tallertaller_siatl_2013 siatl 2013

82
Dirección General de Geografía y Medio Ambiente Dirección General Adjunta de Integración de Información Geoespacial Dirección de Edición de Información Geográfica Subdirección de Edición Digital Departamento de Análisis Espacial Noviembre de 2013

Upload: juan-villicana

Post on 04-Dec-2015

4 views

Category:

Documents


0 download

DESCRIPTION

Taller_SIATL_2013

TRANSCRIPT

Page 1: TallerTaller_SIATL_2013 Siatl 2013

Taller “Aplicaciones de

Redes Hidrográficas”

Dirección General de Geografía y Medio Ambiente

Dirección General Adjunta de Integración de Información Geoespacial

Dirección de Edición de Información Geográfica

Subdirección de Edición Digital

Departamento de Análisis Espacial

Noviembre de 2013

Page 2: TallerTaller_SIATL_2013 Siatl 2013

2

Índice

1. Antecedentes ......................................................................................................................................................................... 5

2. Objetivo ................................................................................................................................................................................. 6

3. Conceptos básicos de la teoría de escurrimientos superficiales. .......................................................................................... 7

3.1 Ciclo hidrológico .............................................................................................................................................................. 7

3.2 Cuenca hidrológica........................................................................................................................................................... 7

3.3 Medición de la precipitación pluvial ................................................................................................................................ 8

3.4 Caudal pico....................................................................................................................................................................... 9

3.5 Intensidad de lluvia .......................................................................................................................................................... 9

3.6 Coeficiente de escurrimiento......................................................................................................................................... 10

4. Redes Geométricas .............................................................................................................................................................. 11

4.1 ¿Qué es una red? ........................................................................................................................................................... 11

4.2 Ríos como redes ............................................................................................................................................................. 11

5. Red Hidrográfica .................................................................................................................................................................. 12

5.1 Características del producto .......................................................................................................................................... 14

5.2 Componentes del producto ........................................................................................................................................... 15

5.2.1 Punto de Drenaje .................................................................................................................................................... 15

5.2.2 Línea de Flujo .......................................................................................................................................................... 16

5.2.3 Polígono de Subcuenca .......................................................................................................................................... 18

5.3 Información complementaria ........................................................................................................................................ 19

5.4 Nomenclatura de los archivos ....................................................................................................................................... 20

5.5 Hidromorfometría .......................................................................................................................................................... 20

5.5.1 Stream Order - Magnitud de Orden ........................................................................................................................ 21

5.5.2 Drain Stream Level - Nivel de Corriente ................................................................................................................. 22

5.5.3 Arbolate Sum – Sumatoria de longitudes aguas arriba .......................................................................................... 23

5.5.4 Path Length - Longitud de Trayectoria ................................................................................................................... 23

5.5.5 Hydrologic Secuence Identifier - Identificador de Secuencia Hidrológica .............................................................. 24

6. SIATL, Simulador de Flujos de Agua de Cuencas Hidrográficas Versión 2.2 ........................................................................ 25

6.1 Acceso y Registro ........................................................................................................................................................... 25

6.2 Entorno ......................................................................................................................................................................... 26

6.3 Información Disponible ................................................................................................................................................. 27

6.3.1 Datos Climáticos e Hidrométricos ........................................................................................................................... 27

6.3.2 Módulos Ambientales 2011 Censo de Gobierno .................................................................................................... 27

6.3.3 Rasgos Hidrográficos ............................................................................................................................................... 28

6.3.4 Red Hidrográfica 1:50 000 ...................................................................................................................................... 28

Page 3: TallerTaller_SIATL_2013 Siatl 2013

3

6.3.5 Uso del Suelo y Vegetación ..................................................................................................................................... 28

6.3.6 Vías de Transporte .................................................................................................................................................. 28

6.3.7 Geoestadístico y Social ........................................................................................................................................... 29

6.3.8 División Cartográfica ............................................................................................................................................... 29

6.3.9 Altimetría ................................................................................................................................................................ 29

6.3.10 Servicios de Imágenes ........................................................................................................................................... 29

6.3.11 Servicios Atmosféricos (NOAA/NOS nowCOAST) .................................................................................................. 30

6.3.12 Sitios de Interés .................................................................................................................................................... 30

6.3.13 Visualización de acuerdo a la escala ..................................................................................................................... 30

6.4 Panel de Herramientas Básicas ...................................................................................................................................... 32

6.4.1 Mover...................................................................................................................................................................... 33

6.4.2 Acercar: ................................................................................................................................................................... 33

6.4.3 Alejar ....................................................................................................................................................................... 33

6.4.4 Vista Anterior .......................................................................................................................................................... 33

6.4.5 Siguiente Vista ........................................................................................................................................................ 33

6.4.6 Actualizar ................................................................................................................................................................ 33

6.4.7 Extensión Máxima ................................................................................................................................................... 33

6.4.8 Guardar Imagen o descargar red hidrográfica ........................................................................................................ 33

6.4.9 Información ............................................................................................................................................................. 34

9.4.10 Medir .................................................................................................................................................................... 34

9.4.11 Vista 3D: ................................................................................................................................................................ 35

6.4.12 Pantalla Completa ................................................................................................................................................. 36

6.4.13 Ayuda .................................................................................................................................................................... 36

6.5 Panel de herramientas avanzadas ................................................................................................................................. 37

6.5.1 Administración de capas ........................................................................................................................................ 37

6.5.2 Búsquedas .............................................................................................................................................................. 38

6.5.3 Funciones de Redes ................................................................................................................................................ 38

