Page 4: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Introduccion Motivacion

Motivacion

En 2010 la companıa petrolera British Petroleum (BP), ocasiono un enormeaccidente durante perforaciones en una plataforma de exploracion de aguasprofundas provocando uno de los mayores desastres ecologicos del mundo.

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 3 / 48

Page 5: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Introduccion Motivacion

Motivacion

En 2010 la companıa petrolera British Petroleum (BP), ocasiono un enormeaccidente durante perforaciones en una plataforma de exploracion de aguasprofundas provocando uno de los mayores desastres ecologicos del mundo.

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 3 / 48

Page 6: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Introduccion Solicitud de investigacion

Solicitud de investigacionPEMEX plantea revisar el modelo actual y estudiar la posibilidad deconsiderar propiedades adicionales del medio.

• Porosidad ∼ Dimension Fractal• Derivadas fraccionarias• Geometrıa Fractal versus Calculo Fraccionario• Ecuaciones Diferenciales Parciales Fraccionarias

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 4 / 48

Page 7: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Introduccion Solicitud de investigacion

Solicitud de investigacionPEMEX plantea revisar el modelo actual y estudiar la posibilidad deconsiderar propiedades adicionales del medio.

• Porosidad ∼ Dimension Fractal

• Derivadas fraccionarias• Geometrıa Fractal versus Calculo Fraccionario• Ecuaciones Diferenciales Parciales Fraccionarias

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 4 / 48

Page 8: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Introduccion Solicitud de investigacion

Solicitud de investigacionPEMEX plantea revisar el modelo actual y estudiar la posibilidad deconsiderar propiedades adicionales del medio.

• Porosidad ∼ Dimension Fractal• Derivadas fraccionarias

• Geometrıa Fractal versus Calculo Fraccionario• Ecuaciones Diferenciales Parciales Fraccionarias

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 4 / 48

Page 9: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Introduccion Solicitud de investigacion

Solicitud de investigacionPEMEX plantea revisar el modelo actual y estudiar la posibilidad deconsiderar propiedades adicionales del medio.

• Porosidad ∼ Dimension Fractal• Derivadas fraccionarias• Geometrıa Fractal versus Calculo Fraccionario

• Ecuaciones Diferenciales Parciales Fraccionarias

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 4 / 48

Page 10: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Introduccion Solicitud de investigacion

Solicitud de investigacionPEMEX plantea revisar el modelo actual y estudiar la posibilidad deconsiderar propiedades adicionales del medio.

• Porosidad ∼ Dimension Fractal• Derivadas fraccionarias• Geometrıa Fractal versus Calculo Fraccionario• Ecuaciones Diferenciales Parciales Fraccionarias

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 4 / 48

Page 11: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Introduccion Solicitud de investigacion

Se estudia la relacion entre caracterısticas delos yacimientos y el analisis fractal

• Con estadıstica a traves del Ruido Fraccional Gaussiano usando registrossısmicos, de permeabilidad y de porosidad de varios yacimientos [Hardyand Beier, 1994].

• Con teorıa de dispersion es posible relacionar la dimension fractal de lagrafica de diferentes tipos de ondas con propiedades fısicas del medioMiranda-Martınez et al. [2006].

• No todos los yacimientos son necesariamente considerados como fractales[Hardy and Beier, 1994].

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 5 / 48

Page 12: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Introduccion Solicitud de investigacion

Se estudia la relacion entre caracterısticas delos yacimientos y el analisis fractal

• Con estadıstica a traves del Ruido Fraccional Gaussiano usando registrossısmicos, de permeabilidad y de porosidad de varios yacimientos [Hardyand Beier, 1994].

• Con teorıa de dispersion es posible relacionar la dimension fractal de lagrafica de diferentes tipos de ondas con propiedades fısicas del medioMiranda-Martınez et al. [2006].

• No todos los yacimientos son necesariamente considerados como fractales[Hardy and Beier, 1994].

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 5 / 48

Page 13: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Introduccion Solicitud de investigacion

Se estudia la relacion entre caracterısticas delos yacimientos y el analisis fractal

• Con estadıstica a traves del Ruido Fraccional Gaussiano usando registrossısmicos, de permeabilidad y de porosidad de varios yacimientos [Hardyand Beier, 1994].

• Con teorıa de dispersion es posible relacionar la dimension fractal de lagrafica de diferentes tipos de ondas con propiedades fısicas del medioMiranda-Martınez et al. [2006].

• No todos los yacimientos son necesariamente considerados como fractales[Hardy and Beier, 1994].

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 5 / 48

Page 14: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Modelacion

Modelacion del fenomeno fısico

En el yacimiento se presenta de manera simultanea el movimiento de agua, gasy aceite (o petroleo), en un medio poroso compuesto de una matriz, un mediofracturado y un medio vugular [Fuentes-Ruız (Responsable), 2014, Peaceman,1977]. Para el modelo se hace uso de:

• Ecuacion de continuidad• Ley de Darcy• Ecuaciones de Navier-Stokes• Geometrıa del medio fractal

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 6 / 48

Page 15: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Modelacion

Modelacion del fenomeno fısico

En el yacimiento se presenta de manera simultanea el movimiento de agua, gasy aceite (o petroleo), en un medio poroso compuesto de una matriz, un mediofracturado y un medio vugular [Fuentes-Ruız (Responsable), 2014, Peaceman,1977]. Para el modelo se hace uso de:• Ecuacion de continuidad

• Ley de Darcy• Ecuaciones de Navier-Stokes• Geometrıa del medio fractal

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 6 / 48

Page 16: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Modelacion

Modelacion del fenomeno fısico

En el yacimiento se presenta de manera simultanea el movimiento de agua, gasy aceite (o petroleo), en un medio poroso compuesto de una matriz, un mediofracturado y un medio vugular [Fuentes-Ruız (Responsable), 2014, Peaceman,1977]. Para el modelo se hace uso de:• Ecuacion de continuidad• Ley de Darcy

• Ecuaciones de Navier-Stokes• Geometrıa del medio fractal

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 6 / 48

Page 17: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Modelacion

Modelacion del fenomeno fısico

En el yacimiento se presenta de manera simultanea el movimiento de agua, gasy aceite (o petroleo), en un medio poroso compuesto de una matriz, un mediofracturado y un medio vugular [Fuentes-Ruız (Responsable), 2014, Peaceman,1977]. Para el modelo se hace uso de:• Ecuacion de continuidad• Ley de Darcy• Ecuaciones de Navier-Stokes

• Geometrıa del medio fractal

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 6 / 48

Page 18: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Modelacion

Modelacion del fenomeno fısico

En el yacimiento se presenta de manera simultanea el movimiento de agua, gasy aceite (o petroleo), en un medio poroso compuesto de una matriz, un mediofracturado y un medio vugular [Fuentes-Ruız (Responsable), 2014, Peaceman,1977]. Para el modelo se hace uso de:• Ecuacion de continuidad• Ley de Darcy• Ecuaciones de Navier-Stokes• Geometrıa del medio fractal

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 6 / 48

Page 19: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Modelacion Modelo en derivadas enteras

