tesis muros 2009 completa.pdf

192
UNIVERSIDAD POLITÉCNICA DE EL SALVADOR FACULTAD DE INGENIERIA Y ARQUITECTURA ESCUELA DE INGENIERIA CIVIL TRABAJO DE GRADUACIÓN. "ESTUDIO COMPARATIVO DE EVALUACIÓN DE CARGAS EN ESTRUCTURAS DE RETENCIÓN: MÉTODOS CLÁSICOS (ELÁSTICOS, GRÁFICOS) VERSUS MÉTODOS MODERNOS (COMPORTAMIENTO SUELO-ESTRUCTURA)." ASESOR METODOLÓGICO Y COORDINADOR DE INGENIERIA CIVIL ING. JUAN FRANCISCO DOMINGUEZ PRESENTADO POR: ERNESTO ALEXANDER SÁNCHEZ HENRIQUEZ. GIOVANNI ANTONIO MEJIA MÉNDEZ. GERARDO ANTONIO BONILLA. PARA OPTAR AL GRADO DE INGENIERO CIVIL AGOSTO DE 2009 SAN SALVADOR, EL SALVADOR, CENTRO AMERICA

Upload: arturo-leon

Post on 09-Aug-2015

206 views

Category:

Documents


9 download

TRANSCRIPT

Page 1: tesis muros 2009 completa.pdf

UNIVERSIDAD POLITÉCNICA DE EL SALVADOR

FACULTAD DE INGENIERIA Y ARQUITECTURA

ESCUELA DE INGENIERIA CIVIL

TRABAJO DE GRADUACIÓN.

"ESTUDIO COMPARATIVO DE EVALUACIÓN DE CARGAS EN ESTRUCTURAS

DE RETENCIÓN: MÉTODOS CLÁSICOS (ELÁSTICOS, GRÁFICOS) VERSUS

MÉTODOS MODERNOS (COMPORTAMIENTO SUELO-ESTRUCTURA)."

ASESOR METODOLÓGICO Y COORDINADOR DE INGENIERIA CIVIL

ING. JUAN FRANCISCO DOMINGUEZ

PRESENTADO POR:

ERNESTO ALEXANDER SÁNCHEZ HENRIQUEZ.

GIOVANNI ANTONIO MEJIA MÉNDEZ.

GERARDO ANTONIO BONILLA.

PARA OPTAR AL GRADO DE INGENIERO CIVIL

AGOSTO DE 2009

SAN SALVADOR, EL SALVADOR, CENTRO AMERICA

Page 2: tesis muros 2009 completa.pdf

UNIVERSIDAD POLITÉCNICA DE EL SALVADOR

FACULTAD DE INGENIERIA Y ARQUITECTURA

ESCUELA DE INGENIERIA CIVIL

TRABAJO DE GRADUACIÓN.

"ESTUDIO COMPARATIVO DE EVALUACIÓN DE CARGAS EN ESTRUCTURAS

DE RETENCIÓN: MÉTODOS CLÁSICOS (ELÁSTICOS, GRÁFICOS) VERSUS

MÉTODOS MODERNOS (COMPORTAMIENTO SUELO-ESTRUCTURA)."

PRESENTADO POR:

ERNESTO ALEXANDER SÁNCHEZ HENRIQUEZ.

GIOVANNI ANTONIO MEJIA MÉNDEZ.

GERARDO ANTONIO BONILLA.

ASESOR: ING. JUAN FRANCISCO J. DOMÍNGUEZ

JURADOS: ING. JAIME OMAR ÁVALOS MENDOZA.

ING. CARLOS LÓPEZ ARGUETA

Page 3: tesis muros 2009 completa.pdf

i

ÍNDICE

ÍTEM No. Pág.

Índice i

Glosario de Palabras ix

Introducción 1

Antecedentes 2

Planteamiento del Problema 2

Justificación 3

Objetivo General. 4

Objetivo Especifico. 4

Alcances y Limitaciones 5

Capítulo I Análisis de los Métodos Teoría analítica Clásicos.

Métodos Analíticos.

I.1 Teoría de Coulomb. 6

I.1.1 Historia y Limitaciones del Método. 6

I.1.2 Fundamentación Teórica. 8

I.1.2.2 Presión Activa de Coulomb. 8

I.1.2.2 Presión Pasiva de Coulomb. 11

I.1.3 Análisis y descripción del método. 14

I.2 Teoría de Rankine. 16

I.2.1 Historia y Limitaciones del Método. 16

Page 4: tesis muros 2009 completa.pdf

ii

I.2.2 Fundamentación Teórica. 17

I.2.2.1 Presión de Tierra en Reposo. 17

I.2.2.2 Presión Activa de Tierra de Rankine. 21

I.2.2.3 Presión de Tierra Activa de Rankine para Terraplén Inclinado. 25

I.2.2.4 Presión Pasiva de Tierra de Rankine . 26

I.2.2.5 Presión Pasiva de Tierra de Rankine Relleno Inclinado. 29

I.2.3 Análisis del método 30

I.2.4 Descripción del método. 30

Métodos gráficos clásicos

I.3 Método Gráfico de Culmann. 31

I.3.1 Historia y Limitaciones del Método. 31

I.3.2 Fundamentación Teórica. 31

I.3.2.1 Punto de Aplicación de La Fuerza Resultante. 35

I.3.3 Descripción del Método. 36

I.3.4 Análisis del Método. 36

I.4 Método Grafico de Poncelett. 37

I.4.1 Historia y Limitaciones del Método. 37

I.4.2 Fundamentación Teórica. 38

I.4.2.1 Presión Activa de Tierra. 38

I.4.2.2 Sobrecarga 43

I.4.2.3 Presión Pasiva de Tierra. 43

Page 5: tesis muros 2009 completa.pdf

iii

I.4.2.4 Pasos Para La Construcción de la Presión Pasiva. 44

I.4.3 Descripción del Método. 46

I.4.4 Análisis del Método. 46

Cuadro Comparativo de los Métodos Clásicos. 47

CAPITULO II. Análisis de los Métodos Modernos.

II.1 Método Sueco (Fellenius). 48

II.1.1 Historia y Limitaciones. 48

II.1.2 Fundamentación Teórica. 48

II.1.2.1 Fuerza de Tierra Desarrollada desde un Cuerpo Retenido. 48

II.1.2.2 Coeficiente de Fuerza Activa. 49

II.1.2.3 Fuerzas de Tierra Activas y Pasivas. 51

II.1.2.4 Sobrecargas, Cargas Puntuales y Cargas Distribuidas. 53

II.1.3 Análisis del Método. 56

II.1.4 Descripción del Método 56

II.2 Método del Cuerpo de Ingenieros. 57

II.2.1 Historia y Limitaciones. 57

II.2.2 Fundamentación Teórica. 57

II.2.2.1 Análisis de Equilibrio Límite. 58

II.2.2.2 Relación Entre Fuerzas y Análisis de Deslizamientos. 58

II.2.2.3 Materiales Sin Cohesión. 58

II.2.2.4 Materiales Cohesivos. 60

Page 6: tesis muros 2009 completa.pdf

iv

II.2.2.5 Presiones en Sistemas Suelo Agua. 61

II.2.2.6 Presiones de Tierra y Fuerzas de Diseño, lado Activo. 62

II.2.2.7 Presiones de Tierra y Fuerzas de Diseño Lado Pasivo. 63

II.2.2.8 Diseño de las Fuerzas y Presiones de Tierra en la Base. 65

II.2.2.9 Ecuaciones para Presión de Tierra en Reposo. 67

II.2.2.10 Factor de Movilización de la Fuerza. 69

II.2.2.11 Cálculo de la Fuerza de Tierra por el Método General de Dovelas. 71

II.2.2.12 Cálculo de Presión de Tierra Incluyendo la Presión de la Pared. 82

II.2.2.13 Distribución de la Presión de Tierra Horizontal. 83

II.2.2.14 Efectos de la Sobrecarga. 88

II.2.2.15. Presiones de Tierra Debidas a la Compactación. 91

II.2.3 Análisis del Método. 92

II.2.4 Descripción del Método. 92

II.3 Método de los Elementos Finitos. 93

II.3.1 Historia. 93

II.3.2 Fundamento teórico. 94

II.3.2.1 Fundamentos Matemáticos. 94

II.3.2.2 Métodos de los Residuos Ponderados. 95

II.3.2.3 Método de Galerkin. 96

II.3.2.4 Método de Ritz. 97

II.3.2.5 Resolución de Sistemas de Ecuaciones de Sistemas Lineales 98

II.3.2.6 Métodos iterativos. 100

Page 7: tesis muros 2009 completa.pdf

v

II.3.3 En Que Consiste el Método. 103

II.3.4 Ejemplo de Modelación con el Programa Geo5 103

Cuadro Comparativo 111

CAPITULO III. Estabilidad Global.

III-1 Introducción. 112

III-2 Metodología para Análisis de Muros de Contención. 112

III-2.1 Obtención de las Fuerzas Actuantes. 112

III-2.2 Obtención de las Fuerzas Resistentes. 116

III-3 Verificación de la Estabilidad del Muro. 117

III-3.1 Momento de Volteo. 117

III-3.1.1 Momento de Volteo para Métodos Clásicos. 117

III-3.1.2 Momento de Volteo para El Método de Fellenius. 119

III-3.1.3 Momento de Volteo para el Método del Cuerpo de Ingenieros. 120

III-3.1.3.1 Colocación de la Resultante. 120

III.3.1.3.2 Criterios de Estabilidad Contra Volteo. 126

III-3.2 Deslizamiento. 127

III-3.2.1 Deslizamiento para los Métodos Clásicos. 127

III-3.2.2 Deslizamiento para el Método de Fellenius. 129

III-3.2.2.1 Cálculo Combinado de un Muro de Contención y de Losa. 130

III-3.2.3 Deslizamiento para El Método de Cuerpo de Ingenieros. 131

III.3.2.3.1 Revisión de la Estabilidad al Deslizamiento 131

III.3.2.3.2 Factor de Seguridad Contra Deslizamiento. 133

Page 8: tesis muros 2009 completa.pdf

vi

III.3.2.3.3 Suposiciones y Simplificaciones. 136

III.3.2.3.4 Ecuación General de Dovelas. 137

III.3.2.3.5 Angulo de la Superficie de Deslizamiento. 139

III.3.2.3.6 Análisis Para Una Dovela. 140

III.3.2.3.7 Análisis Múltiple de Dovelas. 142

III.3.2.3.8 Criterios Para Estabilidad al Deslizamiento. 143

III-3.3. Capacidad de Carga del Suelo Portante. 144

III-3.3.1 Capacidad de Carga para Métodos Clásicos. 144

III-3.3.2 Capacidad de Carga para El Método Sueco (Fellenius). 147

III-3.3.2.1 El factor de Seguridad contra falla por Capacidad del Selo Portante. 148

III-3.3.2.2 Cargas inclinadas y excéntricas. 149

III-3.3.2.4 Factores de forma e inclinación. 151

III-3.3.3 Capacidad de Carga para Métodos de Cuerpo de Ingenieros. 154

III.3.3.3.1 Análisis de Capacidad de Soporte en la Fundación de los Muros. 154

III.3.3.3.1.1 Análisis, Principios y Métodos. 154

III.3.3.1.2 Ecuación General de Carga. 155

III.4 Concepto de Factor de Seguridad. 155

III-5 Notas del Reglamento de la Seguridad de la Construcción de El Salvador. 156

Page 9: tesis muros 2009 completa.pdf

vii

CAPITULO IV.

IV-1 Metodología de la Investigación. 158

IV-1.1 Tipología de los Muros a Utilizar. 159

IV-1.1.1 Muros de Gravedad. 160

IV-1.1.2 Muros de Concreto Armado. 160

IV-1.2 Características Mecánicas de los Muros. 161

IV-1.2.1 Resistencia a la Compresión del Concreto. 161

IV-1.2.2 Revisión del Cortante por Elemento. 161

IV-1.2.2 Revisión de la Flexión del Elemento. 162

IV-1.3 Características de los Suelos. 162

CAPITULO V

V-1 Resumen de Resultados. 163

V-1.1 Metodología para análisis de resultados. 165

V-1.2 Determinación del método más adecuado. 166

V-1.3 Comparación de Resultados. 166

V-1.3.1 Muros de gravedad de mampostería de piedra. 166

V-1.3.2 Muros de Concreto Reforzado Cantiléver. 169

V-2 Análisis Estadísticos. 171

V-2.1 Muro de Mampostería. 171

V-2.2 Muros de Concreto Reforzado Cantiléver. 174

Page 10: tesis muros 2009 completa.pdf

viii

V-2.3 Resultados del Análisis Estadístico. 177

V-3 Análisis de Resultados. 178

V-4 Conclusiones. 178

Recomendaciones 179

Referencias. 180

Page 11: tesis muros 2009 completa.pdf

ix

GLOSARIO DE PALABRAS

Ángulo: figura formada en una superficie por dos líneas que parten de un mismo punto.

Arcillas: Roca sedimentaria formada a partir de depósitos de grano muy fino, compuesta

principalmente por silicatos de aluminio hidratados.

Área: Superficie comprendida dentro de un perímetro.

Arista: Líneas que resulta de la intersección de dos superficies, considerada por la parte

exterior del ángulo que forman.

Base: Fundamento o apoyo principal en que descansa un muro.

Cargas: Refiérase a la acción de fuerzas concentradas o distribuidas actuando sobre un

elemento estructural.

Coeficiente de Empuje Activo: Relación existente en un punto del terreno entre la tensión

efectiva horizontal y la tensión efectiva vertical, cuando actúa el empuje lateral de tierra.

Coeficiente de Empuje en Reposo: Relación existente en un punto del terreno entre la

tensión efectiva horizontal, para un terreno horizontal en el que las deformaciones laterales

son impedidas

Coeficiente de Empuje Pasivo: Relación existente en un punto del terreno entre la tensión

efectiva horizontal y la tensión efectiva vertical, cuando se fuerza a un muro a moverse

contra el terreno.

Cohesión: fuerzas de atracción que mantienen unidas las partículas de un suelo,

generalmente a las arcillas.

Hipótesis: Proposición cuya veracidad es generalmente asumida.

Peso Unitario: La relación existente entre el peso de un suelo por unidad de volumen.

Planos de Deslizamiento: Es la superficie de falla o de deslizamiento del suelo.

Presión Hidrostática: Fuerza de separación entre las partículas sólidas del suelo.

Page 12: tesis muros 2009 completa.pdf

x

Fricción: Fuerza que se opone al movimiento de una superficie sobre la otra.

Tensión: Valor de la distribución de fuerzas por unidad de área.

Page 13: tesis muros 2009 completa.pdf

1

INTRODUCCIÓN

Los muros de retención son en la actualidad una de las estructuras más utilizadas ya sea

como protección de estructuras o para el mejoramiento de terrenos con topografía irregular,

con el propósito de obtener un terreno totalmente estable y que tenga las características para

soportar cargas o movimientos fuertes.

Existen muchos métodos de diseño, los cuales podrían dividirse en Métodos Clásicos

(Coulomb, Rankine, Poncelet, Polígonos Funiculares, entre otros), basados en estimaciones

de comportamiento elástico de los suelos; Métodos Modernos (US Army, Sueco y

Elementos Finitos), surgidos de resultados experimentales.

Se podría elegir cualquiera de los antes mencionados, sin tomar en cuenta los resultados,

tanto económicos, cómo, constructivos. Sin embargo, el aspecto más importante es el

óptimo que lo económico que influye en una obra de este tipo y de hacer la comparación de

ambos métodos (clásicos y modernos). Además, dependiendo del tipo de suelo que

soportara el muro, cuál sería el método que mejor se adapta a las condiciones y

características reales del suelo.

Page 14: tesis muros 2009 completa.pdf

2

ANTECEDENTES

En base a estudios realizados se nos permitió partir de hechos que en la realidad toman

bastante relevancia, dentro de nuestro estudio tomaremos en cuenta los códigos vigentes

para la aplicación de las teorías. En nuestro estudio no profundizamos en otros estudios,

más bien los análisis a realizar se basan en literatura de la cual aplican los reglamentos

vigentes.

PLANTEAMIENTO DEL PROBLEMA

En nuestro país tenemos un método definido para el diseño de obras de retención, el

Reglamento para la Seguridad Estructural de El Salvador menciona el de Coulomb, estos

métodos existentes los podemos clasificar en dos grupos como lo son Métodos Clásicos y

los Métodos Modernos, estos métodos deben ser comparados entre sí para poder definir

cuál de ellos se adapta de mejor forma a las condiciones de de los suelos (granulares y

cohesivos) así, también la disipación del empuje activo de estos suelos.

Al hablar de obras de retención (Muros) podemos definir los siguientes tipos:

Muros de gravedad de mampostería de piedra.

Muros en cantilever de concreto armado.

Hacer un estudio comparativo demostraríamos cual método es adecuado y el que resultaría

con la estructura mas económica con respecto a su diseño y construcción.

Page 15: tesis muros 2009 completa.pdf

3

JUSTIFICACIÓN

De acuerdo con lo expuesto en el acápite anterior consideramos conveniente la realización

de este estudio para satisfacer las justificaciones siguientes:

Comparar los métodos clásicos versus modernos para conocer sus ventajas y

desventajas.

Encontrar el método que provenga del mejor conocimiento posible del suelo

analizado.

Encontrar el método estructuralmente más confiable

Encontrar el método que genere el diseño más económico.

Page 16: tesis muros 2009 completa.pdf

4

OBJETIVO GENERAL

Lograr un completo entendimiento de los métodos usados para evaluar cargas en los muros,

compararlos y determinar cuál es el más cercano a la realidad, el más económico y el que

cumple con todos los requisitos de reglamentaciones vigentes, como el Reglamento para la

Seguridad Estructural de las construcciones en El Salvador y otros a determinar.

OBJETIVO ESPECIFICO

Establecer las ventajas y desventajas que tienen entre si los métodos clásicos versus

métodos modernos.

Analizar los métodos para cada tipo de muro (gravedad y cantiliver), con hojas de

cálculo exceptuando el método de Elementos Finitos.

Page 17: tesis muros 2009 completa.pdf

5

ALCANCES Y LIMITACIONES DEL ESTUDIO

Alcances del Estudio

Determinar el método más conveniente, estructuralmente y económicamente, para las

condiciones de los suelos analizados (granulares y cohesivos), y que mejor se adapte a las

reglamentaciones vigentes de nuestro país.

Limitaciones del Estudio.

Al hablar de obras de retención existe una gran variedad de las mismas, nuestra

investigación será en las estructuras de retención más usadas en nuestro medio, dentro del

análisis estructural estático (sin sismo):

1. Muros de gravedad de mampostería de piedra

2. Muros en cantiléver de concreto armado

Y en al menos 2 alturas diferentes, 2 m, y 5 m, bajo la acción de 2 tipos de suelos

característicos: granulares y cohesivos, con al menos 3 inclinaciones de suelo sobre la

estructura de retención: 0, 15 y 30 grados, exceptuando el método de Elementos Finitos, del

cual solo estudiaremos lineamientos generales.

Page 18: tesis muros 2009 completa.pdf

6

CAPITULO I. ANÁLISIS DE LOS MÉTODOS CLÁSICOS

I.1. TEORÍA DE COULOMB

I.1.1 Historia y Limitaciones

a) Historia

Charles-Augustin de Coulomb (Angouleme, Francia, 14 de junio de 1736-paris, 23 de

agosto de 1806).Físico e ingeniero militar francés. Destacado por muchos aportes que lo

llevaron a tener muchas experiencias como ingeniero y dar como resultado fundamentos

que sirvieron para la mecánica estructural.

Poco más de 200 años atrás su gran aporte a la teoría que hoy se le conoce y que es la que

analizáremos en este apartado, (en el año de (1776)), la teoría de empuje de tierra dentro de

la cual enfoca la falla en forma de cuña.

b) Limitaciones

En su teoría coulomb asumió que la superficie de falla es un plano, y a diferencia de

Rankine, el toma en cuenta la fricción entre el suelo y el muro, la cual es proporcionada por

una superficie inclinada, en la cual supone que el esfuerzo cortante limite es función de

esfuerzo cortante normal en el plano de falla y que existe una ley de variación lineal entre

estos dos tipos de esfuerzo, las hipótesis que considera coulomb son:

Hay fricción entre el suelo y muro.

No hay adherencia entre el suelo y muro.

La superficie de falla puede ser horizontal o inclinada.

El trazado el muro puede ser vertical o inclinado.

El suelo seco o completamente sumergido.

La cohesión del suelo aparentemente nula (suelos granulares).

Page 19: tesis muros 2009 completa.pdf

7

A partir de estas hipótesis coulomb genero las condiciones para analizar la estabilidad de

taludes y diseño de muros de retención al igual que Rankine y propone las dos formas de

análisis que se conocen presión activa y presión pasiva.

Presión en reposo: El muro está restringido contra cualquier movimiento a cualquier

profundidad figura (1.1 a), es decir la presión es mínima.

Presión activa: Se supone una inclinación del muro hacia el suelo retenido, al hacerlo se

forma una cuña triangular del suelo detrás del muro, la cual fallara dentro del plano de

inclinación. Como muestra la figura (1.1 b).

Presión pasiva: En este caso el muro es empujado hacia el suelo donde se forma una cuña

de suelo que fallara como muestra al figura (1.1 c).

Figura No. 1.1 Tipos de comportamiento respecto a presiones

(Referencia Braja M Das. Cuarta edición “Principios de Ingeniería de Cimentaciones”

figura 6.1)

Puede considerarse como limitantes que no considera coulomb en su teoría, en la cual no

considera el estado de tensiones en el interior ni exterior de la cuña, por lo tanto la

superficie de plana de falla no satisface las condiciones de equilibrio limite, esto se debe a

que la cuña de falla es considerada rígida.

Page 20: tesis muros 2009 completa.pdf

8

El método es considerado muy bueno para el caso de empuje activo, no es muy exacto para

el caso de empuje pasivo, puesto que podrían obtenerse datos con valores muy altos.

También se puede mencionar que a mayor altura se pude considerar no exacto los valores

de carga, por lo general podemos considerar el diseño de muros de hasta 6m.

I.1.2 Fundamentación Teórica

I.1.2.1Presión Activa de Coulomb

Como vimos en la sección anterior para Rankine el muro no tenía fricción, coulomb en su

teoría considera que entre el muro y el suelo si existe fricción, por contener un suelo

granular el cual ejerce fricción sobre el muro.

Para ello consideremos un muro de retención con espalda inclinada a un ángulo β respecto

a la horizontal como se muestra en la figura (1.2 a), el relleno es un suelo granular que se

inclina a un ángulo α con la horizontal, δ es el ángulo de fricción entre el muro y el suelo

(es decir el ángulo de fricción del muro).

Como vimos anteriormente bajo condición activa, el muro se moverá alejándose de la masa

de suelo, Coulomb propuso que en tal caso la superficie de falla en el suelo será un plano

(BC1,BC2, ….etc.) como lo muestra la figura (1.2 a), entonces para encontrar la fuerza

activa en el ejemplo, considérese una posible cuña de falla de suelo ABC1, las fuerzas que

actúan sobre esta cuña ABC1,(por unidad de longitud en ángulo recto a la sección

transversal mostrada), son las siguientes:

1. El peso W de la cuña.

2. La resultante R, de las fuerzas normales y cortantes resistentes a lo largo de la

superficie BC1. La fuerza R estará inclinada a un ángulo Ø respecto a la normal a la

superficie BC1.

3. La fuerza activa por longitud unitaria del muro, Pa. La fuerza Pa estará inclinada un

ángulo un ángulo δ respecto a la normal del respaldo del muro.

Page 21: tesis muros 2009 completa.pdf

9

Figura No. 1.2 Presión activa de Coulomb

(Referencia Braja M Das. Cuarta edición “Principios de Ingeniería de Cimentaciones”

figura 6.12)

Para fines de equilibrio, se dibuja un triangulo de fuerzas como se muestra en la figura (1.2

a) Note que θ1 es el ángulo que BC1 forma con la horizontal. Así como W es conocida las

magnitudes de las fuerza son conocidas, el valor de Pa ahora es determinado.

Simultáneamente, las fuerzas activas de otras cuñas de prueba, tales como las ABC2,

ABC3,…se determinan. El valor máximo de Pa así calculado es la fuerza activa de

Coulomb (véase la parte superior de la figura 1.2 a), que se expresa como:

2

2

1HKP aa

Donde

Ka = coeficiente de presión activa de Coulomb

Que se expresa como:

Page 22: tesis muros 2009 completa.pdf

10

2

2

2

1

sensen

sensensensen

senKa

H = Altura del muro.

El método consiste en proceder por tanteos sucesivos. Eligiendo un punto como posible

origen de una cuña de deslizamiento, se calcula el peso P, de la cuña, y en el polígono

vertical de la figura se trazan los vectores Pa y R correspondiente, ambos de dirección

conocida. El valor de Pa se lleva a partir de un origen convencional como se muestra en la

figura (1.2 b). El cálculo se repite para varios puntos, pero generalmente tres puntos son

suficientes para determinar la posición del punto correspondiente a la cuña de la presión

máxima, que es la presión activa.

Al obtener la magnitud y dirección nos permite comprobar la estabilidad al vuelco y

deslizamiento del muro y calcularlo como una estructura, que puede ser de hormigón, y de

cualquier tipo.

Ahora bien si una sobrecarga de intensidad q está situada sobre el relleno como se muestra

en la figura (1.9 a) la fuerza activa, Pa se calcula como:

22

1HKP eqaa

Donde

cos2

H

q

sen

seneq

Page 23: tesis muros 2009 completa.pdf

11

Figura No.1.3 Presión activa de Coulomb con sobre carga sobre el relleno

(Referencia Braja M Das. Cuarta edición “Principios de Ingeniería de Cimentaciones”

figura 6.13)

I.1.2.2 Presión Pasiva de Coulomb.

Coulomb (1776), también presento un análisis para determinar la presión pasiva de tierra,

en muros con fricción que retiene un material granular de relleno igual al visto en la

sección anterior.

Para entender la determinación de la fuerza pasiva de coulomb, Pp, considere el muro

mostrado en la figura (1.4 a). Igual que en el caso de la presión activa, Coulomb supuso una

superficie potencial de falla en el suelo la cual es un plano.

Para una cuña de falla de prueba, como la ABC1, las fuerzas por longitud unitaria del muro

que actúan sobre la cuña son

Page 24: tesis muros 2009 completa.pdf

12

1. El peso, W, de la cuña

2. La resultante, R, de la fuerza normal y cortante sobre el plano BC1.

3. La fuerza pasiva, Pp.

Figura No. 1.4 Presión pasiva de Coulomb.

(Referencia Braja M Das. Cuarta edición “Principios de Ingeniería de Cimentaciones”

figura 6.27)

La figura (1.4 b) muestra el triangulo de fuerzas en equilibrio para la cuña de prueba ABC1.

