tema 1 (4 del libro): la célula - física y química 3º ... · notación científica. 4.- normas...

14
TEMA 1: La actividad científica

Upload: doankhuong

Post on 07-Oct-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: TEMA 1 (4 del libro): La célula - Física y Química 3º ... · Notación científica. 4.- Normas de seguridad en el laboratorio. 5.- Material de laboratorio de uso frecuente

TEMA 1: La actividad científica

Page 2: TEMA 1 (4 del libro): La célula - Física y Química 3º ... · Notación científica. 4.- Normas de seguridad en el laboratorio. 5.- Material de laboratorio de uso frecuente

ESQUEMA DE LA UNIDAD

1.- El método científico.

2.- La medida.

2.1.- Magnitudes y unidades.

2.1.1.- Magnitudes básicas y derivadas.

2.1.2.- Sistema Internacional.

2.1.3.- Manejo de unidades.

2.2.- Las medidas no son exactas.

3.- Notación científica.

4.- Normas de seguridad en el laboratorio.

5.- Material de laboratorio de uso frecuente.

1.- EL MÉTODO CIENTÍFICO

Desde la antigüedad la curiosidad ha llevado al hombre a hacerse preguntas

sobre fenómenos que sucedían a su alrededor. Gracias a ello hoy en día conocemos

cómo se producen algunos de esos fenómenos y tenemos respuestas para muchas

preguntas que nos hacemos sobre lo que nos rodea.

Así por ejemplo, Platón y Aristóteles fueron dos grandes filósofos

griegos que pasaron prácticamente toda su vida observando la

naturaleza y razonando sobre ella, además tenían tanto prestigio en la

Grecia antigua, que las conclusiones a las que llegaban tenían mucha

credibilidad. Sin embargo, por la falta de los medios de los que

disponemos hoy en día, las afirmaciones que hacían, al igual que otros

muchos científicos antiguos, no se podían demostrar, algo que en la

actualidad en necesario para poder darle validez a un conocimiento que se nos quiera transmitir.

De hecho, desde hace ya algunos siglos, cualquier trabajo de investigación sobre los fenómenos

que se producen en la naturaleza, para ser aceptado, debe realizarse siguiendo unos pasos que

constituyen lo que se conoce como el método científico.

Indicar también que a lo largo de la historia hay muchos fenómenos que inicialmente se

explicaron de una forma y que posteriormente se ha demostrado que la explicación inicial era

errónea. Un caso es por ejemplo el estudio de la caída en el vacío de un cuerpo. Hasta el siglo

XVII se creía que la velocidad con la que caen los cuerpos en el vacío depende de su masa; es

decir, que cuanto más masa tenga un cuerpo, más rápido cae. Esa afirmación es falsa.

Page 3: TEMA 1 (4 del libro): La célula - Física y Química 3º ... · Notación científica. 4.- Normas de seguridad en el laboratorio. 5.- Material de laboratorio de uso frecuente

Los pasos que se siguen en el método científico cuando se lleva a cabo una investigación, son:

1. Observación

La observación consiste en observar atentamente un objeto o fenómeno para estudiarlo.

2. Búsqueda y selección de información

Este paso consiste en buscar toda la información posible que exista sobre lo que

se quiere estudiar.

Hoy en día la información se puede obtener a través de varios medios, por

ejemplo:

Monografías: se trata de libros, tesis doctorales, trabajos de investigación ya realizados...

que aportan información especializada sobre el tema que se está estudiando.

Revistas especializadas: son publicaciones detrás de las cuales hay alguna asociación

científica, de manera que ofrecen información actualizada y fiable.

Entrevistas a científicos: mediante este tipo de entrevistas se pueden obtener ideas

interesantes sobre el tema que estemos estudiando.

Recursos audiovisuales: se trata de vídeos, fotos, CD, que pueden servir para complementar

la información que tratamos de obtener sobre el fenómeno que se está estudiando.