Modelo en derivadas enterasBasado en el modelo presentado en los trabajos Gomez et al. [2013],Camacho-Velazquez et al. [2005] se presenta como enFuentes-Ruız (Responsable) [2014] el planteamiento del modelo de flujosaturado en medios porosos partiendo de la Ley de Darcy

q = −1µ

k(p)(∇p − ρg∇D)

la ecuacion de continuidad∂(ρφ)∂t

+ ∇ · (ρq) = ρΥ

obteniendo la ecuacion general de flujo

∂(ρφ)∂t

= ∇ ·

µk(p)(∇p − ρg∇D)

]+ ρΥ

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 7 / 48

Page 20: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Modelacion Modelo en derivadas enteras

Modelo en derivadas enterasBasado en el modelo presentado en los trabajos Gomez et al. [2013],Camacho-Velazquez et al. [2005] se presenta como enFuentes-Ruız (Responsable) [2014] el planteamiento del modelo de flujosaturado en medios porosos partiendo de la Ley de Darcy

q = −1µ

k(p)(∇p − ρg∇D)

la ecuacion de continuidad∂(ρφ)∂t

+ ∇ · (ρq) = ρΥ

obteniendo la ecuacion general de flujo

∂(ρφ)∂t

= ∇ ·

µk(p)(∇p − ρg∇D)

]+ ρΥ

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 7 / 48

Page 21: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Modelacion Modelo en derivadas enteras

Modelo en derivadas enterasBasado en el modelo presentado en los trabajos Gomez et al. [2013],Camacho-Velazquez et al. [2005] se presenta como enFuentes-Ruız (Responsable) [2014] el planteamiento del modelo de flujosaturado en medios porosos partiendo de la Ley de Darcy

q = −1µ

k(p)(∇p − ρg∇D)

la ecuacion de continuidad∂(ρφ)∂t

+ ∇ · (ρq) = ρΥ

obteniendo la ecuacion general de flujo

∂(ρφ)∂t

= ∇ ·

µk(p)(∇p − ρg∇D)

]+ ρΥ

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 7 / 48

Page 22: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Modelacion Modelo en derivadas enteras

Modelo en derivadas enteras

Donde:

• q es el flujo de Darcy• µ viscosidad dinamica del fluido• p la presion• ρ es la densidad del fluido• k es el tensor de permeabilidad del

medio poroso saturado

• g es la aceleracion de la gravedad• D es la profundidad como una

funcion de las coordenadasespaciales

• t es el tiempo• Υ es un termino fuente

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 8 / 48

Page 23: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Modelacion Sistema de Ecuaciones

Sistema de ecuacionesConsiderando cada medio se obtiene un sistema de ecuaciones donde cadaecuacion representa la transferencia para cada medio poroso (ver[Martınez-Salgado et al., 2017])

∂(ρφm)∂t

= ∇ ·

µkm(∇pm − ρg∇D)

]+ρ

νm(Υm f + Υmv),

∂(ρφ f )

∂t= ∇ ·

µk f (∇p f − ρg∇D)

]−ρ

ν f(Υm f − Υ f v),

∂(ρφv)∂t

= ∇ ·

µkv(∇pv − ρg∇D)

]−ρ

νv(Υmv + Υ f v)

donde νm + ν f + νv = 1 y νm =Vm

VT, ν f =

V f

VT, νv =

Vv

VT.

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 9 / 48

Page 24: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Modelacion Sistema de Ecuaciones

Sistema de ecuacionesConsiderando cada medio se obtiene un sistema de ecuaciones donde cadaecuacion representa la transferencia para cada medio poroso (ver[Martınez-Salgado et al., 2017])

∂(ρφm)∂t

= ∇ ·

µkm(∇pm − ρg∇D)

]+ρ

νm(Υm f + Υmv),

∂(ρφ f )

∂t= ∇ ·

µk f (∇p f − ρg∇D)

]−ρ

ν f(Υm f − Υ f v),

∂(ρφv)∂t

= ∇ ·

µkv(∇pv − ρg∇D)

]−ρ

νv(Υmv + Υ f v)

donde νm + ν f + νv = 1 y νm =Vm

VT, ν f =

V f

VT, νv =

Vv

VT.

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 9 / 48

Page 25: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Modelacion Sistema de Ecuaciones

Suponiendo densidad y viscosidad del fluido constantes y haciendo z = D elsistema se simplifica

φmcm∂pm

∂t=

km

µ∆pm + am f (p f − pm) + amg(pv − pm)

φ f c f∂p f

∂t=

k f

µ∆p f − am f (p f − pm) + a f v(pv − p f )

φvcv∂pv

∂t=

kv

µ∆pv − amv(pv − pm) − a f v(pv − p f )

ci =1φv

∂φi

∂pi

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 10 / 48

Page 26: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Modelacion Sistema de Ecuaciones

Suponiendo densidad y viscosidad del fluido constantes y haciendo z = D elsistema se simplifica

φmcm∂pm

∂t=

km

µ∆pm + am f (p f − pm) + amg(pv − pm)

φ f c f∂p f

∂t=

k f

µ∆p f − am f (p f − pm) + a f v(pv − p f )

φvcv∂pv

∂t=

kv

µ∆pv − amv(pv − pm) − a f v(pv − p f )

ci =1φv

∂φi

∂pi

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 10 / 48

Page 27: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Modelacion Modelo matematico

Modelo de flujo monofasico con tripleporosidad y triple permeabilidad

En el sistema anterior

Υm f = am f (p f − pm), Υmv = amv(pv − pm), Υ f v = a f v(pv − p f ) .

Donde am f , amv y a f v son coeficientes de transferencia en cada medio.

El sistema es el modelo monofasico de triple porosidad y triple permeabilidad,en coordenadas polares se expresa como [Fuentes-Ruız (Responsable), 2014]:

φmcm∂pm

∂t=

km

µ1r∂∂r

(r∂pm

∂r

)+

km

µ

∂2pm

∂z2 + am f (p f − pm) + amg(pv − pm)

φ f c f∂p f

∂t=

k f

µ1r∂∂r

(r∂p f

∂r

)+

k f

µ

∂2p f

∂z2 − am f (p f − pm) + a f v(pv − p f )

φvcv∂pv

∂t=

kv

µ1r∂∂r

(r∂pv

∂r

)+

kv

µ

∂2pv

∂z2 − amv(pv − pm) − a f v(pv − p f ).

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 11 / 48

Page 28: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Modelacion Modelo matematico

Modelo de flujo monofasico con tripleporosidad y triple permeabilidad

En el sistema anterior

Υm f = am f (p f − pm), Υmv = amv(pv − pm), Υ f v = a f v(pv − p f ) .

Donde am f , amv y a f v son coeficientes de transferencia en cada medio.El sistema es el modelo monofasico de triple porosidad y triple permeabilidad,en coordenadas polares se expresa como [Fuentes-Ruız (Responsable), 2014]:

φmcm∂pm

∂t=

km

µ1r∂∂r

(r∂pm

∂r

)+

km

µ

∂2pm

∂z2 + am f (p f − pm) + amg(pv − pm)

φ f c f∂p f

∂t=

k f

µ1r∂∂r

(r∂p f

∂r

)+

k f

µ

∂2p f

∂z2 − am f (p f − pm) + a f v(pv − p f )

φvcv∂pv

∂t=

kv

µ1r∂∂r

(r∂pv

∂r

)+

kv

µ

∂2pv

∂z2 − amv(pv − pm) − a f v(pv − p f ).