De este triangulo de fuerzas, el valor de Pp se determina porque son conocidas las

direcciones de tres fuerzas y magnitud de una de ellas. Triángulos similares de fuerzas para

varias cuñas de prueba, tales como ABC1, ABC2, ABC3,… pueden construirse y

determinarse los correspondientes valores de Pp. La parte superior de la figura (1.4 a)

muestra la naturaleza de la variación de los valores Pp para diferentes cuñas. El valor

mínimo de Pp en este diagrama es la fuerza pasiva de Coulomb. Matemáticamente, esta se

expresa como:

Page 25: tesis muros 2009 completa.pdf

13

pp KHP 2

2

1

Donde

Kp= coeficiente de presión activa de Coulomb

2

2

2

1

sensen

sensensensen

senK p

Los métodos para calcular las presiones activa y pasiva de de Coulomb, tiene como

hipótesis fundamental en su análisis y se basa en considerar la superficie plana. Sin

embargo, para muros con fricción, esta hipótesis no es válida en la práctica. La naturaleza

de las superficies reales de falla en el suelo para las presiones activa y pasiva se muestran

en la figura (1.5 a y 1.5 b) respectivamente (para un muro vertical con relleno horizontal).

Note que las superficies de falla BC son curvas y que las de falla CD son planas.

Figura No. 1.5 Naturaleza de la superficie de falla en suelo con fricción de muro para

(a) caso de presión activa y (b) caso de presión pasiva

(Referencia Braja M Das. Cuarta edición “Principios de Ingeniería de Cimentaciones”

figura 6.28)

Page 26: tesis muros 2009 completa.pdf

14

Aunque la superficie real de falla en el suelo para el caso de la presión activa es algo

diferente de la supuesta en el cálculo de la presión pasiva de Coulomb, los resultados no

son muy diferentes. Sin embargo, en los casos de presión pasiva, conforme el valor de δ

crece, el método de cálculo de Coulomb da valores erróneos crecientes de Pp. Resultan más

grandes que los de la resistencia del suelo.

Es por ello que la teoría de Coulomb para presiones pasivas no es muy fiable, como ya lo

mencionamos en el párrafo anterior nos genera valores muy grandes aunque se pueden

corregir esta limitante aplicando un factor de corrección al valor de empuje pasivo;

basándose en la teoría Coulomb se genera otra teoría la cual propone este factor de

corrección, pero esto ya pertenece a otro método.

El método de presiones de tierra de Coulomb, tanto activa como pasiva, que se utiliza para

el diseño de muros de retención, nos permite considerar el comportamiento del material y

del tipo de suelo que se pretende sostener.

La descripción del método que Coulomb propuso es prácticamente considerar un plano de

falla que esta amarado a las propiedades intrínsecas del suelo, es aquí donde intervienen el

peso unitario del suelo (γ), su coeficiente de rozamiento interno, y su capacidad de

deformación.

El método en sí, es un método grafico el cual considera una o varias posibles direcciones de

falla, dentro de las cuales se le ubica las posibles direcciones que podría estar la fuerza

resultante como el empuje que genera el talud sobre el elemento de retención, en este caso

un muro de retención.

I.1.3 Análisis y Descripción del Método

Al presentar la teoría de coulomb, podemos decir que el método que utiliza es conocido

como método grafico, el cual se limita las hipótesis siguientes:

El suelo mantiene fricción con el muro.

Cuando crece el ángulo δ de inclinación hay más probabilidad de obtener un dato

erróneo.

Page 27: tesis muros 2009 completa.pdf

15

La superficie de falla es plana.

Considera la sobrecarga del relleno.

La representación grafica es un procedimiento de tanteo.

Dentro de las limitantes se puede obtener los factores que esta teoría no considera como

probables fallas es por ello que muchos textos recomiendan que esta teoría no es aplicable

para el caso pasivo, pues no permite considerar otro tipo de falla como el caso de otros

métodos.

Para el caso de suelos es aplicable a suelos granulares podemos generar el triangulo en

equilibrio de las fuerza que intervienen y así obtener las resultantes y ubicación de la de

ellas.

El método también considera la sobrecarga del relleno el cual puede estar en su estado seco

como con un nivel freático, y tomarlo en cuenta en el cálculo matemático. En conclusión el

método nos permite obtener datos bastante cercanos en el caso activo, pero en el caso

pasivo no es muy exacto, esto no quiere decir que no se puede usar, si se puede usar pero el

ingeniero civil que diseña obras de retención busca hacerlas con el fin de un buen

funcionamiento y con el mínimo de costos posibles.

Al diseñar muros de retención considerando el caso pasivo de Coulomb, se pueden dar

datos del suelo tan grandes que se necesitaría un muro muy grande para sostenerlo.

Page 28: tesis muros 2009 completa.pdf

16

I.2 TEORÍA DE RANKINE.

I.2.1 Historia y Limitaciones

a) Historia

William John Macquorn Rankine nació el día 5 de julio de 1,820 en una familia de Edimburgo, muere el 24 de diciembre de 1,872 su método para el empuje de tierras fue:

1857 – On the Stability in Loose Earth

b) Limitaciones del Método

Su Teoría que data de 1857, utiliza las nociones de equilibrio activo y pasivo, está basada

en el sistema de tensiones principales aplicadas en un punto del suelo situado a una

profundidad, y necesita un cierto número de hipótesis simplificadas:

• El suelo es isótropo;

• El muro de contención puede pivotar alrededor de su base;

• La presencia de discontinuidades como muros o una pantalla no modifica la

distribución de tensiones verticales en el suelo

• Supone Muros de paramento interno vertical liso.

• La superficie del relleno debe ser regular.

• Las presiones actúan paralelamente a la superficie, teóricamente incorrecto.

• Las cargas del relleno / efectos de sobrecarga aproximados.

• Fricción de la pared ignorada, con un efecto beneficioso.

La última hipótesis impone la dirección de las tensiones que actúan sobre el muro que tiene

que ser obligatoriamente normal a éste. Esto lleva a despreciar el rozamiento entre el muro

y el terreno, es decir, a considerar un ángulo de rozamiento del muro nulo. Ciertamente,

esta hipótesis no coincide con la realidad, pero se puede admitir en numerosos casos.

(Cuando está del lado de la seguridad).

Page 29: tesis muros 2009 completa.pdf

17

I.2.2 Fundamentación Teórica.

I.2.2.1 Presión de Tierra en Reposo.

La presión de tierra en reposo se refiere a considerar que el muro (figura 1.6) no tiene

ningún movimiento en el sentido horizontal, y que retiene un suelo con un peso especifico γ

y que una carga uniformemente distribuida de q/área unitaria, es también aplicada a la

superficie del terreno. La resistencia cortante s del suelo es:

tan, cs

Figura 1.6 Presión de tierra en reposo

(Referencia Braja M Das. Cuarta edición “Principios de Ingeniería de Cimentaciones”

figura 6.3)

Donde: c = cohesión

= Ángulo de fricción.

, = Esfuerzo normal efectivo

El esfuerzo vertical para el caso estudiado sería a una profundidad z bajo la superficie del

terreno:

Page 30: tesis muros 2009 completa.pdf

18

zqv

Como el muro esta en reposo y no se permite que se mueva respecto a la masa del suelo y

tomando en cuenta la existencia del nivel freático (es decir, deformación horizontal nula),

la presión lateral a una profundidad z es:

uvKoh ,

Donde: u = presión de poro del agua.

Ko = coeficiente de presión de la tierra en reposo.

Para un suelo normalmente consolidado, la relación para Ko es

senKo 1

La ecuación anterior es una aproximación empírica.

Para arcillas normalmente consolidadas, el coeficiente de presión de tierra en reposo se

aproxima a

senKo 95.0

Donde = ángulo de fricción máximo drenado.

Para arcillas preconsolidadas,

Ko(preconsolidadas) ≈ Ko(normalmente consolidadas) OCR

Donde OCR = Tasa de preconsolidación.

Con un valor seleccionado apropiadamente del coeficiente de presión de tierra en reposo, la

ecuación uvKoh , se usa para determinar la variación de la presión lateral de la

tierra con la profundidad z. La figura 1.1b exhibe la variación de σh con la profundidad para

el muro mostrado en la figura 1.1a. Note que si la sobrecarga q = 0 y la presión de poro

Page 31: tesis muros 2009 completa.pdf

19

u = 0, el diagrama de presión será un triangulo. La fuerza total, Po, por unidad de longitud

del muro en la figura 1.1a ahora se obtiene del diagrama de presión dado en la figura 1.6 b

como

ooo KHHqKPPP 221 2

1

Donde P1 = Área del rectángulo 1

P2 = Área del rectángulo 2

La localización de la línea de acción de la fuerza resultante Po, se logra tomando momentos

respecto al fondo del muro. Como sigue:

oP

HP

H

Pz

32 2

1

Si el nivel freático esta a una profundidad z < H, el diagrama de presión en reposo

mostrado en la figura 1.6 b tendrá que ser modificado un poco, como muestra la figura 1.7.

Si el peso especifico efectivo de suelo debajo del nivel freático es γ’ (γsat - γw),

En z = 0, qKK ovoh ,,

En z = H1, 1,, HqKK ovoh

En z = H2, 21,, , HHqKK ovoh

Note que en estas ecuaciones, σ’v y σ’h son las presiones efectivas verticales y horizontales.

La determinación de la distribución de presión total sobre el muro requiere añadir la presión

hidrostática. La presión hidrostática u, es cero de z = 0 a z = H1; en z = H2, u = H2 γw. La

variación de σ’h y u con la profundidad se muestra en la figura 1.2b. Por lo tanto la fuerza

Page 32: tesis muros 2009 completa.pdf

20

total por longitud unitaria de muro se determina del área del diagrama de presión.

Obteniendo:

54321 AAAAAPo

Donde A = Área del diagrama de presión.

Figura 1.7 Presión de Tierra en Reposo con Nivel Freático

(Referencia Braja M Das. Cuarta edición “Principios de Ingeniería de Cimentaciones”

figura 6.5)

Entonces:

22

2221

21 2

1,

2

11

2

1HKHKoHHqKHKqHKP wooooo

Page 33: tesis muros 2009 completa.pdf

21

I.2.2.2 Presión Activa de Tierra de Rankine.

Para esta condición sea sume que el muro va a desplazarse una distancia Δx, como se

muestra en la figura 1.8, la presión del suelo sobre el muro a cualquier profundidad

disminuye. Si además el muro no tiene fricción, el esfuerzo horizontal, σh, a una

profundidad z será igual a Koσv (= Koγz) cuando Δx es cero, sin embargo, con Δx > 0 σh

será menor que Koσv.

Los círculos de Mohr correspondientes a desplazamientos del muro de Δx=0 y Δx > 0 se

muestran por los círculos a y b de la figura 1.8 b. Si el desplazamiento del muro Δx,

continua creciendo, el correspondiente círculo de Mohr tocara eventualmente la envolvente

de falla Mohr-Coulomb definida por la ecuación:

tan cs

El circulo marcado con c en la figura 1.3b representa la condición de falla en la masa del

suelo; el esfuerzo horizontal es igual entonces a σa y se denomina presión activa de

Rankine. Las líneas de deslizamiento (planos de falla) en el suelo forman entonces ángulos

de ± (2

45

) con la horizontal, como lo muestra la figura 1.8 a.

La ecuación que relaciona los esfuerzos principales del círculo de Mohr que toca la

envolvente de falla de Mohr-Coulomb:

245tan2

245tan 2

31

c

Page 34: tesis muros 2009 completa.pdf

22

Figura 1.8 Presión Activa de Rankine

(Referencia Braja M Das. Cuarta edición “Principios de Ingeniería de Cimentaciones”

figura 6.7)

Para el círculo mostrado en la figura 1.8 b los esfuerzos principales mayores y menores se

describen a continuación:

Esfuerzo Principal mayor σ1= σv

Y

Esfuerzo Principal menor σ3= σa

Page 35: tesis muros 2009 completa.pdf

23

Entonces obteniendo las ecuaciones para los casos donde existe cohesión:

245tan2

245tan 2 cav

245tan

2

245tan 22 cv

a

Factorando la ecuación anterior:

245tan2

245tan 2 cva

aav KcK 2

2452tan

Ka

Donde

2452tan

Ka coeficiente de presión activa de Rankine.

La variación de la presión activa con la profundidad para el muro mostrado en la figura

1.8 a se da en la figura 1.8 c. Note que σv = 0 en z = 0 y σv = γ H en z = H. la distribución

de presión muestra que en z =o, la presión activa es igual a -2c Ka , que indica un

esfuerzo de tensión, el cual decrece con la profundidad y es cero a la profundidad

denominada Z = Zc, o

02 aac KcKZ

Y

aK

cZc

2

La profundidad Zc se llama profundidad de la grieta de tensión, porque el esfuerzo de

tensión en el suelo causará eventualmente una grieta a lo largo de la interfaz suelo-muro.

Page 36: tesis muros 2009 completa.pdf

24

Podemos definir la fuerza activa total de Rankine por unidad de longitud del muro antes de

que ocurra la grieta de tensión por la siguiente ecuación:

aaa KcHKHP 22

1 2

Después de que ocurre la grieta de tensión, la fuerza sobre el muro será causada solo por la

distribución de presión entre las profundidades Z= Zc y Z= H, como muestra el área

sombreada en la figura 1.8, esta se expresa como:

aaca KcHKZHP 22

1

O

aa

a

a KHKK

cHP

2

2

1

Se considera para facilitar los cálculos en algunos problemas de diseño de muros de

retención, reemplazar un relleno de suelo cohesivo por un suelo supuesto granular con un

diagrama de presión activa triangular de Rankine con σa = 0 en Z = 0 y σa = σvKa – 2c

Ka en Z = H. en tal caso, la fuerza activa supuesta por unidad de longitud de muro es

aaaaa KcHKHKcHKHP 2

2

12

2

1

Sin embargo la condición de presión activa de la tierra se alcanzara solo si se permite que el

muro ceda suficientemente.

Page 37: tesis muros 2009 completa.pdf

25

I.2.2.3 Presión de Tierra Activa de Rankine para Terraplén Inclinado.

Para los casos en que el relleno del muro tiene un terraplén inclinado como el que se

muestra en la figura 1.9 y además el muro no tiene fricción y es granular (C=0), la

dirección de la fuerza es paralela al ángulo de inclinación del terraplén y el coeficiente de

presión activa de la tierra Ka, se expresa en la forma:

22

22

coscoscos

coscoscoscos

Ka

Donde ángulo de fricción interna del suelo.

Ángulo de inclinación del terraplén con respecto a la horizontal.

Para encontrar la presión activa a cualquier profundidad z, la formula es:

aa zK

La fuerza total por unidad de longitud del muro es:

aa KHP 2

2

1

Figura 1.9 Presión Activa de Rankine para Terraplén Inclinado

(Referencia Braja M Das. Cuarta edición “Principios de Ingeniería de Cimentaciones”

figura 6.10)

Page 38: tesis muros 2009 completa.pdf

26

La posición de la fuerza es a 3

H de la base del muro.

Cuando necesitamos estudiar un suelo que además tenga cohesión la ecuación sería

aumentando el término K’a cuya ecuación se obtendrá más adelante:

cos,aaa zKzK

Donde:

1

coscos8cos4coscoscos4

cos22cos2

cos

1

22

2

222

,

sen

z

c

z

c

senz

c

K a

La profundidad de la grieta de tensión está dada por:

sen

sencZc

1

12

I.2.2.4 Presión Pasiva de Tierra de Rankine

La figura 1.10 a muestra un muro de retención vertical sin fricción con un relleno

horizontal. Este caso asume que el muro va a ejercer una fuerza contra la masa del suelo

desplazándolo una distancia Δx como se muestra en la figura 1.10 a, si el muro no cede en

absoluto, el esfuerzo lateral a esa profundidad será σh= Ko σv o presión en reposo. El estado

de esfuerzo es ilustrado por el circulo de Mohr a en la figura 1.10 b. Si el muro es

empujado hacia la masa de suelo una cantidad Δx, el esfuerzo vertical a la profundidad z

Page 39: tesis muros 2009 completa.pdf

27

permanecerá igual; sin embargo, el esfuerzo horizontal también se incrementará. Entonces,

σh será mayor que Ko σv. El estado de esfuerzo se representa en el circulo de Mohr b en la

figura 1.10 b. Si Δx aumenta, el esfuerzo a la profundidad z alcanzará el estado

representado por el circulo de Mohr c (figura 1.10 b). Note que este círculo de Mohr toca la

envolvente de falla de Mohr-Coulomb, lo que significa que el muro fallará siendo

empujado hacia arriba. El esfuerzo horizontal σh, en este punto se llama Presión Pasiva de

Rankine, o σh = σp.

Figura 1.10 Presión Pasiva de Rankine.

(Referencia Braja M Das. Cuarta edición “Principios de Ingeniería de Cimentaciones”

figura 6.25)

Page 40: tesis muros 2009 completa.pdf

28

Para el circulo de Mohr c en la figura 1.10 b, el esfuerzo principal mayor es σp y el esfuerzo

principal menor es σv. lo que resulta en la siguiente ecuación:

245tan2

245tan 2 cvp

Kp = Coeficiente de presión pasiva de Rankine

2452tan

y sustituyendo en la ecuación obtenemos:

Sustituyendo:

ppvp KcK 2

Esta ecuación produce la figura 1.10 c, que da el diagrama de presión pasiva para el muro

mostrado en la figura 1.5a. Nótese que en 0z

0v y pp Kc2

y en z = H

Hv y ppp KcHK 2

La fuerza pasiva por unidad de longitud del muro se determina del área del diagrama de

presión, o

ppp KcKHP 22

1 2

Page 41: tesis muros 2009 completa.pdf

29

I.2.2.5 Presión Pasiva de Tierra de Rankine Relleno Inclinado.

Para el caos del empuje pasivo pero en un muro con terraplén inclinado, además sin

fricción y con relleno granular (c = 0) la presión pasiva de Rankine a una profundidad z

pude determinarse de una forma similar a la que se determina para la presión activa con la

ecuación siguiente:

pp zK

Y la fuerza pasiva

pp KHP 2

2

1

Donde

2cos^2cos^cos

2cos^2cos^coscos

pK

Figura 1.11 Presión Pasiva de Rankine para Relleno Inclinado

(Referencia Braja M Das. Cuarta edición “Principios de Ingeniería de Cimentaciones”

figura 6.10)

Page 42: tesis muros 2009 completa.pdf

30

Igual que en el caso de la fuerza activa, la fuerza resultante, Pp, esta inclinada a un ángulo α

con la horizontal y cruza el muro a una distancia de H/3 desde la base del muro.

Si el relleno del muro de retención vertical sin fricción es un suelo cohesivo y granular

entonces:

cos,ppa zKzK

Donde:

1

coscos8cos4)cos(coscos4

cos2cos2

cos

1'

22

2

222

2

2

sen

z

c

z

c

senz

c

Kp

I.2.3 Análisis del método

La pared vertical del muro soporta una carga equivalente a la suma de los empujes en

reposo, activo y pasivo con constantes para cada uno de estos empujes (Ko, Ka, Kp) que

dependen del valor del ángulo de fricción interna ( ) y de los planos de falla

perpendiculares que el método contempla (Tan 45° - 2

y tan 45° +

2

), actuando en el

tercio medio de altura del muro y permite usarse en suelos con y sin cohesión.

I.2.4 Descripción del método.

El método supone que el paramento interno vertical del muro es liso y que el muro soporta

una fuerza determinada a partir de los empujes y de que el punto de aplicación de la fuerza

es un tercio de la altura del muro, esta es paralela a la superficie del terreno y la superficie

de falla es plana.

Page 43: tesis muros 2009 completa.pdf

31

I.3 MÉTODO GRAFICO DE CULMANN

I.3.1 Historia y Limitaciones

a) Historia

Karl Culmann (Bergzabern, 1821-Riesbach 1881)

Ingeniero alemán, especializado en la construcción de puentes. Profesor de la escuela

politécnica de Zúrich, realizo importantes innovaciones en los análisis de los sistemas

reticulares, donde se le considera el fundador de la grafostática, expuso el resultado de su

trabajo en la obra Estática Grafica. Quien baso la grafostática con el polígono funicular,

mediante la aproximación de un polígono de fuerzas que gráficamente dan como resultado

la obtención de la resultante en un punto de aplicación.

b) Limitaciones

El método toma en cuenta las características del suelo, al igual que Coulomb, supone una

cuña de falla, pero, en este método solo toma en cuenta el empuje activo, la gran ventaja es

que retoma las hipótesis de Coulomb, pero los resultado son mas analíticos que científicos,

Otra de sus limitantes es que no se puede considerar la localización y dirección de la

aplicación de la fuerza resultante, por lo que también se supone gráficamente. Como, lo

veremos más adelante.

I.3.2 Fundamentación Teórica

Como ya se indico la teoría de Coulomb se basa en encontrar un plano de rotura que de un

empuje activo máximo, así como un como un plano de rotura que del empuje pasivo

mínimo. Recuérdese que el empuje activo es el que gravita directamente sobre el muro y

para cuyo fin se construye este, mientras que el empuje pasivo es la resistencia que ofrece

el terreno a un muro próximo a el que está soportando otra acción y que transmite al

terreno. Como la teoría de Coulomb se presta mejor a una interpretación práctica que

analítica, muchos han sido los actores que dieron métodos analíticos para la solución del

Page 44: tesis muros 2009 completa.pdf

32

problema; este consiste precisamente en encontrar el plano de deslizamiento que según la

teoría de Coulomb proporcione el empuje activo máximo.

Culmann (1875) dio un método conveniente para crear una solución grafica de la teoría de

presiones de tierra de Coulomb. La solución de Culmann se basa en la comparación de un

polígono de fuerzas con el polígono funicular el cual presenta en un modelo a escala la

aplicación de la fuerza en un punto y que establece que la relación que hace entre el

polígono funicular y el polígono de fuerzas es intercambiable. Para cualquier fricción de

muro, despreciando las irregularidades del relleno y sobrecargas. De aquí que provee una

técnica muy poderosa para estimar la presión lateral de tierra.

Se puede considerar que el método de Culmann es una técnica muy poderosa, para estimar

el empuje activo dentro de un relleno irregular y con un suelo de granular (c=0).

El método de Culmann sigue el siguiente proceso. Fig. (1.12).

Figura No. 1.12 Representación grafica del Método Culmann

Page 45: tesis muros 2009 completa.pdf

33

a) Define la línea del talud natural como la que partiendo del vértice B del trasdós del

muro, forma un ángulo φ (que es el de rozamiento interno del terreno) con la

horizontal.

b) Define la línea de dirección como aquella que pasando por B forma un ángulo φ + δ

como el parámetro del muro.

El método de Culmann dice que si a partir del punto B, que hemos considerado como

origen de coordenadas, levamos sobre la línea de talud natural BD, la magnitud del peso del

prisma ABC a una determinada escala, nos dará el punto J. SI ahora por JBe traza una

paralela a la línea de dirección cortara a la línea BC en el punto N. Este valor JN representa

a la escala indicada para la fuerza el valor del empuje activo producido por el prisma ABC.

BJ = Valor del peso del prisma ABC.

JN = Valor del empuje sobre el muro producido por el prisma ABC.

En vista de esto podemos indicar que como lo que aquí se pretende es determinar el empuje

máximo (Ea) se consideran tantos puntos C como sean necesarios para describir una curva

en la que podemos determinar el Ea máximo.

Los pasos en la solución de Culmann del empuje activo con relleno granular (c = 0) se

describen a continuación con referencia a la figura (1.13).

Dibujar las características del muro de retención y del relleno a una escala

conveniente.

Determinar el valor de ψ (en grados) = 90 – θ – δ, donde θ = la inclinación de la

superficie del respaldo del muro de retención con la vertical, y δ = ángulo de

fricción de la pared.

Dibujar la línea BD que forma un ángulo con la horizontal.

Dibujar la línea DB que forma un ángulo ψ con la línea BD.

Para considerar alguna cuñas de falla de ensayo, dibujar las líneas BC1, BC2,

BC3,….., BCn.

Encontrar las áreas de ABC1, ABC2, ABC3,…..ABCn.

Page 46: tesis muros 2009 completa.pdf

34

Determinar el peso de suelo W, por unidad de ancho de muro de retención en cada

una de las cuñas de falla de ensayo:

W1 = (área de ABC1) x (γ) x (1)

W2 = (área de ABC2) x (γ) x (1)

W3 = (área de ABC3) x (γ) x (1)

Wn = (área de ABCn) x (γ) x (1)

Adoptar una escala de carga conveniente y el plotear los pesos W1, W2, W3,…Wn

determinados del paso 7 sobre la linea BD (nótese que: Bc1= W1, Bc2 =W2, Bc3 =

W3,…….,Bcn = Wn).

Dibujar c1c1', c2c2', c3c3',…., cncn' paralelo a la línea BE, (nótese que c1', c2', c3',….,

cn c1', c2', c3',…., cn' están localizados sobre las líneas BC1, BC2, BC3,…..BCn,

respectivamente).

Dibujar una curva suave a través de los puntos c1', c2', c3',…., cn'. Están es la

llamada línea de Culmann.

Dibujar la tangente B'D' a la curva suave dibujada en el paso 10. B'D' es paralela la

línea BD. c3' es el punto de tangencia.

Dibujar la línea c3c3' paralela a la línea BE.

Determinar la fuerza activa por unidad de ancho del muro:

Ea = (largo de carga') x (escala de la carga)

Dibujar una línea Bca'Ca donde ABCa es la cuña de falla deseada.

Nótese que el procedimiento de construcción consiste en esencia, en dibujar un número de

polígonos de fuerza para un número de cuñas de ensayo y encontrar el valor máximo de la

fuerza activa a que el muro puede estar sujeto. Por ejemplo, la figura (1.13 b) muestra el

polígono de fuerza para una cuña de falla ABCa (similar a la figura (1.13 b) en la cual:

W = Peso de la cuña de falla del suelo ABCa.

Pa = Fuerza activa del muro.

F = Resultante de las fuerzas normales y de corte actuando a lo largo de BCa.

β = Ángulo CaBF( que la cuña de falla forma con la horizontal).

El triangulo de fuerzas (figura 1.13 b) esta rotado simplemente en la figura (1.13 a) y está

representado por el triangulo de fuerzas BCaCa'. Similarmente, los triángulos de fuerza

Page 47: tesis muros 2009 completa.pdf

35

Bc1c1', Bc2c2', Bc3c3',…… Bcncn' corresponden a cuñas de ensayos ABC1, ABC2,

ABC3,…….ABCn.

Figura No. 1.13 Solución de Culmann para presiones de tierra activa

I.3.2.1 Punto de Aplicación de la Fuerza Resultante.