Páginas web: en la actualidad es el medio más utilizado, si bien no todas las páginas que

ofrecen información sobre un tema concreto son fiables, por eso es conveniente consultar

aquellas webs que estén respaldadas por las universidades o institutos de investigación.

3. Enunciado de hipótesis

Una hipótesis es una suposición, una posible explicación del fenómeno que se

está estudiando. Toda hipótesis tiene que contarse de manera clara, precisa, y tiene

que poder comprobarse de manera experimental si se cumple o no.

4. Experimentación

Se trata de realizar uno o varios experimentos de manera controlada que se

puedan repetir las veces que se quiera cambiando algunas condiciones de los

mismos.

El experimento que se va a realizar hay que diseñarlo con la intención de poder

comprobar si cada una de las hipótesis enunciadas en el paso anterior es cierta o

falsa.

Page 4: TEMA 1 (4 del libro): La célula - Física y Química 3º ... · Notación científica. 4.- Normas de seguridad en el laboratorio. 5.- Material de laboratorio de uso frecuente

5. Interpretación de los resultados

Con idea de poder determinar si cada una de las hipótesis enunciadas es cierta o no,

durante la experimentación se debe tomar nota de todos los resultados que se vayan

obteniendo, organizarlos, representarlos gráficamente si se puede y también si se

puede buscar una expresión matemática que sirva para darle solución al problema

planteado de manera general.

6. Formulación de leyes

Una ley es una hipótesis confirmada; es decir, que ya ha sido demostrada experimentalmente.

Las leyes pueden ser de dos tipos:

Leyes cualitativas: son las que no se pueden expresar numéricamente, solo verbalmente.

Por ejemplo, las leyes que utilizan los abogados.

Leyes cuantitativas: son las que además de verbalmente, se pueden expresar

matemáticamente por ejemplo mediante una fórmula, y también gráficamente. Por ejemplo la

ley de la gravitación universal enunciada por Newton según la cual la fuerza de atracción que

experimentan dos cuerpos es directamente proporcional al producto de sus masas e

inversamente proporcional al cuadrado de la distancia que los separa, y que matemáticamente

viene dada por la siguiente fórmula: 2d

mmGF

7. Formulación de teorías y modelos

Una teoría es el resultado de un estudio que tiene que explicar varios hechos relacionados con

el mismo fenómeno. Está formada por lo tanto por un conjunto de leyes a cada una de las cuales se

les llama postulado. Por ejemplo la teoría celular, que consta de cuatro postulados en los que

explica la relación que existe entre las células y los seres vivos:

Todos los seres vivos están formados por células.

Todas las células proceden de otras células existentes.

La célula es el ser vivo más sencillo y pequeño.

Cada una de las células que forma parte de un organismo pluricelular, realiza su propia

actividad, aunque existe una coordinación entre ellas.

Un modelo es una interpretación de un fenómeno que no puede verse y por lo tanto del que no

se tiene certeza absoluta. Por ejemplo los modelos atómicos, que son distintos modelos que se han

ido proponiendo a lo largo de la historia para intentar describir el átomo, que es una partícula

invisible.

8. Elaboración de un informe

El informe científico es un documento en el que se explica y se comunica

a toda la sociedad las conclusiones de los trabajos realizados. Este paso es

fundamental para que investigadores que estén realizando otros trabajos

puedan utilizar la información publicada.

Page 5: TEMA 1 (4 del libro): La célula - Física y Química 3º ... · Notación científica. 4.- Normas de seguridad en el laboratorio. 5.- Material de laboratorio de uso frecuente

El informe científico debe tener las siguientes partes:

Portada

Donde debe figurar el título del trabajo de investigación y el nombre del autor.

Objetivo de la investigación

En este punto del informe se tiene que describir lo que se pretende conseguir con el trabajo al

que se refiere el informe.

Materiales y productos empleados

Aquí hay que hacer una lista de los materiales, productos e instrumentos que se hayan utilizado

para hacer la práctica. Los productos deben incluir las cantidades utilizadas.

Procedimiento

Se trata de explicar el método seguido para realizar la experiencia, añadiendo dibujos, fotos y

gráficos.