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 11 / 48

Page 29: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Modelacion Modelo matematico

Modelo del flujo monofasico de tripleporosidad y triple permeabilidad

El sistema que se estudia es en variables adimensionales dado por

(1 − ω f − ωv)∂pm

∂t= (1 − κ f − κv)

1r∂∂r

(r∂pm

∂r

)+ λm f (p f − pm) + λmv(pv − pm) (1)

ω f∂p f

∂t= κ f

1r∂∂r

(r∂p f

∂r

)− λm f (p f − pm) + λ f v(pv − p f ) (2)

ωv∂pv

∂t= κv

1r∂∂r

(r∂pv

∂r

)− λmv(pv − pm) − λ f v(pv − p f ). (3)

Con las condiciones de frontera

lımr→1

r(1 − κ f − κv)∂pm

∂r+ rκ f

∂p f

∂r+ rκv

∂pv

∂r= −1,

pw(t) = pm(r = 1, t) = p f (r = 1, t) = pv(r = 1, t)

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 12 / 48

Page 30: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Modelacion Modelo matematico

Modelo del flujo monofasico de tripleporosidad y triple permeabilidad

El sistema que se estudia es en variables adimensionales dado por

(1 − ω f − ωv)∂pm

∂t= (1 − κ f − κv)

1r∂∂r

(r∂pm

∂r

)+ λm f (p f − pm) + λmv(pv − pm) (1)

ω f∂p f

∂t= κ f

1r∂∂r

(r∂p f

∂r

)− λm f (p f − pm) + λ f v(pv − p f ) (2)

ωv∂pv

∂t= κv

1r∂∂r

(r∂pv

∂r

)− λmv(pv − pm) − λ f v(pv − p f ). (3)

Con las condiciones de frontera

lımr→1

r(1 − κ f − κv)∂pm

∂r+ rκ f

∂p f

∂r+ rκv

∂pv

∂r= −1,

pw(t) = pm(r = 1, t) = p f (r = 1, t) = pv(r = 1, t)

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 12 / 48

Page 31: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Modelacion Modelo matematico

Lo anterior esta expresado en la misma notacion que las variables usuales, paraevitar introducir el subındice D para las variables ya adimensionalizadas, losrespectivos cambios son:

ω f =φ f c f

φmcm + φ f c f + φvcv, ωv =

φvcv

φmcm + φ f c f + φvcv, rD =

rrw,

κ f =k f

km + k f + kv, κv =

kv

km + k f + kv,

λm f =am fµr2

w

km + k f + kv, λmv =

amvµr2w

km + k f + kvλ f v =

a f vµr2w

km + k f + kv

pDj =2πh(km + k f + kv)(pi − p j)

Q0B0µ, tD =

t(km + k f + kv)

µr2w(φmcm + φ f c f + φvcv)

,

con rw el radio del pozo, Q0 el caudal con unidades de m3s−1 y B0 el factor deformacion del fluido (adimensional).

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 13 / 48

Page 32: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Modelacion Modelo matematico

Lo anterior esta expresado en la misma notacion que las variables usuales, paraevitar introducir el subındice D para las variables ya adimensionalizadas, losrespectivos cambios son:

ω f =φ f c f

φmcm + φ f c f + φvcv, ωv =

φvcv

φmcm + φ f c f + φvcv, rD =

rrw,

κ f =k f

km + k f + kv, κv =

kv

km + k f + kv,

λm f =am fµr2

w

km + k f + kv, λmv =

amvµr2w

km + k f + kvλ f v =

a f vµr2w

km + k f + kv

pDj =2πh(km + k f + kv)(pi − p j)

Q0B0µ, tD =

t(km + k f + kv)

µr2w(φmcm + φ f c f + φvcv)

,

con rw el radio del pozo, Q0 el caudal con unidades de m3s−1 y B0 el factor deformacion del fluido (adimensional).

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 13 / 48

Page 33: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Modelacion Modelo matematico

Lo anterior esta expresado en la misma notacion que las variables usuales, paraevitar introducir el subındice D para las variables ya adimensionalizadas, losrespectivos cambios son:

ω f =φ f c f

φmcm + φ f c f + φvcv, ωv =

φvcv

φmcm + φ f c f + φvcv, rD =

rrw,

κ f =k f

km + k f + kv, κv =

kv

km + k f + kv,

λm f =am fµr2

w

km + k f + kv, λmv =

amvµr2w

km + k f + kvλ f v =

a f vµr2w

km + k f + kv

pDj =2πh(km + k f + kv)(pi − p j)

Q0B0µ, tD =

t(km + k f + kv)

µr2w(φmcm + φ f c f + φvcv)

,

con rw el radio del pozo, Q0 el caudal con unidades de m3s−1 y B0 el factor deformacion del fluido (adimensional).

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 13 / 48

Page 34: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Derivadas Fraccionarias Ecuacion de difusion

¿Porque Fraccionario?

• Medios no homogeneos

• Multiescala: Estructuras fractales• Fractura• Vugulo• Matriz

• Interacciones Fluido-Medio

• Efectos de Memoria

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 14 / 48

Page 35: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Derivadas Fraccionarias Ecuacion de difusion

¿Porque Fraccionario?

• Medios no homogeneos• Multiescala: Estructuras fractales

• Fractura• Vugulo• Matriz

• Interacciones Fluido-Medio

• Efectos de Memoria

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 14 / 48

Page 36: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Derivadas Fraccionarias Ecuacion de difusion

¿Porque Fraccionario?

• Medios no homogeneos• Multiescala: Estructuras fractales• Fractura• Vugulo• Matriz

• Interacciones Fluido-Medio

• Efectos de Memoria

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 14 / 48

Page 37: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Derivadas Fraccionarias Ecuacion de difusion

¿Porque Fraccionario?

• Medios no homogeneos• Multiescala: Estructuras fractales• Fractura• Vugulo• Matriz

• Interacciones Fluido-Medio

• Efectos de Memoria

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 14 / 48

Page 38: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Derivadas Fraccionarias Ecuacion de difusion

¿Porque Fraccionario?

• Medios no homogeneos• Multiescala: Estructuras fractales• Fractura• Vugulo• Matriz

• Interacciones Fluido-Medio• Efectos de Memoria

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 14 / 48

Page 39: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Derivadas Fraccionarias Ecuacion de difusion

Enlace con geometrıa FractalTextos sobre calculo fraccionario• Podlubny [1999]

• Samko et al. [1993]• Oldham and Spanier [1974]• Miller and Ross [1993]

Una version de Ley de Darcy [Le Mehaute, 1984] y que se escribe en terminosde una derivada fraccional de Caputo [Raghavan, 2011]

q(x, t) = −Kγµ∂γ−1

∂tγ−1

∂p(x, t)∂x

donde γ = 1d f

, con d f dimension fractal de Hausdorff del medio [Le Mehaute,1991].