6.5.3.1 Flujos Corrientes Arriba: .................................................................................................................................. 38

6.5.3.2 Flujo Corriente Abajo: ...................................................................................................................................... 39

6.5.4 Intersección de Localidades: ................................................................................................................................... 40

6.5.5 Índices Morfométricos: ........................................................................................................................................... 40

6.5.5.1 Perfil de Elevaciones: ....................................................................................................................................... 41

6.5.5.2 Calcular Caudal Pico: ........................................................................................................................................ 41

6.5.6 Ver Selección: ......................................................................................................................................................... 43

6.5.7 Limpiar Selección: ................................................................................................................................................... 43

Page 4: TallerTaller_SIATL_2013 Siatl 2013

4

6.5.8 Perfil de Elevaciones: .............................................................................................................................................. 43

6.5.9 Cartografía Participativa ......................................................................................................................................... 43

6.5.9.1 Mostrar Observaciones .................................................................................................................................... 43

6.5.9.2 Mostrar Fotografías ......................................................................................................................................... 44

6.5.9.3 Insertar Observaciones .................................................................................................................................... 46

6.5.9.4 Insertar Fotografías .......................................................................................................................................... 46

6.5.10 Configuración ........................................................................................................................................................ 47

6.5.11 Simbología y Ubicación ......................................................................................................................................... 47

7. Ejercicios ............................................................................................................................................................................. 49

7.1 Ejercicio 1. Análisis de una cuenca vinculado a un evento de tormenta para evaluar el caudal pico. ......................... 49

7.2 Ejercicio 2. Identificación de localidades sobre la trayectoria del cauce aguas abajo. ................................................. 59

7.3 Ejercicio 3. Cartografía participativa ............................................................................................................................. 63

8. Anexo I Escurrimiento superficial ........................................................................................................................................ 69

8.1 Determinación de caudales. .......................................................................................................................................... 69

8.2 Tiempo de concentración (Tc) ...................................................................................................................................... 70

8.3 Intensidad de lluvia promedio ...................................................................................................................................... 71

8.4 Coeficiente de escurrimiento (c) .................................................................................................................................... 75

8.5 Determinación del área drenada ................................................................................................................................... 76

8.6 Velocidad del caudal o gasto. ....................................................................................................................................... 76

8.7 Radio Hidráulico ............................................................................................................................................................. 78

8.7.1 Canales de sección rectangular .............................................................................................................................. 78

8.7.2 Canales de sección triangular ................................................................................................................................. 79

8.7.3 Canales de sección trapezoidal ............................................................................................................................... 79

8.7.4 Canales de sección circular ..................................................................................................................................... 79

8.7.5 Canales de secciones especiales ............................................................................................................................. 79

8.7.6 Canales de sección irregular ................................................................................................................................... 80

8.7.7 Capacidad del cauce. .............................................................................................................................................. 80

9. Bibliografía ........................................................................................................................................................................... 81

Page 5: TallerTaller_SIATL_2013 Siatl 2013

5

1. Antecedentes Las nuevas tecnologías y los avances en ingeniería de software, nos permiten conducir los datos cartográficos

digitales a otro nivel de funcionalidad más allá de los fines estáticos para mapas impresos o analizarlos en

sistemas de información geográfica con la intercepción de otras capas de datos, pero sin tener la condición de

dar respuesta con métodos de redes u otros especializados y relacionados con otros elementos.

A partir de la investigación sobre los adelantos en modelos de datos geoespaciales hidrológicos que tienen

otros países, tenemos por ejemplo el National Hydrography Dataset (NHD) Model, bajo la responsabilidad del

Servicio Geológico de los Estados Unidos (USGS por sus siglas en inglés), el cual es un amplio modelo donde se

resguarda la información hidrológica en varias escalas.

Otra de las instituciones destacadas en el modelado hidrológico y en el desarrollo de aplicaciones, es la

Universidad de Texas en Austin, a través del Centro para la Investigación de Recursos Naturales (CRWR por sus

siglas en inglés). En este centro se han desarrollado modelos de datos de aguas superficiales y subterráneas, en

los que se incluyen series de tiempo de estaciones hidrométricas, así como métodos que traducidos en

aplicaciones permiten analizar los sistemas de drenaje de forma integral. (Zoun, Schneider, Whiteaker,

Maidment (2001))

En el caso de Canadá, la Red Hidrográfica Nacional (NHN) es uno de los ejes del Natural Resources Canada, que

provee datos geoespaciales de aguas superficiales.

Con estos antecedentes y la necesidad de contar con información estructurada a este nivel, además para

mantenerse a la vanguardia que marcan los avances tecnológicos en otros países desarrollados, el INEGI

adopta la necesidad y el reto de alcanzar dichos progresos.

Page 6: TallerTaller_SIATL_2013 Siatl 2013

6

2. Objetivo Proporcionar métodos y técnicas de análisis de redes hidrográficas a través del SIATL Simulador de Flujos de

Agua de Cuencas Hidrográficas y características de la Red Hidrográfica escala 1:50 000, con el fin de facilitar la

construcción de escenarios como apoyo a diversos proyectos.

Page 7: TallerTaller_SIATL_2013 Siatl 2013

7

3. Conceptos básicos de la teoría de

escurrimientos superficiales.

3.1 Ciclo hidrológico

El ciclo hidrológico se podría definir como el “proceso que describe la ubicación y el movimiento del agua en

nuestro planeta". Es un proceso continuo en el que una partícula de agua evaporada del océano vuelve al

océano después de pasar por las etapas de precipitación, escorrentía superficial y/o escorrentía subterránea.