Como hemos visto, la solución de Culmann solo provee de la magnitud de la fuerza activa

por unidad de ancho del muro de retención más no con el punto de aplicación de la

resultante. El procedimiento analítico usado para encontrar el punto de aplicación de la

resultante puede ser tedioso por esa razón puede usarse el método sin sacrificarse mucha

exactitud. Esto se demuestra en la figura (1.14) en la cual ABC es la cuña de falla

determinada por el método de Culmann. O es el centro de gravedad de la cuña ABC. Si una

línea OO' se dibuja paralela a la superficie de deslizamiento BC, el punto de intersección de

esta línea con la superficie del respaldo del muro dará el punto de aplicación de Pa. Así Pa

actúa en O' inclinada en un ángulo δ con la normal dibujada para la superficie de respaldo

del muro.

Page 48: tesis muros 2009 completa.pdf

36

Figura No. 1.14 Método aproximado para encontrar el punto de aplicación de la

resultante de la fuerza activa.

I.3.3 Descripción del Método

El método de Culmann se desarrolla a través de las hipótesis que coulomb estableció en su

método, puesto que el supone un plano de falla mediante el cual una cuña se desprende

provocando el deslizamiento del talud el cual ejercerá un empuje estrictamente activo, el

cual retoma Culmann y lo desarrolla aplicando el método grafico, e decir el desarrollado a

través de la comparación que él hizo con el polígono funicular, este método es la

representación grafica de las fuerzas que actúan en el muro pero a diferencia de Coulomb

este lo hace a una escala conocida para obtener posteriormente el valor de la fuerza

resultante como se describió anteriormente.

I.3.4 Análisis del Método

El método comprende toma en cuenta las mismas hipótesis de Coulomb, es decir supone

una cuña de falla del suelo, también, retoma las características del suelo para luego

establecer las fuerzas actuantes en el muro, estas fuerzas son el peso de la cuña, el empuje

generado por la cuña y la reacción o resultante esta última es la incógnita a encontrar.

Page 49: tesis muros 2009 completa.pdf

37

Ahora bien lo que el método lo que el método ofrece para el diseño de muros es una arma

muy poderosa puesto que la resultante se encuentra mediante la grafica correctamente

desarrollada, la desventaja es que no ofrece la localización exacta de la aplicación de la

fuerza resultante el cual supone mediante un grafica donde interviene el cetro de masa de la

cuña que nos genero el máximo empuje activo.

Al igual no podemos encontrar el empuje pasivo ya que el método se desarrollo para

encontrar nada mas el empuje activo, es por ello que el método solo muestra el proceso de

obtención del empuje activo.

1.4 MÉTODO GRAFICO DE PONCELET

1.4.1 Historia y Limitaciones

a) Historia

Jean-Victor Poncelet (1 de julio de 1788, Metz – 22 de diciembre de 1867, Paris) fue un matemático e ingeniero francés que hizo mucho por recuperar la geometría proyectiva, su obra con respecto al empuje de tierras fue:

Mémories sur la stabilite des revestiments et de lur foundations (1,840)

Limitaciones

Poncelet (1840) uso una aproximación del equilibrio límite de Coulomb para obtener los

coeficientes de la presión de tierra activa y pasiva con las hipótesis siguientes:

Relleno tras del muro seco, homogéneo y sin cohesión con un ángulo de fricción

interna

El relleno puede estar o no inclinado con la horizontal en un ángulo α.

Toma en cuenta la fricción de la pared 0

Paramento interno inclinado un ángulo con la vertical.

Page 50: tesis muros 2009 completa.pdf

38

1.4.2 Fundamentación Teórica

Un método gráfico para la colocación directa de la más peligrosa superficie de ruptura de

Coulomb y para la determinación de la presión lateral de tierra, fue dada por Poncelet en

1,840. El método es derivado para una pared con paramento interno recto ininterrumpido y

para una superficie de suelo plana, este último puede ser inclinado y podría contener una

sobrecarga uniformemente distribuida.

El método gráfico de Poncelet es adecuado para la determinación tanto de la presión de

tierra activa como pasiva.

1.4.2.1 Presión de Tierra Activa.

El método gráfico de Poncelet está basado en la construcción de un triángulo

W

ACSfnABC2

1para encontrar loas valores f, n y e (figura 1.15).

La construcción comienza trazando la línea de pendiente natural ( – línea), AD, con un

ángulo con la horizontal, entonces la línea de posición es trazada a través del punto A de

la pared. La línea de posición hace un ángulo de 1 con el paramento interno de la

pared AB. A través del punto B, otra línea BK es trazada, paralela a la línea de posición

para darnos un punto K en la línea de pendiente natural, AD. Los puntos B, C y D deben

recaer en una línea continua ininterrumpida. La línea BK forma un ángulo AKB = , con

la línea AD. Por geometría, desde el triángulo ABK, el valor de este ángulo es:

90180 1AKB

190 . (P.1)

El cuál es el ángulo entre la línea de posición y la línea de suelo natural. Por lo tanto BK es

paralela a CS. Asumiendo que la posición del punto S es conocido, trace también SV

paralela a AC. El triángulo ACD ≈ SVD y BDK ≈ CDS. Además, el triángulo ACS = ACV

Page 51: tesis muros 2009 completa.pdf

39

porque de su base común AC = L, e igual altura, h. por lo tanto como el triángulo ACS =

ABC, también ACV = ABC.

Estos últimos y iguales triángulos tienen la misma altura hd, por tanto sus bases, BC y CV

deben ser de igual longitud.

BC = CV = d (P.2)

Asumir AK = a, y AD = b. basados en la semejanza de triángulos, ACD y SVD, (Figura

1.12) las siguientes relaciones de radios pueden ser escritas.

d

dc

n

b (P.3)

En los triángulos semejantes KBD y SCD la relación de lados es:

d

dc

an

nb

(P.4)

Al igualar estas ecuaciones (P.3 y P.4) obtenemos lo siguiente:

an

nb

n

b

(P.5)

Reescribiendo:

abn 2 (P.6) ó

abn (P.7)

Por lo tanto, si n es conocido, la posición del punto S y por tanto la posición de la más

peligrosa superficie de falla, AC, puede ser determinado y el peso de la cuña de

deslizamiento de suelo, W y la presión activa de suelo Ea, puede ser calculada. Por tanto la

ecuación P.6 es la relación de Poncelet y existe cuando la presión lateral de tierra, Ea, es la

máxima. Ahora podría trazarse una línea a través del punto S, CS, paralela a la línea de

posición para darnos el punto C (figura 1.12); CS determina la magnitud de e. entonces una

Page 52: tesis muros 2009 completa.pdf

40

perpendicular es bajada del punto C a AD para darnos el punto M en AD. La magnitud de

CM = f, la cual es la altura del triángulo, NCS es pues determinada. Con e, f y n conocidos,

Y fnW 2

1 ,

feE a 2

1 .

Note que la cantidad n = ab representa la media geométrica entre las dos cantidades, a y

b, la cuál puede ser construida gráficamente. En la disciplina de la teoría de la media

geométrica de la presión de tierra, n = ab , es denominado la regla Poncelet.

Demostración: desde la geometría, figura 1.15

n

b

a

n (P.8)

Ó

n = ab .

Además

abaabaaabaahAZasn 222222 (P.9)

Y

n = ab

Pasos para el método gráfico. Para encontrar n y la presión activa de tierra, siga los pasos

siguientes (figura 1.15):

Page 53: tesis muros 2009 completa.pdf

41

Fig. 1.15 Construcción de Poncelet para la Presión Activa de Tierra.

(Referencia Jumikis Alfreds R. New Jersey “Soil Mechanics” figura 21.7)

Trace AB para representar la cara interna de la pared.

Trace BD para representar la superficie del suelo.

Trace la línea de pendiente natural, AD, con un ángulo con la horizontal.

En el punto B trace la línea de posición, BK, con un ángulo de 1 con la línea,

AB, la cara interna de la pared. Esta línea corta la línea AD en K, y nos da AK = a.

En AD = b como diámetro, describa un semicírculo, AZD.

desde el punto K levante una perpendicular, KZ a AD, cortando el semicírculo en el

punto Z.

Page 54: tesis muros 2009 completa.pdf

42

con la cuerda AZ = n, como radio, con su centro en el punto A, trace el arco, ZS,

cortando la línea, AD, en el punto S. Entonces AS = AZ = n. Aquí n es la media

geométrica de a y b.

Trace SC paralelo a la línea, BK, cortando la línea de la superficie del suelo en el

punto C. Entonces CS = e.

Una A y C. esta línea representa el plano de ruptura más peligroso de Coulomb, y

define el tamaño de la cuña de deslizamiento de los suelos, esta cuña, ABC, se

desliza sobre el plano de ruptura, AC, daría el máximo valor de la presión activa de

tierra, Ea.

Desde el punto C levante una perpendicular a AD para darnos el punto M. Entonces

CM = f. El área triangular ACS, = ½ fn, la cuál es el área del peso de la cuña de

deslizamiento de suelos.

Desde el punto S como un centro, y con un radio de SC = e, trace el arc, CN,

cortando AD en el punto N. Así NS = e. Una los puntos C y N para obtener el área

triangular, feNCS2

1 .

Las áreas triangulares, fn2

1 y fe

2

1, cuando se multiplican por el peso unitario del

suelo, γ, da el peso de la cuña de deslizamiento y la presión activa de tierra

respectivamente.

fnW 2

1 (P.10)

y

feE a 2

1 (P.11)

Page 55: tesis muros 2009 completa.pdf

43

I.4.2.2 Sobrecarga

Si la superficie del suelo está sobrecargada con una carga uniformemente distribuida siendo

la intensidad de la misma p, entonces

fnh

pfnW

cos2

2

1

2

11 , (P.12)

Y

feh

pfeEa

cos2

2

11

2

1 . (P.13)

I.4.2.3 Presión Pasiva de Tierra (Resistencia de Tierra)

La determinación de presión pasiva de tierra de Coulomb por el método gráfico de Poncelet

es similar al caso de la presión activa de tierra, excepto que los signos de os ángulos de

fricción, y 1 , tienen que ser cambiados al opuesto. Gráficamente esto es realizado

construyendo la línea de posición a través de los puntos A o B bajo un ángulo de (-)

1 con la línea AB, de la cara interna de la pared, o en otras palabras, el ángulo (-)

1 es construido en el lado opuesto de la línea – pared, AB, en comparación con el

caso activo, ver figura 1.13. así mismo, la línea- va a ser tazada a través del punto A

bajo el ángulo (-) .

Page 56: tesis muros 2009 completa.pdf

44

I.4.2.4 Pasos Para La Construcción Para Presión Pasiva de Tierra.

Los pasos a seguir para la construcción de Poncelet para la presión pasiva de tierra son

mostrados en la figura 1.16

Figura 1.16 Construcción de Poncelet para la Presión Activa de Tierra

(Referencia Jumikis Alfreds R. New Jersey “Soil Mechanics” figura 21.8)

1. Trace la pared, la cara interna la cuál es AB.

2. Trace la superficie del suelo. Extienda la línea de la superficie del suelo a través del

punto B a la izquierda de la pared.

Page 57: tesis muros 2009 completa.pdf

45

3. Trace la línea (-) , AD, a través de A con un ángulo de (-) con la horizontal.

4. Intercepte la superficie del suelo, AD con la línea (-) , BD, para obtener el punto

D.

5. A través del punto B, trace la línea de posición, BK, con un ángulo de (-) 1

con la línea AB. BK corta AD en el punto K. Entonces AK = a

6. En AD = b como diámetro, describa el semicírculo, AZD.

7. Trace una perpendicular KZ a AD para dar el punto Z en el semicírculo.

8. Con AZ = n = ab como un radio cuyo centro es el punto A, trace el arco ZS,

cortando la línea, AD, en el punto S. Entonces AS = AZ = n = ab

9. Trace SC paralela a BK: SC corta la línea de superficie del suelo, DBC, en el punto

C. CS = e.

10. Desde el punto C, establezca una perpendicular, CM = f, a la línea AD para darnos

el punto M en la línea AD. Entonces el área triangular, ACS = ½ fn, es el área del

peso de la cuña deslizante de suelo, ABC. El peso de la cuña deslizante es

fnW 2

1 (P.14)

11. Una A y C. La línea AC es la superficie de ruptura más peligrosa de Coulomb, y

define el tamaño de la cuña de deslizamiento de suelo. Esta cuña se desliza sobre la

superficie de ruptura, AC, podría darnos el valor de la resistencia del suelo (presión

pasiva de tierra), Ep.

12. Desde el punto S como centro, y con un radio de de SC = e trace el arco, CN,

cortando AD en el punto N: NS = e, y uniendo C y N, el área triangular, SCN = ½

fe, es encontrada. La magnitud de la presión pasiva de tierra es

feE p 2

1

Ó

Page 58: tesis muros 2009 completa.pdf

46

seneE p2

2

1

Si la superficie es sobrecargada, entonces en vez de γ, γ1 debe ser usado:

h

p cos21 ,

Donde h es la distancia perpendicular desde el punto del talón, A, a la superficie del suelo,

BC o su extensión BD.

Note que la magnitud en el caso de la presión pasiva es más grande que la magnitud en el

caso activo.

El punto de aplicación de Ep es determinado por la posición del centroide del diagrama de

distribución del esfuerzo lateral del suelo.

I.4.3 Descripción del Método

El método al igual que Coulomb considera las hipotesis descritas en las limitaciones de este

mismo y se basa en la suposición que el muro soporta una cuña triangular determinada a

partir de semejanzas de triángulos y que esta se desliza por una superficie de falla plana con

un ángulo δ con la horizontal, obteniendo los valores de Empuje Activo y Pasivo

proyectados en el muro.

I.4.4 Análisis del Método

La pared interna del muro soporta los valores del empuje activo y pasivo del suelo regidos

por las formulas siguientes: el peso de la cuña es ½ γfn y el empuje activo es ½ γfe y el

punto de aplicación de la fuerza es determinado a partir del diagrama de presiones.

Page 59: tesis muros 2009 completa.pdf

47

Cuadro Comparativo de los Métodos Clásicos

Coulomb Rankine Culmann Poncelet

Tipos de suelo que se

analizan. Granulares.

Granulares y Cohesivos.

Granulares y Cohesivos.

Granulares y Cohesivos.

Tipo de Terraplén en la corona del

talud.

Planos o inclinados.

Planos o inclinados.

Planos o inclinados.

Planos o inclinados.

Clases de empujes

calculados.

Empuje activo y pasivo.

Empuje activo, Pasivo y en

Reposo. Empuje activo.

Empuje activo y pasivo.

Sobrecarga. Toma en cuenta la

sobrecarga.

Toma en cuenta la

sobrecarga.

No toma en cuenta la

sobrecarga.

Toma en cuenta la

sobrecarga.

Tipo de análisis

Analítico Analítico Grafico Grafico

Page 60: tesis muros 2009 completa.pdf

48

CAPITULO II. ANÁLISIS DE LOS MÉTODOS MODERNOS.

II.1 METODO SUECO (FELLENIUS).

II.1.1 Historia y Limitaciones.

a) Historia.

Bengt H. Fellenius es un consultor en geotecnia especializado en estudios de fundaciones,

ha publicado más de 250 artículos y libros, en su mayoría relacionados con pilotes y

fundaciones, su libro estudiado es:

Basics of Foundation Design, Fellenius, Bengt H., electronic edition, Canada, Marzo 2009.

b) Limitaciones del Método.

El método no es práctico, no se puede usar en el campo.

Hecho para usar con computadora, aunque representa mejor el suelo no todas las

propiedades son obtenibles.

Analiza el suelo como un elemento elástico.

II.1.2 Fundamentación Teórica.

Fuerza de Tierra es el término ocupado para referirse a las fuerzas del suelo ejercidas

contra un muro.

II.1.2.1 Fuerza de Tierra Desarrollada desde un Cuerpo Retenido.

Las cargas son soportadas sobre o en el cuerpo del suelo, cerca del muro podría añadirse la

fuerza de tierra. La magnitud de la fuerza es determinada por parámetros físicos, tales como

la interacción entre el suelo y el muro, la dirección, magnitud y tipo de movimiento del

muro (este puede ser inclinarse o tener un movimiento de traslación). Si la pared se mueve

hacia el lado externo, alejándose del suelo, por el suelo empujando el muro. Una condición

activa ha comenzado y la fuerza de tierra se llama fuerza activa. Si en lugar del movimiento

Page 61: tesis muros 2009 completa.pdf

49

antes descrito el muro se mueve hacia el suelo, empujando el muro contra el suelo, la fuerza

de tierra se llama fuerza pasiva.

En términos de magnitud la fuerza activa contra el muro es mucho más pequeña que la

fuerza pasiva y en términos de movimiento la fuerza activa requiere un movimiento más

pequeño para desarrollarse que el requerido por la fuerza pasiva.

Para suelos sin cohesión normalmente la unidad de fuerza en un punto es proporcional a la

fuerza de sobrecarga en el suelo inmediatamente más externo al muro. El factor de

proporcionalidad es llamado coeficiente de fuerza de tierra y se simboliza con la letra K.

El coeficiente K es una función de algunos parámetros físicos, tales como la resistencia del

suelo expresada como el ángulo de fricción interna, la rugosidad de la superficie del muro

en contacto con el suelo, la inclinación de la pared y la fuerza de sobrecarga efectiva.

II.1.2.2 Coeficiente de Fuerza Activa.

La figura 2.1 muestra un muro de retención por gravedad inclinado con superficie rugosa,

sujeto a fuerzas de tierra desde un suelo no cohesivo con una superficie inclinada. La fuerza

activa actúa contra el muro a un ángulo δ formado por un ángulo medido a partir de una

normal a la superficie del muro y con un sentido contrario a las agujas del reloj. Esta fuerza

se calcula como Ka veces la fuerza efectiva de sobrecarga, y el coeficiente se calcula con la

formula siguiente:

2.1 a

Donde:

Inclinación de la superficie del talud medido desde la horizontal en sentido contrario a

las agujas del reloj.

SenoSenoSenoSenoSeno

SenoK a

''

'

Page 62: tesis muros 2009 completa.pdf

50

Inclinación de la superficie de la pared medida desde la base en sentido contrario a las

agujas del reloj.

´ Angulo de fricción interna efectiva del suelo.

Figura 2.1 Fuerza de tierra contra la pared de un Muro por gravedad desde un suelo

con un talud inclinado.

Imagen tomada del documento Basic of Foundation Design, Bengt H. Fellenius pagina 5-2.

La componente horizontal de la fuerza de tierra activa Kah es:

2.1 b

Si el muro es vertical y su superficie lisa, quiere decir que β= 90° y δ=0°, entonces las

ecuaciones 2.1a y 2.1b se reducen a la ecuación

2.1c

SenoKK aah

'1

'1

Seno

SenoKK aah

Page 63: tesis muros 2009 completa.pdf

51

La figura 2.1 muestra también la fuerza de tierra pasiva, esta es medida desde la normal a la

superficie del muro y en sentido horario, el coeficiente de fuerza de tierra pasiva se

denomina Kp y se calcula con la ecuación:

2.2a

La componente horizontal está dada por:

2.2b

En el caso de la pared vertical y lisa las ecuaciones anteriores se reducen a:

2.2c

II.1.2.3 Fuerzas de Tierra Activas y Pasivas.

Para un suelo que exhibe tanto fricción como cohesión la fuerza activa de tierra se calcula

con la formula siguiente:

2.3

Donde: z´ Fuerza efectiva de sobrecarga .

´c Intercepto de cohesión efectiva.

Para los casos descritos anteriormente (c’>0, Ø’>0) la fuerza pasiva esta dada por la

formula siguiente:

2.4

SenoSenoSenoSenoSeno

SenoK p

''

'

SenoKK pph

'1

'1

Seno

SenoKK pph

aaa KczKP '2'

ppp KczKP '2'

Page 64: tesis muros 2009 completa.pdf

52

Para los casos donde existe tabla de agua, la presión de agua bajo la misma debe ser

añadida a las fuerzas activas y pasivas con las ecuaciones siguientes:

2.5

2.6

Donde u= presión de poro de agua.

Un análisis de fuerzas completo puede ser aplicable a suelos cohesivos con Ø ≠ 0, al

hacerlo las ecuaciones 2.1a y 2.1b se reducen a 2.7a y las ecuaciones 2.1b y 2.2b se reducen

a 2.7b

2.7a

2.7b

Donde β= Ángulo de Inclinación del Muro.

Para el caso que se cuente con los datos del esfuerzo cortante no drenado las ecuaciones 2.5

y 2.6 se reducen a:

2.8a

2.8b

Donde σz= Fuerza Total de Sobrecarga.

En la figura 2.2 se muestra una pared inclinada con superficie rugosa, la cual tiene un

relleno a lado derecho (Lado activo) y en el otro lado un suelo con una altura menor (Lado

Pasivo), el suelo del lado activo está saturado y la tabla de agua esta a media altura de la

pared, el suelo del lado activo es retenido por la pared y por lo tanto se encuentra en estado

uKczKP aaa '2'

uKczKP ppp '2'

SenoKK pa

1

1 apah KK

uzPa 2

uzPp 2

Page 65: tesis muros 2009 completa.pdf

53

activo. La capa de suelo en el lado pasivo ayuda a la pared en la retención y por tanto se

encuentra en estado Pasivo.

Figura 2.2 Presiones y fuerzas contra una pared inclinada.

Imagen tomada del documento Basic of Foundation Design, Bengt H. Fellenius pagina 5-5.

Para los suelos retenidos que son dominantemente cohesivos y la ecuación 2.3 resulta en

una fuerza de tierra activa negativa cerca de la superficie del terreno. El signo negativo

implica una fuerza de tensión dentro del muro, lo cual no es posible, por tanto al calcular

fuerzas de tierra los valores negativos deben ser despreciados.

II.1.2.4 Sobrecargas, Cargas Puntuales y Cargas Distribuidas.

Una sobrecarga sobre una superficie del terreno incrementa la fuerza de tierra que retiene la

pared. Una sobrecarga uniforme puede ser considerada completamente simple por la

inclusión de su efecto cuando se calcula la fuerza efectiva de sobrecarga. De igual forma

otras fuerzas en la superficie del terreno tales como cargas distribuidas, líneas de carga y

cargas puntuales, también causan fuerzas de tierra. Estas cargas producen contribuciones no

uniformes a la fuerza de sobrecarga efectiva y por lo tanto su contribución a la fuerza de

tierra es difícil de determinar. Terzaghi (1954) aplico la distribución de fuerzas de

Boussinesq para calcular la fuerza de tierra desde cargas lineales y cargas distribuidas esta

aceptación ha sido comúnmente aceptada en códigos y manuales. De acuerdo con Terzaghi

la fuerza de tierra contra la pared es 2 veces la fuerza de Boussinesq.

Page 66: tesis muros 2009 completa.pdf

54

Esfuerzo desde una carga lineal q:

2.9a

Esfuerzo desde una carga uniforme distribuida, q

2.9b

Fuerza desde una carga uniforme distribuida variando de cero en un lado a q en el otro

lado:

2.9c

La ecuación 2.9a no es válida para una carga lineal actuando a una distancia de la pared de

40% de su altura. Para esas cargas lineales la fuerza de tierra debe ser asumida igual a la

fuerza de tierra a una distancia de 40% de la altura. La fuerza resultante en la pared es 55%

de la carga lineal y su punto de aplicación cae alrededor del 60% de la altura de la pared

sobre la base.

Para un muro cimentado con una base o una zapata y con una superficie cargada, también

actúa contra la superficie horizontal de la fundación (figura 2.3). La fuerza vertical en la

base puede ser determinada desde las ecuaciones 2.10a y hasta la 2.10c y ecuaciones 2.9a

hasta 2.9c.

Esfuerzo desde una carga lineal q:

2.10a

Esfuerzo desde una carga uniforme distribuida, q

222

22

zx

zxqh

2cos enosenoq

h

2

2ln

22

2

1

seno

R

Rzxqh

222

32

zx

zqv

Page 67: tesis muros 2009 completa.pdf

55

2.10b

Fuerza desde una carga uniforme distribuida variando de cero en un lado a q en el otro

lado:

2.10c

a)

b)

Figura 2.3 a) Fuerzas de tierra en un muro desde cargas lineales y distribuidas; b)

Fuerza vertical de tierra en la base de un muro cantiléver, desde cargas lineales y

distribuidas en la superficie por distribución de Boussinesq.

Imágenes tomadas del documento Basic of foundation design, Bengt H. Fellenius páginas

5-6, 5-8.

2cos enosenoq

v

2

2

senoxq

v

Page 68: tesis muros 2009 completa.pdf

56

II.1.3 Análisis del Método.

El método asume que el muro tiene la flexibilidad suficiente para moverse o rotar y

desarrollar las condiciones activa, pasiva y en reposo, se calculan factores de

proporcionalidad (K) o coeficientes de fuerza de tierra, las fuerzas actuando contra el muro

son el producto de los factores de proporcionalidad y las fuerzas de sobrecarga, las fuerzas

actúan en los centroides de los diagramas de fuerza y el cálculo de esfuerzos horizontales y

verticales debidos a sobrecargas se hace basado en las distribuciones de Boussinesq.

II.1.4 Descripción del Método.

El método se basa en la suposición de que los muros se mueven lo suficiente para

desarrollar los estados activo, pasivo y en reposo, que los muros no tienen superficie lisa,

las fuerzas horizontales activas y pasivas no son perpendiculares a la superficie del muro, el

método también toma en cuenta las fuerzas verticales desarrolladas por las cargas en la base

del muro y que tienen un efecto estabilizante en la misma.

Page 69: tesis muros 2009 completa.pdf

57

II.2 MÉTODO DEL CUERPO DE INGENIEROS.

II.2.1 Historia y Limitaciones.

a) Historia.

El Cuerpo de Ingenieros nace como organización gubernamental a partir de un decreto

aprobado por el Congreso de los Estados Unidos de América en junio de 1775. Encargados

del planeamiento, diseño, supervisión y construcción de obras federales tales como

carreteras y presas, además realiza publicaciones técnicas sobre ejecución, diseño y

supervisión de diferentes obras civiles, el manual que se estudiará en este capítulo será:

Engineering and Design, Retaining and Flood Walls, Manual de Ingeniería EM

1110-2-2502, edition 1989.

b) Limitaciones del Método.

El método no es práctico no se puede usar en el campo.

Hecho para usar con computadora aunque representa mejor el suelo no todas las

propiedades son obtenibles.

Analiza el suelo como un elemento elástico, aunque para algunos casos lo hace

como un material viscoso elástico.

II.2.2 Fundamentación Teórica.

Los muros de retención tienen un lado activo y un lado pasivo, en el lado activo de la pared

las fuerzas laterales exceden a las opuestas (lado pasivo), las fuerzas pueden ser

ocasionadas por gravedad, tabla de agua, olas, viento y terremotos; en este cápitulo

describiremos los métodos necesarios para calcular presiones y fuerzas resultantes en los

lados activo y pasivo de los muros postulados por el Cuerpo de Ingenieros de Los Estados

Unidos de América. Por este método pueden calcularse la magnitud y la posición de la

fuerza resultante, para los análisis de volteo y capacidad de soporte, aunque también son

requeridos para el diseño de elementos estructurales del muro.