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 15 / 48

Page 40: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Derivadas Fraccionarias Ecuacion de difusion

Enlace con geometrıa FractalTextos sobre calculo fraccionario• Podlubny [1999]• Samko et al. [1993]

• Oldham and Spanier [1974]• Miller and Ross [1993]

Una version de Ley de Darcy [Le Mehaute, 1984] y que se escribe en terminosde una derivada fraccional de Caputo [Raghavan, 2011]

q(x, t) = −Kγµ∂γ−1

∂tγ−1

∂p(x, t)∂x

donde γ = 1d f

, con d f dimension fractal de Hausdorff del medio [Le Mehaute,1991].

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 15 / 48

Page 41: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Derivadas Fraccionarias Ecuacion de difusion

Enlace con geometrıa FractalTextos sobre calculo fraccionario• Podlubny [1999]• Samko et al. [1993]• Oldham and Spanier [1974]

• Miller and Ross [1993]Una version de Ley de Darcy [Le Mehaute, 1984] y que se escribe en terminosde una derivada fraccional de Caputo [Raghavan, 2011]

q(x, t) = −Kγµ∂γ−1

∂tγ−1

∂p(x, t)∂x

donde γ = 1d f

, con d f dimension fractal de Hausdorff del medio [Le Mehaute,1991].

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 15 / 48

Page 42: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Derivadas Fraccionarias Ecuacion de difusion

Enlace con geometrıa FractalTextos sobre calculo fraccionario• Podlubny [1999]• Samko et al. [1993]• Oldham and Spanier [1974]• Miller and Ross [1993]

Una version de Ley de Darcy [Le Mehaute, 1984] y que se escribe en terminosde una derivada fraccional de Caputo [Raghavan, 2011]

q(x, t) = −Kγµ∂γ−1

∂tγ−1

∂p(x, t)∂x

donde γ = 1d f

, con d f dimension fractal de Hausdorff del medio [Le Mehaute,1991].

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 15 / 48

Page 43: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Derivadas Fraccionarias Ecuacion de difusion

Enlace con geometrıa FractalTextos sobre calculo fraccionario• Podlubny [1999]• Samko et al. [1993]• Oldham and Spanier [1974]• Miller and Ross [1993]

Una version de Ley de Darcy [Le Mehaute, 1984] y que se escribe en terminosde una derivada fraccional de Caputo [Raghavan, 2011]

q(x, t) = −Kγµ∂γ−1

∂tγ−1

∂p(x, t)∂x

donde γ = 1d f

, con d f dimension fractal de Hausdorff del medio [Le Mehaute,1991].

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 15 / 48

Page 44: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Derivadas Fraccionarias Ecuacion de difusion

Ecuacion de difusion

Recordando la ecuacion de continuidad en coordenadas cartesianas

∂∂xi

qi(x; t) = φc∂∂t

p(x, t)

Al combinar las dos anteriores ecuaciones se obtiene una ecuacion de difusioncon simetrıa radial:

1rn−1

∂∂r

[rn−1λ(r)

∂p(r, t)∂r

]= φc

∂2−γ

∂t2−γ p(r, t) (4)

con n la dimension euclidiana del medio, en nuestro caso n = 2.

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 16 / 48

Page 45: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Derivadas Fraccionarias Ecuacion de difusion

Ecuacion de difusion

Recordando la ecuacion de continuidad en coordenadas cartesianas

∂∂xi

qi(x; t) = φc∂∂t

p(x, t)

Al combinar las dos anteriores ecuaciones se obtiene una ecuacion de difusioncon simetrıa radial:

1rn−1

∂∂r

[rn−1λ(r)

∂p(r, t)∂r

]= φc

∂2−γ

∂t2−γ p(r, t) (4)

con n la dimension euclidiana del medio, en nuestro caso n = 2.

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 16 / 48

Page 46: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Derivadas Fraccionarias Calculo Fraccionario

Definiciones Principales

Definicion (Integral Fraccional de Riemann-Liouville)La integral fraccional de Riemann-Liouville de orden α > 0 como:

aIαt f (t) :=1

Γ(α)

∫ t

a(t − τ)α−1 f (τ)dτ, α > 0

Con la convencion aI0t = Id (operador identidad) y la propiedad de semigrupo:

aIαt aIβt = aIβt aIαt = aIα+βt , α, β ≥ 0

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 17 / 48

Page 47: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Derivadas Fraccionarias Calculo Fraccionario

Definiciones Principales

Definicion (Integral Fraccional de Riemann-Liouville)La integral fraccional de Riemann-Liouville de orden α > 0 como:

aIαt f (t) :=1

Γ(α)

∫ t

a(t − τ)α−1 f (τ)dτ, α > 0

Con la convencion aI0t = Id (operador identidad) y la propiedad de semigrupo:

aIαt aIβt = aIβt aIαt = aIα+βt , α, β ≥ 0

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 17 / 48

Page 48: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Derivadas Fraccionarias Calculo Fraccionario

Definiciones principales

Definicion (Derivada de Caputo)Si f (t) ∈ ACn,n ∈N, entonces para n − 1 < α ≤ n se define la derivadafraccionaria de Caputo de f por:

Ca Dα

t f (t) =1

Γ(n − α)

∫ t

a(t − τ)n−α−1 f (n)(τ)dτ

= aIn−αt f (n)(t)

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 18 / 48

Page 49: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Derivadas Fraccionarias Calculo Fraccionario

Definiciones principales

Definicion (Derivada de Caputo)Si f (t) ∈ ACn,n ∈N, entonces para n − 1 < α ≤ n se define la derivadafraccionaria de Caputo de f por:

Ca Dα

t f (t) =1

Γ(n − α)

∫ t

a(t − τ)n−α−1 f (n)(τ)dτ

= aIn−αt f (n)(t)

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 18 / 48

Page 50: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Derivadas Fraccionarias Calculo Fraccionario

Propiedades

• La derivada Caputo de una constante es 0.

• La transformada de Laplace [Caputo, 1967]

L{tDµ∗ f (t); s} = sµ f (s) −

m−1∑k=0

sµ−1−k f (k)(0+), m − 1 < µ < m (5)

donde f (s) = L{ f (t); s} =∫∞

0e−st f (t)dt, s ∈ C, f (k)(0+) := lım

t→0+f (t).

• Existen otras definiciones de derivadas pero el comportamiento de esta enparticular es adecuada para los fenomenos de difusion [Le Mehaute, 1984,Caputo and Plastino, 2004].

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 19 / 48

Page 51: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Derivadas Fraccionarias Calculo Fraccionario

Propiedades

• La derivada Caputo de una constante es 0.• La transformada de Laplace [Caputo, 1967]

L{tDµ∗ f (t); s} = sµ f (s) −

m−1∑k=0

sµ−1−k f (k)(0+), m − 1 < µ < m (5)

donde f (s) = L{ f (t); s} =∫∞

0e−st f (t)dt, s ∈ C, f (k)(0+) := lım

t→0+f (t).

• Existen otras definiciones de derivadas pero el comportamiento de esta enparticular es adecuada para los fenomenos de difusion [Le Mehaute, 1984,Caputo and Plastino, 2004].