Exposición de resultados

En este punto se muestran y se comentan los resultados que se hayan obtenido.

Resumen

Se trata de escribir una conclusión a modo de resumen sobre el trabajo realizado.

Bibliografía

Se deben incluir al final todos los materiales que se hayan consultado y que se hayan servido de

ayuda a la hora de hacer la práctica.

Ejemplo de trabajo científico: el descubrimiento de la penicilina.

La penicilina es un antibiótico empleado en el tratamiento de infecciones

provocadas por bacterias. Fue el primer antibiótico empleado en

medicina y su descubrimiento es atribuido a Alexander Flemming, que

junto con otros científicos médicos obtuvieron el premio Nobel de

medicina en 1945 gracias al importantísimo aporte que significó para la

medicina. Fleming era escocés y falleció en Londres a los 74 años de

edad de un ataque al corazón.

El descubrimiento de la penicilina según Fleming ocurrió de manera casual en

la mañana del viernes 28 de septiembre de 1928, cuando estaba estudiando

cultivos bacterianos (un cultivo es un método en el que se prepara un medio

óptimo para favorecer la multiplicación de microorganismos como bacterias,

hongos o parásitos; se utiliza mucho para estudiar enfermedades causadas por

microorganismos) y tras regresar de un mes de vacaciones, observó que muchos

cultivos estaban contaminados, tirándolos a una bandeja.

Page 6: TEMA 1 (4 del libro): La célula - Física y Química 3º ... · Notación científica. 4.- Normas de seguridad en el laboratorio. 5.- Material de laboratorio de uso frecuente

Afortunadamente recibió una visita de un antiguo compañero, y al enseñarle lo que

estaba haciendo con alguna de las placas que aún no habían sido desechadas, se dio

cuenta de que en una de ellas había señales de destrucción celular. La presencia en

esos cultivos de una colonia de hongos del tipo Penicillium notatum que había

crecido espontáneamente, un hongo muy común, le hizo pensar que estos eran los

que causaban la muerte de las bacterias al segregar una sustancia a la que llamaría

más adelante penicilina. Para cerciorarse aisló y cultivó el hongo e inició un estudio

para determinar qué tipo de microorganismos eran sensibles al hongo. Fleming

publicó su descubrimiento en 1929 en el British Journal of Experimental Pathology

para difundirlo. La utilización de la penicilina en el tratamiento de enfermedades ha

salvado la vida a millones de personas.

2.- LA MEDIDA

2.1.- Magnitudes y unidades

Una magnitud física es cualquier propiedad o característica de la materia que

se puede medir; es decir, a la que se le puede asignar un número y una unidad.

Ejemplos: masa, longitud, temperatura...

Medir una magnitud consiste en compararla con un patrón que hayamos elegido al que

llamaremos unidad para ver cuántas veces lo contiene.

Aunque para medir una magnitud cada persona puede elegir el patrón que quiera, no es

aconsejable, ya que algunos patrones nos pueden proporcionar medidas muy diferentes. Así si

medimos por ejemplo el largo de la mesa utilizando como patrón la palma de la mano,

probablemente nos salga una medida diferente a la de nuestros compañeros porque nuestras manos

no son igual de grandes.

2.1.1.- Magnitudes básicas y derivadas

A las magnitudes que se pueden medir directamente con facilidad se les denomina magnitudes

básicas o fundamentales. Ejemplos: la longitud, el tiempo, la masa...

Se llaman magnitudes derivadas a las que se obtienen a partir de las fundamentales haciendo

operaciones con ellas o con otras derivadas. Ejemplos: velocidad, densidad, fuerza...

2.1.2.- El Sistema Internacional de unidades

Con idea de facilitar la comunicación entre la comunidad científica, en la

Conferencia General de Pesas y Medidas celebrada en el año 1960 en París

se determinan seis patrones o unidades para medir ciertas magnitudes

básicas, naciendo así el llamado Sistema Internacional de Unidades.