3.2 Cuenca hidrológica

Es la unidad del territorio, diferenciada de otras unidades, normalmente delimitada por un parte aguas o

divisoria de las aguas -aquella línea poligonal formada por los puntos de mayor elevación en dicha unidad-, en

donde ocurre el agua en distintas formas, y esta se almacena o fluye hasta un punto de salida que puede ser el

mar u otro cuerpo receptor interior, a través de una red hidrográfica de cauces que convergen en uno

principal, o bien el territorio en donde las aguas forman una unidad autónoma o diferenciada de otras, aun sin

que desemboquen en el mar.

Page 8: TallerTaller_SIATL_2013 Siatl 2013

8

3.3 Medición de la precipitación pluvial

Cuando por condensación las partículas de agua que forman las nubes alcanzan un tamaño superior a 0,1 mm

comienza a formarse gotas, gotas que caen por gravedad dando lugar a las precipitaciones (en forma de lluvia,

granizo o nieve).

Sí el techo de una casa tiene una superficie de 70 m2 y el agua pluvial se colecta en una cisterna con una

capacidad de 1m3 = 1,000 litros, ¿cuánto volumen se capta con una precipitación de 5 y 10 mm.?

Precipitación Equivalencia en

litros

Captado en la

cisterna

5 mm 350 35 %

10 mm 700 70 %

Page 9: TallerTaller_SIATL_2013 Siatl 2013

9

3.4 Caudal pico

Caudal: Es la cantidad de un fluido que avanza en una unidad de tiempo. Para diversas disciplinas es

importante estimar el caudal máximo o avenida de un río.

Estimarlo es sumamente complejo y existen métodos que van de los más básicos hasta los más elaborados que

requieren más datos. El modelo de relación lluvia-escurrimiento que se verá para los objetivos del taller es el

método racional.

Donde:

Q: es el caudal en metros cúbicos por segundo,

I : es la intensidad de lluvia en milímetros por hora,

A : es la superficie de la cuenca en hectáreas,

C : es un coeficiente de escorrentía sin dimensiones

360: constante para ajuste de unidades inglesas a métricas.

Nota: para mayor referencia consulte el anexo I Escurrimiento Superficial.

3.5 Intensidad de lluvia

Es una relación de cantidad precipitada en intervalos de tiempo.

Tiempo min 5 10 15 20 25 30

Volumen medido cm 2.83 4.17 5.15 6 6.79 7.5

Diferencial de Vol. cm 2.83 1.34 0.98 0.85 0.79 0.71

Dv / dt cm /hr 33.96 16.08 11.76 10.2 9.48 8.52

Vol / tiemp.tot. = Intensidad media

cm /hr 33.96 25.02 20.6 18 16.3 15

360

CIAQ

Page 10: TallerTaller_SIATL_2013 Siatl 2013

10

La intensidad de lluvia se considera para el tiempo de concentración (Tc), que equivale al tiempo en que

recorre el agua desde la parte más lejana aguas arriba (a) hasta el punto de interés (b).

3.6 Coeficiente de escurrimiento

El coeficiente de escurrimiento de la precipitación, cantidad que se escurre en forma laminar en la superficie

restando la infiltración y evapotranspiración.

En una superficie pavimentada el coeficiente estará cercano a 1 o 100 en unidades porcentuales y en suelos

arenosos y permeables el coeficiente estará cercano a 0.

Para lo descrito en este documento, este dato deberá representarse en unidades porcentuales, esto por estar

representado de esta forma y consultable en el SIATL como atributo de este componente de la Carta

Hidrológica de Aguas Superficiales escala 1:250 000 serie I.

0

10

20

30

40

5 10 15 20 25 30 In

ten

sid

ad c

m/h

ora

Tiempo en minutos

Intensidad de lluvia

Page 11: TallerTaller_SIATL_2013 Siatl 2013

11

4. Redes Geométricas

4.1 ¿Qué es una red?

Para el propósito de este tema, se hablará acerca de las redes como comúnmente se entienden en los sistemas

de información geográfica (SIG). Más específicamente, una red es un archivo vectorial estructurado

topológicamente; contiene líneas llamadas arcos y cada uno de estos tiene dos puntos en sus extremos

llamados nodos. Sí un arco termina exactamente en donde otro inicia, sólo hay un nodo presente, y el hecho

que dos arcos conecten está registrado en una tabla con sus relaciones. Por lo tanto, además del diseño de la

geométrica de las líneas en el espacio, también existe la relación abstracta entre los elementos. Esta relación es

equivalente a un grafo. En los SIG, las propiedades teóricas del grafo de redes son comúnmente referidas como

topología. (Rupert, 2003, p. 2)

4.2 Ríos como redes

Un sistema de ríos puede ser naturalmente representado como una estructura de red. Las líneas centrales de

ríos o escurrimientos, se denominan arcos en la red. Nosotros podemos imaginar el agua en esos ríos a lo largo

de esos arcos. Pero existe una limitante sobre cuerpos de agua como lagos, embalses así como ríos

caudalosos, que cartográficamente se representan con polígonos. Para asegurar que todos los ríos que forman

el sistema estén completamente conectados, es necesario colocar líneas al interior de esos polígonos y

garantizar su continuidad.

