trabajo final 3era unidad

3
Diseño de Sistemas Mecatrónicos I – VIII Ciclo Escuela de Ingeniería Mecatrónica __________________________________________________________________________________________________ Universidad Nacional de Trujillo Dr. Jorge A. Olortegui Yume, Ph.D. TRABAJO_FINAL_3ERA_UNIDAD Modalidad: Individual Fecha de entrega: Martes 23/12/14 1 pm en Secretaria de Ingeniería Mecánica Resolver los siguientes problemas usando Simulink como herramienta de simulación 1. A conveyor drive system to produce translation of the load is shown in the figure. Suppose that the equivalent inertia felt at the motor shaft is 0.05 kg · m 2 , and that the effect of Coulomb friction in the system produces an opposing torque of 3.6 N · m at the motor shaft. Neglect damping in the system. It is desired to have the motor shaft rotate through 11 revolutions in a total time of 3 s, using a trapezoidal speed profile with t 1 = 0.5 s and t2 = 2.5 s. The given motor parameters are Ra = 3 Q, La = 4 × 10 −3 H, and KT = 0.4N · m/A. Compute the energy consumption per cycle; the maximum required torque, current, and voltage; the rms torque; and the rms current. 2. Design a piston-type damper using an oil with a viscosity at 20◦C of μ = 0.9 kg/(m · s). The desired damping coefficient is 2000 N · s/m. Hint: First develop a model

Upload: victor-barreto-vasquez

Post on 23-Dec-2015

14 views

Category:

Documents


3 download

DESCRIPTION

trabajo diseoñ mecatronico

TRANSCRIPT

Page 1: Trabajo Final 3era Unidad

Diseño de Sistemas Mecatrónicos I – VIII Ciclo Escuela de Ingeniería Mecatrónica __________________________________________________________________________________________________

Universidad Nacional de Trujillo Dr. Jorge A. Olortegui Yume, Ph.D.

TRABAJO_FINAL_3ERA_UNIDAD

Modalidad: Individual Fecha de entrega: Martes 23/12/14 1 pm en Secretaria de Ingeniería Mecánica Resolver los siguientes problemas usando Simulink como herramienta de simulación

1. A conveyor drive system to produce translation of the load is shown in the figure. Suppose that the equivalent

inertia felt at the motor shaft is 0.05 kg · m2, and that the effect of Coulomb friction in the system produces an

opposing torque of 3.6 N · m at the motor shaft. Neglect damping in the system. It is desired to have the motor

shaft rotate through 11 revolutions in a total time of 3 s, using a trapezoidal speed profile with t1 = 0.5 s and t2 =

2.5 s. The given motor parameters are Ra = 3 Q, La = 4 × 10−3 H, and KT = 0.4N · m/A. Compute the energy

consumption per cycle; the maximum required torque, current, and voltage; the rms torque; and the rms current.

2. Design a piston-type damper using an oil with a viscosity at 20◦C of μ = 0.9 kg/(m · s). The desired damping

coefficient is 2000 N · s/m. Hint: First develop a model

Page 2: Trabajo Final 3era Unidad

Diseño de Sistemas Mecatrónicos I – VIII Ciclo Escuela de Ingeniería Mecatrónica __________________________________________________________________________________________________

Universidad Nacional de Trujillo Dr. Jorge A. Olortegui Yume, Ph.D.

3. In the figure the piston of area A is connected to the axle of the cylinder of radius R, mass m, and inertia I about

its center. Develop a dynamic model of the axle’s translation x, with the pressures p1 and p2 as the inputs. Try the

model using suitable data of your own

4. The figure shows an engine valve driven by an overhead camshaft. The rocker arm pivots about the fixed point O

and the inertia of the arm about this point is “Ir“ . The valve mass is mv and the spring mass is ms ; its spring

constant is ks . Let fc denote the force exerted on the rocker arm by the camshaft. Assuming that θ(t ) and its time

derivatives are known (from the cam profile and the cam speed), derive a dynamic model that can be used to

solve for the cam force fc(t ). (This information is needed to predict the amount of wear on the cam surface.). Try

the model using suitable data of your own

Page 3: Trabajo Final 3era Unidad

Diseño de Sistemas Mecatrónicos I – VIII Ciclo Escuela de Ingeniería Mecatrónica __________________________________________________________________________________________________

Universidad Nacional de Trujillo Dr. Jorge A. Olortegui Yume, Ph.D.