Posteriormente, unos años después se añadió una séptima unidad a este sistema (el mol), por lo que

actualmente las magnitudes básicas con sus correspondientes unidades en el S.I. son las siguientes:

Page 7: TEMA 1 (4 del libro): La célula - Física y Química 3º ... · Notación científica. 4.- Normas de seguridad en el laboratorio. 5.- Material de laboratorio de uso frecuente

Magnitud

Símbolo de la

magnitud

Unidad

Símbolo de la

unidad

Longitud

l

Metro

m

Masa

m

Kilogramo

kg

Tiempo

t

Segundo

s

Temperatura

T

Grado kelvin

K

Cantidad de sustancia

n

Mol

mol

Intensidad luminosa

I

Candela

cd

Intensidad de corriente

I

Amperio

A

Algunas magnitudes derivadas y sus unidades son:

Magnitud

Símbolo

Fórmula

Unidad

Superficie

S

longlongS

2m

Volumen

V

longlonglongV

3m

Densidad

d

volumen

masad

3mkg

Velocidad

v

tiempo

longitudv

sm

Aceleración

a

tiempo

velocidada

2sm

Fuerza

F

naceleraciómasaF

)(2 NewtonNs

mkg

Presión

P

----------------------

----------------------

Energía

E

----------------------

----------------------

Page 8: TEMA 1 (4 del libro): La célula - Física y Química 3º ... · Notación científica. 4.- Normas de seguridad en el laboratorio. 5.- Material de laboratorio de uso frecuente

El S.I., además de los nombres y los símbolos de las magnitudes y unidades, incluye las reglas

ortográficas para escribirlos, y son:

Cada unidad se representa por un símbolo formado por una o varias letras.

Los símbolos y los nombres de las unidades se escriben con minúscula, solamente cuando

el símbolo de la unidad proceda de un nombre propio, la primera letra se escribirá en

mayúscula. Ejemplos: kilogramo o kg, kelvin o K.

Los nombres de las unidades tienen plurales, pero a laos símbolos, aunque estén en plural,

nunca se les escribe la “s” final. Ejemplo: 10 gramos se escribirá 10 g.

Los símbolos se escriben sin punto final salvo que estén al final de una frase.

2.1.3.- Manejo de unidades

Al realizar una medida se debe elegir una unidad cuyo resultado no sea un número ni muy

grande ni muy pequeño. Para ello a veces tenemos que hacer cambios de unidades.

Hasta ahora, para hacer cambios de unidades hemos estado utilizando la siguiente “escalera”:

La escalera anterior tiene más escalones tanto arriba como abajo; es decir, existen unidades

mayores que el "kilo" y menores que el "mili". En la siguiente tabla se tienen los múltiplos y

submúltiplos más importantes para llevar a cabo los cambios de unidades:

Sin embargo la escalera anterior no nos permite hacer cambios de unidades en las que aparecen

a su vez varias unidades. Para estos casos se recurre a un método llamado factor de conversión,

que consiste en multiplicar la cantidad que queremos cambiar por una serie de fracciones que hay

que determinar convenientemente.

Page 9: TEMA 1 (4 del libro): La célula - Física y Química 3º ... · Notación científica. 4.- Normas de seguridad en el laboratorio. 5.- Material de laboratorio de uso frecuente

Ejemplo: Pasar 72 km/h a m/s

3600

100072

3600

1

1

100072

s

h

km

m

h

kms

m20

Ejemplo: Pasar 360 m/min a km/h

1000

60360

1

min60

1000

1

min

360

hm

kmmh

km6,21

2.2.- Las medidas no son exactas

Si se realiza una medida varias veces, los resultados que se obtienen no suelen

coincidir. ¿Cuál de los obtenidos se considera entonces que es el valor real de la

medida realizada? La respuesta es que para determinar el valor real de una

medida, hay que hacerla varias veces y se calcula la media aritmética de todas

las medidas obtenidas. La media aritmética será el valor real de la medida.