Estos arcos al interior de los polígonos se les conoce como virtuales o esqueletos. Las líneas o arcos que

conforman la red son referidas como líneas de flujo. (Rupert, 2003, p. 2)

Una red geométrica es un conjunto de líneas (edges) y cruces (junctions) conectados con reglas que se utilizan para representar y modelar el comportamiento de una infraestructura de red común en el mundo real. Las redes geométricas ofrecen una forma para modelar redes comunes de infraestructura que se encuentran en el mundo real: distribución de agua, líneas eléctricas, gasoductos, servicios telefónicos, y el flujo de agua de cauces. En el siguiente gráfico se aprecia una red geométrica de un servicio principal de suministro de agua, además de otros ductos que se derivan conectados por los denominados junctions (puntos 1 y 2).

Page 12: TallerTaller_SIATL_2013 Siatl 2013

12

5. Red Hidrográfica Se concibe como un sistema de circulación lineal estructurado que permite modelar el drenaje de una cuenca

hidrográfica.

La fuente principal empleada para su estructuración fueron los rasgos hidrográficos superficiales de los datos

topográficos vectoriales escala 1:50 000 generados por el INEGI. De manera adicional, se utilizó información en

diferentes escalas como soporte para determinar los criterios de conectividad de la misma.

Para un mejor entendimiento del escurrimiento de aguas superficiales, se consideró como unidad de trabajo el

componente División Hidrográfica de la Carta Hidrológica de aguas superficiales Escala 1:250 000. Serie I del

Instituto, lo que implicó transformar los insumos de su formato original por conjunto digital a estas unidades

que representan áreas físicas naturales.

Regiones Hidrográficas, Cuencas y Subcuencas

La División de Aguas Superficiales se compone de tres niveles de desagregación:

Región Hidrográfica: Área delimitada por una divisoria que agrupa por lo menos dos cuencas hidrográficas,

cuyas aguas fluyen a un cauce principal. La cobertura nacional asciende a 37 divisiones las cuales se denotan

por el prefijo “RH” y los números del “01” al “37”. Ejemplo: “RH12”

Cuenca Hidrográfica: Superficie delimitada por una divisoria cuyas aguas fluyen hacia una corriente principal o

cuerpo de agua; constituye una subdivisión de la región hidrográfica. La clave se compone de los dos dígitos de

la región hidrográfica y una letra mayúscula de la “A” a la “Z”. Ejemplo: “RH12K”

Subcuenca Hidrográfica: Área considerada como una subdivisión de la cuenca hidrográfica que presenta

características particulares de escurrimiento y extensión. Su clave es el resultado de la concatenación de la

clave de la región hidrográfica, más la clave de la cuenca y una letra minúscula de la “a” a la “z”. Ejemplo:

“RH12Kf”

Page 13: TallerTaller_SIATL_2013 Siatl 2013

13

Este proyecto, en su primera etapa de conectividad, inició en octubre del 2007 y concluyó en diciembre del

2008, cuyo resultado fue una red funcional con direcciones de flujo.

En la siguiente imagen se aprecian los datos topográficos que se tomaron como insumos, de acuerdo a su

modelo para fines cartográficos, siendo notorios algunos escurrimientos desconectados, el sentido del trazo es

arbitrario y no denota la trayectoria o dirección de los escurrimientos, la representación de las líneas es igual

para todas en grosor y tonalidad y no se distinguen los cauces que puedan ser más caudalosos, además de

complementarse los sistemas de drenaje con polígonos de cuerpos de agua.

El trabajo arduo por parte de los analistas-editores y de los validadores, con el apoyo de las herramientas

informáticas desarrolladas y de información complementaria, fue el de interpretar el comportamiento de los

escurrimientos de agua, a efecto de realizar las siguientes actividades:

Edición de la conectividad de corrientes de agua desconectadas.

Generación de líneas centrales sobre cuerpos de agua.

Page 14: TallerTaller_SIATL_2013 Siatl 2013

14

Diagnóstico de conectividad y determinación de las direcciones de flujo.

Detección y solución de bifurcaciones y ciclos, entre otras más.

Dada la necesidad de revisar las divisorias entre redes adyacentes, así como la continuidad de las redes a través

de estas unidades y de contar con una división de aguas superficiales al detalle de la escala 1:50 000, en

diciembre del 2008 se inició la segunda etapa de la red, misma que terminó en diciembre del 2009. Se precisan

las actividades:

Digitalización de la divisoria.

Corrección de escorrentías que estaban catalogadas como contribución de una subcuenca, pero que

después de analizar el sistema de drenaje y la divisoria o parteaguas, se detectó que aportan a una red

adyacente.

Detección de líneas al interior de cada subcuenca, de nacimientos de corrientes sobre partes altas y

recorte en caso de sobrepasar la cresta.

Verificar y garantizar la continuidad e integridad entre redes.

5.1 Características del producto

Concretadas las dos ediciones de la red, podemos observar los siguientes cambios:

Conectividad de corrientes de agua.

Dirección de flujo para cada una de las líneas.

Continuidad a través de cuerpos de agua.

Divisorias consistentes con la red a la escala 1:50 000.

Se garantiza la conectividad de redes entre subcuencas tributarias y receptoras.

Las líneas de flujo sobre la frontera norte tienen el ajuste espacial con sus correspondientes dentro del

territorio de los Estados Unidos de América del National Hydrography Dataset escala 1:24 000.

Page 15: TallerTaller_SIATL_2013 Siatl 2013

15

Cuenta con datos de valor agregado como son los índices hidromorfométricos, que denotan el volumen

de agua que pueden conducir los ríos o cauces respecto a otros, en función del desarrollo o evolución

de la cuenca.

5.2 Componentes del producto

El producto se compone de 6 millones de líneas de flujo a nivel nacional y se agrupa en 976 subcuencas, 158

cuencas y 37 regiones hidrográficas. Los archivos entregables son: líneas de flujo, puntos de drenaje, polígonos

de subcuenca y metadato. Como información complementaria: cuerpos de agua y topónimos de rasgos

hidrográficos.