Page 70: tesis muros 2009 completa.pdf

58

II.2.2.1 Análisis de Equilibrio Límite.

Las fuerzas y presiones actuando en un muro son de hecho altamente indeterminadas, las

ecuaciones de equilibrio estático no son suficientes para obtener la solución para fuerzas

laterales, suposiciones adicionales deberán hacerse en el método de análisis para materiales

tales como suelos, estos son comúnmente hallados asumiendo que un estado límite o de

falla existe a lo largo de una superficie y que la fuerza resistente a lo largo de la superficie

corresponde al esfuerzo resistente del material, con estas suposiciones las ecuaciones de

equilibrio pueden ser resueltas, con el fin de asegurar que la falla supuesta no ocurra se

aplica un factor de seguridad o de esfuerzo de movilización es aplicado a la resistencia del

material, este método no calcula las deformaciones de los materiales lo que implica que las

deformaciones son suficientes para inducir a la condición de falla, estas también son

limitadas por la elección de un factor de seguridad.

II.2.2.2 Relación Entre Fuerzas y Análisis de Deslizamientos.

Las fuerzas calculadas son iguales a las que se calcularán en el análisis de deslizamientos

(Capítulo 3) el método fue intuido para producir estimaciones razonables y conservadoras

de la fuerza operativa del muro. Estas pueden ser usadas para desarrollar una revisión

rápida en el análisis de deslizamiento, las fuerzas laterales calculadas en el análisis de

deslizamientos son una función del factor de seguridad por deslizamiento.

II.2.2.3 Materiales Sin Cohesión.

Presión Activa de Tierra: materiales sin cohesión tales como arenas limpias son los

recomendados como relleno en muros de contención, las presiones horizontales

dependen en gran manera de la magnitud y dirección del movimiento del muro. La

condición de presión mínima horizontal o presión activa de tierra se desarrolla

cuando una pared rota alrededor de su base, cuando la pared se mueve los esfuerzos

horizontales en el suelo son reducidos y los esfuerzos verticales debidos al peso del

relleno son llevados a incrementar el esfuerzo cortante hasta que el esfuerzo de falla

es inminente. (Figura 2.4a)

Page 71: tesis muros 2009 completa.pdf

59

Figura 2.4 Desarrollo de Presiones de Tierra para Suelos sin Cohesión.

Imagen tomada de documento Engineering and Design Retaining and Flood Walls pagina

3-3.

Presión Pasiva de Tierra: Si un muro se mueve hacia el relleno los esfuerzos

horizontales se incrementan y los esfuerzos cortantes cambian de dirección, primero

decreciendo y luego incrementando hasta llegar a un máximo de falla (figura 2.4b)

para el desarrollo de la presión pasiva se requiere de rotaciones más largas en el

muro que para el caso activo.

Page 72: tesis muros 2009 completa.pdf

60

Presión en Reposo: Si el movimiento del muro no ocurre, la condición de presión

lateral es llamada presión en reposo.

Coeficiente de Presión Lateral K: Es la relación entre el esfuerzo efectivo horizontal

y el esfuerzo efectivo vertical en una masa de suelo sin cohesión puede ser

expresado por el coeficiente de presión de tierra K. El valor de K puede ser obtenido

para las condiciones activa (Ka) y pasivas (Kp), para determinar el valor en reposo

existen ecuaciones empíricas.

Condiciones afectando la Presión de Tierra: Para condiciones de relleno especiales

la fuerza en reposo puede ser calculada utilizando el método general de dovelas

combinado con parámetros del suelos factorados, si el muro se mueve de modo

diferente a la rotación en su base la presión de tierra y su distribución pueden diferir

de manera considerable, también la compactación puede producir presiones

horizontales en exceso de la presión en reposo cerca de la corona del muro.

II.2.2.4 Materiales Cohesivos.

a) Propiedades de Resistencia: Los llamados materiales cohesivos, típicamente son

suelos de granos finos como las arcillas, exhiben esfuerzo cortante bajo fuerzas de

confinamiento cero cuando se cargan rápidamente, el esfuerzo sin confinamiento es

expresado por el parámetro c, estos materiales por lo general son saturados, cuando

se dan los cambios en las fuerzas (movimiento de la pared), el suelo experimenta

cambios de volumen.

b) Uso como Material de Relleno: completamente recomendado usar materiales no

cohesivos en rellenos de muros, estos materiales tienen propiedades más predecibles

que los materiales cohesivos, son menos susceptibles al congelamiento, y poseen

mejor drenaje, existen instancias en las que el relleno con arcillas es inaplicable.

c) Análisis a Corto plazo y a Largo Plazo: cuando se usan materiales arcillosos se

requieren estos dos tipos de análisis con diferentes entradas de parámetros de

Page 73: tesis muros 2009 completa.pdf

61

resistencia en orden de las condiciones del modelo a que podría levantarse durante

la vida útil del muro.

1. Análisis a Corto plazo: En este modelo prevalece las condiciones antes que

la presión de poro ocurra, para estos casos los parámetros de la prueba no

consolidada – no drenada (Q) son los apropiados, generalmente esta prueba

resulta en valores altos de c y bajos o cero de Ø. Si en esta zona hay

agrietamientos el agua entrando en las grietas ejerce presión horizontal

significativa en el muro, por lo tanto este análisis debe incluir una revisión del

efecto de la presión de agua en las grietas de tensión.

2. Análisis a Largo Plazo: las condiciones que prevalecen son después del corte

inducido por el exceso de presión de poro, para este caso los parámetros de la

prueba consolidada – drenada (S) son los apropiados estas pruebas normalmente

producen un valor alto de Ø y un relativamente bajo o cero valor de c.

Sobreconsolidación o Hinchamiento en Suelos Arcillosos: Para suelos altamente

consolidados y con abundamiento, las presiones calculadas pueden ser desarrolladas

en exceso de aquellas calculadas usando parámetros drenados y sin drenar. Estas

presiones no pueden ser determinadas usando técnicas de equilibrio límite, el uso de

tales suelos alrededor de muros de retención debe ser evitado.

II.2.2.5 Presiones en Sistemas Suelo Agua.

Los suelos granulares son capaces de transmitir esfuerzos cortantes, el agua no. Las

presiones efectivas en el suelo pueden diferir en los planos horizontal y vertical, pero las

presiones de agua no. Por tanto, los cálculos deben efectuarse de forma separada. Si el valor

de K es obtenido, la fuerza horizontal efectiva puede ser calculada multiplicando la fuerza

vertical efectiva en cualquier punto por el correspondiente valor de K (figura 2.5) para

Page 74: tesis muros 2009 completa.pdf

62

obtener la presión efectiva horizontal, la presión efectiva horizontal es añadida a la presión

de agua, la combinación de estas se expondrá más adelante.

Figura 2.5 relaciones entre la Presión de tierra y Movimientos de la Pared.

Imagen tomada del documento Engineering and Design Retaining and Flood Walls página

3-4.

II.2.2.6 Presiones de Tierra y Fuerzas de Diseño, lado Activo.

a) Uso de la Presión de Tierra en Reposo: el lado activo de un muro de retención es

aquel lado en el cual suelo o agua ejercen una fuerza horizontal para causar

inestabilidad, muchas veces la presión activa es asumida debido a que los

movimientos para desarrollarla son pequeños y que se asigna factores de seguridad,

Page 75: tesis muros 2009 completa.pdf

63

las estructuras hidráulicas son diseñadas con valores muy conservadores lo que

resulta en muros relativamente rígidos, los muros cimentados en roca o suelos muy

rígidos podrían no ceder lo suficiente para desarrollar presiones activas de tierra.

Cuando se desarrolla el ceder inicial y las presiones activas, las presiones

horizontales podrían regresar al valor en reposo.

b) Estimación de Presiones Operativas: el análisis para diseño requiere una estimación

de la presión operativa esperada (sin falla) del muro por tanto los muros deben ser

diseñados para ser seguros contra volteo y capacidad de soporte del suelo para

condiciones en reposo y los elementos estructurales deben ser diseñados asumiendo

presión en reposo en el lado activo.

c) Efectos de la Compactación y Sobrecarga: Cuando la fuerza de compactación

especificada es significativa, la presión de tierra de diseño debe ser incrementada

más allá de los valores en reposo, para profundidades sobre una profundidad crítica

descrita posteriormente. Cuando se esperan sobrecargas sobre el relleno (rieles,

fundaciones, etc.) la presión de tierra horizontal adicional debida a la sobrecarga

debe ser determinada como se describe en el párrafo II.2.2.13 y sobre puesta en el

diagrama de presiones en reposo.

II.2.2.7 Presiones de Tierra y Fuerzas de Diseño Lado Pasivo.

Superficie Posterior: El lado pasivo de un muro es aquel donde el suelo provee una

reacción lateral que resiste la inestabilidad. La máxima fuerza desarrollada es el

empuje pasivo, para un muro en equilibrio la fuerza pasiva es más pequeña que las

fuerzas en el lado activo, la base y el lado pasivo analizados juntos deben satisfacer

el equilibrio estático.

Estimación de la Resistencia Pasiva: Un conservador y conveniente diseño

aproximado es asumir la fuerza del lado pasivo como cero para análisis de volteo,

capacidad de soporte y diseño estructural. En algunos casos como en los muros con

fundaciones relativamente profundas, podría ser deseable considerar alguna

resistencia lateral para este análisis, para justificar asumir una fuerza diferente de

Page 76: tesis muros 2009 completa.pdf

64

cero el material no debe perder sus características de resistencia con cambios en la

humedad o el ambiente, si esto es justificable las condiciones en reposo pueden ser

conservativamente asumidas en el lado pasivo. Las fuerzas y presiones del lado

activo no deben ser asumidas para exceder las condiciones en reposo cuando se usa

para calcular la resultante y su colocación en la base y para diseño de componentes

estructurales, si la fuerza activa excede la suma del lado pasivo, la fuerza en reposo

y la máxima fuerza cortante calculada usando parámetros sin facturar, la resistencia

adicional requerida debe ser asumida para ser provista por `presión adicional en el

lado pasivo. En ningún caso la fuerza pasiva podrá exceder 1.5 veces la presión

pasiva calculada, usando esfuerzos cortantes sin facturar para los análisis antes

indicados.

Localización de la Fuerza Horizontal: localización de la fuerza horizontal para

análisis de volteo, capacidad de soporte y diseño de componentes estructurales debe

ser calculado en la forma siguiente:

Calcule la fuerza efectiva en reposo en el lado activo como se explicara en

los capítulos II.2.2.8 a II.2.2.10, efectos de la sobrecarga si existe (II.2.2.13) y

presión de agua.

Asuma que la fuerza pasiva es cero o calcule y aplique la fuerza pasiva en el

lado pasivo del muro, si justificable (II.2.2.8 a II.2.2.10) y añada si existen la

fuerzas de agua.

Asuma que la componente horizontal que la resultante de la base es igual a

la diferencia entre las fuerzas obtenidas en 1 y 2.

Si la fuerza cortante máxima disponible en la base es excedida, asuma que la

fuerza horizontal remanente es resistida por el desarrollo de una fracción más

grande de presión pasiva, no más grande que 1.5 veces la fuerza pasiva disponible

que será usada. (esto puede ocurrir donde el suelo del lado pasivo es relativamente

fuerte comparado a los suelos del lado activo y de la base).

Page 77: tesis muros 2009 completa.pdf

65

Chequeo de Estabilidad a al Deslizamiento: esta parte será desarrollada en el

capítulo 3 de esta tesis.

II.2.2.8 Diseño de las Fuerzas y Presiones de Tierra en la Base.

a) Cálculo de la Fuerza Resultante en la Base: Para esta fuerza su dirección y

colocación deben ser de tal manera que para las cargas operativas el muro se

encuentre en equilibrio estático (Figura 2.6).

Figura 2.6 Fuerzas en la Base de un Muro.

Imagen tomada del documento Engineering and Design Retaining and Flood Walls página

3-10.

Page 78: tesis muros 2009 completa.pdf

66

En la figura 2.6a, la componente vertical de la resultante es igual y opuesta a la

suma de los pesos de la dovela estructural y la componente horizontal es igual a la

diferencia entre las fuerzas activa y pasiva. La figura 2.6b, muestra un ejemplo más

complicado incluyendo agua, base inclinada y un diente, los componentes vertical y

horizontal de la parte levantada de la base son calculados con base a las presiones

de agua obtenidas por medio de un análisis de cantidad de agua en los poros. El

remanente de las fuerzas horizontales y verticales requeridas para el equilibrio son

provistas por componentes de la fuerza cortante en la base T y la fuerza normal

efectiva N’. Un análisis de volteo sería lo más indicado para determinar la fuerza

efectiva normal y su colocación.

b) Cálculo de Presiones en la Base: esta presión se asume que varía linealmente y que

será aplicada en el centroide de presiones, cuando esta cae en el tercio medio de la

base puede calcularse con la fórmula siguiente:

2.11

Donde:

N’ = Fuerza Normal efectiva en la base de la estructura.

B = Ancho de la base de la estructura.

e= Excentricidad de N’ desde el centro de la base.

Esto es mostrado en la figura 2.7 a y b si la resultante cae fuera del tercio medio de

la base y la excentricidad es mayor de B/6, como en la figura 2.7 c, la distribución

de presiones es de forma triangular y la presión máxima se calcula con la fórmula

siguiente:

2.12

La base podría estar trabajando a compresión a una distancia b calculada desde el

extremo inferior como:

B

e

B

Nq

61

''

eB

Nq

2

'

3

4max'

Page 79: tesis muros 2009 completa.pdf

67

2.13

Figura 2.7 Presiones en la base de un Muro.

Imagen tomada del documento Engineering and Design Retaining and Flood Walls página

3-12.

II.2.2.9 Ecuaciones para Presión de Tierra en Reposo.

a) Relleno Horizontal: Para el caso de un relleno horizontal superficial y un relleno

normalmente consolidado (sin compactación o otros efectos de preesfuerzos) el

coeficiente de presión en reposos puede ser estimado con la ecuación:

2.14

La presión lateral de tierra se calcula con la fórmula:

eBb 22/3

'1 senoKo

Page 80: tesis muros 2009 completa.pdf

68

2.15

Donde:

, Ángulo de Fricción Interna Drenado

,Presión Unitario Efectivo (Húmedo o Saturado sobre la tabla de agua =ال

Sumergido o boyante bajo la tabla de agua).

z Profundidad bajo la superficie del relleno a lo largo del plano vertical.

b) Relleno Inclinado: Los resultados obtenidos de estudios realizados para medir Ko

para rellenos inclinados y normalmente consolidados son muy variables el método

del Cuerpo de Ingenieros recomienda usar la ecuación del Código Danés:

2.16

Sustituyendo la ecuación 2.14 en la ecuación 2.16 se obtiene la ecuación:

2.17

Y la presión lateral de tierra es:

2.18

Donde β es el ángulo de inclinación desde la horizontal. Β será positivo para una

capa de suelo que se levanta y aleja de la estructura.

c) Condiciones Generales: Para muros con superficies de terrenos irregulares, rellenos

no homogéneos, con sobrecargas y otras condiciones especiales, no hay expresiones

empíricas para la presión en reposo. Para diseños rutinarios se recomienda utilizar el

método de Coulomb’s o el Método General de Dovelas con valores de c y tan Ø

multiplicados por un factor de resistencia a la movilización, pero por ser una

aproximación empírica puede diferir ligeramente de los cálculos usando las

ecuaciones 2.14 hasta 2.16.

zKP oo '

SenoKK oo 1

SenosenoKo 1'1

zKP oo '

Page 81: tesis muros 2009 completa.pdf

69

d) Lado Pasivo: El método recomienda usar la ecuación de Jaky’s y la del código de

Danés, pueden ser usadas para calcular presiones en reposos del lado pasivo para

superficies de suelo horizontales e inclinadas respectivamente.

II.2.2.10 Factor de Movilización de la Fuerza.

a) Definición: El factor de movilización de la fuerza (SMF) es definido como

la supuesta relación de movilizar el esfuerzo cortante τ a lo largo de una superficie

de deslizamiento asumida hasta el máximo esfuerzo cortante τf del suelo y la falla

del material. Si un valor apropiado de SMF es asumido (como muestra la figura

2.8), y se aplica a C y Ø, permitirá calcular presiones de tierra más grandes que la

presión activa, usando el método general de dovelas párrafo II.2.2.9.

Alternativamente, la seguridad contra deslizamiento puede ser evaluada calculando

el promedio SMF a lo largo de una superficie de deslizamiento asumida desde un

análisis de equilibrio y comparándolo al recomendado valor máximo. La ecuación

de SMF se expresa así:

2.19

Figura 2.8 Aplicación del factor de movilización de la fuerza.

Imagen tomada del documento Engineering and Design Retaining and Flood Walls página

3-15.

f

SMF

Page 82: tesis muros 2009 completa.pdf

70

b) Esfuerzo Cortante Desarrollado: De acuerdo al criterio de falla de Mohr-

Coulomb (figura 2.9) el esfuerzo cortante en el plano de falla es definido como:

2.20

Donde: σ’n= esfuerzo normal efectivo.

Ø, c= Parámetros de resistencia cortante del suelo (en la ecuación anterior

son esfuerzos drenados (Ø = Ø’, c=c’) para análisis a largo plazo y sin

drenar (Ø = 0, c=Su) para análisis a corto plazo de materiales

cohesivos.

Figura 2.9 Criterio de Falla de Mohr – Coulomb.

Imagen tomada del documento Engineering and Desing Retaining and Flood Walls página

3-16.

El plano de falla es inclinado a 450 + Ø/2 desde el plano del mayor esfuerzo

principal. Para análisis de equilibrio límite es válido, asumir la superficie a la

inclinación de este ángulo relativo al esfuerzo principal. Asumiendo que la

cTannf '

Page 83: tesis muros 2009 completa.pdf

71

superficie de deslizamiento aproximada es válida y esta relativamente orientada a

los esfuerzos principales, este esfuerzo cortante es:

2.21

De esta ecuación se deduce que el esfuerzo cortante está en función de los

parámetros de esfuerzo cortantes, el esfuerzo normal efectivo y el factor de

movilización de fuerza.

4. Parámetros de esfuerzo cortante desarrollados: Si los parámetros de esfuerzo

cortante se multiplican por un SMF apropiado, estos se reducen a los valores de

desarrollo (Cd y Tan Ød) suponiendo que son operativos en condiciones de

equilibrio. Los parámetros de esfuerzo cortante, los parámetros actuales de esfuerzo

cortante y el SMF se relacionan con la siguiente fórmula:

2.22

Para estimar presiones en reposo para diseño, usando el método general de dovelas,

el SMF debe ser ocupado como 2/3 de los valores de Ko, se debe tener en cuenta

que si Tan ß/ Tan Ø es mayor de 0.56 podrían obtenerse valores conservadores de

las fuerzas de tierra en reposo.

II.2.2.11 Cálculo de la Fuerza de Tierra por el Método General de Dovelas.

El propuesto por Fellenius y que US Army retoma para la obtención de las fuerzas de tierra.

a) General: Se refiere al análisis de equilibrio límite de un conjunto asumido de

cuerpos rígidos. Las fuerzas horizontales tanto activas como pasivas pueden ser

estimadas, las ecuaciones de Coulomb proveen soluciones directas para encontrar

las fuerzas antes mencionadas, aunque cuando existen variables como suelos

estratificados, tabla de agua y sobrecargas no uniformes estas fórmulas no pueden

ser utilizadas, se recomienda realizar de forma general una solución de prueba y

error con la ecuación general de dovelas.

)(')( TancSMF n

c

c

Tan

TanSMF dd

Page 84: tesis muros 2009 completa.pdf

72

b) Uso práctico: Cuando se calcula sin factorar los parámetros (c, Tan Ø) la ecuación

proporciona las fuerzas operativas activas y pasivas. Cuando los parámetros son

factorados con un valor de SMF de 2/3, la ecuación para el lado activo provee un

estimado del empuje de tierra en reposo. Para calcular las fuerzas resistentes para

volteo, capacidad de soporte y diseño estructural del muro, puesto que podría

obtenerse una fuerza mayor a la real. En el capitulo II.2.2.6 se describe el

procedimiento recomendado para obtener la fuerza resistente para volteo, capacidad

de soporte y diseño del muro.

c) Empuje Activo, Método General de Dovelas.

1. Geometría de las Dovelas y Fuerzas: La geometría de una típica dovela del

lado activo y su diagrama de cuerpo libre se muestra en la figura 2.10, el ángulo

de fricción de la pared y las fuerzas resistentes entre los bordes verticales de las

dovelas son asumidos cero la inclinación de la superficie (α) es la que maximiza

la fuerza, el cálculo de α se explica en el capitulo II.2.2.10 c (2) y II.2.2.10 c (4).

Si el equilibrio de fuerzas es satisfecho, las fuerzas en la cuña forman un

polígono cerrado de fuerzas como se muestra en la figura 2.11.

La ecuación para la fuerza de tierra recomendada por este método para la fuerza

de tierra ejercida por el lado activo en un muro o dovela adyacente es:

2 2.19 2.23

Donde:

PEE= Fuerza horizontal efectiva ejercida por la dovela o segmento de dovela.

W= Peso total de la dovela incluyendo agua.

α= Angulo de inclinación.

U= Fuerza boyante y normal del plano de deslizamiento.

wRL

d

dd

d

dEE PHH

TanTanCos

LCUTan

TanTan

TanCotTanVWP

11

1

Page 85: tesis muros 2009 completa.pdf

73

L= Longitud del plano de deslizamiento.

HL= Cualquier fuerza horizontal externa aplicada desde la izquierda actuando a

la derecha.

HR= Cualquier fuerza externa aplicada desde la izquierda y actuando a la

izquierda.

Pw= Fuerza interna de agua actuando al lado interno del cuerpo libre de la

dovela (igual diferencia neta de la fuerza de agua para segmento de

dovelas con el agua en dos lados verticales como se muestra en la figura

2.10.

Figura 2.10 Método de Dovelas en el lado Activo.

Imagen tomada del documento Engineering and Design Retaining and Flood Walls página

3-27.

Page 86: tesis muros 2009 completa.pdf

74

Los parámetros de resistencia desarrollados Tan Ø y Cd se definirán como se

explica en el párrafo II.2.2.9. La ecuación 2.23 es desarrollada para una falla que

ocurre de la izquierda a la derecha. Todos los valores son positivos en las

direcciones indicadas en la figura 2.10.

Figura 2.11 Polígono de fuerzas para método de las dovelas en el lado activo.

Imagen tomada del documento Engineering and Design Retaining and Flood Walls página

3-28.

• Valores críticos para el ángulo del plano de deslizamiento.

A. Para una dovela activa con una superficie sin terraplén, y una

sobrecarga uniforme o sin sobre carga, α se calcula con la siguiente

fórmula:

245 do

Page 87: tesis muros 2009 completa.pdf

75

2.24

B. Para un relleno con terraplén plano o inclinado, sin sobrecarga y una

sobrecarga distribuida V, α se calcula con la ecuación siguiente:

C.

2.25

La ecuación anterior se asume si el relleno esta dentro o fuera de la tabla de

agua aunque puede ser usada si la tabla de agua está en cualquier posición

del relleno con suficiente precisión para diseño la sobrecarga puede tener

cualquier forma arbitraria pero debe ser completamente contenida dentro de

la dovela activa, las ecuaciones para C1 y C2 son:

i. Para un Relleno sin cohesión y sin sobrecarga

2.26

2.27

ii. Para un suelo con o sin cohesión con una sobrecarga

2.28

2.29

Donde:

2.30

2

4 22

111 CCCTan

dTanC 21

dd Tan

TanTanTanC

12

A

dh

TanVTan

dh

TanTanCTan

C c

d

c

ddd )22

22

1

(

1442

A

dh

TanVTan

dh

TanTanCTanTanTanTan

C cc

dddd )(

12121

22

22

2

)(

12

)(

1222

2

c

d

c

ddd dh

TanV

dh

TanTanCTanA

Page 88: tesis muros 2009 completa.pdf

76

Estas ecuaciones al ser aplicadas a suelos de alta plasticidad presentan

limitaciones en su uso para presiones en reposo.

C. Para rellenos irregulares la obtención de la inclinación critica de la

superficie de deslizamiento del lado activo puede requerir iteraciones, para

hacerlo la superficie del terreno se bordea por dos líneas inclinadas

originadas desde lo alto de la pared y el valor de α usando un promedio β

como se muestra en la figura 2.12

Figura 2.12 Análisis de dovelas para relleno irregular.

Imagen tomada del documento Engineering and Design Retaining and Flood Walls página

3-30.

• Limitaciones de las ecuaciones para el plano crítico de falla: las ecuaciones

para calcular C1 y C2 son válidas excepto para cuando la sobrecarga V es muy

grande o cuando la inclinación del terraplén es muy grande. El valor máximo de

sobrecarga puede ser determinado introduciendo el denominador de la ecuación

para C1 o C2 igual a cero y resolviendo para V, la ecuación es:

2.31 )1(2

1)(2max

2

22

d

dcddc

Tan

TanTandhCTandhV

Page 89: tesis muros 2009 completa.pdf

77

Cuando el valor de V es mayor de V máximo el valor de α estará dado por la

ecuación:

2.32

Cuando C12 +4C2<0, α es indeterminado y indica que la superficie superior del

muro es muy grande y que no podrá ser soportada por el muro.

• Suelos Estratificados: Cuando hayan suelos estratificados la dovela debe ser

dividida en segmentos de dovela, α coincidiendo cada una con un estrato, la

inclinación de la base de las dovelas α es diferente para cada estrato, el cálculo

de una solución optima (fuerza de tierra máxima) para el juego de valores α es

tedioso. El Cuerpo de Ingenieros recomienda usar de los métodos siguientes:

• La inclinación crítica en cada capa puede ser calculada de acuerdo a la

ecuación 2.25, usando los parámetros del esfuerzo cortante desarrollados por

el suelo a lo largo de la base de la dovela y usando el ángulo del terraplén β

en la parte alta de cada dovela (figura 2.13 a).

• La base de los segmentos de las dovelas puede ser asumida para tener una

inclinación α constante de todos los materiales y el valor crítico (que sería la

fuerza máxima del lado activo) puede ser calculado, iterando la ecuación

2.23 (figura 2.13 b).

Si las superficies de todas las capas son horizontales el plano de deslizamiento

crítico puede ser determinado usando la ecuación 2.24.

• Sobre Cargas: el método toma en cuenta los efectos de la

sobrecarga en la fuerza de tierra añadiendo al peso de la dovela la sobrecarga.