Ejemplo: al medir tres veces la masa de un objeto se ha obtenido 4,1 kg; 4,3 kg y 3,9 kg. ¿Cuál

es la medida real del objeto?

Se tomará como medida real del objeto el valor medio de las tres medidas realizadas:

3

3,12

3

9,33,41,4m kg1,4

3.- NOTACIÓN CIENTÍFICA

A veces trabajar con las unidades del sistema

internacional supone hacerlo con números muy grandes o

muy pequeños que tienen muchas cifras. Así, para que

resulte más cómodo trabajar con dichos números, se

escriben con menos cifras utilizando una notación llamada

notación científica.

La notación científica consiste en escribir un número con una cifra entera seguida o no de

decimales multiplicado por una potencia de diez.

Ejemplos:

6103000003,0 31067,200267,0 810496,1149600000

41074,9000974,0 106115,2115,26 31056439,739,7564

Page 10: TEMA 1 (4 del libro): La célula - Física y Química 3º ... · Notación científica. 4.- Normas de seguridad en el laboratorio. 5.- Material de laboratorio de uso frecuente

4.- NORMAS DE SEGURIDAD EN EL LABORATORIO

NORMAS EN EL LABORATORIO

En un laboratorio hay instrumentos y productos peligrosos que deben manejarse con cuidado,

por lo que es necesario respetar unas normas básicas:

Está totalmente prohibido comer o beber en el laboratorio.

Los desplazamientos dentro del laboratorio deben realizarse sin prisas ni atropellos. Evita

los desplazamientos injustificados, sobre todo con el material de prácticas en tus manos.

Encima de la mesa no se puede poner nada que pueda entorpecer el trabajo.

Si se tiene el pelo largo es aconsejable llevarlo recogido.

Se debe utilizar bata y gafas de seguridad si se emplean productos corrosivos, para evitar

que se produzcan lesiones.

Cada persona o grupo de trabajo es responsable de su zona de trabajo y de su material.

No empieces a manipular el material hasta que comprendas lo que tienes que hacer.

No coger por cuenta propia ningún producto químico.

Los frascos de los reactivos han de estar abiertos el menor tiempo posible.

No pipetear con la boca los productos químicos, utilizar para hacerlo un aspirador de

pipetas.

No tocar con las manos o con la boca los productos químicos.

No devolver nunca a los frascos de origen las sustancias que sobren al realizar una práctica.

Antes de utilizar cualquier producto es conveniente leer detenidamente su etiqueta.

Si se vierte cualquier producto químico debe recogerse lo más pronto posible.

Si sobre algún compañero se vierte algún producto químico, debe lavarse inmediatamente

con abundante agua la zona afectada y avisar al profesor.

Los productos inflamables no deben situarse nunca cerca de una fuente de calor como

mecheros o estufas.

Cuando calientes una sustancia en un tubo de ensayo, hazlo por la parte superior del

líquido, nunca por el fondo, para evitar proyecciones, y no orientes la boca del tubo hacia

ninguna persona.

Evita recibir gases tóxicos o simplemente desconocidos y no intentes saborear ningún

producto químico.

Para preparar cualquier disolución o una sustancia hay que utilizar un recipiente limpio y

rotulado convenientemente.

Se debe tener especial cuidado con los ácidos. Para diluirlos añadir siempre el ácido sobre

el agua y no al revés.

Page 11: TEMA 1 (4 del libro): La célula - Física y Química 3º ... · Notación científica. 4.- Normas de seguridad en el laboratorio. 5.- Material de laboratorio de uso frecuente

No tocar enchufes o conexiones eléctricas con las manos húmedas.

Si algún objeto de vidrio se rompe, no toques los trozos y lávate con agua rápidamente las

manos sin frotarlas para poder eliminar los cristales minúsculos que se hayan adherido a

ellas. Ten en cuenta que los trozos de cristal de los recipientes que se usan en el laboratorio

suelen ser muy cortantes.

Si arrojas líquidos en las pilas, ten abierto el grifo del agua. No eches ácidos concentrados

ni sustancias corrosivas que puedan deteriorar las cañerías. En caso de duda consulta a la

profesora.