Objeto puntual que indica el lugar donde los flujos de los escurrimientos superficiales se drenan al mar o a otra

subcuenca. También es utilizado para indicar de forma virtual una acumulación de flujos al interior de cuerpos

de agua que representan lagos en subcuencas cerradas, además de indicar aquellos flujos que desaparecen de

forma superficial por infiltración en función de la condición de suelos, vegetación, relieve, entre otros factores.

Nombre Tipo Long Descripción Dominio de valores

FID OID 0, …N

SHAPE Geometry Geometría Point

ID Numérico 11 Identificador único 1 … N

CVE_SUBC Caracter 7 Clave de la subcuenca

TIPO Numérico 11 Clasificación de drenaje 0,1,2, -1…-9

CONDICION Caracter 20 Descripción de drenaje

ID_DRENA Numérico 11 Identificador del punto de drenaje 1 … N

ARBSUM Numérico 12 Sumatoria de longitudes de líneas de flujo aguas arriba, que confluyen en el punto de drenaje

NUM_LIN Numérico 8 Total de líneas ramificadas y que confluyen en el punto de drenaje

1 … N

5.2.1 Punto de Drenaje

Page 16: TallerTaller_SIATL_2013 Siatl 2013

16

Dominio de valores

TIPO / CONDICIÓN

0 Drenaje de la cuenca

1 Lago o laguna

2 Drenaje artificial

-1 Suelos permeables

-2 Desierto

-3 Falla o fractura

-4 Dolina o depresión

-5 Gruta o cenote

-6 Drenaje a red secundaria

-7 Conjunto faltante

-8 Frontera

-9 Otro

Línea que representa un flujo de agua que depende de precipitación pluvial o afloramiento subterráneo ya sea

natural a través de corrientes de agua o artificial a través de canales.

Nombre Tipo Long Descripción Dominio de valores

FID OID 0, … N

SHAPE Geometry Geometría Polyline

ID Numérico 11 Identificador único 1 … N

CVE_SUBC Caracter 7 Clave de la subcuenca

CLAVE50K Caracter 7 Clave del conjunto topográfico escala 1:50000

TIPO Numérico 11 Tipo de entidad

ENTIDAD Caracter 17 Entidad

FC Numérico 11 Código de rasgo

CONDICION Caracter 13 Condición de la corriente

EDICION Caracter 1 Tipo de la línea “original” o “nueva” 'O' ó 'N'

FECHA Fecha 8

Para líneas originales: fecha en que se creó o actualizó el conjunto topográfico. Para líneas nuevas: fecha de término de los trabajos de edición de la conectividad.

DD/MM/AAAA

LENGHTM Numérico 12.2 Longitud del segmento

ID_DRENA Numérico 11 Identificador del punto de drenaje al cual pertenece la línea

1…N

FLOWDIR Numérico 11 Definición de la dirección de flujo 0 ó 1

ENABLED Numérico 6 Campo para habilitar o deshabilitar segmentos en redes 0 ó 1

5.2.2 Línea de Flujo

Page 17: TallerTaller_SIATL_2013 Siatl 2013

17

geométricas

DESC_ENABL Caracter 2 Descripción del campo Enabled (Ciclo o bifurcación) Nulo, ‘C’ o ‘B’

CALI_REPR Numérico 11 Calificador de representación geométrica 0,1,2 ó 3

SECUENCEID Numérico 8 Identificador de secuencia

ORDER_1 Numérico 8 Magnitud de orden (clasificación de Strahler) a nivel de subcuenca

N…1, -1

LEVEL_1 Numérico 8 Nivel de corriente a nivel de subcuenca 1…N, -1

ARBSUM_1 Numérico 12.2 Sumatoria de longitudes de líneas de flujo aguas arriba a nivel de subcuenca

PATHL_1 Numérico 12.2 Longitud de trayectoria (sumatoria de longitudes aguas abajo) a nivel de subcuenca

Dominio de Valores

TIPO ENTIDAD

101 CORRIENTE DE AGUA

102 CANAL

103 LINEA CENTRAL

FC CONDICION

3180 CANAL EN OPERACIÓN

3181 CANAL EN CONSTRUCCIÓN

3182 CANAL FUERA DE USO

3271 CORRIENTE DE AGUA INTERMITENTE

3272 CORRIENTE DE AGUA PERENNE

3273 LÍNEA CENTRAL DE CUERPO DE AGUA

EDICIÓN

O Línea original proveniente de los datos topográficos

N Línea nueva digitalizada para conexión de la red hidrográfica

FLOWDIR

0 Dirección de flujo indeterminada

1 Dirección de flujo determinada

Nota: El campo FLOWDIR es reconocido por ArcGis (Sistema de Información Geográfica) en la construcción de

redes geométricas así como ArcHydro (Software para el modelado y procesamiento de Redes Hidrográficas).

ENABLED

0 (Falso) Segmento deshabilitado para redes geométricas

1 (Verdadero) Segmento habilitado para redes geométricas

Page 18: TallerTaller_SIATL_2013 Siatl 2013

18

Nota: El campo ENABLED es reconocido por el software ArcGis en la construcción de redes geométricas, así

como ArcHydro (modelo de datos hidrológico y software para su procesamiento).

Debido a que los segmentos deshabilitados (ENABLED=0) no participan de forma lógica como red geométrica y

sólo son considerados para efectos de representación, no aplican los indicadores de hidromorfometría en los

campos SECUENCEID, ORDER_1, LEVEL_1 que adquieren el valor -1 y ARBSUM_1, PATHL_1 que adquieren el

valor de 0.