De cualquier modo es preferible calcular las presiones horizontales por las

sobrecargas por separado. Por las razones siguientes:

S

TanSdhTan c

)(1

Page 90: tesis muros 2009 completa.pdf

78

a) La sobrecarga no uniforme altera las direcciones de las fuerzas principales,

incrementando la curvatura de la superficie de deslizamiento y a la vez se

incrementa el error asociado a la suposición de la superficie.

b) La manera en que en que son aplicadas las sobrecargas en la masa del suelo

puede alterar el punto de aplicación y la distribución de la presión de tierra

como se describe en el párrafo II.2.2.13. las teorías de equilibrio límite y el

concepto de presión de tierra no predicen con exactitud tales distribuciones.

c) Las presiones adicionales dependen del movimiento de la pared y podrían

ser dos veces más grandes para paredes rígidas (no ceden) que para paredes

cediendo

Figura 2.13 Análisis de dovelas para suelo estratificado.

Imagen tomada del documento Engineering and Design Retaining and Flood Walls página

3-33.

Page 91: tesis muros 2009 completa.pdf

79

Este método considera paredes relativamente rígidas y para diseño

condiciones en reposo, por lo que las presiones y fuerzas debidas a

sobrecarga deberán calculadas de acuerdo al párrafo II.2.2.13.

• Coeficientes de presión:

La mayoría de ingenieros estructurales utilizan las ecuaciones de Coulomb

para la determinación de los coeficientes de presión de tierra y con ellas

determinan las fuerzas actuando contra muros de retención, se recomienda

usar la ecuación del método general de dovelas ya que estas pueden calcular

la fuerza lateral aunque la geometría sea complicada y tenga sobrecarga en

la superficie, al derivar los coeficientes de la ecuación general de dovelas

estos pueden ser usados para resolver problemas complejos de presión de

tierra.

Las presiones de tierra pueden ser calculadas por el método general de

dovelas, asumiendo piezas de forma lineal y que la pendiente del diagrama

de presiones son el producto de densidades y coeficientes de presión K. Las

pendientes pueden ser consideradas la densidad de un fluido equivalente

cargando la pared. Los coeficientes de presión dependen de la geometría del

problema y que podrían diferir al estar bajo la tabla de agua y al estar sobre

ella.

a) Fuerza de Tierra en el Lado Pasivo, Método General de Dovelas:

b) Geometría de las dovelas y fuerzas: La geometría de las dovelas y su

diagrama de cuerpo libre se muestran en la figura 2.13, el ángulo de

fricción en la pared y la fuerza cortante entre las paredes de dovelas

adyacentes son asumidas cero. Si el equilibrio es satisfecho las

fuerzas en la dovela forman un polígono de fuerzas cerrado como se

muestra en la figura 2.13, la ecuación para la fuerza efectiva lateral

en la pared es:

2.33

wRL

d

dd

d

dEE PHH

TanTanCos

LCUTan

TanTan

TanCotTanVWP

11

1

Page 92: tesis muros 2009 completa.pdf

80

Figura 2.14 Método de las Dovelas para la dovela del lado pasivo.

Imagen tomada del documento Engineering and Design Retaining and Flood Walls página

3-36.

En esta ecuación los términos son los mismos que para el caso activo. Todos los

valores deben ser positivos.

Page 93: tesis muros 2009 completa.pdf

81

Valores críticos del ángulo del plano de deslizamiento.

4. Para una dovela pasiva con una superficie sin terraplén.

2.34

5. El ángulo cuando existe un terraplén plano o inclinado y con o sin

sobrecarga distribuida V es:

2.35

Para una dovela pasiva las ecuaciones para C1 y C2 son:

2.36

2.37

2.38

3. Sobrecargas: Además de lo expuesto en el párrafo II.2.2.10 c 5 las

sobrecargas en las dovelas pasivas tienden a aumentar la estabilidad y es

conservador despreciarles en el análisis.

4. Coeficientes de presión: Las presiones son calculadas como presiones de

fluidos equivalentes de la misma manera que en el lado activo ver párrafo

II.2.2.10 c 6.

A

h

TanVTan

h

TanTanCTan

C

dddd 2

22

1

1442

A

h

TanVTan

h

TanTanCTanTanTanTan

C

ddddd 2

22

2

12121

2

21212

h

TanV

h

TanTanCTanA ddd

d

2º45 d

2

4 22

11

1 CCCTan

Page 94: tesis muros 2009 completa.pdf

82

II.2.2.12 Cálculo de Presión de Tierra Incluyendo la Presión de la Pared.

a) Lado activo: La fricción entre el relleno y el muro o en un plano del relleno,

de hasta una mitad del ángulo de fricción interna del material de relleno (sin

factorar) puede ser usado para el diseño.

b) Lado Pasivo: Cuando se incluye en el análisis se asume que la superficie de

deslizamiento será una espiral logarítmica u otra superficie curva ya que esto provee

valores bajos y más razonables para la fuerza pasiva y el coeficiente de presión. Se

recomienda que el ángulo de fricción se tome como cero en términos generales, se

asuma mayor a cero en los casos donde se espera movimiento y asentamiento del

muro dentro de lo permisible, la figura 2-14 provee los coeficientes de presión de

tierra horizontales.

Figura 2.15 Coeficientes de la presión pasiva de tierra.

Imagen tomada del documento Engineering and Design Retaining and Flood Walls página

3-37.

Page 95: tesis muros 2009 completa.pdf

83

II.2.2.13 Distribución de la Presión de Tierra Horizontal.

a) Superposición de presiones: La distribución de presiones tanto en lado

activo como en el pasivo se hace por superposición de las distribuciones debidas a

la presión de tierra horizontal efectiva, al agua y sobrecargas. Deben tomarse en

cuenta también las presiones debidas a los procesos de compactación como se

explicará más adelante.

b) Suelos completamente, sobre o bajo la tabla de agua: La distribución de la

presión efectiva puede ser asumida triangular cuando se cumplen todas las

condiciones siguientes:

1. El muro podría no moverse o podría pivotar alrededor de la base.

2. La tabla de agua está en o bajo la base del muro, o en o sobre la corona del

muro (Suelo sumergido).

3. Condiciones de agua son hidrostáticas (No hay infiltración).

4. No hay estratificación de suelos.

5. Suelos no exhiben cohesión.

6. La superficie del relleno es plana (aunque puede ser inclinada).

La distribución está dada por la ecuación siguiente:

2.39

Donde: K=KA en el lado activo, para el lado pasivo varía entre Kp y Ko o debería

tomarse como cero.

γ' = El peso unitario efectivo (total, saturado o húmedo si es sobre la tabla

de agua, boyante o sumergido si es bajo la tabla de agua).

z= Distancia vertical medida desde abajo a la superficie del relleno.

Un ejemplo puede verse en la figura 2.15

zKP hz ''

Page 96: tesis muros 2009 completa.pdf

84

Figura 2.16 Presiones laterales en un suelo completamente sobre la tabla de agua o

completamente bajo la tabla de agua.

Imagen tomada del documento Engineering and Design Retaining and Flood Walls página

3-40.

c) Suelos parcialmente sumergidos: Cuando la tabla de agua esta ubicada entre

la corona y la base del muro y solo hay un tipo de suelo, la parte superior del

diagrama de presiones es un triángulo definido por la ecuación 2.39 y la parte

inferior es un trapezoide dado por:

wwhz zzzKP ''

Page 97: tesis muros 2009 completa.pdf

85

2.40

Donde: zw = profundidad de la tabla de agua.

γ’= (γ – γw) bajo la tabla de agua.

La figura 2.16 muestra un ejemplo.

Figura 2.17 Presiones laterales por un suelo, agua y una sobrecarga finita.

Imagen tomada del documento Engineering and Design Retaining and Flood Walls página

3-41.

d) Suelos estratificados: Cuando hay diferentes tipos de suelos el diagrama de

presiones es una serie de diagramas subyacentes por una serie de trapezoides dados

por la ecuación:

2.41

Donde: Ki= Coeficiente de presión de tierra horizontal para la enésima capa.

P’vi= Presión de tierra vertical efectiva en la corona de le enésima capa.

zi= Distancia vertical medida.

Ejemplo en la figura 2.17.

e) Rellenos Irregulares: Cuando el relleno es irregular, el diagrama de

presiones puede ser estimado por la ejecución de sucesivos análisis de dovelas,

incrementando profundidades desde la corona del muro y aplicando la diferencia de

fuerzas desde análisis sucesivos sobre el incremento del área vertical

iiviihz zPKP '''

Page 98: tesis muros 2009 completa.pdf

86

correspondiente. Este procedimiento es aproximado, aunque se incrementen los

puntos de prueba no se incrementa la exactitud, un ejemplo es mostrado en la figura

2.18, el diagrama de presiones puede estimarse usando los coeficientes de presiones

del párrafo II.2.2.10 c 6.

Figura 2.18 Presiones laterales por tres tipos de suelo y agua.

Imagen tomada del documento Engineering and Desing Retaining and Flood Walls página

3-43.

Figura 2.19 Distribución de presiones debida a rellenos irregulares. Imagen tomada del

documento Engineering and Design Retaining and Flood Walls página 3-43.

Page 99: tesis muros 2009 completa.pdf

87

f) Efectos de la cohesión:

Cuando el relleno es horizontal y hay cohesión su efecto teórico es

reducir el lado activo por 2c√dKA, para la profundidad completa de la capa.

Esta le pasa tensión para una grieta de profundidad de donde:

2.42

La carga en esta región del muro es cero. Una grieta de tensión llena de agua

debe ser considerada en la zona de tensión reducida. Cuando la fuerza de

tierra horizontal es calculada desde al diagrama de presión y este incluye

presión negativa, la fuerza de reducción debida a la reducida zona de presión

negativa debe ser tomada como cero. La presión en el lado activo debe ser

calculada usando la ecuación:

2.43

Por lo que el segundo término debe ser cero, KA igual a Ko.

Para el lado pasivo la teoría indica que no hay grieta de tensión y la

presión debe calcularse de acuerdo a la ecuación:

2.44

Para condiciones operativas sin movimiento, una grieta de tensión podría

formarse debido a perdida de humedad, reduciendo o eliminando la presión

del lado pasivo.

g) Efectos de los movimientos de la pared

Cuando el muro es rotación o traslación sobre un punto diferente a la base

(tal como muros apoyados) los valores de K varían con la profundidad y la

distribución de la presión de tierra horizontal podría ser parabólica en vez de

A

dc

K

cd

'

2'

AAAH KczKP 2''

cKczKP pAAH 2''

Page 100: tesis muros 2009 completa.pdf

88

triangular. Los métodos de solución aquí expuestos son menos seguros que

aquellos para rotación alrededor de la base.

Cuando se espera que el movimiento del muro sea de traslación o rotación

alrededor de la base, la fuerza puede asumirse que es la misma obtenida

para rotación alrededor de la base, peor el punto de aplicación debe ser a

45% de la altura del muro sobre la base.

II.2.2.14 Efectos de la Sobrecarga.

Sobrecarga uniforme: Cuando hay sobrecargas uniformes (q) la fuerza

efectiva vertical crece por la sobrecarga y su diagrama de presión de tierra

horizontal es un trapezoide con la ecuación:

2.45

Sobrecargas finitas:

Incremento de la presión debido a sobrecargas finitas.

El incremento en la distribución de la presión horizontal debido a

sobrecargas finitas, se calcula usando experimentalmente la teoría elástica

modificada, cuando se permita las deformaciones debidas a la carga son

pequeñas, presiones debidas a cargas puntuales y lineales se calculan con las

figuras 2.19 y 2.20 respectivamente las presiones que se obtienen son

alrededor de 2 veces más grandes que las que se obtendrían por medio de

cualquier solución elástica sin ajustar o de equilibrio límite. Presiones

debidas a cargas distribuidas de tira se calculan usando la figura 2.21. Las

presiones debidas a estas cargas generalmente pueden calcularse al aplicar el

principio de superposición a estas soluciones.

Fuerzas debidas a sobrecargas finitas.

Las fuerzas puntuales lineales o no uniformes son soportadas por difusión de

esfuerzos dentro del material de relleno, el punto de aplicación de la fuerza

zqKP hz ''

Page 101: tesis muros 2009 completa.pdf

89

horizontal resultante debida a estas cargas se muestra en la figura 2.22.

Cuando las fuerzas por sobrecarga son incluidas en el análisis por método de

dovelas, la diferencia en la fuerza resultante debida a la sobrecarga (ΔPH)

Figura 2.20 Incremento en la presión debida a cargas puntuales.

Imagen tomada del documento Engineering and Design Retaining and Flood Walls página

3-48.

Page 102: tesis muros 2009 completa.pdf

90

Figura 2.21 Incremento en la presión debida a cargas lineales.

Imagen tomada del documento Engineering and Desing Retaining and Flood Walls página

3-49.

Figura 2.22 Incremento en la presión debida a cargas Distribuidas.

Imagen tomada del documento Engineering and Design Retaining and Flood Walls página

3-50.

Page 103: tesis muros 2009 completa.pdf

91

Debe ser aplicada en un punto diferente del muro que el de la aplicación de la resultante

debida al peso del relleno.

II.2.2.15. Presiones de Tierra Debidas a la Compactación.

El uso de maquinaria pesada para compactación en zonas adyacentes a muros puede

provocar altas presiones residuales contra el muro. Se recomienda que proveer al relleno de

un grado de compactación adecuado para proveer esfuerzo de resistencia y minimizar

asentamientos, la compactación excesiva del relleno debe ser evitada. El diagrama de

presiones esta compuesto de 3 segmentos lineales:

a) Desde la corona del muro la presión incrementa linealmente a un valor de

P’hm a una profundidad Zcr. en esta región el esfuerzo es incrementado durante la

compactación debido a la presión del rodo (rodo vibrador para compactar), pero

también el esfuerzo horizontal es reducido por falla pasiva cuando el rodo es

removido.

Figura 2.23 Línea de acción aproximada para cargas lineales.

Imagen tomada del documento Engineering and Design Retaining and Flood Walls página

3-52.

Page 104: tesis muros 2009 completa.pdf

92

b) La presión horizontal es constante con la profundidad desde Zcr a Zz y es

inducido por la compactación.

c) A la profundidad Zz la presión inducida por la compactación es igual a la

presión horizontal debida al peso del suelo (Presión en reposo) la presión

incrementa linealmente bajo esta profundidad de acuerdo a las ecuaciones del

párrafo II.2.2.12.

Las presiones inducidas por compactación deben considerarse para el diseño estructural,

análisis de volteo, capacidad de soporte y deslizamiento.

II.2.3 Análisis del Método.

El método se basa en el equilibrio de fuerzas entre dovelas y asume que las fuerzas y

fricción entre las paredes adyacentes de las dovelas son cero y que α el ángulo de

inclinación de la superficie será el que maximiza la fuerza de tierra, con esto se satisface el

equilibrio de fuerzas y se obtiene un polígono de fuerzas cerrado. Para el caso de materiales

cohesivos realiza dos análisis, uno a corto plazo y otro a largo plazo, considera la influencia

de sobrecargas, tabla de agua y compactación en el muro, los efectos del movimiento de la

pared también son analizados, las fuerzas obtenidas para análisis de empujes no siempre

son las utilizadas para análisis estructural ya que para el caso de diseño se utilizan los

parámetros de resistencia sin factorar.

II.2.4 Descripción del Método.

El método retoma el método general de dovela (Sueco) y le hace correcciones, para

asegurar que la falla no ocurrirá, propone factores de seguridad que son aplicados a los

parámetros de resistencia de los materiales, el método puede aplicarse a rellenos planos o

inclinados y con sobrecarga o sin sobrecarga, así como para suelos bajo y sobre la tabla de

agua.

Page 105: tesis muros 2009 completa.pdf

93

II.3 MÉTODO DE LOS ELEMENTOS FINITOS.

II.3.1 Historia.

Los métodos de elementos finitos constituyen hoy en día el procedimiento habitual de

cálculo en Mecánica Estructural y Mecánica de Sólidos en general. Su uso está también

muy extendido en la resolución de problemas de transferencia de calor, y empieza a cobrar

importancia en otras tareas, como la Mecánica de Fluidos o el Electromagnetismo.

El conocimiento de estas técnicas numéricas resulta actualmente casi imprescindible para

aquellos que se desenvuelven en el ámbito de la Ingeniera Civil y la Ingenieria Mecánica,

ya que la mayor parte de los análisis de tensiones que se llevan a cabo en la industria están

basados en ellas.

A pesar de su gran difusión actual, los procedimientos de elementos finitos tal y como los

entendemos hoy en día son relativamente modernos. Su nacimiento y desarrollo es una

consecuencia de la disponibilidad de herramientas electrónicas de cálculo cada vez más

potentes. Puede decirse, por tanto, que estas técnicas son un resultado más de la revolución

informática de finales del siglo XX.

La reseña histórica del método de los elementos finitos (MEF), la podemos comenzar en los

años cincuenta, cuando el recién nacido ordenador digital hacía por fin posible el cálculo

automático de estructuras con mayores dificultades de cálculo.

El (MEF), nació como una generalización de la idea básica del cálculo matricial, este

proceso nace al momento de entender que los elementos de estructuras complejas no se

idealizaban bien mediante el entramado de barras, pensó que podía dividir su estructura en

zonas o “elementos” más complejos que una simple barra. Estos elementos están

conectados entre sí por nodos pero, a diferencia con el cálculo matricial, dentro de ellos

solo se conocía la solución de manera aproximada en función de los movimientos nodales.

La partida de nacimiento del Método de Elemento Finito, la cual se publica por primera vez

la idea anterior, está fechada en 1956. Se trata de un artículo histórico aparecido en una

revista de la industria aeronáutica.

Page 106: tesis muros 2009 completa.pdf

94

En un principio se presento como un procedimiento de cálculo más, entre los muchos

desarrollados por los ingenieros ocupados en resolver problemas prácticos. Sin embargo,

durante los años sesenta los investigadores descubrieron que la esencia de lo que había sido

generalizado del cálculo matricial podía utilizarse, no sólo para resolver problemas de

cálculo de estructuras, sino también problemas más de campo general, tales como

problemas de elasticidad o de conducción de calor.

El Método de Elementos Finitos (MEF), ha evolucionado y concebido varias teorías en las

cuales se fundamenta, estas teorías se fundamentan con procesos matemáticos de los cuales

se comentaran en este capítulo, pero se harán con un enfoque por el cual se entienda y no

profundizaremos en esta temática pues esto corresponde a otro tipo de estudio. Por el

momento nos corresponde decir que el Método de Elementos Finitos se fundamenta en

procesos matemáticos y que se mencionaran para poder hacer el análisis para poder

aplicarlo en los programas que ya están en el mercado.

II.3.2 Fundamento teórico.

La formulación del Método de Elementos Finitos (MEF), tiene su principio como una

aplicación de la ingeniería a problemas prácticos, es decir, aplicados a estructuras

complejas, y es de conocimiento que el método fue creado con fines ingenieriles pero en la

actualidad podemos establecer que matemáticos a lo largo de los años se dieron a la tarea

de considerar los fundamentos matemáticos es por ello que vale la pena mencionar su

fundamentación matemáticas y como se ha desarrollado diferentes teorías.

II.3.2.1 Fundamentos Matemáticos.

Desde el punto de vista matemático, el Método de los Elementos Finitos (MEF) puede

entenderse como un procedimiento para resolver numéricamente problemas planteados

mediante ecuaciones diferenciales. En esto es similar a otros procedimientos, como el

Método de Diferencias Finitas (MDF) o el Método de los Elementos de Contorno

(MEC).La forma más elegante de explicar los fundamentos matemáticos del MEF parte de

la teoría de espacios normados y utiliza los conceptos del análisis funcional. Este es el

marco en el que hay que situarse si se quieren estudiar con rigor las bases del MEF e

investigar sobre sus propiedades matemáticas, pero este ya no corresponde a la temática en

Page 107: tesis muros 2009 completa.pdf

95

análisis, sin embargo, desde el punto de vista pedagógico, iniciar el estudio del MEF

situándose en este marco puramente matemático tiene serios inconvenientes para los

técnicos y profesionales.

Por las razones anteriores, y por limitaciones de espacio, se ha decidido buscar una solución

de compromiso para explicar los fundamentos matemáticos del MEF, sin cargar el peso en

la generalidad y la elegancia matemática. Se ha elegido una aproximación que muestre la

base matemática del MEF en un lenguaje lo menos oscuro posible para el estudiante medio

y poniendo énfasis en la línea ingenieril de desarrollo del método.

El objetivo es transmitir ideas y conceptos, más que desarrollos y formulaciones. Las ideas

permitirán luego al estudioso penetrar en aparatos matemáticos más complicados, que lo

único que hacen es generalizar estas ideas y presentarlas de manera más elegante.

Dentro de los métodos en los que tiene su fundamentación matemática el MEF, podemos

mencionar los siguientes:

Método de residuos ponderados.

Método de Galerkin.

Método de Ritz.

II.3.2.2 Métodos de los Residuos Ponderados.

La aproximación clásica por diferencias finitas a la resolución numérica de este problema

es muy directa, no requiere apenas elaboración. La “receta” podría ser la siguiente:

1. Tomar n puntos de Ω=] 0,1[.

2. Aproximar el valor de uxx en los n puntos en función del valor de u en esos puntos y de

las condiciones de contorno.

3. Particularizar la ecuación de campo uxx + f = 0 en cada uno de los n puntos

seleccionados. Se obtiene así un sistema de n ecuaciones lineales cuyas n incógnitas son los

valores de u en los puntos seleccionados.

4. La aproximación a la solución u se obtiene interpolando entre los valores de u calculados

para los puntos seleccionados. La solución puede refinarse aumentando el número n de

puntos.

Page 108: tesis muros 2009 completa.pdf

96

Puede verse que el procedimiento de solución anterior se basa en una aproximación por

puntos a la función incógnita. La aproximación se extiende luego a todo el dominio de

cálculo por interpolación entre los valores obtenidos para esos puntos.

II.3.2.3 Método de Galerkin.

El método de (Bubnov) Galerkin es el método de residuos ponderados que corresponde a la

formulación más clásica del MEF. Según este método, siguiendo el razonamiento de la las

diferencias finitas, la aproximación uh se construye como:

El método de Galerkin data de 1915 y constituye una primera manera de justificar el

MEF desde el punto de vista matemático. La aportación del MEF moderno al método de

Galerkin consiste en una forma sistemática, fácilmente automatizable, de construir las

Funciones Nj y gh a partir de funciones definidas localmente.

A modo de ejemplo, la sistemática anterior se aplica a continuación a la resolución

aproximada del problema modelo. El proceso sería el siguiente:

13. Se divide el dominio ]0,1[ en subintervalos o “elementos”

14. Dentro de cada elemento se definen dos funciones locales.

15. La función Nj se define cambiando estas dos funciones elementales.

Nótese que Nj (1) = y que los coeficientes cj cobran el sentido del valor de uh en los puntos

o “nodos” que se han utilizado para definir los subdominios o “elementos”.

Una vez definidas las funciones elementales, las funciones de aproximación quedan

definidas automáticamente.

n

jjj

hh NCgU1

Page 109: tesis muros 2009 completa.pdf

97

II.3.2.4 Método de Ritz.

El primer paso en la solución es escoger al conjunto de funciones φi(x). Un procedimiento

bien establecido consiste en escoger un subconjunto (por lo general los primeros M

términos) de un conjunto infinito de funciones ortogonales el M-esimo términos de la serie

de Fourier es un ejemplo típico. Si las funciones ortogonales son las eigenfunciones del

operador diferencial L (es decir, soluciones para L ϕ = λ ϕ), entonces podría obtenerse un

forma particularmente simple de la solución. Sin embargo, con frecuencia es difícil

encontrar un conjunto aceptable de funciones ortogonales, y el método de elementos

finitos se basa en funciones de aproximación no ortogonales, las cuales son polinomios

simples, por lo general cúbicos como caso extremo.

Una vez que se han elegido las funciones de aproximación, el siguiente paso es encontrar

el coeficiente ci que dan la mejor aproximación para el conjunto de funciones, y esto

requiere de algún criterio para determinar que se entiende por “la mejor”. El Método de

Ritz proporciona tal criterio. Este opera no en la ecuación diferencial, pero si en el

“principio variacional” equivalente, en el que la solución asociada con el valor estacionario

de una integral. Para las ecuaciones diferenciales derivadas de sistemas físicos, esta

integral representa con frecuencia alguna forma de energía, de tal manera que si la

solución es estacionaria es un mínimo.

Ahora bien establecido lo anterior podemos entrar a la descripción del Método de

Elementos Finitos (MEF), para ello podemos distinguir que el MEF consiste en dividir en

elementos y analizar por nodos coda uno de esos elementos.

Dentro del esquema general de la sistemática del MEF para cálculos lineales, una vez

construida la matriz de rigidez global y el vector global de cargas por ensamblaje de las

contribuciones elementales, el paso siguiente es resolver un sistema de ecuaciones lineales.

Ello permite obtener las variables nodales.

Los procedimientos numéricos para la resolución de este sistema son, en principio, los

mismos que se utilizan en otras ramas de la técnica. Lo que ocurre es que, al ser el tiempo

de ordenador dedicado a esta fase del cálculo una fracción muy importante del tiempo total

utilizado para resolver el problema, los investigadores han ido creando una serie de técnicas

especiales adaptadas a las características de los sistemas de ecuaciones a que da lugar el

MEF.

Page 110: tesis muros 2009 completa.pdf

98

Así, se ha desarrollado una rama de especialización dentro del estudio de los métodos de

elementos finitos: la que trata de la resolución del sistema de ecuaciones y, en problemas

con variación de la solución en el tiempo, del acoplamiento con la integración en el tiempo.

II.3.2.5 Resolución de Sistemas de Ecuaciones de Sistemas Lineales

Dentro de la práctica del MEF se emplean dos grandes familias de procedimientos para

resolver los sistemas de ecuaciones lineales a que da lugar el método. Esquemáticamente,

estos procedimientos son:

1. Métodos de solución directa, por ejemplo:

Eliminación de Gauss

Factorizaciones (Cholesky, Crout)

Método frontal

2. Métodos iterativos, por ejemplo:

Método de Jacobi

Método del gradiente conjugado

Relajación dinámica

En los métodos de solución directa, dado el sistema de ecuaciones que debe resolverse, se

conoce a priori el número de operaciones necesarias para obtener la solución. Son los

procedimientos con más tradición dentro de la tecnología del MEF y su rango de aplicación

es general, tanto en programas de cálculo lineal como en los de cálculo no lineal. Todos los

procedimientos que se utilizan dentro de esta categoría son elaboraciones de la eliminación

de Gauss.

En los métodos iterativos, por el contrario, no se conoce a priori el número de operaciones

necesarias para llegar a la solución. Son procedimientos que están adquiriendo actualmente

mucha difusión porque dan lugar a menos necesidades de almacenamiento en el ordenador

(memoria, disco) y, por tanto, permiten abordar problemas más grandes manteniendo los

mismos recursos.