Los aparatos calientes deben manejarse con cuidado, utiliza pinzas u otros utensilios

adecuados.

Al finalizar el trabajo experimental, comprueba que todo ha quedado limpio y en orden, y

los aparatos desconectados. Cierra las llaves del agua y del gas y apaga los mecheros.

Lava tus manos antes de salir del laboratorio.

SÍMBOLOS Y LAS INDICACIONES DE PELIGRO

Con idea de advertir a los consumidores de los peligros que supone la utilización de las

sustancias químicas, estas llevan en los envases que las contienen una serie de etiquetas o

pictogramas. Actualmente conviven dos tipos diferentes de pictogramas debido que ha habido un

cambio en la normativa que regula el etiquetado de los productos químicos y se permite que las

empresas los puedan ir cambiando poco a poco, no obstante a partir del 1 de junio del 2017 todo

tipo de sustancias deberán llevar el etiquetado nuevo.

Estos nuevos pictogramas se dividen en tres grupos según su peligrosidad: los que indican

sustancias peligrosas para la salud, los que llevan las sustancias que pueden provocar peligros

físicos o químicos y los de las sustancias peligrosas para el medio ambiente.

Además del pictograma las sustancias llevarán la indicación "Peligro" (las sustancias más

peligrosas) o "Atención" (las sustancias menos peligrosas) para advertir a primera vista el nivel de

peligro de la sustancia etiquetada.

Sustancia tóxica. Por inhalación, ingestión o penetración cutánea en pequeñas cantidades puede provocar problemas de salud graves o crónicos e incluso la muerte.

Gas bajo presión. Pueden explotar con el calor. Los refrigerados pueden producir quemaduras o heridas relacionadas con el frío.

Producen efectos adversos en dosis altas. También pueden producir irritación en ojos, garganta, nariz y piel. Provocan alergias cutáneas, somnolencia y vértigo..

Sustancia corrosiva. Puede destruir los tejidos vivos cuando entra en contacto con ellos, causando por ejemplo daños irreversibles en la piel u ojos en caso de contacto o proyección.

Page 12: TEMA 1 (4 del libro): La célula - Física y Química 3º ... · Notación científica. 4.- Normas de seguridad en el laboratorio. 5.- Material de laboratorio de uso frecuente

5.- MATERIAL DE LABORATORIO DE USO FRECUENTE

Los materiales más utilizados en un laboratorio son los siguientes:

TUBO DE ENSAYO: instrumento de vidrio o plástico de diferentes capacidades, con bordes o sin ellos. Es el material más empleado, sirve

para mezclar líquidos y calentarlos sin dificultad.

VASO DE PRECIPITADO: está hecho de vidrio y tiene múltiples aplicaciones, por ejemplo como

recipiente para obtener precipitados o para calentar y hervir líquidos.

PROBETA GRADUADA: instrumento de vidrio con pico y base para poderse apoyar. Se emplea para medir el volumen de los líquidos, siempre y cuando no se requiera de mucha exactitud.

Sustancia inflamable. Puede prenderse con el aire o al entrar en contacto por un corto periodo de tiempo con una fuente que los encienda. También sustancia que al entrar en contacto con aire húmedo o agua da lugar a grandes cantidades de gases inflamables.

Peligro para la salud.. Pueden provocar cáncer, modificar el ADN de las células, o el funcionamiento de ciertos órganos, provocar alergias respiratorias o dañar gravemente los pulmones...

Sustancia oxidante. Al entrar en contacto con otra sustancia produce una reacción fuertemente exotérmica. Es más probable que esto ocurra cuando interactúa con una sustancia inflamable.

Sustancia explosiva. Puede reaccionar liberando energía y originando gases que en determinadas condiciones pueden provocar detonaciones y explosiones.

Sustancia peligrosa para el medio acuático. Provocan efectos nocivos para los organismos del medio acuático (peces, crustáceos, algas...).