DESC_ENABLED NULO Segmento habilitado para redes geométricas

'C' Segmento deshabilitado y que forma un ciclo

'B' Segmento deshabilitado y que forma una bifurcación

Nota: este campo tiene valor sí el campo Enabled tiene el valor 0 deshabilitado.

CALI_REPR 0 no determinada

1 definida

2 aproximada

3 virtual

5.2.3 Polígono de Subcuenca

Superficie delimitada por una divisoria cuyas aguas fluyen a una corriente principal, o cuerpo de agua; es una

subdivisión de una cuenca hidrográfica que presenta características particulares de escurrimiento.

Dominio de Valores

Nombre Tipo Long Descripción Dominio de valores

FID OID 0, …N

SHAPE Geometry Geometría Point

ID Numérico 11 Identificador único 1 … N

CVE_SUBCUE Carácter 6 Clave de Subcuenca Hidrográfica

CVE_RH Carácter 4 Clave de Región Hidrográfica

RH Carácter 70 Nombre de Región Hidrográfica

CVE_CUE Carácter 1 Clave de Cuenca Hidrográfica

CUENCA Carácter 70 Nombre de Cuenca Hidrográfica

CVE_SUBC Carácter 1 Clave de Subcuenca Hidrográfica

SUBCUENCA Carácter 70 Nombre de Subcuenca Hidrográfica

AREA_KM2 Numérico 12.2 Área de la unidad en Km cuadrados *

PERIMETRO Numérico 12.2 Perímetro de la unidad en Km. **

TIPO Carácter 10 Clasificación de la Subcuenca ABIERTA, CERRADA

DRENAJE1 Carácter 8 Referencia a donde se drenan las aguas, por

Page 19: TallerTaller_SIATL_2013 Siatl 2013

19

ejemplo MAR, FRONTERA, o clave de la subcuenca que capta las aguas

DESCARGA1 Numérico 3 Total de drenajes que se descargan a lo descrito en el campo drenaje1

DRENAJE2 Carácter 8 Referencia a donde se drenan las aguas, por ejemplo MAR, FRONTERA, o clave de la subcuenca que capta las aguas

DESCARGA2 Numérico 3 Total de drenajes que se descargan a lo descrito en el campo drenaje2

DRENAJE3 Carácter 8 Referencia a donde se drenan las aguas, por ejemplo MAR, FRONTERA, o clave de la subcuenca que capta las aguas

DESCARGA3 Numérico 3 Total de drenajes que se descargan a lo descrito en el campo drenaje3

DRENAJE4 Carácter 8 Referencia a donde se drenan las aguas, por ejemplo MAR, FRONTERA, o clave de la subcuenca que capta las aguas

DESCARGA4 Numérico 3 Total de drenajes que se descargan a lo descrito en el campo drenaje4

TOT_DESC Numérico 4 Total de descargas que tiene la Subcuenca

Nota: La codificación de caracteres para los archivos .dbf es Latin1.

* el área está calculada con la proyección Cónica Equivalente de Albers con los paralelos base 17°30’ y

29°30’ Norte, y falso origen en las abscisas de 2500000 m. en el meridiano 102° W y ordenadas de 0 m. en el

paralelo 12°N.

** el perímetro está calculado con la proyección Cónica Conforme de Lambert con los paralelos base 17°30’

y 29°30’ Norte, y falso origen en las abscisas de 2500000 m. en el meridiano 102° W y ordenadas de 0 m. en

el paralelo 12°N.

5.3 Información complementaria

Adicional al producto, se incluye información complementaria de los datos topográficos escala 1:50 000 que

puede ser útil para los usuarios en especifico los cuerpos de agua y nombres de rasgos hidrográficos, los cuales

presentan cierto tratamiento respecto a los datos originales topográficos, pero aún no se consideran

elementos de la red hidrográfica.

Los polígonos de cuerpos de agua incluyen embalses o presas, lagos, lagunas, ríos, canales, bordos y mar,

representación según dimensiones mínimas en el modelo y diccionario de datos topográficos.

Los puntos con topónimos incluyen nombres de rasgos hidrográficos y otros afines como: cañadas,

barrancas, etc.

Page 20: TallerTaller_SIATL_2013 Siatl 2013

20

5.4 Nomenclatura de los archivos

El nombre de los archivos está compuesto por la clave de la subcuenca y el sufijo “_hl” para líneas de flujo,

“_dr” para puntos de drenaje y “_subc” para unidades de captación a nivel subcuenca.

Ejemplo:

Nombre del Archivo Contenido del archivo

RH16Bc_hl.shp Líneas de flujo (Red Hidrográfica)

RH16Bc_dr.shp Puntos de drenaje

RH16Bc_subc.shp Polígono de la subcuenca

RH16Bc_ha.shp Polígonos de cuerpos de agua

RH16Bc_to.shp Puntos con topónimos

5.5 Hidromorfometría

Una red hidrográfica es un sistema de circulación lineal, jerarquizado y estructurado que asegura el drenaje de

una cuenca; específicamente una cuenca hidrográfica.

Distinguimos entre la cuenca teórica, que abarca la totalidad de los drenajes, y la cuenca circulante, en la que

sólo se considera la parte recorrida por las arterias funcionales.

La jerarquía de la red marca la importancia creciente de sus elementos. La hidromorfometría tiene por objeto

precisar esta jerarquía mediante números.