La dificultad con que tropiezan los métodos iterativos es que la velocidad con la que llegan

a la solución depende de cada problema concreto, en particular, de las características de la

matriz de coeficientes del sistema. Entonces, resulta que a veces son mucho más eficientes

Page 111: tesis muros 2009 completa.pdf

99

que los métodos de solución directa pero por contra, en otros casos, pueden llegar requerir

un número bastante mayor de operaciones. Esto es especialmente perturbador cuando se

abordan cálculos no lineales, en los que las matrices de coeficientes de los diferentes

sistemas de ecuaciones que se resuelven en un mismo problema pueden tener características

muy diferentes de una fase a otra del cálculo.

De este modo, parece que los métodos iterativos no son procedimientos de propósito tan

general como los de solución directa. Es normal que los programas comerciales de cálculo

los incorporen como opción.

Sea el sistema de n ecuaciones lineales:

Donde K es una matriz de coeficientes de n x n, a es el vector de incógnitas y f es el vector

de términos independientes. Dentro de las aplicaciones del MEF, K representa la matriz de

rigidez global, f es el vector global de cargas y a es el vector de movimientos nodales.

A primera vista parece que la resolución del sistema es un asunto baladí. Se trata

simplemente de invertir la matriz de coeficientes, para dar:

Sin embargo, cuando el orden de K es de varias decenas de miles, se comprende que hay

que prestar mucha atención a esta parte del cálculo para obtener la solución del sistema en

un tiempo de ordenador razonable y con unos recursos de memoria y disco no demasiado

grandes. En particular, la inversión de la matriz de coeficientes sería una forma muy

ineficiente de resolver este sistema, ya que no se sacaría ningún partido de la estructura

interna de la matriz K derivada de la sistemática del MEF. La sistemática del MEF da lugar

a una matriz de rigidez global, en general simétrica, en la que la mayoría de los coeficientes

son nulos (matriz dispersa), concentrándose los coeficientes no nulos alrededor de la

diagonal principal (estructura en banda). Este es el tipo de matriz de coeficientes en el que

estamos interesados.

fK a

fKa1

Page 112: tesis muros 2009 completa.pdf

100

II.3.2.6 Métodos iterativos.

El sistema de ecuaciones que se trata de resolver puede escribirse:

Y puede interpretarse desde el punto de vista mecánico como la búsqueda del equilibrio

entre las fuerzas exteriores, f, aplicadas sobre los nodos y las fuerzas interiores, Ka,

generadas por los movimientos nodales a.

En este sentido, el vector r o vector de residuos representa el desequilibrio entre fuerzas

interiores y fuerzas exteriores para un conjunto de movimientos nodales diferente de la

solución del sistema de ecuaciones.

Un procedimiento iterativo general para resolver el sistema 9.3 puede ponerse como:

Donde el índice i corresponde al número de iteración. Los distintos procedimientos

iterativos se obtienen particularizando las expresiones.

El vector δi tiene el sentido de un vector de mejora de la solución en la iteración i. El

escalar ni seria un optimizador de la corrección a lo largo de la dirección dada por δi.

La matriz Ka es una aproximación a la matriz de coeficientes del sistema K. Se conoce con

el nombre de matriz precondicionadora y puede ser cualquier matriz, normalmente definida

positiva, comprendida entre la matriz identidad I y la matriz de coeficientes del sistema K.

Para que el procedimiento sea en realidad un procedimiento iterativo, la matriz Ka ha de

ser más fácilmente invertible (factorizable) que K.

El escalar αi se introduce a veces para intentar acelerar la convergencia y el escalar βi sirve

para introducir en el vector de corrección de la solución δi una corrección relacionada con

la corrección en la iteración anterior.

El procedimiento iterativo recogido en las relaciones se detiene en cuanto se alcanza el

criterio de convergencia elegido. Existen dos categorías de criterios de esta clase:

1. Criterios en desplazamientos. Son criterios de la forma:

0 fKr a

iiii naa 1

11 iiia

ii rK

11

1

2

1

ia

iia

i

iiii

aKaK

o

a

tt

t

Page 113: tesis muros 2009 completa.pdf

101

2. Criterios en fuerzas, de la forma:

Donde R es el vector de reacciones.

Los escalares 3,2,1 se conocen con el nombre de tolerancias.

Lo que hace atractivo un procedimiento iterativo como el descrito en los párrafos anteriores

es que para calcular el vector de residuos ri no es necesario llegar a ensamblar la matriz de

coeficientes K. El vector de residuos puede obtenerse ensamblando las contribuciones de

los elementos al equilibrio de cada nodo:

eiee

e

i faKr .

Esto hace que un procedimiento iterativo requiera menos recursos de memoria y disco que

un procedimiento de solución directa cuando se programa en el ordenador.

Teniendo en cuenta lo anterior retomamos las aplicaciones de (MEF), dentro de la

tecnología de estos se encuentran la formulación de desplazamientos y la formulación de

fuerzas.

La formulación más clásica del MEF recibe el nombre de formulación en desplazamientos.

La formulación toma el nombre de su aplicación a problemas de elasticidad, que fue una de

las primeras áreas en las que se utilizo el MEF y de donde se ha extraído mucho de su

lenguaje.

En otros campos de aplicación, habría que llamarla formulación en temperaturas

(problemas de transferencia de calor), en velocidades (mecánica de fluidos), etc.

La formulación se basa en la aproximación de un solo campo independiente: los

desplazamientos en sentido generalizado.

Dentro de cada dominio elemental o elemento finito, el campo independiente se aproxima o

interpola mediante funciones de forma que cumplen las condiciones siguientes:

fRrrr iii t

,max3

Page 114: tesis muros 2009 completa.pdf

102

Cada función de forma está asociada a un punto dentro del elemento, de manera que

vale 1 en ese punto y se anula en los puntos asociados a las otras funciones de

forma. Estos puntos especiales dentro de cada elemento reciben el nombre de nodos.

Las funciones de forma correspondientes a cada elemento están definidas de manera

que hay continuidad del campo independiente al pasar de un elemento a otro, es

decir, al agregar las aproximaciones locales para construir la aproximación

extendida al dominio completo se obtiene una función continua.

Las funciones de forma son capaces de representar de manera exacta campos con un

mínimo orden de variación, el cual depende del tipo de problema. Por ejemplo, en

elasticidad las funciones de forma son capaces de representar exactamente campos

de desplazamientos con variación lineal en el espacio; en problemas de flexión de

placas, campos de flechas con variación cuadrática, etc.

Las funciones de forma dentro de cada elemento son suficientemente lisas o

“suaves” como para permitir el cálculo de las derivadas que sean necesarias para el

planteamiento de la forma débil del problema.

La primera condición no es estrictamente necesaria, pero facilita la interpretación de los

resultados y se ha convertido en algo que muchas veces se sobrentiende.

Las otras tres condiciones derivan del fundamento matemático del método y, en conjunto,

son una condición suficiente para la convergencia hacia la solución exacta del problema al

aumentar el número de elementos o grado de discretización.

La tecnología de elementos finitos produce ecuaciones lineales complejas de las cuales

resolverlas sin ayuda de una computadora sería un trabajo exhausto es por ello que en este

capítulo se ha tratado de dar las bases necesarias para poder entender la aplicación de

software, diseñados para las áreas especializadas en nuestro caso el diseño de muros de

retención.

Page 115: tesis muros 2009 completa.pdf

103

II.3.3 En Que Consiste el Método.

El MEF, consiste en su idea general en encontrar las ecuaciones que representan las

modelaciones de los elementos y así tener una aproximación del comportamiento de la

estructura en general. Es decir, dividir en tantos elementos infinitos como su nombre lo

dice.

Para el caso el método se basa en el comportamiento elástico del elemento, en la mayoría

de los suelos se comportan de forma elástica y es de esa forma que se analizan para su

mayor comprensión.

Para su mayor comprensión existen varios paquetes de software, de los cuales toman en

cuenta en su mayoría estos parámetros y a la vez desarrollan el cálculo con fundamentos

del Método de Elemento Finito (MEF).

Podemos mencionar algunos de ellos como lo son: Geo 5, Plaxis 8.2 y el Lisa. Estos son

software que con los que podemos diseñar muros de retención y dentro de los cuales toman

todas las características del suelo y del material que está hecho el muro.

II.3.4 Ejemplo de Modelación con el Programa Geo5

A manera de ejemplo daremos a conocer el paquete (Geo 5), con un problema sencillo:

Datos:

Muro de retención de gravedad:

H= 10.0 m

Suelo Limo Arenoso: γ = 20 KN/m3

φ = 30

c = 5

δ =10

Page 116: tesis muros 2009 completa.pdf

104

Primero de desarrolla el proyecto nombre, ubicación, tipo de análisis y el sistema de

unidades:

El segundo pasó: generar la geometría del elemento:

Page 117: tesis muros 2009 completa.pdf

105

Tercer paso: generar o asignar el tipo de material.

Cuarto paso: asignar el perfil del terreno y la interfaz con la cual se quiere que analicé el

programa al diseño.

Page 118: tesis muros 2009 completa.pdf

106

Quinto paso: generar el tipo de suelo del cual está conformado el talud

Sexto paso: asignar el suelo al perfil

Page 119: tesis muros 2009 completa.pdf

107

Séptimo paso colocar el tipo de terraplén.

Octavo paso: asignar la sobrecarga en el terraplén

Page 120: tesis muros 2009 completa.pdf

108

Noveno paso: comprobación del diseño.

Page 121: tesis muros 2009 completa.pdf

109

Estabilidad

Page 122: tesis muros 2009 completa.pdf

110

Análisis

El último paso es generar el dibujo

Page 123: tesis muros 2009 completa.pdf

111

CUADRO COMPARATIVO DE LOS METODOS MODERNOS.

FELLENIUS CUERPODE

INGENIEROS ELEMENTOS FINITOS

TIPO DE SUELO QUE

ANALISA Granulares y cohesivos Granulares y cohesivos Granulares y cohesivos

TIPO DE TERRAPLEN

EN LA CORONA DEL

MURO

Planos o inclinados Planos o inclinados Planos o inclinados

CLASE DE EMPUJE

CALCULADO Reposo, Activo y Pasivo Reposo, Activo y Pasivo Reposo, Activo y Pasivo

SOBRECARGA Toma en cuenta la

sobrecarga.

Toma en cuenta la

sobrecarga.

Toma en cuenta la

sobrecarga.

TIPO DE ANALISIS Analítico Analítico Analítico

NIVEL DE AGUA No lo toma en cuenta Si lo toma en cuenta No lo toma en cuenta

Page 124: tesis muros 2009 completa.pdf

112

CAPITULO III Estabilidad Global

III-1 INTRODUCCIÓN.

Dentro de los capítulos anteriores hemos venido hablando de la importancia de la obtención

de las fuerzas actuantes y resistentes que se producen al momento que interactúan el suelo y

el muro. Para la cual se desarrollaron las diferentes teorías de análisis y comparamos los

métodos clásicos vrs. Los modernos.

Los muros de contención tienen como finalidad resistir las presiones laterales ó empuje

producido por el material retenido detrás de ellos, su estabilidad la deben

fundamentalmente al peso propio y al peso del material que está sobre su fundación. Los

muros de contención se comportan básicamente como voladizos empotrados en su base,

para ello designamos con el nombre de empuje, las acciones producidas por las masas de

suelo que se consideran provista de cohesión, fricción, suelos arenosos, suelos arcillosos,

etc. En general los empujes son producidos por terrenos naturales, rellenos artificiales o

materiales almacenados.

III-2 METODOLOGÍA PARA ANÁLISIS DE MUROS DE CONTENCIÓN.

III-2.1 Obtención de las Fuerzas Actuantes.

Los muros de contención se utilizan para detener masas de tierra u otros materiales sueltos

cuando las condiciones no permiten que estas masas asuman sus pendientes naturales. Estas

condiciones se presentan cuando el ancho de una excavación, corte o terraplén está

restringido por condiciones de propiedad, utilización de la estructura o economía.

Por ejemplo, en la construcción de vías férreas o de carreteras, el ancho de servidumbre de

la vía es fijo y el corte o terraplén debe estar contenido dentro de este ancho. De manera

similar, los muros de los sótanos de edificios deben ubicarse dentro de los límites de la

propiedad y contener el suelo alrededor del sótano.

Para proyectar muros de sostenimiento es necesario determinar la magnitud, dirección y

punto de aplicación de las presiones que el suelo ejercerá sobre el muro.

El proyecto de los muros de contención consiste en:

Page 125: tesis muros 2009 completa.pdf

113

Selección del tipo de muro y dimensiones.

Obtención de fuerzas actuantes y fuerzas resistentes.

Análisis de la estabilidad del muro frente a las fuerzas que lo solicitan, y revisar su

estabilidad ante momentos de volteo, de deslizamiento, hundimiento y capacidad de

carga de suelo portante. En caso que la estructura seleccionada no sea satisfactoria,

se modifican las dimensiones y se efectúan nuevos cálculos hasta lograr la

estabilidad y resistencia según las condiciones mínimas establecidas.

Diseño de los elementos o partes del muro.

El análisis de la estructura contempla la determinación de las fuerzas que actúan por encima

de la base de fundación, tales como empuje de tierras, peso propio, peso de la tierra, cargas

y sobrecargas con la finalidad de estudiar la estabilidad al vuelco, deslizamiento, presiones

de contacto suelo-muro, hundimiento, capacidad de carga del suelo portante, falla global

del talud.

Como vimos en los capítulos anteriores se han comparado diferentes métodos para la

obtención de las fuerzas actuantes en los muros, producidas por la masa de suelo que se

está sosteniendo, los cuales clasificamos como métodos clásicos (Coulomb, Rankine,

Culmann, Poncelet), y los métodos modernos (Fellenius, Cuerpo de Ingenieros de la

Armada de los Estados Unidos, Elementos Finitos), de los que se obtuvieron las ecuaciones

para que se consideraran en este capítulo.

En un muro actúan fuerzas producidas tanto por el suelo como por el peso propio de la

estructura, de esto partiremos para definir estas fuerzas que actúan y las fuerzas que resistan

tales como el empuje de tierra, peso propio, peso de la tierra del relleno, cargas y

sobrecargas en la corona del muro.

Las fuerzas actuantes las definimos como: las fuerzas que actúan sobre la estructura y que

tienden a producir esfuerzos y momentos, que pueden hacer fallar a un elemento, en este

caso un muro de contención. Dichos fuerzas se representan el la figura 3.1.

Page 126: tesis muros 2009 completa.pdf

114

Figura 3.1 Fuerzas actuantes en un muro de contención.

W: peso del muro aplicado en el centro de gravedad.

Ws: peso del suelo actuante sobre la pata.

Ea: Empuje activo.

Ep: Empuje pasivo.

Reacción del suelo en la base.

Para mayor entendimiento nos referimos al capítulo 1 y capitulo 2, donde se definieron las

ecuaciones para la obtención de las fuerzas antes mencionadas, con los diferentes métodos:

Métodos clásico y Métodos modernos.

Métodos clásicos:

Teoría de Coulomb.(analítico)

Teoría de Rankine.(analítico)

Teoría de Poncelet. (grafico)

Teoría de Culmann.(grafico)

Page 127: tesis muros 2009 completa.pdf

115

Métodos Modernos:

Método Sueco (Fellenius).

Método de la Armada de los Estados Unidos (US Armi).

Método de Elementos Finitos (MEF).

Para el caso de los métodos clásicos y modernos las fuerzas actuantes para las teorías en

general se pueden obtener como sigue:

Figura 3.2. Representación grafica de las fuerzas actuantes y fuerzas resistentes

(Referencia Braja M Das. Cuarta edición “Principios de Ingeniería de Cimentaciones”

figura 7.6)

Page 128: tesis muros 2009 completa.pdf

116

Para el caso de la figura 3.2 las fuerzas actuantes son:

5. La componente horizontal y vertical de la presión activa que se obtiene así:

( cosah PP ).

6. El peso de las diferentes áreas formadas por el suelo que sostiene el talud como el

peso del muro los cuales se pueden obtener multiplicando el peso especifico

correspondiente a cada material (suelo, block o concreto) por el área formada de ese

material, así ( nnn xAw ).

En general podemos decir que tanto para los métodos clásicos como los métodos modernos,

la obtención de las fuerzas actuantes radica en generar el equilibrio dentro de los estados

límites tanto del suelo como del muro de retención, y que estas fuerzas que tratan de mover

o generar un tipo de movimiento se les llama fuerzas actuantes.

III-2.2 Obtención de las Fuerzas Resistentes.

Las fuerzas resistentes son las que se oponen a los efectos que producen las fuerzas

actuantes, en general, las fuerzas resistentes para ambos métodos (clásicos y modernos),

son:

Componente horizontal del empuje pasivo.

La sumatoria de las aéreas que generan el peso propio de la estructura,

( nnn xAw ).

La componente vertical de la presión activa, ( senPP av ).

La resistencia cortante de la base con respecto al suelo de apoyo, acs tan

Teoría general para la obtención de las fuerzas actuantes y fuerzas resistentes, como hemos

visto en los capítulos anteriores la importancia que tiene la generación de un diagrama de

cuerpo libre donde se colocan las fuerzas que intervienen en un talud, de la mayor

Page 129: tesis muros 2009 completa.pdf

117

interpretación de cómo están colocadas estas fuerzas depende la buena generación de este

diagrama y así la clasificación de las fuerzas resistentes y actuantes.

III-3 VERIFICACIÓN DE LA ESTABILIDAD DEL MURO.

III-3.1 Momento de Volteo.

III-3.1.1 Momento de Volteo para Métodos Clásicos.

Figura 3.3 Revisión de volteo y deslizamiento.

(Referencia Braja M Das. Cuarta edición “Principios de Ingeniería de Cimentaciones”

figura 7.6)

En la figura 3.3 se representas las fuerzas sobre un muro de retención, de esta

representación grafica se obtiene la revisión por volteo que es el cociente de la suma de los

momentos de volteo por la sumatoria de los momentos resistentes es decir:

Page 130: tesis muros 2009 completa.pdf

118

o

Rvolteo M

MFS )(

Donde:

OM La suma de los momentos que tienden a voltear el muro con respecto al

punto C.

RM La sumatoria de los momentos que tienden a resistir el volteo con respecto al

punto C.

El momento de volteo se obtiene con la expresión siguiente:

3

´HPM hO

Donde: cosah PP

Para el cálculo de los momentos resistentes se suman todos los productos generados las

aéreas de cada sección multiplicada por el peso específico, y donde se desprecia el empuje

pasivo, de modo que el peso de la cuña arriba del talón, el peso del concreto o mampostería

y la fuerza Pv, contribuye las fuerzas resistentes, donde senPP av

Una vez obtenido los valores de momentos se aplica la siguiente ecuación,

Page 131: tesis muros 2009 completa.pdf

119

3

´cos

54321)( H

P

MMMMMMFS

a

vvolteo

El valor mínimo de factor de seguridad contra volteo según el reglamento de la seguridad

estructural de la construcción de el salvador está entre 1.2-1.5, dependiendo de las fuerzas

que se analicen. Los comentarios se explicaran en las notas de dicho reglamento el cual

comentaremos más adelante.

III-3.1.2 Momento de Volteo para El Método de Fellenius.

Con frecuencia, se encuentra en el libro de texto y los códigos que la estabilidad de un pie

se expresa como un coeficiente de vuelco: "Factor-de-seguridad contra el vuelco". Esta es

la relación entre el momento de rotación alrededor de la punta del pie de tomar como el

cociente entre las fuerzas que tratan de derrocar a (anular) la base y las fuerzas que

contrarrestan el vuelco. Comúnmente, el recomendado "factor de la seguridad contra el

vuelco" es de 1,50. Sin embargo, mientras que la relación entre los momentos calculado

puede ser de 1,50, el factor de seguridad, FS, no es de 1,50. Por el concepto de factor de

seguridad para ser válido, un valor cercano a la unidad F debe ser posible, que no es el caso

cuando se mueve la resultante más allá del punto tercero. Por tal situación, la combinación

de estrés extremo en aumento y el progresivo desarrollo de la no-linealidad hacen que el

punto de rotación para mover hacia adentro (ver fig. 6.2). En una relación de vuelco de

alrededor de 1,2, es el fracaso inminente. Bailarinas de danza en los pies, las zapatas de

verdad no sé, y la relación de vuelco no debe ser considerado como siendo la misma como

un factor de seguridad. De seguridad contra el vuelco no puede ser un factor de seguridad.

Lo mejor es prevenido por mantenimiento de la resultante en el interior del tercio medio de

la zapata.

Page 132: tesis muros 2009 completa.pdf

120

El diseño geotécnico para la capacidad de carga de vuelco requiere el cálculo de la

resultante de todas las cargas que actúan sobre un cuerpo libre formada por la pared y pie y

el suelo apoyado en el talón. El estrés de la Tierra (P4) para incluir en el cálculo de la

fuerza resultante de los actos en contra de los límites del cuerpo libre, que es un aumento

normal del talón, es decir, su coeficiente de estrés de la Tierra se determina de un β igual a

90 °. Observe también que la altura de la normal (H4) se utiliza en la determinación de la

sobrecarga de tensión aplicada en el cálculo de P4.

III-3.1.3 Momento de Volteo para el Método del Cuerpo de Ingenieros.

III-3.1.3.1 Colocación de la Resultante.

Cálculos generales: Para estimar la estabilidad contra volteo de un muro como el mostrado

en la figura 3.4, con base horizontal todas las fuerzas operativas deben ser aplicadas al

diagrama de cuerpo libre de la dovela estructural del sistema suelo – muro. Los momentos

de estas fuerzas son sumados en el punto O como se muestra en la figura 3.4 y la distancia

XR es calculada con la formula:

V

MX o

R

Donde:

∑ V = Fuerza resultante en la base requerida para equilibrio vertical.

∑ Mo = Sumatoria de momentos con respecto a O

Page 133: tesis muros 2009 completa.pdf

121

Figura

3.4 Fuerzas para análisis contra volteo para un muro con base horizontal, (Imagen

tomada del documento Engineering and Design Retaining and Flood Walls pagina 4-8).

Una ecuación para la relación resultante está definida como:

'.,... NBNEF

MRR o

Donde:

RR= Relación Resultante.

F.E.N.B., N’ = Fuerza efectiva normal en la base.

Las ecuaciones anteriores pueden usarse para muros con o sin diente y para muros con base

inclinada y con diente, cuando un muro tiene la base inclinada y sin diente como en la

figura 3.5, XR se calcula así:

... IBA

MX o

R Donde: A.B.I.= Ancho de la base inclinada.

Page 134: tesis muros 2009 completa.pdf

122

Figura 3.5 Fuerzas para análisis contra volteo para un muro con base inclinada.

(Imagen tomada del documento Engineering and Design Retaining and Flood Walls,

pagina 4-9).

La relación resultante se refiere al porcentaje de la base en compresión, como se muestra en

la figura 3.6. El porcentaje de la base de la estructura en compresión debe cumplir con el

criterio de estabilidad contra volteo el cual dice que el área de la base en compresión debe

ser del 100%

Page 135: tesis muros 2009 completa.pdf

123

Figura 3.6 Relaciones entre el ancho de la base en compresión y la colocación

de la resultante.

(Imagen tomada del documento Engineering and Design Retaining and Flood Walls,

pagina 4-11).

Muros con dientes

Para este análisis se requiere determinar las fuerzas pasivas que actúan a lo largo de la cuña

y a lo largo de la base. Pero como estas fuerzas son indeterminadas y no pueden ser

determinadas por medio de equilibrio, se hacen suposiciones para poder calcular la

estabilidad contra volteo. Para un muro con una base horizontal y diente la resistencia

cortante de la base se asume cero y el empuje pasivo horizontal actuando en el diente es la

fuerza requerida para el equilibrio, como se muestra en la figura 3.7.

Page 136: tesis muros 2009 completa.pdf

124

Figura 3.7 Fuerzas para análisis contra volteo en un muro con base horizontal y

diente.

(Imagen tomada del documento Engineering and Design Retaining and Flood Walls,

pagina 4-12).

Para un muro con base inclinada y un diente, la fuerza horizontal requerida para el

equilibrio se asume que actúa en la base y en el diente como s muestra en la figura 3.8. En

ambos casos el empuje pasivo bajando hasta la punta del diente en el fondo se calcula

usando el empuje en reposo, si se tiene la certeza de que el material que genera el empuje

pasivo no pierde sus características resistentes con cualquier cambio como en el contenido

de agua y condiciones ambientales, además de asegurar que no será excavado ni erosionado

durante el periodo de vida útil del muro.

Antes de desarrollar el análisis de volteo, la profundidad del diente y el ancho de la base

deben ser determinados por medio de un análisis de estabilidad contra deslizamiento.

Page 137: tesis muros 2009 completa.pdf

125

Figura 3.8 Fuerzas para análisis contra volteo en un muro con base inclinada y diente

(Imagen tomada del documento Engineering and Design Retaining and Flood Walls,

pagina 4-13).

Rellenos inclinados: Para el análisis de volteo la fuerza cortante adicional generada por la

pendiente ascendiente debe ser aprovechada, el cálculo de esta fuerza se muestra en la

figura 3.9. La magnitud de esta fuerza es tan grande que hace que las fuerzas horizontales

sean iguales a la parte de la dovela horizontal que cae sobre el talón del muro.

Fuerzas de empuje vertical en muros con dientes: el suelo se asume que siempre permanece

en contacto con el diente aunque el análisis contra volteo resulte en menos del 100% del

área de la base en compresión.

Page 138: tesis muros 2009 completa.pdf

126

Figura 3.9 Fuerzas cortante en rellenos inclinados y ascendentes.

(Imagen tomada del documento Engineering and Design Retaining and Flood Walls,

pagina 4-14).

III.3.1.3.2 Criterios de Estabilidad Contra Volteo.

Estos criterios están dados por porcentajes mínimos de las bases en compresión, la figura

3.6 ilustra la relación entre el porcentaje de la superficie de la base en compresión y la

colocación de la resultante.

Page 139: tesis muros 2009 completa.pdf

127

III-3.2 Deslizamiento.

III-3.2.1 Deslizamiento para los Métodos Clásicos.

Para la obtención del factor de seguridad contra deslizamiento se expresa por la ecuación:

d

Rntodeslizamie F

FFS ´

)(

Donde: ´RF Suma de las fuerzas horizontales resistentes.

dF Suma de las fuerzas horizontales de empuje.

Figura 3.10 Revisión por deslizamiento a lo largo de la base.

(Referencia Braja M Das. Cuarta edición “Principios de Ingeniería de Cimentaciones”

figura 7.7)

Page 140: tesis muros 2009 completa.pdf

128

En la figura 3.10 se representan gráficamente las fuerzas que actúan al DESLIZAMIENTO,

donde se indica que la resistencia cortante inmediatamente debajo de la losa de base se

representa como:

acs tan

Donde:

Ángulo de fricción entre el suelo y la losa base.

ac Adhesión entre el suelo y la losa base.

