teorema de steiner o teorema de los ejes paralelos

2
Teorema de Steiner o teorema de los ejes paralelos [editar] El teorema de Steiner (denominado en honor de Jakob Steiner) establece que el momento de inercia con respecto a cualquier eje paralelo a un eje que pasa por el centro de masa, es igual al momento de inercia con respecto al eje que pasa por el centro de masa más el producto de la masa por el cuadrado de la distancia entre los dos ejes: donde: I eje es el momento de inercia respecto al eje que no pasa por el centro de masa; I (CM) eje es el momento de inercia para un eje paralelo al anterior que pasa por el centro de masa; M - Masa Total y h - Distancia entre los dos ejes paralelos considerados. La demostración de este teorema resulta inmediata si se considera la descomposición de coordenadas relativa al centro de masas C inmediata: donde el segundo término es nulo puesto que la distancia vectorial promedio de masa en torno al centro de masa es nula, por la propia definición de centro de masa. El centro de gravedad y el centro de masa pueden no ser coincidentes, dado que el centro de masa sólo depende de la geometría del cuerpo, en cambio, el centro de gravedad depende del campo gravitacional en el que está inmerso dicho cuerpo. Radio de giro

Upload: gary-robert-gunther-maidana

Post on 22-Oct-2015

20 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Teorema de Steiner o Teorema de Los Ejes Paralelos

Teorema de Steiner o teorema de los ejes paralelos [editar]

El teorema de Steiner (denominado en honor de Jakob Steiner) establece que el momento de inercia con respecto a cualquier eje paralelo a un eje que pasa por el centro de masa, es igual al momento de inercia con respecto al eje que pasa por el centro de masa más el producto de la masa por el cuadrado de la distancia entre los dos ejes:

donde: Ieje es el momento de inercia respecto al eje que no pasa por el centro de masa; I(CM)

eje es el momento de inercia para un eje paralelo al anterior que pasa por el centro de masa; M - Masa Total y h - Distancia entre los dos ejes paralelos considerados.

La demostración de este teorema resulta inmediata si se considera la descomposición de coordenadas relativa al centro de masas C inmediata:

donde el segundo término es nulo puesto que la distancia vectorial promedio de masa en torno al centro de masa es nula, por la propia definición de centro de masa.

El centro de gravedad y el centro de masa pueden no ser coincidentes, dado que el centro de masa sólo depende de la geometría del cuerpo, en cambio, el centro de gravedad depende del campo gravitacional en el que está inmerso dicho cuerpo.

Radio de giro

El radio de giro describe la forma en la cual el área transversal o una distribución de masa se distribuye alrededor de su eje centroidal. Concretamente es el valor medio cuadrático de distancia de los puntos de la sección o la distribución de masa respecto a un eje que pasa por el centro de la misma.

FÓRMULA BÁSICA - RADIO DE GIRO

El momento de inercia de cualquier objeto, puede ser expresado por la fórmula:

I = M k²

donde:

I = momento de inercia M = masa (slug u otra unidad de masa dimensionalmente correcta)

Page 2: Teorema de Steiner o Teorema de Los Ejes Paralelos

k = longitud (radio de giro) (ft)

La distancia (k) se llama radio de giro y se refiere a la distribución de masas.

Ejemplo, considérese un cuerpo consistente en dos masas puntuales de masa M / 2, separadas una distancia de 2 r. El eje de referencia pasa a través del punto medio (Cg). Las masas tiene cada una un MOI de M r² / 2. Su MOI combinado es M r². El segundo ejemplo muestra un tubo fino de radio r. Por simetría, el Cg cae sobre el eje central. De nuevo, la masa está localizada a una distancia r del eje de referencia, así que el MOI es Mr².

DEFINICIÓN:

"El radio de giro de un objeto, respecto de un eje que pasa a través del Cg, es la distancia desde el eje en el cual se puede concentrar toda la masa del objeto sin cambiar su momento de inercia. El radio de giro es siempre medido desde el Cg."