La edición 2.0 de la Red Hidrográfica contiene índices hidromorfométricos a nivel de subcuenca y estos fueron

determinados con algoritmos sin considerar la relación de redes tributarias.

Page 21: TallerTaller_SIATL_2013 Siatl 2013

21

Dichos índices deben interpretarse desde el punto de vista como unidades aisladas por subcuenca y por tanto

estos no consideran una continuidad entre redes a través de las unidades de captación de aguas superficiales.

Para resolver esta limitante, se tiene considerado liberar en meses posteriores, la edición 2.1 que contendrá

estos índices a nivel de cuenca y de región hidrográfica.

Medida de la posición de un arroyo (definido como el segmento entre tributarios sucesivos) dentro de la

jerarquía de la red de drenaje. Es la base para el análisis cuantitativo de la red.

Los arroyos más pequeños permanentes son llamados "de primer orden". Dos corrientes de primer orden se

unen para formar una más grande, de segundo orden, dos corrientes de segundo orden se unen para formar

una tercera orden, y así sucesivamente. Pequeñas corrientes de entrada a una secuencia de orden mayor no

cambian su número de orden. Strahler 1964.

Ejemplo:

5.5.1 Stream Order - Magnitud de Orden

Page 22: TallerTaller_SIATL_2013 Siatl 2013

22

El nivel de corriente proporciona la información necesaria para determinar la ruta principal aguas arriba en

cada confluencia, en función de la sumatoria de longitudes.

Ejemplo:

5.5.2 Drain Stream Level - Nivel de Corriente

Page 23: TallerTaller_SIATL_2013 Siatl 2013

23

Es la suma de todas las longitudes de segmentos aguas arriba y tributarias al segmento de referencia.

La distancia desde el extremo final de un segmento al punto de terminación de red.

5.5.3 Arbolate Sum – Sumatoria de longitudes aguas arriba

5.5.4 Path Length - Longitud de Trayectoria

Page 24: TallerTaller_SIATL_2013 Siatl 2013

24

Es una secuencia hidrológica ascendente con número único para cada segmento de la red en una unidad de

desagregación.

Nota: Debido a que los segmentos deshabilitados (ENABLED=0) no participan de forma lógica como red

geométrica y sólo son considerados para efectos de representación, no aplican los índices hidromorfométricos

en los campos SECUENCEID, ORDER_1, LEVEL_1 que adquieren el valor -1 y ARBSUM_1, PATHL_1 que

adquieren el valor de 0.

5.5.5 Hydrologic Secuence Identifier - Identificador de Secuencia Hidrológica

Page 25: TallerTaller_SIATL_2013 Siatl 2013

25

6. SIATL, Simulador de Flujos de Agua de

Cuencas Hidrográficas Versión 2.2 Su nombre se debe a una palabra compuesta que significa SI – Simulador y ATL – Agua en Náhuatl.

El glifo del códice Moctezuma etimológicamente se compone de Atl “agua”; cóltic “torcido” y co “en”, que

significa "en el agua torcida", esto es donde el cauce de un río da vueltas muy pronunciadas.

6.1 Acceso y Registro

La manera de acceder al SIATL es ir al sitio de INEGI, http://www.inegi.org.mx/, en la pestaña o sección de

Geografía seleccionar la opción de Simulador de Flujos de Agua de Cuencas Hidrográficas (SIATL).

Al abrir la página de inicio del SIATL Existen dos formas de acceder a la aplicación, dependiendo de cuál haya

sido elegida podrá disponer de algunas funciones adicionales:

o Ingreso directo.- Es el modo más sencillo de acceder al SIATL debido a que no es necesario identificarse

como usuario. La limitante son algunas funciones sobre todo de inserción de observaciones y

fotografías.

o Colaborador.- Este tipo de acceso ha sido definido para usuarios previa solicitud de registro y con las

funciones habilitadas para la cartografía participativa, a través del registro espacial de observaciones y

fotografías, con el fin de retroalimentación y mejora continua de la red hidrográfica, así como de

aportar al acervo de fotografías de rasgos hidrológicos.

Page 26: TallerTaller_SIATL_2013 Siatl 2013

26

Para solicitar el registro, desde la pantalla de bienvenida deberá oprimir el botón “Registro” y llenar una forma

la cuál será evaluada y autorizada, para posteriormente notificarle vía correo electrónico su clave de usuario y

contraseña para su ingreso. La información que se debe proporcionar es la siguiente:

6.2 Entorno

En esta versión el reacomodo de las herramientas permite optimizar el área de despliegue en comparación con

la anterior versión.

Page 27: TallerTaller_SIATL_2013 Siatl 2013

27

6.3 Información Disponible

Corresponde a todas las capas de información mediante las cuales se pueden realizar consultas y las cuales han

sido agrupadas para facilitar su manejo de la siguiente manera:

En este apartado se incluyen estaciones climatológicas e hidrométricas, las cuales además de sus datos de

identificación, tienen asociados algunos atributos de interés como caudal mínimo, máximo y medio o para

climatológicas datos probabilísticos de lluvia con diferentes tiempos de retorno.

Resultado de los esfuerzos para integrar series de tiempo, en el próximo futuro el SIATL contendrá un módulo

para consultar datos diarios y estimar medias o acumulados mensuales y anuales.

6.3.2 Módulos Ambientales 2011 Censo de Gobierno

Se incluyen tres capas referentes a: Fuentes de Captación de Agua, Descarga de Aguas Residuales sin

Tratamiento y Sitios de Disposición Final de Residuos Sólidos Urbano. En breve se incluirán 5 capas más

referentes a plantas de tratamiento de aguas residuales y prestadores de servicios.