La fuerza resistente máxima que se obtiene del suelo por unidad de longitud del muro a lo

largo del fondo de la losa base es entonces,

´R s(área de la sección transversal) aBcBBXs tan1

Sin embargo:

B Suma de fuerzas verticales V

Por lo que:

aBcVR tan´

En la figura 3.10 se muestra que la presión pasiva Pp es también una fuerza resistente

horizontal, la cual definimos en el capítulo 1, por consiguiente:

paR PBcVF tan´

Page 141: tesis muros 2009 completa.pdf

129

La única fuerza horizontal que tendera a generar un deslizamiento (fuerza de empuje) es la

componente de la horizontal de la fuerza activa Pa por lo que:

cosad PF

Entonces tenemos que el factor de seguridad contra deslizamiento es:

cos

tan

a

pntodeslizamie P

PBcaVFS

III-3.2.2 Deslizamiento para el Método de Fellenius.

El cálculo de la estabilidad base debe incluir la verificación de que la seguridad contra

deslizamiento horizontal es suficiente. El cálculo es simple y consiste en determinar la

relación entre la suma de la resistencia horizontal y la suma de todas las cargas

horizontales, hh QR en la interface entre el plano inferior y el suelo. Esta relación

se considera como el factor de seguridad para evitar el deslizamiento. Por lo general, la de

seguridad para evitar el deslizamiento se considera satisfactoria si el factor de seguridad se

encuentra en el rango de 1,5 a 1,8. La resistencia horizontal se compone de la fricción

´tanQv y la cohesión de los componentes de BLc´

Page 142: tesis muros 2009 completa.pdf

130

III-3.2.2.1 Cálculo Combinado de un Muro de Contención y de Losa.

Fig. 3.11 ilustra el caso general de la tierra que actúa sobre un muro en voladizo regordetes.

La capacidad de carga de la zapata tiene que considerar las cargas de fuentes no se

muestran en la figura, tales como el peso de la pared del mismo y las fuerzas externas que

actúan sobre la pared y el suelo. La tensión de la tierra que regulan el diseño estructural de

la pared (P1) se determina a partir del producto de la tensión de la tierra activa coeficiente

(Ka) y la eficaz sobrecarga de estrés. Los cálculos deben considerar el ángulo interno del

suelo de fricción (φ), la inclinación de la pared (β), la fricción de la pared (Tan δ), así

como la pendiente de la superficie del suelo (α). Cuando el talón de la losa y / o la

superficie del terreno está en pendiente, la altura media (H1) se utiliza en el cálculo de los

efectivos sobrecarga de tensión utilizadas para P1, como se muestra en la figura. Aviso, los

códigos de muchos postulados que el suelo de relleno pared más cercana madre no puede

relajarse en condición activa total. Estos códigos por lo tanto requieren un mayor

coeficiente de estrés de la Tierra (más cerca de Ko) en el cálculo de la tierra, el estrés que

actúan directamente en el tallo. La componente vertical de la tensión de la tierra es muchas

veces ignorada, ya que incluso sería necesaria la correspondiente reducción de peso de la

tierra de reposo en la base.

Figura 3.11 Ejemplo de fuerzas actuantes en un muro

(Referencia Basic of Foundation Desing “Bengt H. Fellenius” figura 6.3)

Page 143: tesis muros 2009 completa.pdf

131

En contraste con el caso de la presión en contra de la madre tierra, la tensión que actúan

sobre la tierra normal desde el talón debe calcularse fricción de la pared sin tener en cuenta

en el suelo (Tschebotarioff 1978).

En resumen, el diseño para la creación de una base consiste en asegurar que los factores de

seguridad en la capacidad de carga de una base equivalente cargado uniformemente y

deslizamiento son adecuados, y verificando que el estrés extremo no es excesiva.

III-3.2.3 Deslizamiento para El Método del Cuerpo de Ingenieros.

III.3.2.3.1 Revisión de la Estabilidad al Deslizamiento

Propósito: la finalidad es estimar la estabilidad del muro contra una falla potencial debida a

deformaciones horizontales excesivas. La potencial falla por deslizamiento se estima al

comparar las fuerzas cortantes resistentes y las aplicadas a lo largo de una superficie de

falla asumida. Esta falla es inminente cuando la relación entre las fuerzas cortantes

aplicadas y la resistencia a las mismas es 1.

Modelo de Análisis:

La forma de la superficie de falla puede ser irregular dependiendo de la homogeneidad de

los materiales de relleno y de la fundación. La superficie de falla puede estar compuesta de

cualquier combinación de superficies curvas y planas, por simplicidad el método asume que

todas las superficies de falla son planas y que estas forman las bases de las dovelas como se

muestra en la figura 3.12.

Page 144: tesis muros 2009 completa.pdf

132

Figura 3.12 Típico sistema de suelo estructura con un sistema de falla asumido,

(Imagen tomada del documento Engineering and Design Retaining and Flood Walls,

pagina 4-16).

Excepto para casos muy simples la mayoría de problemas de estabilidad son

indeterminados estáticamente, para poder hacerlo estáticamente determinado el sistema se

divide en un numero de dovelas rígidas, se asume arbitrariamente la dirección de las

fuerzas de equilibrio de momentos que actúan entre las dovelas y las fuerzas de fricción

entre las dovelas se asumen despreciables.

La figura 3.12 ilustra como la superficie de falla se divide entre las dovelas, la base de la

dovela está formada por la superficie de falla asumida, la interfase entre dovelas se asume

vertical y plana. Los bordes de las dovelas están definidos por la interfase vertical de cada

lado de las dovelas y la superficie de suelo entra las dos interfaces.

Para el análisis de deslizamiento, el muro y el suelo alrededor del mismo se asume que

actúan como un sistema de dovelas como el mostrado en la figura 3.12, el sistema se divide

en una o mas dovelas activas, una dovela estructural y una o más dovelas pasivas.

Las condiciones geológicas del material de fundación si se conocen, deben ser tomadas en

cuenta a la hora de la colocación de la superficie de falla asumida. La inclinación de

Page 145: tesis muros 2009 completa.pdf

133

algunos de los planos de falla o la elevación de los planos adyacentes a la estructura pueden

ser conocidos debido a limitaciones naturales en el lugar.

Procedimiento de análisis del sistema suelo – estructura: puede ocuparse un procedimiento

iterativo para encontrar la superficie de falla crítica. Se toma un factor de seguridad

asumido con el cual la inclinación de la base de cada dovela varía para producir un empuje

activo máximo para una dovela activa o un empuje pasivo mínimo para una dovela pasiva.

El factor de seguridad se varía hasta producir una superficie de falla que satisfaga el

equilibrio. La superficie de falla resultante será la del más bajo factor de seguridad. Deben

probarse muchas inclinaciones como las mostradas en la figura 3.22 para determinar la que

tiene el más bajo factor de seguridad.

III.3.2.3.2 Factor de Seguridad Contra Deslizamiento.

General: El análisis de equilibrio límite es utilizado para estimar la estabilidad contra

deslizamiento. Un factor de seguridad FS se aplica a los factores que afectan la estabilidad

contra deslizamiento y que son conocidos con menor grado de certeza. Estos factores son

las propiedades resistentes del material, este factor se aplica de manera que las dovelas de

suelo estén en equilibrio de fuerzas con las mismas actuando en la estructura. Para los casos

donde la resistencia del suelo o roca no son bien conocidos, este factor de seguridad

compensa la incerteza de asignar valores a estos parámetros.

Definición:

Se dice que hay un equilibrio límite cuando los esfuerzos cortantes aplicados son iguales al

máximo esfuerzo cortante resistente a lo largo de una potencial superficie de falla, se

considera que la estructura es estable cuando el esfuerzo aplicado es menor al resistente. La

relación entre la resistencia cortante y el esfuerzo cortante aplicado en una superficie

potencial de falla se define como FS y se muestra en la ecuación:

c

FS f

tan'

Page 146: tesis muros 2009 completa.pdf

134

Donde:

τf= Máxima resistencia cortante de acuerdo al criterio de Mohr – Coulomb.

τ = Esfuerzo cortante aplicado.

El factor de seguridad también puede definirse como la proporción ente la fuerza cortante

(Tf) que podría causar la falla en un plano de deslizamiento correspondiente a la fuerza (T),

a lo largo del plano en condiciones de servicio (figura 3.23) y la ecuación es:

T

cLN

T

TFS f

tan'

Donde:

L=es la longitud de la base en compresión para un pie de pared, cuando los valores

de c y Ø son cero las ecuaciones son las siguientes:

Para c= 0

dd Tan

Tan

TanN

TanNFS

'

'

Page 147: tesis muros 2009 completa.pdf

135

Figura 3.13 Diagrama de cuerpo libre de la enésima dovela.

(Imagen tomada del documento Engineering and Design Retaining and Flood Walls,

pagina 4-19).

Para Ø= 0

dd c

c

Lc

cLFS

Donde:

Tan Ød y cd: son las porciones del esfuerzo cortante que se considera será

desarrollado a lo largo del plano de falla.

Page 148: tesis muros 2009 completa.pdf

136

III.3.2.3.3 Suposiciones y Simplificaciones.

Superficie de deslizamiento: Se asume que todas las superficies son planas, estas

superficies forman las bases de las dovelas, si hay varios planos deberán considerarse todos

para encontrar el más crítico.

Análisis en dos dimensiones: El análisis se realiza en dos dimensiones a excepción que las

características geométricas y cargas críticas afecten la estabilidad contra el deslizamiento

de un muro.

Se considera solamente equilibrio de fuerzas: Solo se analiza el equilibrio de fuerzas, no se

considera el equilibrio de momentos y la fuerza cortante actuando en la interface entre

dovelas se desprecia. Esto quiere decir que las dovelas son cargadas directamente por las

fuerzas actuantes y la fuerza resultante en la dovela se asume horizontal.

Desplazamientos: Para el método de equilibrio límite no se toman consideraciones con

respecto a desplazamientos.

Relación entre fuerza normal y fuerza cortante: Se asume una relación lineal entre las

fuerzas resistentes cortantes y la normal actuando en el plano de deslizamiento bajo cada

dovela.

Dovela Estructural: La ecuación general de dovelas se basa en la suposición de que las

fuerzas cortantes no actúan en los bordes verticales de las dovelas. Por tanto la dovela

estructural será la que forma la estructura de concreto ya que está transmite fuerzas

cortantes a través de planos verticales.

Interface de otras dovelas con la dovela estructural: la interface entre las dovelas activas y

la dovela estructural, es un plano vertical colocado en el talón de la dovela estructural , la

interface entre un grupo de dovelas pasivas y la dovela estructural se asume que es un plano

vertical colocado en la punta inferior de la misma.

Page 149: tesis muros 2009 completa.pdf

137

III.3.2.3.4 Ecuación General de Dovelas.

Convención de signos:

La geometría y convención de signos de una típica dovela y las dovelas adyacentes son

mostradas en la figura 3.14, estas ecuaciones se derivan usando la regla de la mano derecha,

su origen en cada dovela es la esquina inferior izquierda, el eje x es horizontal y el eje y

vertical.

Figura 3.14 Geometría de la enésima dovela y dovelas adyacentes.

(Imagen tomada del documento Engineering and Design Retaining and Flood Walls,

pagina 4-21).

Los ejes tangentes (t) y normales (n) a un plano de falla son inclinados con un ángulo α con

los ejes (±) X y (±) Y. Un ángulo negativo se forma en el sentido de las agujas del reloj y el

positivo en sentido contrario.

Page 150: tesis muros 2009 completa.pdf

138

Derivación de ecuaciones.

El método determino ecuaciones normales de equilibrio y paralelas al plano de falla para

una dovela típica como la mostrada en la figura 3.13, resolviendo para N’i y Ti y

sustituyendo en la ecuación para el factor de seguridad de la enésima dovela, se obtuvo la

ecuación siguiente:

iiiiiiRiLi

iiiiiiiiRiLiiiL

SenVWiCosPPCosHH

LcTanUSenPPSenHHCosVWFS

1

1

Resolviendo para (Pi-1 – Pi), se obtienen la ecuación general de dovelas:

idii

idiiidiRiLidiiidiiiii SenTanCos

LcCosSenTanHHTanUiSenCosTanVWPP

1

Donde:

i = Numero de dovela analizada.

(Pi-1-Pi) = Suma de fuerzas aplicadas actuando horizontalmente en la

enésima dovela. (Un valor negativo indica que las fuerzas aplicadas en la

enésima dovela exceden las fuerzas resistentes al deslizamiento en la base de

la dovela. un valor positivo indica que las fuerzas son menores.)

Wi = Peso total de agua, suelo, roca o concreto en la enésima dovela.

Vi= Cualquier fuerza vertical aplicada arriba de la enésima dovela.

Tan Ødi= Tan Øi / FS

αi= Angulo entre la horizontal y la superficie de deslizamiento (+ si es anti-

horario).

Ui= Fuerza de volteo ejercida a lo largo del plano de deslizamiento en la

enésima dovela.

Page 151: tesis muros 2009 completa.pdf

139

HLi= Cualquier fuerza vertical aplicada en la corona o bajo el fondo de la

dovela del lado izquierdo de la dovela adyacente.

HRi= Cualquier fuerza vertical aplicada en la corona o bajo el fondo de la

dovela del lado derecho de la dovela adyacente.

cdi= c/FS

Li= Longitud de la superficie de deslizamiento en la enésima dovela.

Esta ecuación se usa para calcular las fuerzas aplicadas actuando horizontalmente para un

factor de seguridad asumido que se usa para cada dovela, el sistema de dovelas estará en

equilibrio si las fuerzas horizontales calculadas para todas las dovelas con la ecuación

anterior suman cero.

III.3.2.3.5 Angulo de la Superficie de Deslizamiento.

Definición del ángulo de la superficie critica de deslizamiento: El ángulo α varía de

acuerdo al valor del FS. Para una dovela activa este ángulo será aquel capaz de producir la

mayor fuerza activa calculada. Para una dovela pasiva el ángulo crítico es aquel que

produce la menor fuerza pasiva calculada con la misma ecuación, para este procedimiento

hay que realizar iteraciones, la primera prueba para una dovela activa se aproxima con la

ecuación:

2º45 d

Donde:

Ød =Tan-1(Tan Ø/FS)

Para una dovela pasiva la aproximación es la siguiente:

2º45 d

Page 152: tesis muros 2009 completa.pdf

140

Cálculo del ángulo critico de la superficie de deslizamiento: Las ecuaciones para el ángulo

crítico de deslizamiento son soluciones exactas para dovelas con terraplén horizontal y con

o sin sobrecarga uniforme.

III.3.2.3.6 Análisis Para Una Dovela.

Introducción: una forma fácil de revisar la estabilidad contra deslizamiento de una

estructura es desarrollando el análisis para la dovela estructural, usando las mismas cargas

obtenidas para el análisis contra volteo, cuando el FS no es mayor de 1.5, si el factor de

mayor de 1.5, las fuerzas activas deben ser más grandes que las calculadas para el análisis

contra volteo y a las cuales se les aplica un SMF, para este caso el análisis para una dovela

podría indicar incorrectamente que la estructura satisface los criterios para un FS mayor.

Procedimiento de análisis:

Se calcula la resistencia al deslizamiento requerida para el equilibrio en un plano paralelo al

plano de deslizamiento asumido, por debajo de la dovela estructural. Se usan las mismas

fuerzas calculadas para el análisis contra volteo. La fuerza de resistencia se calcula como se

muestra en la figura 3.15.

Calcule la resistencia total al deslizamiento total disponible a lo largo del plano de

deslizamiento asumido bajo la dovela estructural usando los parámetros de resistencia al

corte sin factorar y divida la resistencia al deslizamiento total por el mínimo factor de

seguridad para cada caso.

Si la resistencia al deslizamiento necesaria, es iguala o menos que la resistencia al

deslizamiento dividida por el mínimo factor de seguridad al deslizamiento, el análisis

múltiple de dovelas no es necesario. Un análisis múltiple de dovelas podría resultar en un

factor de seguridad igual o menor al mínimo requerido. Esta revisión puede se expresada

por:

Page 153: tesis muros 2009 completa.pdf

141

FS

cLTanNT

'

Donde:

T= Resultante resistente al deslizamiento paralela al plano de falla asumido

por el equilibrio.

N’= Resultante de fuerzas normales al plano de deslizamiento asumido.

TanØ y c= Parámetros de resistencia del material de cimentación a través

del cual pasa la superficie de falla.

L= Longitud de la superficie de falla bajo la estructura.

FS= Mínimo factor de seguridad al deslizamiento requerido.

Figura 3.15 Análisis de una dovela contra deslizamiento.

(Imagen tomada del documento Engineering and Design Retaining and Flood Walls,

pagina 4-26).

Page 154: tesis muros 2009 completa.pdf

142

Si el plano de deslizamiento asumido es horizontal, T podría ser igual a la resultante de

fuerzas horizontales y N’ será igual a la resultante de fuerzas verticales.

Si la ecuación para la revisión de resistencia no se satisface, es necesario realizar un análisis

múltiple de dovelas para determinar el factor de seguridad contra deslizamiento.

El análisis múltiple de dovelas puede ser obviado, si las fuerzas en las dovelas activas y

pasivas son calculadas usando el mínimo factor de seguridad requerido, si la ecuación de

revisión es satisfecha el sistema tiene un factor de seguridad igual o más grande que el

mínimo requerido.

III.3.2.3.7 Análisis Múltiple de Dovelas.

Procedimiento:

Divida la masa deslizante asumida en un número de dovelas, incluyendo la dovela

estructural, basándose en la configuración y discontinuidades del relleno, porciones del

muro y discontinuidades en la fundación.

Estime el factor de seguridad (FS) para la primera estimación.

Calcule los ángulos críticos para cada dovela, tomando en cuenta que para una dovela

activa el ángulo crítico es el que genera el mayor empuje activo y para la dovela pasiva el

que genera el menor empuje pasivo.

Calcular presiones de volteo y por tabla de agua.

Calcular el peso de las dovelas incluyendo sobrecargas.

Calcular las fuerzas laterales a cada dovela, usando la ecuación general de dovelas, cuando

los ángulos no pueden calcularse fácilmente debido a las cargas y geometría de la dovela, la

ecuación general de dovelas se usa para iterar y encontrar el ángulo crítico, variando el

ángulo de la dovela para encontrar el empuje máximo activo y el empuje mínimo pasivo.

Page 155: tesis muros 2009 completa.pdf

143

Sumar las fuerzas laterales de todas las dovelas.

Si la suma de las fuerzas laterales se negativa, disminuya el FS y recalcule la suma de

fuerzas laterales. Disminuyendo el FS, se desarrolla un porcentaje mayor de esfuerzo

cortante actuando a los largo de los planos de deslizamiento.

Este procedimiento de prueba y error debe continuarse hasta que la suma de las fuerzas

laterales sea aproximadamente cero para el factor de seguridad usado esto podría

determinar el factor de seguridad que causa que la masa deslizante este en equilibrio

horizontal.

Si el factor de seguridad es menor que el mínimo requerido, rediseñe la base o incluya un

diente.

III.3.2.3.8 Criterios Para Estabilidad al Deslizamiento.

Los criterios para la estabilidad contra deslizamiento son dados en términos de un mínimo

factor de seguridad para varías condiciones de carga en la tabla 3.1.

Tabla 3.1 Criterios de estabilidad para muros de retención.

F.S. al desliz.

Esfuerzo cortante prueba requerida

Estabilidad contra volteo Minima área en compresión en la base.

F.S. mínimo

capacidad de

soporte Caso No.

Condición de carga

Suelo de fundación

Fundación en roca

Suelo de fundación

Fundación en roca

R1 Usual 1.5 (Q/S)2,1 Corte Directo

100%4 75%4 3.0

R2 Inusual 1.33 (Q/S)2,1 Corte Directo

75%4 50%4 2.0

R3 Sismo 1.1 (Q) Corte

Directo Resultante en la base

Resultante en la base

>1.0

Page 156: tesis muros 2009 completa.pdf

144

III-3.3. Capacidad de Carga del Suelo Portante.

III-3.3.1 Capacidad de Carga para Métodos Clásicos.

La presión vertical, tal como es trasmitida al suelo por la losa de base del muro de retención

debe revisarse por capacidad de carga última del suelo. La naturaleza de la variación de la

presión vertical trasmitida por la losa de base al suelo se muestra en la figura (3.16), note

que el qpunta y qtalon son las presiones máximas y mínimas, que ocurren en los extremos de la

sección de la punta y de talón, respectivamente. Las magnitudes de qpunta y qtalon se

determinan de la siguiente manera

Ahora el momento neto esas fuerzas respecto al punto c es:

oRneto MMM

Considere que la línea de acción de la resultante, R, cruza la losa base en E, como se

muestra en la figura (), la distancia CE es entonces

V

MXCE neto

Por consiguiente la excentricidad de la resultante se expresa como,

CEB

e 2

Page 157: tesis muros 2009 completa.pdf

145

Figura (16) Revisión de falla por capacidad de carga.

(Referencia Braja M Das. Cuarta edición “Principios de Ingeniería de Cimentaciones”

figura 7.10)

La distribución de presiones bajo la losa se obtiene usando los principios de mecánica de

materiales.

I

yM

A

Vq neto

Donde:

netoM Momento eV

Page 158: tesis muros 2009 completa.pdf

146

I Momento de inercia por unidad de longitud de la sección base 212

1B

Ahora para obtener las presiones máximas usaremos la expresión:

B

e

B

V

B

BVe

B

Vqq punta

61

12

12

1 3max

Similarmente:

B

e

B

Vqtalonq

61min

Para la obtención del factor de seguridad a la capacidad portante se debe de encontrar la

carga máxima como la carga ultima ejercida por la estructura y trasmitida por la losa de

base al suelo, se necesito obtener la capacidad de carga ultima y la ecuación se representa

como:

idqiqdqcicdcu FFNBFFqNFFNcq ´2

122

Una vez calculada la capacidad de carga última (qu) obtenemos el factor de capacidad, se

obtiene así:

FS (capacidad de carga) maxq

qu

Page 159: tesis muros 2009 completa.pdf

147

III 3.3.2 Capacidad de Carga `para El método Sueco (Fellenius).

Fellenius basa su teoría en las investigaciones hechas por Terzaghi (1,943), esta formula es

aplicables para una zapata continua y es la siguiente

NBNqNcr qcu ´5.0´´

Donde:

ru= Resistencia Ultima de la zapata.

c’= Cohesión del suelo.

B= ancho de la zapata.

q’= Sobrecarga efectiva al nivel de la fundación.

γ’= Peso unitario del suelos que soporta la fundación.

Nc, Nq, Nγ = Factores de capacidad de carga.

Cuando la tabla de agua se ubica sobre o en la base el peso unitario de suelo que se ocupara

es el boyante.

Los factores de capacidad de carga se obtienen en función del ángulo de fricción interna del

suelo, cada uno de os factores se describe a continuación:

sen

seneN q 1

1tan 0 1qN

Page 160: tesis muros 2009 completa.pdf

148

´cot1 qc NN 0´ 14.52 cN

´tan15.1 NqN 0´ 0N

Aunque para el caso de Nγ dependiendo del autor podrían ocuparse algunas otras formulas

para su obtención, es importante notar que cuando el ángulo de fricción interna del suelo es

mayor de 37º, los factores incrementan rápidamente y las ecuaciones anteriores pierden

relevancia.

III 3.3.2.1 Factor de Seguridad contra Falla por Capacidad del Suelo Portante.

Para el diseño de zapatas para capacidad del suelo, la carga aplicada no debe exceder la

carga ultima de la zapata calculada con la formula de capacidad de carga de Terzaghi, esto

quiere decir que los diseños de fundaciones deben incluir un margen de seguridad contra

falla, este margen se define como el esfuerzo del suelo dividido resistencia cortante

desarrollada. La resistencia del suelo es la cohesión o la tangente de la fricción interna del

suelo o ambos. en contraste para problemas de capacidad de soporte del suelo no está

definido como la relación entre resistencia y resistencia como se muestra en la ecuación

siguiente:

allow

us q

qrF

´ o alternativamente

allow

us q

rF

Donde:

Page 161: tesis muros 2009 completa.pdf

149

Fs= Factor de seguridad.

ru= Resistencia ultima.

q`= Esfuerzo al nivel de la fundación.

qallow= permisible presión de soporte (presión de contacto)

El factor de seguridad recomendado para aplicarse es no menos de 3.

III.3.3.2.2 Cargas inclinadas y Excéntricas.

Fig. 3.17 a) únicamente carga concéntrica y verticalmente, y b) carga vertical y

horizontalmente.

(Referencia Basic of Foundation Desing “Bengt H. Fellenius” figura 6.3)

La figura 3.17 muestra una sección cruz de dos cargas distribuidas en una zapata de ancho

B, sujetas a carga vertical Q y Qv la carga en la zapata de la izquierda es vertical y

concéntrica el esfuerzo de contacto aplicado es q por unidad de longitud (q=Q/B) que

desarrolla una igualmente larga resistencia del suelo r.

Page 162: tesis muros 2009 completa.pdf

150

De cualquier forma las cargas en zapatas son normalmente excéntricas e inclinadas, como

se muestra en la figura de la zapata de la derecha. al cargar una zapata excéntricamente su

capacidad de soporte puede ser reducida una carga que no está aplicada al centro puede

incrementar e esfuerzo en un lado y reducirlo al lado opuesto. Un esfuerzo demasiado

grande puede ser un punto de comienzo para una falla de suelo portante.

Para no crear tensión en el talón al reducir el esfuerzo de contacto en un lado de la zapata la

resultante debe ubicarse en el tercio medio de la zapata, esto quiere decir que la

excentricidad no debe ser mayor que B/6 (16.7% del ancho de la zapata) la figura 3.18

ilustra la diferencia entre una zapata cargada dentro del centro medio y fuera del mismo.

Figura 3.18 Distribuciones de tensiones cuando la resultante cae dentro del tercio

medio y fuera del mismo.

(Referencia: Basic of Foundation Desing. “Bengt H. Fellenius” figura 6.2)

Page 163: tesis muros 2009 completa.pdf

151

III.3.3.2.4 Factores de Inclinación y de Forma

Cuando se combinan cargas verticales y horizontales resulta en una caga inclinada que

puede reducir la capacidad de soporte de una zapata, el efecto de la inclinación es

expresado por medio de factores de reducción llamados factores de inclinación, i. la

inclinación puede tener un efecto indirecto debido a que la resultante de la carga en la

mayoría de casos actúa fuera del centro, reduciendo el área efectiva de la zapata.