Page 13: TEMA 1 (4 del libro): La célula - Física y Química 3º ... · Notación científica. 4.- Normas de seguridad en el laboratorio. 5.- Material de laboratorio de uso frecuente

Tema 1: La actividad científica 13

PIPETA: recipiente de vidrio que sirve para medir el volumen de los líquidos con mayor exactitud.

BURETA: instrumento de vidrio, alargado, que termina en una llave para poder controlar el flujo del líquido que se va a

medir. Se utiliza para medir exactamente el volumen de los líquidos y realizar titulaciones de ácidos y bases. AGITADOR: instrumento de vidrio que se utiliza para remover sustancias.

MATRAZ DE FONDO PLANO: instrumento que se usa para preparar soluciones.

BALÓN: es un recipiente de vidrio pirex, de diferente tamaño y capacidad. Sirve para preparar soluciones o reacciones químicas.

REFRIGERANTE O CONDENSADOR: es un aparato de vidrio cuya misión es condensar los vapores que se desprenden del balón de destilación por medio de un líquido refrigerante que circula por ellos.

SOPORTE UNIVERSAL: instrumento de madera o metal que se usa como base o soporte para el montaje de diversos aparatos.

TRÍPODE: soporte de metal empleado para calentar sustancias en otros instrumentos.

REJILLA: hecha de metal, puede incluir una lámina de asbesto. Se usa para proteger del fuego

directo el material de vidrio que va a calentarse.

MATRAZ ERLENMEYER: frasco cónico de vidrio de base ancha y alargada y cuello muy estrecho. Pueden ser de diversas capacidades, colores y con algunas variaciones. Suelen incluir unas pocas marcas para saber aproximadamente el volumen contenido.

ARO SOPORTE: instrumento metálico que se emplea como soporte de otros materiales anexado al soporte universal.

EMBUDO DE DECANTACIÓN: es de vidrio y se utiliza para separar líquidos inmiscibles y para efectuar extracciones.

TERMÓMETRO: instrumento que mide la temperatura en grados centígrados o Fahrenheit.

EMBUDO: es de vidrio o de porcelana y puede tener distinto ángulo, diámetro y longitud de vástago.

También puede tener en borde interno llano o estriado. MECHERO: instrumento de vidrio o metal destinado a proporcionar calor por combustión. Los mecheros más usados son los de alcohol y de gas, y uno de ellos es el mechero Bunsen.

Page 14: TEMA 1 (4 del libro): La célula - Física y Química 3º ... · Notación científica. 4.- Normas de seguridad en el laboratorio. 5.- Material de laboratorio de uso frecuente

Tema 1: La actividad científica 14

CÁPSULA DE EVAPORACIÓN: recipiente de porcelana que se utiliza para la evaporación

de mezclas y para someter ciertas sustancias a elevadas temperaturas. GRADILLA: instrumento de madera o metal que se emplea como soporte de los tubos de ensayo.

LUNA DE RELOJ: se usa para evaporar gotas de líquidos o tapar vasos de precipitados.

PINZAS: instrumentos de madera o metal que se usan para coger los tubos de ensayo.

ESPÁTULA: lámina de metal con mango de madera que sirve para sacar las sustancias sólidas de los

recipientes que los contienen.

CRISOL: suele ser de porcelana, de un metal inerte o de algún tipo de material refractario. Se utiliza para calcinar o fundir sustancias. Se calienta a fuego directo. MATRAZ KITASATO: es muy similar al matraz Erlenmeyer pero tiene un orificio a unos 2 cm

de su parte superior para poder realizar algún montaje donde se puedan extraer los gases que se produzcan en su interior.

FRASCO LAVADOR: es un frasco cerrado con un tapón atravesado por dos tubos. Por uno de ellos se sopla, saliendo el agua por el otro. También los hay con un solo orificio de salida por el que sale el agua al presionar el frasco. Se utiliza para enjuagar el material de laboratorio.

MORTERO: suele ser de porcelana. Se utiliza para disgregar sustancias mediante

la presión ejercida con la mano del mortero.