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 19 / 48

Page 52: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Derivadas Fraccionarias Calculo Fraccionario

Propiedades

• La derivada Caputo de una constante es 0.• La transformada de Laplace [Caputo, 1967]

L{tDµ∗ f (t); s} = sµ f (s) −

m−1∑k=0

sµ−1−k f (k)(0+), m − 1 < µ < m (5)

donde f (s) = L{ f (t); s} =∫∞

0e−st f (t)dt, s ∈ C, f (k)(0+) := lım

t→0+f (t).

• Existen otras definiciones de derivadas pero el comportamiento de esta enparticular es adecuada para los fenomenos de difusion [Le Mehaute, 1984,Caputo and Plastino, 2004].

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 19 / 48

Page 53: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Derivadas Fraccionarias Calculo Fraccionario

Propiedades

• La derivada Caputo de una constante es 0.• La transformada de Laplace [Caputo, 1967]

L{tDµ∗ f (t); s} = sµ f (s) −

m−1∑k=0

sµ−1−k f (k)(0+), m − 1 < µ < m (5)

donde f (s) = L{ f (t); s} =∫∞

0e−st f (t)dt, s ∈ C, f (k)(0+) := lım

t→0+f (t).

• Existen otras definiciones de derivadas pero el comportamiento de esta enparticular es adecuada para los fenomenos de difusion [Le Mehaute, 1984,Caputo and Plastino, 2004].

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 19 / 48

Page 54: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Derivadas Fraccionarias Funciones de Bessel

Funciones de BesselEcuacion de Bessel modificada, con ν ∈ R

z2 d2ydz2 + z

dydz− (z2 + ν2)y = 0

(6)

Las soluciones:Kν(z) =

(π2

) J−ν(z) − Jν(z)sen(νπ)

(7)

son llamadas funciones de Bessel modificadas de segundo tipo donde Jν(z) sonlas funciones de Bessel modificadas de primer tipo [Korenev, 2002].Jν y J−ν forman un conjunto de soluciones de (6) y estan dadas por

Iν(z) =

∞∑k=0

(−1)k(k/2)ν+2k

k!Γ(ν + k + 1), |x| < ∞.

I−ν se obtiene sustituyendo −ν por ν en la anterior.

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 20 / 48

Page 55: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Derivadas Fraccionarias Funciones de Bessel

Funciones de BesselEcuacion de Bessel modificada, con ν ∈ R

z2 d2ydz2 + z

dydz− (z2 + ν2)y = 0 (6)

Las soluciones:Kν(z) =

(π2

) J−ν(z) − Jν(z)sen(νπ)

(7)

son llamadas funciones de Bessel modificadas de segundo tipo donde Jν(z) sonlas funciones de Bessel modificadas de primer tipo [Korenev, 2002].

Jν y J−ν forman un conjunto de soluciones de (6) y estan dadas por

Iν(z) =

∞∑k=0

(−1)k(k/2)ν+2k

k!Γ(ν + k + 1), |x| < ∞.

I−ν se obtiene sustituyendo −ν por ν en la anterior.

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 20 / 48

Page 56: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Derivadas Fraccionarias Funciones de Bessel

Funciones de BesselEcuacion de Bessel modificada, con ν ∈ R

z2 d2ydz2 + z

dydz− (z2 + ν2)y = 0 (6)

Las soluciones:Kν(z) =

(π2

) J−ν(z) − Jν(z)sen(νπ)

(7)

son llamadas funciones de Bessel modificadas de segundo tipo donde Jν(z) sonlas funciones de Bessel modificadas de primer tipo [Korenev, 2002].Jν y J−ν forman un conjunto de soluciones de (6) y estan dadas por

Iν(z) =

∞∑k=0

(−1)k(k/2)ν+2k

k!Γ(ν + k + 1), |x| < ∞.

I−ν se obtiene sustituyendo −ν por ν en la anterior.50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 20 / 48

Page 57: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Derivadas Fraccionarias Funciones de Bessel

Propiedades

Las propiedades mas importantes para el proceso de la solucion son:

ddz

Kν(αz) = −αKν−1(αz) −νz

Kν(αz) (8)

ddz

Kν(αz) = −αKν+1(αz) +νz

Kν(αz) (9)

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 21 / 48

Page 58: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Derivadas Fraccionarias Ecuacion de flujo fraccional

Ecuacion de flujo con derivada temporalfraccional

Podemos simplificar la ecuacion (4) que representa el fluido, donde el medio esun todo, ası tenemos:

φcα∂αp∂tα

=kµ

1r∂∂r

(r∂p∂r

)(10)

con variables adimensionales, la ecuacion (10) es

φcDα∂αpD

∂tαD= κD

1rD

∂∂rD

(rD∂pD

∂rD

)(11)

donde

pD =2πhk(pi − p)

Q0B0µ, tD = t

kφcr2

wµ, rD =

rrw

(12)

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 22 / 48

Page 59: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Derivadas Fraccionarias Ecuacion de flujo fraccional

Ecuacion de flujo con derivada temporalfraccional

Podemos simplificar la ecuacion (4) que representa el fluido, donde el medio esun todo, ası tenemos:

φcα∂αp∂tα

=kµ

1r∂∂r

(r∂p∂r

)(10)

con variables adimensionales, la ecuacion (10) es

φcDα∂αpD

∂tαD= κD

1rD

∂∂rD

(rD∂pD

∂rD

)(11)

donde

pD =2πhk(pi − p)

Q0B0µ, tD = t

kφcr2

wµ, rD =

rrw

(12)

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 22 / 48

Page 60: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Derivadas Fraccionarias Ecuacion de flujo fraccional

La transformada de Laplace aplicada a la ecuacion (11)

uαpD =1

rD

∂∂rD

(rD∂pD

∂rD

), u > 0 (13)

debido a que pD(t0) = 0 y p = pi, en t = t0.

Las derivadas espaciales al ser desarrolladas en la ecuacion (13) muestran lasiguiente forma:

r2D∂2pD

∂r2D

+ rD∂pD

∂rD− r2

DuαpD = 0 (14)

la cual es una ecuacion de Bessel, por tanto su solucion es:

pD = AK0(βrD) (15)

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 23 / 48

Page 61: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Derivadas Fraccionarias Ecuacion de flujo fraccional

La transformada de Laplace aplicada a la ecuacion (11)

uαpD =1

rD

∂∂rD

(rD∂pD

∂rD

), u > 0 (13)

debido a que pD(t0) = 0 y p = pi, en t = t0.Las derivadas espaciales al ser desarrolladas en la ecuacion (13) muestran lasiguiente forma:

r2D∂2pD

∂r2D

+ rD∂pD

∂rD− r2

DuαpD = 0 (14)

la cual es una ecuacion de Bessel, por tanto su solucion es:

pD = AK0(βrD) (15)

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 23 / 48

Page 62: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Derivadas Fraccionarias Ecuacion de flujo fraccional

La transformada de Laplace aplicada a la ecuacion (11)

uαpD =1

rD

∂∂rD

(rD∂pD

∂rD

), u > 0 (13)

debido a que pD(t0) = 0 y p = pi, en t = t0.Las derivadas espaciales al ser desarrolladas en la ecuacion (13) muestran lasiguiente forma:

r2D∂2pD

∂r2D

+ rD∂pD

∂rD− r2

DuαpD = 0 (14)

la cual es una ecuacion de Bessel, por tanto su solucion es:

pD = AK0(βrD) (15)

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 23 / 48

Page 63: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Derivadas Fraccionarias Ecuacion de flujo fraccional

Al sustituir la ecuacion (15) en la ecuacion (13) y teniendo en mente lasecuaciones (8) y (9) para encontrar el valor de β se tiene que:

β = ±√

uα, u > 0 (16)

La ecuacion (15) al considerar el valor de β es

pD = AK0(rD√

uα) (17)

En la ecuacion (17) se descarta β = −√

uα debido a que la funcion de Besselmodificada segundo tipo no esta definida para valores negativos.