La forma de la zapata también influencia la capacidad y es expresada por medio de factores

de reducción llamados factores de forma s. la formula de capacidad de soporte es derivada a

partir de la asunción de una zapata continua infinitamente larga. una zapata con longitud

finita , L, podría tener una contribución de la resistencia del suelo a partir de el final de la

zapata. esta contribución es que los factores de forma se ajustan para que los factores de

capacidad también sean aplicables a zapatas de formas rectangulares.

Para representar el caso general de una zapata sujeta a cargas inclinadas y excéntricas se

hace con la ecuación siguiente:

NBisNqisNcisr qqqcccu ´´5.0´´

Donde los factores no definidos anteriormente son:

sss qc ,, Factores de forma a dimensionales.

Page 164: tesis muros 2009 completa.pdf

152

iii qc ,, Factores de inclinación a dimensionales

B = Ancho de la zapata.

Cuando la resultante cae en el tercio medio del ancho de la zapata podría asumirse que la

distribución de esfuerzos bajo la zapata es aproximadamente lineal, cuando la resultante se

mueve mas allá del tercio, o sea más cerca del extremo de la zapata, esto no solo hace que

el esfuerzo extremo se incremente rápidamente, la sunción de linealidad no es válida. El

requerimiento de tener la resultante en el tercio medio es muy importante en el diseño.

Factores de forma

c

qqc N

N

L

Bss

´

´1

´

´4.01

L

Bs

Donde:

B’= Ancho efectivo de la zapata.

L’= Longitud de la zapata.

Factores de inclinación

Según el manual de ingeniería de fundaciones canadiense

Page 165: tesis muros 2009 completa.pdf

153

2

901

qc ii

2

´1

i

Donde:

a= Angulo de inclinación de la resultante.

Ø’= Angulo de fricción interna del suelo

Existen diferentes formulas para calcular los factores de inclinación y el método de

Fellenius admite usar cualquier autor con la restricción que cuando los valores son mayores

que la unidad estas factores deben calcularse por otra fórmula.

Page 166: tesis muros 2009 completa.pdf

154

III-3.3.3 Capacidad de Carga para Métodos de Cuerpo de Ingenieros.

III.3.3.3.1 Análisis de Capacidad de Soporte en la Fundación de los Muros.

III.3.3.3.1.1 Análisis, Principios y Métodos.

El método recomienda utilizar la ecuación de Terzaghi’s siguiente:

wbqzc NWNWCNq

Forma de la falla: esta depende de la compresibilidad relativa del suelo, condiciones de

carga y consideraciones geométricas. Los alcances del método son para falla general por

cortante de fundaciones superficiales. Una falla general por cortante existe normalmente en

arena densa y arcilla rígida, para arena suelta y arcilla blanda la capacidad de soporte debe

calcularse basado en las condiciones locales de corte.

Factor de Seguridad:

El factor de seguridad se calcula como sigue:

'N

QFS

Donde:

N’= Fuerza normal efectiva aplicada a la base de la estructura

Q= Componente normal a la base de la estructura de la capacidad de carga ultima.

Los factores mínimos aceptables de capacidad de soporte para muros se muestran en la

tabla 3.1. Para cada caso de carga se ocupan las fuerzas obtenidas para el análisis contra

volteo.

Page 167: tesis muros 2009 completa.pdf

155

III.3.3.1.2 Ecuación General de Carga.

La ecuación para una zapata superficial es la siguiente:

2

NB

NqcNBQ gtidqoqgqtqiqdccgctcicd 4-15

Donde;

Q= Componente normal de la capacidad de carga ultima de la fundación.

B= Ancho efectivo de la base.

e= Excentricidad de la carga con respecto al ancho de la base geométrica.

c= Cohesión de la fundación.

ε= Factores de forma e inclinación.

Nc, Nq, Nγ= Factores de capacidad de carga.

qo= Sobrecarga efectiva que es transmitida hasta la base de la zapata.

γ= Peso unitario efectivo del material de fundación.

III.4 CONCEPTO DE FACTOR DE SEGURIDAD.

En todo diseño ya sea de servicio o de uso de protección se corre el riesgo de que el diseño

resulte sobrado o con una incertidumbre de que necesita más refuerzo, lo cual pueda

garantizar que no falle. En el caso de nuestro estudio el factor de seguridad se genera

esperando que la estructura (el muro), no colapse ante un evento de los expuestos

anteriormente.

El factor de seguridad nace ante la necesidad de garantizar que lo diseñado sea una

estructura segura, y que al momento de se generen fuerzas mayores a las diseñadas no

Page 168: tesis muros 2009 completa.pdf

156

tiendan a colapsar. El uso del Factor de seguridad reduce esa incertidumbre y vuelve más

seguro nuestro diseño.

El factor de seguridad se define el producto que resulta de relacionar las fuerzas resistentes

entre las fuerzas actuantes, las que se generan en los análisis estructurales, dicho factor de

seguridad está relacionado con el comportamiento de los materiales del tipo de estructura y

el servicio que la estructura ofrezca.

En el diseño de muros de retención los factores de seguridad son utilizados para comprobar

que la estructura este capacita para soportar las diferentes fuerzas que trataran de hacerlo

fallar. Un que siempre, se genere una incertidumbre en cualquier tipo de diseño, en el caso

de diseños de elementos de fundación y sostenimiento de masa de suelo y cualquier

material que genere empujes a ellas.

Es decir que el factor de seguridad nos da la idea de si la estructura será capaz de absorber

o resistir las fuerzas que lo llevarían a fallar, como, también para el dimensionamiento de la

estructura.

En normas y reglamentos se establecen las diferentes condiciones a analizar, los valores

que deben cumplir tanto para fuerzas estáticas o sismo.

III-5 NOTAS DEL REGLAMENTO DE LA SEGURIDAD DE LA

CONSTRUCCIÓN DE EL SALVADOR.

Dentro del reglamento se establecen lo requisito para el diseño de estructura las cuales

deben cumplirlos, tanto en servicio como en funcionabilidad, estos requisitos los

mencionamos a continuación:

El artículo 45 del reglamento recomienda que previo al diseño de toda obra, deberá

realizarse un estudio geotécnico.

Dicho estudio debe contener como mínimo debe contener como mínimo, lo siguiente:

La capacidad de carga admisible, identificación y clasificación del suelo, condiciones de

humedad, límites de consistencia, presencia de agentes contaminantes y flujos de agua,

subterráneos; así como también, la definición de la profundidad mínima de desplante de las

Page 169: tesis muros 2009 completa.pdf

157

cimentaciones, a niveles bajo los cuales no existan cantidades perjudiciales de material

orgánico y el suelo posea características mínimas aceptables.

Adicionalmente deberán estudiarse todas aquellas propiedades que sean requeridas para el

análisis y diseño de la obra.

El articulo 51 nos da la forma de análisis para los taludes a tomar en las características de

los materiales que componen los estratos, los probables mecanismos de falla y considerar

además de las fuerzas gravitacionales y las sísmicas, las fuerzas debidas a la infiltración,

presión de poro, sobrecargas.

El reglamento establece los factores de seguridad que deben cumplirse para el diseño de un

muro de retención estos factores se encuentran en “La norma técnica para el diseño de

cimentaciones y estabilidad de taludes”.

Dichos factores se encuentran en el capítulo 6 tabla 5-1de la norma técnica los cuales nos

restringe a analizar las diferentes falas que puedan ocurrir, tanto deslizamiento como

volteo.

En esta tabla se mocionan las dos combinaciones que se analiza como también se menciono

antes las fallas a considerar al momento de hacer la comprobación de si la estructura

cumple o no con el dimensionamiento que se a planteado, de no ser así se tiene que

dimensionar de nuevo y cumplir los requisito mínimos expuesto en el reglamento para la

seguridad estructural.

Page 170: tesis muros 2009 completa.pdf

158

CAPITULO IV

IV-1 Metodología de la Investigación.

Con el fin de poder comparar los métodos clásicos y los métodos modernos para el diseño

de muros de retención se consideraron en la investigación la evaluación con cada uno de los

métodos de 2 tipos de muro utilizados generalmente en nuestro país, con 2 diferentes

alturas y 3 ángulos de inclinación del terraplén. Para este fin también se consideraron dos

tipos de suelos (granulares y cohesivos) con sus parámetros de resistencia. Para obtener

estos parámetros de resistencia se investigo si existía en nuestro país algún trabajo

relacionado con la obtención de los parámetros de resistencia en los suelos de nuestro país

y encontramos el articulo Propiedades Mecánicas de los suelos del Área Metropolitana de

San Salvador de un número de la revista de la Asociación Salvadoreña de Ingenieros y

Arquitectos.

El procedimiento para escoger el mejor método de diseño, es la siguiente:

Se determinan la altura, inclinación del suelo y tipo de suelo, granular o cohesivo.

Se calcula la fuerza activa y pasiva por cada uno de los métodos.

Se hace un pre dimensionamiento de los elementos estructurales del muro, basados

en los criterios expuestos en el texto “Principios de Ingeniería de Cimentaciones del

autor Braja Das”, tratando de dimensionar la sección mas económica.

Con los datos anteriores se determinan por los métodos los factores de seguridad de

Volteo, Deslizamiento y Capacidad de soporte;

Si con las predimensiones no se obtiene el factor de seguridad mayores de 1.5 se

redimensiona la estructura hasta cumplir con esos requisitos

Habiendo cumplido con la estabilidad de la estructura se hace la revisión estructural

por las ecuaciones establecidas en el ACI-318. se revisan las estructuras para

cortante y momento de Flexión.

Page 171: tesis muros 2009 completa.pdf

159

Luego se determina el volumen del los materiales y el costo por metro cubico.

Se tabulan los datos en un cuadro comparativo, el cual compara los factores

importantes para determinar el método más adecuado por diseñar muros de

contención.

V-1.1 Tipología de muros a utilizar.

En nuestro país podemos decir que en la mayoría de casos los muros mas utilizados son:

mampostería de piedra y los muros de cantiléver (concreto armado). Para nuestro estudio

realizaremos el análisis de estos muros por los métodos estudiados en los capítulos

anteriores.

Generalmente la aplicación de estos muros está limitada a su forma geométrica la cual es

muy importante, para el logro de un buen análisis, dentro del cual nos hemos puesto los

objetivos, ya que buscamos obtener el método que genere la estructura más eficiente, las

partes que conforman estos muros y en las cuales nos referiremos en nuestro análisis, se

muestran en la figura 4.1

Figura 4.1 Partes de un Muro de Retención.

Imagen tomada del documento Muros de Contención y Muros de sótano, 2ª Edición, J

Calavera, Intemac, pagina 12, Enero 1987

Page 172: tesis muros 2009 completa.pdf

160

IV-1.1.1 Muros de gravedad.

Este tipo de muro está compuesto por piedra cuarta y mortero, su ventaja principal es que

no se necesita acero para construirlo, aunque al ser demasiado voluminosos, es mejor

ocupar otro tipo de muro, este tipo de muro se muestra en la (figura 4.2).

Figura

4.2 Muros de gravedad, a) Sin diferenciar la cimentación, b) con Cimentación

diferenciada.

Imagen tomada del documento Muros de Contención y Muros de Sótano, 2ª Edición, J.

Calavera, Intemac, pagina 13, España, Enero 1987.

IV-1.1.2 Muros de Concreto Armado.

Estos muros son los más usados generalmente ya que se asume que son los mas

económicos para alturas de hasta 12 metros, aunque su aplicación depende los costos

relativos de excavación, concreto, acero, encofrado y mano de obra, como su nombre lo

dice se construye con concreto y acero de refuerzo, (figura 4.3), muestra este tipo de muro.

Figura 4.3 Muros de Concreto Armado.

Imagen tomada del documento Muros de Contención y Muros

de Sótano, 2ª Edición, J. Calavera, Intemac, pagina 13,

España, Enero 1987.

Page 173: tesis muros 2009 completa.pdf

161

IV-1.2 Características Mecánicas de los Muros.

Las características mecánicas de los muros dependen de los materiales con que se

construyen, para el caso de este estudio, peso de la mampostería de piedra, propiedades del

concreto hidráulico y acero.

Para el caso del muro de gravedad de mampostería de piedra la única propiedad de los

materiales que infiere en el muro es el peso propio de la estructura que es el que se opone al

empuje de la masa de suelo retenido.

Para el caso de muros de concreto hidráulico las propiedades mecánicas que infieren en el

muro son las siguientes:

Resistencia a la compresión del concreto hidráulico

Cortante último del concreto y acero en la sección analizada.

Momento Último del concreto y acero en la sección analizada para revisar la flexión del elemento.

IV-1.2.1 Resistencia a la Compresión del Concreto.

A partir de la resistencia a la compresión (f’c) del concreto se calculan los valores de

cortante y momento último para realizar la revisión estructural. Para el caso de esta

investigación se diseño con una resistencia última a la compresión a los 28 días edad de 210

Kg/cm2.

IV-1.2.2 Revisión del Cortante por Elemento.

Para la revisión de cada elemento por cortante y después de haber obtenido el valor de

cortante último por estática, se utiliza la formula dada por American Concrete Institute para

calcular los cortantes del elemento y realizar la revisión, la formula a utilizar es:

La formula anterior obtiene el cortante del concreto que es el utilizado, ya que el aporte del

acero al cortante es despreciable.

bdcfVc s ´53.0

Page 174: tesis muros 2009 completa.pdf

162

IV-1.2.2 Revisión de la Flexión del Elemento.

Para la revisión de cada elemento por flexión y después de haber obtenido el valor de

momento último por estática, se utilizan las formulas dadas por American Concrete

Institute para calcular el momento nominal, la resistencia nominal y cantidad de acero

requerida, con estos valores se revisa la resistencia a la flexión del elemento.

Con los valores obtenidos se procede a la comparación de los resultados obtenidos contra

los valores obtenidos por estática.

IV-1.3 Características de los Suelos.

Se utilizaron dos tipos de suelos granulares y cohesivos tomando en cuenta contar con

suelos que sean representativos de la mayoría de suelos en nuestro país. Las propiedades de

estos suelos tales como cohesión, ángulo de fricción interna y peso unitario húmedo fueron

obtenidos de un artículo publicado en la revista de ASIA (referencia 1), estas características

se detallan en el cuadro siguiente:

Tipo de suelo Cohesión Aparente (Kg/cm2)

Angulo de Fricción

Interna. (º)

Peso Unitario Seco (Ton/m3)

Cohesivo 0.59 27 1.22

Granular 0.20 35 1.24

Estas propiedades se utilizan en los cálculos de los empujes que el suelo retenido ejerce

sobre el muro.

Mu

Mn 2bd

MnRn

cf

Rn

fy

cfreq `85.0

21

`85.0

Page 175: tesis muros 2009 completa.pdf

163

CAPITULO V.

V-1 Resumen de Resultados.

Hacer un estudio comparativo demostraríamos cual método es adecuado y el que resultaría

con la estructura más económica con respecto a su diseño y construcción.

Para obtener el método de diseño de muros de contención más adecuado se ha hecho un

estudio comparativo de evaluación de cargas en estructuras de retención con los

métodos clásicos de diseño y los métodos modernos.

En métodos clásicos están agrupadas las siguientes teorías:

Teoría de Rankine, Teoría de Coulomb, Teoría de Poncelet y Polígonos funiculares

conocido por la teoría de Culmann.

Y en los métodos modernos se agrupan:

El método de Sueco o teoría de Fellenius y El método del Cuerpo de Ingenieros (U.S.

ARMY).

Para realizar la comparativa Se evaluó 12 combinaciones de muros y por los 6 métodos en

las siguientes condiciones:

6 muros de 2.00 de altura con ángulo de suelo 0, 15 y 30, así como por dos tipos de

suelos granulares y cohesivos.

6 muros de 5.00 de altura con ángulo de suelo 0, 15 y 30, así como por dos tipos de

suelos granulares y cohesivos.

Obteniendo como resultado 12 por muros por 6 métodos, igual a 72 muros

Además de evaluar las configuraciones de cada muro se calculan por 2 tipos de muros:

Muros de gravedad de mampostería de piedra.

Muro de concreto reforzado Cantiléver

Page 176: tesis muros 2009 completa.pdf

164

Haciendo un total de 144 muros de modelos con los que se espera obtener el método más

optimo de diseño de muros.

A continuación se presenta la tabla usada para comparar cada uno de los muros.

No. Altura Inclinación del

terreno Tipo de suelo

Angulo de

Fricción

Interna.

1

2.00

0

Granular 35.20

2 Cohesivo 27

3 15

Granular 35.20

4 Cohesivo 27

5 30

Granular 35.20

6 Cohesivo 27

7

5.00

0 Granular 35.20

8 Cohesivo 27

9 15

Granular 35.20

10 Cohesivo 27

11 30

Granular 35.20

12 Cohesivo 27

Page 177: tesis muros 2009 completa.pdf

165

V-1.1 Metodología para el análisis de resultados.

La metodología empleada para la comparación y determinación del método que mejor se

adapta a las condiciones de los suelos de nuestro país se desarrollara a través de un análisis

estadístico para medir la dispersión de datos que serán obtenidos diseñando hojas de

cálculo con el programa Excel que calculen los empujes activos, pasivos y en reposo,

dependiendo de cada método y que además evalúen la estabilidad de las estructuras ante

volteo, ante fuerzas que inducen al deslizamiento, hundimiento y capacidad de carga del

suelo portante. Debido a la dispersión de resultados que nos genera el estudio, se hace

necesario justificar un intervalo de confianza que se encuentre entre el 15% y el 85% de los

datos obtenidos, tomando en cuenta esté intervalo descartamos los datos demasiados

alejados de este intervalo.

En los datos solo tomaremos en cuenta los factores de seguridad contra vuelco,

deslizamiento y capacidad de carga. Con toda la información técnica obtenida de las hojas

de cálculo y con los costos de construcción para cada muro se ocupara la metodología

siguiente: para la evaluación de los resultados, se realizara la respectiva corrida de cada

muro en la hoja de cálculo y se harán correcciones en las dimensiones del muro para que

aumente su factor de seguridad ante cualquier tipo de fuerzas, habiendo obtenido todos los

factores se hace un análisis estadístico y con este análisis se determina los métodos que

están dentro del intervalo de confianza y se compara el costo de muro por metro cubico y

se elije el más económico y estable.

Page 178: tesis muros 2009 completa.pdf

166

V-1.2 Determinación del método más adecuado.

El método de diseño más adecuado se determinara tabulando los resultados del cálculo de

cada muro y comparándolo con los demás métodos; el método que resulte más apegado a

los criterios establecidos anteriormente se considerara como el método optimo para el

Diseño.

Estadísticamente el método que resulte más frecuente en la tabulación comparativa será el

método más adecuado para el diseño de muros de retención.

V-1.3 Comparación de Resultados.

V-1.3.1 Muros de gravedad de mampostería de piedra.

Page 179: tesis muros 2009 completa.pdf

167

(*) El muro no cumple con el requisito de obtener un resultado mayor de 1.5 para los

diferentes factores de seguridad, porque el momento actuante es mucho mayor al resistente,

por lo que habría que construirlo incluyendo anclas capaces de soportar el momento

excesivo de 28 T-m.

(**) El muro no cumple con el requisito de obtener un resultado mayor de 1.5 para los

diferentes factores de seguridad, porque el momento actuante es mucho mayor al resistente,

por lo que habría que construirlo incluyendo anclas capaces de soportar el momento

excesivo de 22 T-m.

(***) El muro no cumple con el requisito de obtener un resultado mayor de 1.5 para los

diferentes factores de seguridad, porque el momento actuante es mucho mayor al resistente,

Page 180: tesis muros 2009 completa.pdf

168

por lo que habría que construirlo incluyendo anclas capaces de soportar el momento

excesivo de 5 T-m y corregir el subsuelo para aumentar su capacidad portante o cimentar

usando pilotes de concreto reforzado.

(****) El muro no cumple con el requisito de obtener un resultado mayor de 1.5 para los

diferentes factores de seguridad, porque el momento actuante es mucho mayor al resistente,

por lo que habría que construirlo incluyendo anclas capaces de soportar el momento

excesivo de 16 T-m y corregir el subsuelo para aumentar su capacidad portante o cimentar

usando pilotes de concreto reforzado.

(*****) El muro no cumple con el requisito de obtener un resultado mayor de 1.5 para el

factor de seguridad de capacidad portante del suelo de apoyo, por lo que habría que mejorar

su capacidad portante o cimentar el muro por medio de pilotes de concreto reforzado.

(******) El muro no cumple con el requisito de obtener un resultado mayor de 1.5 para el

factor de seguridad de capacidad portante del suelo de apoyo, por lo que habría que mejorar

su capacidad portante o cimentar el muro por medio de pilotes de concreto reforzado.

Page 181: tesis muros 2009 completa.pdf

169

V.1.3.2 Muros de Concreto Reforzado Cantiléver

Page 182: tesis muros 2009 completa.pdf

170

(*) El muro no cumple con el requisito de obtener un resultado mayor de 1.5 para los diferentes

factores de seguridad, porque el momento actuante es mucho mayor al resistente, por lo que habría

que construirlo incluyendo anclas capaces de soportar el momento excesivo de 34 T-m.

(**) El muro no cumple con el requisito de obtener un resultado mayor de 1.5 para los diferentes

factores de seguridad, porque el momento actuante es mucho mayor al resistente, por lo que habría

que construirlo incluyendo anclas capaces de soportar el momento excesivo de 31 T-m y corregir el

subsuelo para aumentar su capacidad portante o cimentar usando pilotes de concreto reforzado.

(***) El muro no cumple con el requisito de obtener un resultado mayor de 1.5 para el factor de

seguridad de capacidad portante del suelo de apoyo, por lo que habría que mejorar su capacidad

portante o cimentar el muro por medio de pilotes de concreto reforzado.

(****) El muro no cumple con el requisito de obtener un resultado mayor de 1.5 para el factor de

seguridad de capacidad portante del suelo de apoyo, por lo que habría que mejorar su capacidad

portante o cimentar el muro por medio de pilotes de concreto reforzado.

(*****) El muro no cumple con el requisito de obtener un resultado mayor de 1.5 para el factor de

seguridad de capacidad portante del suelo de apoyo, por lo que habría que mejorar su capacidad

portante o cimentar el muro por medio de pilotes de concreto reforzado.

(******) El muro no cumple con el requisito de obtener un resultado mayor de 1.5 para el factor de

seguridad de capacidad portante del suelo de apoyo, por lo que habría que mejorar su capacidad

portante o cimentar el muro por medio de pilotes de concreto reforzado.

Page 183: tesis muros 2009 completa.pdf

171

V-2 ANÁLISIS ESTADÍSTICOS.

V-2.1 Muro de Mampostería.

FACTOR DE SEGURIDAD CONTRA VOLTEO

Page 184: tesis muros 2009 completa.pdf

172

FACTOR DE SEGURIDAD DESLIZAMIENTO

Page 185: tesis muros 2009 completa.pdf

173

FACTOR DE SEGURIDAD CAPACIDAD DE SOPORTE

Page 186: tesis muros 2009 completa.pdf

174

V-2.2 Muro de Concreto Reforzado Cantiléver

FACTOR DE SEGURIDAD VOLTEO

Page 187: tesis muros 2009 completa.pdf

175

FACTOR DE SEGURIDAD DESLIZAMIENTO

Page 188: tesis muros 2009 completa.pdf

176

FACTOR DE SEGURIDAD CAPACIDAD DE SOPORTE

Page 189: tesis muros 2009 completa.pdf

177

V-2.3 Resultados del Análisis Estadístico.

De las tabulaciones anteriores se obtiene el siguiente análisis estadístico:

Page 190: tesis muros 2009 completa.pdf

178

V-3 Análisis de Resultados.

A través del análisis estadístico realizado, al comparar los diferentes métodos estudiados y

cumpliendo con los objetivos propuestos, consideramos que el método que da resultados

más eficientes es el METODO DE COULOMB, también, el método que nos cumple con

una frecuencia menor es el método de Rankine, pero este método no cumple con todas las

condiciones establecidas en nuestro estudio.

Por otra parte en los métodos modernos, tenemos la dificultad para obtener resultados

óptimos, debido a las dificultades de la obtención de los datos que requieren estos métodos,

como también, generan muros muy sobrados por mismo de los requisitos que estos exigen.

Podemos entonces decir que los métodos modernos no pueden aplicarse en la mayoría de

los casos, en nuestro país, porque no hay laboratorios de mecánica de suelos, especializados

que realicen los diferentes ensayos que requieren estos métodos..

V-4 Conclusiones.

Una vez estudiado y hecho un comparativo de evaluación de cargas en estructuras de

retención: por métodos clásicos y métodos modernos concluimos lo siguiente:

Que al comparar diferentes muros con las mismas dimensiones y características del

suelo y evaluar la seguridad y la economía, se ha obtenido que el método más

adecuado para el tipo de suelos de nuestro país es el método de COULOMB, el

cual es el más efectivo ya que cumple con los factores de seguridad mínimos y a

pesar de que hay métodos con secciones más económicas, no cumplen con los

requisitos mínimos de seguridad, por lo que se considera como el método de

COULOMB el método más efectivo para el diseño de muros de contención.

De nuestra comparativa el empuje activo máximo con un valor de 166.85 T, para

muros de gravedad y 176.8 T para muros de cantiléver, es el Método grafico de

POCELET.

Page 191: tesis muros 2009 completa.pdf

179

El empuje más pequeño obtenido fue con el método de US ARMY, con un valor de

1.71 T, en la comparativa de muros de gravedad, y de 1.98 T en los muros de

cantiléver.

La sección más grande de un muro se obtuvo por el método de CUERPO DE

INGENIEROS. Puesto que este meto genera momentos de vuelco que necesita otro

tipo de solución para su estabilidad.

Recomendaciones.

En base a los resultados antes expuestos consideramos que el método que mejor se

adapta a las condiciones y tipos de suelo del país es el método de Coulomb ya que

además cumple con todos los requisitos del Reglamento de Seguridad Estructural de

El Salvador y es el recomendado en el mismo.

Para poder tener resultados más sobrados se recomienda los métodos gráficos,

aunque estos métodos generan muros demasiadas enormes.

La aplicación de los métodos modernos, en nuestro país, es necesario poder tener

Laboratorios de Mecánica de suelo, que puedan realizar los diferentes ensayos que

los métodos modernos exigen.

Page 192: tesis muros 2009 completa.pdf

180

Referencias

Brooker, E. W. Ireland, H. O. (1,965) “Earth Pressure at Rest Related To Stress History”

Terzaghi and Peck, Nueva York, (1,948) “Soil Mechanics in Engineering Practice”

Jumikis Alfreds R. New Jersey (1,968) “Soil Mechanics”

Braja M. Das, California (1,999) “Principles of Foundation Engineering”

José Barros, Barcelona (2,005) “Muros de Contención, Monografías de la Industria de la

Construcción ceac”

Basics of Foundation Design, Fellenius, Bengt H., electronic edition, Canada, Marzo 2009.

Engineering and Design, Retaining and Flood Walls, Manual de Ingeniería EM 1110-2-

2502, edition 1989.