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 24 / 48

Page 64: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Derivadas Fraccionarias Ecuacion de flujo fraccional

Al sustituir la ecuacion (15) en la ecuacion (13) y teniendo en mente lasecuaciones (8) y (9) para encontrar el valor de β se tiene que:

β = ±√

uα, u > 0 (16)

La ecuacion (15) al considerar el valor de β es

pD = AK0(rD√

uα) (17)

En la ecuacion (17) se descarta β = −√

uα debido a que la funcion de Besselmodificada segundo tipo no esta definida para valores negativos.

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 24 / 48

Page 65: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Derivadas Fraccionarias Ecuacion de flujo fraccional

Al sustituir la ecuacion (15) en la ecuacion (13) y teniendo en mente lasecuaciones (8) y (9) para encontrar el valor de β se tiene que:

β = ±√

uα, u > 0 (16)

La ecuacion (15) al considerar el valor de β es

pD = AK0(rD√

uα) (17)

En la ecuacion (17) se descarta β = −√

uα debido a que la funcion de Besselmodificada segundo tipo no esta definida para valores negativos.

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 24 / 48

Page 66: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Derivadas Fraccionarias Ecuacion de flujo fraccional

Condiciones de fronteraPara encontrar la solucion de la ecuacion (11), se considera la siguientecondicion de frontera:

rD∂pD

∂rD

∣∣∣∣rD=1

= −1u

(18)

La sustitucion de la ecuacion (17) en (18) genera lo siguiente:

A =1u

[√uαK1

(√uα

)]−1

pD =1u

[√uαK1

(√uα

)]−1K0

(rD√

uα)

Por lo tanto, el valor de la presion en la frontera del pozo (rD = 1) es en elespacio de Laplace:

pD∣∣∣rD=1 =

1u

[√uαK1

(√uα

)]−1K0

(√uα

)(19)

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 25 / 48

Page 67: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Derivadas Fraccionarias Ecuacion de flujo fraccional

Condiciones de fronteraPara encontrar la solucion de la ecuacion (11), se considera la siguientecondicion de frontera:

rD∂pD

∂rD

∣∣∣∣rD=1

= −1u

(18)

La sustitucion de la ecuacion (17) en (18) genera lo siguiente:

A =1u

[√uαK1

(√uα

)]−1

pD =1u

[√uαK1

(√uα

)]−1K0

(rD√

uα)

Por lo tanto, el valor de la presion en la frontera del pozo (rD = 1) es en elespacio de Laplace:

pD∣∣∣rD=1 =

1u

[√uαK1

(√uα

)]−1K0

(√uα

)(19)

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 25 / 48

Page 68: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Derivadas Fraccionarias Ecuacion de flujo fraccional

Condiciones de fronteraPara encontrar la solucion de la ecuacion (11), se considera la siguientecondicion de frontera:

rD∂pD

∂rD

∣∣∣∣rD=1

= −1u

(18)

La sustitucion de la ecuacion (17) en (18) genera lo siguiente:

A =1u

[√uαK1

(√uα

)]−1

pD =1u

[√uαK1

(√uα

)]−1K0

(rD√

uα)

Por lo tanto, el valor de la presion en la frontera del pozo (rD = 1) es en elespacio de Laplace:

pD∣∣∣rD=1 =

1u

[√uαK1

(√uα

)]−1K0

(√uα

)(19)

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 25 / 48

Page 69: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Derivadas Fraccionarias Ecuacion de flujo fraccional

A partir del sistema de ecuaciones con variables adimensionales (1)-(3),usando la ecuacion de flujo con derivada temporal fraccional (11), expresamosun sistema con derivada temporal fraccional:

(1 − ω f − ωv)∂βpDm

∂tβD= (1 − κ f − κv)

1rD

∂∂rD

(rD∂pDm

∂rD

)+ λm f (pD f − pDm)

+ λmv(pDv − pDm) (20)

ω f∂βpD f

∂tβD= κ f

1rd

∂∂rD

(rD∂pD f

∂rD

)− λm f (pD f − pDm) + λ f v(pDv − pD f ) (21)

ωv∂βpDv

∂tβD= κv

1rd

∂∂rD

(rD∂pDv

∂rD

)− λmv(pDv − pDm) − λ f v(pDv − pD f ) (22)

donde las variables mostradas en las ecuaciones (20)-(22) que en las respectivas.

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 26 / 48

Page 70: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Derivadas Fraccionarias Ecuacion de flujo fraccional

A partir del sistema de ecuaciones con variables adimensionales (1)-(3),usando la ecuacion de flujo con derivada temporal fraccional (11), expresamosun sistema con derivada temporal fraccional:

(1 − ω f − ωv)∂βpDm

∂tβD= (1 − κ f − κv)

1rD

∂∂rD

(rD∂pDm

∂rD

)+ λm f (pD f − pDm)

+ λmv(pDv − pDm) (20)

ω f∂βpD f

∂tβD= κ f

1rd

∂∂rD

(rD∂pD f

∂rD

)− λm f (pD f − pDm) + λ f v(pDv − pD f ) (21)

ωv∂βpDv

∂tβD= κv

1rd

∂∂rD

(rD∂pDv

∂rD

)− λmv(pDv − pDm) − λ f v(pDv − pD f ) (22)

donde las variables mostradas en las ecuaciones (20)-(22) que en las respectivas.

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 26 / 48

Page 71: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Derivadas Fraccionarias Ecuacion de flujo fraccional

Por medio de la transformada de Laplace y con el uso de la ecuacion (5) sellega al siguiente sistema :

(1 − ω f − ωv)uβpDm = (1 − κ f − κv)1

rD

∂∂rD

(rD∂pDm

∂rd

)+ λm f (pD f − pDm)

+ λmv(pDv − pDm) (23)

ω f uβpD f = κ f1

rD

∂∂rD

(rD∂pD f

∂rd

)− λm f (pD f − pDm) + λ f v(pDv − pD f ) (24)

ωvuβpDv = κv1

rD

∂∂rD

(rD∂pDv

∂rd

)− λmv(pDv − pDm) − λ f v(pDv − pD f ) (25)

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 27 / 48

Page 72: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Derivadas Fraccionarias Ecuacion de flujo fraccional

Al desarrollar las ecuaciones (23)-(25) es facil ver que cumplen con la forma deuna ecuacion de Bessel y por tanto sus soluciones, al igual que en el caso β = 1,son

pDm = AK0(αrD) (26)pD f = BK0(αrD) (27)

pDv = CK0(αrD) (28)

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 28 / 48

Page 73: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Derivadas Fraccionarias Ecuacion de flujo fraccional

con el fin de simplificar las sucesivas ecuaciones, se definen los siguientesterminos:

m1(u) = uβ(1 − ω f − ωv) + λm f + λmv, (29a)

m2 = λm f , (29b)

m3 = λmv (29c)

m4(u) = uβω f + λm f + λ f v, (30a)

m5 = λ f v, (30b)

m6(u) = uβωv + λmv + λ f v (30c)

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 29 / 48

Page 74: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Derivadas Fraccionarias Ecuacion de flujo fraccional

Como resultado de sustituir las ecuaciones (26)-(28) en el sistema mostrado en(23)-(25) y haciendo uso de las definiciones mostradas por (29)-(30), se tiene lassiguientes:

K0(αrD){A[(1 − κ f − κv)α2−m1] + Bm2 + Cm3} = 0 (31)

K0(αrD){Am2 + B[κ fα2−m4] + Cm5} = 0 (32)

K0(αrD){Am3 + Bm5 + C[κvα2−m6]} = 0 (33)

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 30 / 48

Page 75: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Derivadas Fraccionarias Ecuacion de flujo fraccional

Puesto que las funciones de Bessel modificadas de segunda especie tienen uncomportamiento asintotico, es decir nunca toman el valor de cero, entonces elsistema mostrado en las ecuaciones (31)-(33) puede expresarse como sigue:

(1 − κ f − κv)α2−m1 m2 m3

m2 κ fα2−m4 m5

m3 m5 κvα2−m6

ABC

=

000

(34)

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 31 / 48

Page 76: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Derivadas Fraccionarias Ecuacion de flujo fraccional

Cuando el determinante es igual a cero, se obtiene la ecuacion de grado seisque sigue:

(1 − κ f − κv)κ fκvα6− [(1 − κ f − κv)(κ f m6 + κvm4) + κ fκvm1]α4

+ [(1 − κ f − κv)m4m6 − (1 − κ f − κv)m25 + (κ f m6 + κvm4)m1 − κvm2

2 − κ f m32]α2

−m1m4m6 + m1m25 + m2

2m6 + 2m2m3m5 + m23m4 = 0

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 32 / 48

Page 77: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Derivadas Fraccionarias Solucion semianalıtica

Solucion semianalıtica

La ecuacion anterior las potencias de α son pares, se puede por tanto resolvercomo una ecuacion de grado 3. Esta ecuacion tiene tres raıces reales.Las soluciones generales de las ecuaciones (23)-(25) tienen al incorporar las tresraıces reales, de la siguiente forma:

pDm = A1D1K0(α1rD) + A2D2K0(α2rD) + A3D3K0(α3rD) (35)pD f = B1D1K0(α1rD) + B2D2K0(α2rD) + B3D3K0(α3rD) (36)

pDv = D1K0(α1rD) + D2K0(α2rD) + D3K0(α3rD) (37)

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 33 / 48

Page 78: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Derivadas Fraccionarias Solucion semianalıtica

Con los terminos Ai,Bi, i = 1, 2, 3 dados por:

A1 =m3(κ fα2

1 −m4) −m2m5

m52[(1 − κ f − κv)α2

1 −m1][κ fα21 −m4]

(38)

B1 =−m3 − A1[(1 − κ f − κv)α2

1 −m1]

m2(39)

A2 =m3(κ fα2

2 −m4) −m2m5

m52 − [(1 − κ f − κv)α2

2 −m1][κ fα22 −m4]

(40)

B2 =−m3 − A2[(1 − κ f − κv)α2

2 −m1]m2

(41)

A3 =m3(κ fα2

3 −m4) −m2m5

m52 − [(1 − κ f − κv)α2

3 −m1][κ fα23 −m4]

(42)

B3 =−m3 − A3[(1 − κ f − κv)α2

3 −m1]

m2(43)

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 34 / 48

Page 79: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Derivadas Fraccionarias Solucion semianalıtica

y los terminos D1,D2 y D3 son obtenidos a partir de las condiciones de fronteray α1, α2, α3 son las raıces positivas de α2

1, α22, α

23. Los valores de D1,D2,D3 se

obtienen a partir de las condiciones de frontera y son igual a

D1 =1u

{α1E1K1(α1) + α3E3K1(α3)

(B1 − 1)K0(α1)(1 − B3)K0(α3)

+

[(1 − A1)K0(α1) + (1 − A3)

(B1 − 1)(1 − B3)

K0(α1)]

[(A2 − 1)K0(α2) + (A3 − 1)

(B2 − 1)(1 − B3)

K0(α2)]α2E2K1(α2)

+α3E3K1(α3)(B2 − 1)K0(α2)(1 − B3)K0(α3)

}−1

(44)

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 35 / 48

Page 80: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Derivadas Fraccionarias Solucion semianalıtica

D2 =1u

[(A2 − 1)K0(α2) + (A3 − 1)

(B2 − 1)(1 − B3)

K0(α2)]

[(1 − A1)K0(α1) + (1 − A3)

(B1 − 1)(1 − B3)

K0(α1)]

+

[α1E1K1(α1) + α3E3K1(α3)

(B1 − 1)K0(α1)(1 − B3)K0(α3)

]+

[α2E2K1(α2) + α3E3K1(α3)

(B2 − 1)K0(α2)(1 − B3)K0(α3)

]}−1

(45)

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 36 / 48

Page 81: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Derivadas Fraccionarias Solucion semianalıtica

D3 =1u

{α1E1K1(α1)

(1 − B3)K(α3)(B1 − 1)K0(α1)

+ α3E3K1(α3)

+

[(1 − A1)(1 − B3) + (1 − A3)(B1 − 1)(A2 − 1)(1 − B3) + (A3 − 1)(B2 − 1)

]×[

α2E2(1 − B3)K1(α2)K0(α3) + α3E3(B2 − 1)K1(α3)K0(α2)(B1 − 1)K0(α2)

]}−1

+1u

{α2E2K1(α2)

(1 − B3)K0(α3)(B2 − 1)K0(α2)

+ α3E3K1(α3)+

+

[(1 − A2)(1 − B3) + (1 − A3)(B2 − 1)(A1 − 1)(1 − B3) + (A3 − 1)(B1 − 1)

]×[

α1E1(1 − B3)K1(α1)K0(α3) + α3E3(B1 − 1)K1(α3)K0(α1)(B2 − 1)K0(α1)

]}−1

(46)

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 37 / 48

Page 82: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Derivadas Fraccionarias Solucion semianalıtica

donde

E1 =[(1 − κ f − κv)A1 + κ f B1 + κv

]E2 =

[(1 − κ f − κv)A2 + κ f B2 + κv

]E3 =

[(1 − κ f − κv)A3 + κ f B3 + κv

]

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 38 / 48

Page 83: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Derivadas Fraccionarias Solucion semianalıtica

Se llega a las siguientes ecuaciones como resultado de sustituir las ecuaciones(35)-(37) en las condiciones de frontera.

α1K1(α1)D1[(1 − κ f − κv)A1 + κ f B1 + κv]

+ α2K1(α2)D2[(1 − κ f − κv)A2 + κ f B2 + κv]

+ α3K1(α3)D3[(1 − κ f − κv)A3 + κ f B3 + κv] =1u

(47)

(A1 − 1)D1K0(α1) + (A2 − 1)D2K0(α2) + (A3 − 1)D3K0(α3) = 0 (48)(B1 − 1)D1K0(α1) + (B2 − 1)D2K0(α2) + (B3 − 1)D3K0(α3) = 0 (49)

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 39 / 48

Page 84: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Derivadas Fraccionarias Solucion semianalıtica

Con el fin de simplificar las ecuaciones (47)-(49) se definen los siguientesterminos:

Pi = αiK1(αi)[(1 − κ f − κv)Ai + κ f Bi + κv] (50)

Qi = (Ai − 1)K0(αi), Ri = (Bi − 1)K0(αi) (51)

donde i = 1, 2, 3.La ecuacion matricial asociada al sistema de ecuaciones (47)-(49) tiene la forma

P1 P2 P3Q1 Q2 Q3R1 R2 R3

D1D2D3

=

1/u

00

(52)

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 40 / 48

Page 85: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Derivadas Fraccionarias Solucion semianalıtica

Denotamos

m = Q1R2P3 −Q1P2R3 − R1Q2P3 − R2P1Q3

+ P2R1Q3 + P1Q2R3 (53)

La solucion de la ecuacion matricial es:D1

D2

D3

=

(Q2R3 −Q3R2)

m−(Q1R3 −Q3R1)

m(Q1R2 −Q2R1)

m

(54)

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 41 / 48

Page 86: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Derivadas Fraccionarias Solucion semianalıtica

Presion en la frontera del pozo

pw|rd=1 = D1K0(α1) + D2K0(α2) + D3K0(α3)= B1D1K0(α1) + B2D2K0(α2) + B3D3K0(α3)

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 42 / 48

Page 87: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Trabajos Futuros

Trabajos Futuros

• Ecuacion constitutiva (Ley de Darcy y Ley de Fick)

• Formalismo de Memoria• Caminante aleatorio en tiempo continuo (CTRW)• Flujos en medios desordenados

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 43 / 48

Page 88: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Trabajos Futuros

Trabajos Futuros

• Ecuacion constitutiva (Ley de Darcy y Ley de Fick)• Formalismo de Memoria

• Caminante aleatorio en tiempo continuo (CTRW)• Flujos en medios desordenados

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 43 / 48

Page 89: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Trabajos Futuros

Trabajos Futuros

• Ecuacion constitutiva (Ley de Darcy y Ley de Fick)• Formalismo de Memoria• Caminante aleatorio en tiempo continuo (CTRW)

• Flujos en medios desordenados

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 43 / 48

Page 90: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Trabajos Futuros

Trabajos Futuros

• Ecuacion constitutiva (Ley de Darcy y Ley de Fick)• Formalismo de Memoria• Caminante aleatorio en tiempo continuo (CTRW)• Flujos en medios desordenados

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 43 / 48

Page 91: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Trabajos Futuros

Referencias I

R. Camacho-Velazquez, M. A. Vasquez-Cruz, R. Castrejon-Aivar, andV. Arana-Ortiz. Pressure transient and decline curve behaviors in naturallyfractured vuggy carbonate reservoirs. SPE Reservoir Evaluation &Engineering, 8(2):95–112, 2005.

M. Caputo. Linear Models of Dissipation whose Q is almost FrequencyIndependent II. Geophysical Journal International, 13(5):529–539, 1967.

M. Caputo and W. Plastino. Diffusion in porous layers with memory.Geophysical Journal International, 158(1):385–396, 2004.

C. Fuentes-Ruız (Responsable). Informe VI. Fondo SectorialCONACYT-SENER-Hidrocarburos. Technical Report S0018-2011-11,Facultad de Ingenierıa, Universidad Autonoma de Queretaro, Junio 2014.

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 44 / 48

Page 92: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Trabajos Futuros

Referencias II

S. Gomez, G. Ramos, A. Mesejo, R. Camacho, M. Vasquez, and N. del Castillo.Study of the characterization of naturally fractured vuggy reservoirs, withtotally penetrated wells using global optimization. Technical report,IIMAS-UNAM, 2013.

H. H. Hardy and R. A. Beier. Fractals in reservoir engineering. World Scientific,1994.

B. G. Korenev. Bessel functions and their applications. CRC Press, 2002.

A. Le Mehaute. Fractal Geometries Theory and Applications. CRC Press, 1991.

A. Le Mehaute. Transfer processes in fractal media. Journal of Statistical Physics,36(5):665–676, 1984.

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 45 / 48

Page 93: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Trabajos Futuros

Referencias IIIB. F. Martınez-Salgado, R. Rosas-Sampayo, A. Torres-Hernandez, and

C. Fuentes. Application of fractional calculus to oil industry. In F. Brambila,editor, Fractal Analysis - Applications in Physics, Engineering and Technology,chapter 2. InTech, Rijeka, 2017.

K. S. Miller and B. Ross. An Introduction to the Fractional Calculus and FractionalDifferential Equations, volume 111 of Mathematics in Science and Engineering.Wiley-Interscience, 1993.

M. E. Miranda-Martınez, K. Oleschko, J.-F. Parrot, F. Castrejon-Vacio, H. Taud,and F. Brambila-Paz. Porosidad de los yacimientos naturalmentefracturados: una clasificacion fractal. Revista mexicana de ciencias geologicas,23:199 – 214, 2006.

K. B. Oldham and J. Spanier. The Fractional Calculus. Theory and Applications ofDifferentiation and Integration to Arbitrary Order. Elsevier Science, 1974.

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 46 / 48

Page 94: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Trabajos Futuros

Referencias IV

D. W. Peaceman. Fundamentals of Numerical Reservoir Simulation, volume 6 ofDevelopments in Petroleum Science. Elsevier Science, 1977.

I. Podlubny. Fractional Differential Equations. An Introduction to FractionalDerivatives, Fractional Differential Equations, Some Methods of Their Solution andSome of Their Applications, volume 198 of Mathematics in Science andEngineering. Academic Press, 1999.

R. Raghavan. Fractional derivatives: application to transient flow. Journal ofPetroleum Science and Engineering, 80(1):7–13, 2011.

S. G. Samko, A. A. Kilbas, and O. I. Marichev. Fractional Integrals and Derivatives:Theory and Applications. Gordon and Breach Science Publishers, 1993.

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 47 / 48

Page 95: Un modelo para el cálculo del déficit de presión en un

50 CongresoNacional deMatematicasSMM 2017

IntroduccionMotivacion

Solicitud deinvestigacion

ModelacionModelo en derivadasenteras

Sistema deEcuaciones

Modelo matematico

DerivadasFraccionariasEcuacion de difusion

Calculo Fraccionario

Funciones de Bessel

Ecuacion de flujofraccional

Solucionsemianalıtica

TrabajosFuturos

Referencias

Trabajos Futuros

Gracias

[email protected]

50 Congreso Nacional de Matematicas SMM 2017 (UNAM) 25 de octubre de 2017 48 / 48