6.3.1 Datos Climáticos e Hidrométricos

Page 28: TallerTaller_SIATL_2013 Siatl 2013

28

En este grupo está comprendida información referente a:

o Nombres de Rasgos Hidrográficos.- Corresponde a los topónimos existentes para las corrientes y

cuerpos de agua.

o Cuerpos de Agua.- Comprende la información vectorial de los cuerpos de agua extraídos de los datos

topográficos escala 1:50 000 con un tratamiento de unión para aquellos ubicados en la línea del canevá

de los conjuntos digitales 1:50 000.

o Coeficiente de escurrimiento.- Información de tipo vectorial que representa la interacción de factores

tales como cobertura vegetal, permeabilidad de los suelos y roca, cantidad de precipitación y

pendiente del terreno, restringen en diferente grado la infiltración del agua en el terreno y esta dado

por un porcentaje estimado de agua que escurre en el terreno con valores de 5, 10, 20, 30 y mayor a

30.

o Unidades de Captación de Aguas Superficiales escala 1:50 000.- Divisorias de subcuencas, cuencas y

regiones hidrográficas.

Comprende los datos, resultado de la Estructuración de la Red Hidrográfica en su edición 2.0, siendo las

siguientes:

o Direcciones de Flujo.- Simbología que representa el flujo del agua.

o Puntos de drenaje: Objeto puntual que indica el lugar donde los flujos de los escurrimientos

superficiales se drenan al mar o a otra subcuenca. También son utilizados para indicar de forma virtual

una acumulación de flujos al interior de cuerpos de agua que representan lagos en subcuencas

endorreicas, además de indicar aquellos flujos que desaparecen de forma superficial por infiltración en

función de la condición de suelos, vegetación, relieve, entre otros factores.

o Clasificación de la Red: Líneas que representa los flujos de agua que depende de precipitación pluvial o

afloramiento subterráneo ya sea natural a través de corrientes de agua o artificial a través de canales.

- Magnitud de orden (Strahler)

- Nivel jerárquico de corrientes

Esta clasificación se tiene a nivel cuenca y subcuenca.

6.3.5 Uso del Suelo y Vegetación

Se incluye la capa de vegetación escala 1:250 000 serie IV.

6.3.6 Vías de Transporte

6.3.3 Rasgos Hidrográficos

6.3.4 Red Hidrográfica 1:50 000

Page 29: TallerTaller_SIATL_2013 Siatl 2013

29

Comprende información del ámbito de vías de comunicación extraídas de los datos topográficos 1:50 000.

o Caminos

o Carreteras

o Vías de Ferrocarril

6.3.7 Geoestadístico y Social

Este grupo comprende información del marco geoestadístico con variables del Censo de Población y Vivienda

2010.

o División Estatal

o División Municipal

o Localidades Rurales

o Localidades Urbanas

o Amanzanamiento

o Núcleos Agrarios

6.3.8 División Cartográfica

o Canevá 1:50 000

6.3.9 Altimetría

Agrupa capas que permiten conocer el relieve tales como:

o Curvas de Nivel.- Esta capa presenta el continuo nacional de curvas de nivel a partir de los datos

topográficos escala 1:50 000 resultado de la conectividad de las curvas de nivel equidistantes cada 20

metros.

o Modelo de Relieve.-

- Hipsográfico

- Hipsográfico CEM 2.0

- Sombreado de Relieve

- Sombreado de Relieve para anaglifos

6.3.10 Servicios de Imágenes

o Imagen Cartográfica 1:50 000.- cartas topográficas digitales georreferenciadas.

o Ortofotos 1:20 000

o Imagen de satélite Spot 2009.- Servicio en trámite de autorización.

Page 30: TallerTaller_SIATL_2013 Siatl 2013

30

o Imagen Global MODIS NASA

6.3.11 Servicios Atmosféricos (NOAA/NOS nowCOAST)

Se provee de servicios de imágenes de nubosidad visible e infrarrojo del satélite GOES casi en tiempo real,

además del monitor de tormentas tropicales con el cual se puede saber el nombre, cono de incertidumbre,

puntos y línea de trayectoria, velocidad de los vientos y pronóstico a 72 y 120 horas.

6.3.12 Sitios de Interés En este grupo se publican algunos sitios que han sido objeto de estudio por diversas causas. En cada capa se provee de un

icono el cual al presionar hace un acercamiento a dicho sitio.

6.3.13 Visualización de acuerdo a la escala

Con el fin de optimizar el despliegue de capas de información dependiendo del tipo de rasgo y la escala de

visualización, el SIATL regula dicha función de acuerdo a un rango de escalas:

Capa de Información Visible entre Escalas: A partir de Hasta

Grupo “Datos Climáticos e Hidrométricos”

Estaciones Climatológicas 1:1 500 000 1:3 500

Estaciones Hidrométricas 1:1 500 000 1:3 500

Isoyetas Carta Climática 1:50 000 000 1:10 000

Lluvia probabilística 1:50 000 000 1:10 000

Grupo “Módulos Ambientales”

Fuentes de Captación de Agua 1:1 500 000 1:3 500

Descarga de Aguas Residuales 1:1 500 000 1:3 500

Sitios de Disposición Final de Resíduos Sólidos Urbanos

1:1 500 000 1:3 500

Grupo “Rasgos Hidrográficos”

Nombres de Rasgos Hidrográficos 1:200 000 1:3 500

Cuerpos de Agua 1:50 000 1:500 000 1:3 500 Coeficiente de escurrimiento

1:250 000 1:800 000 1:10 000

Grupo "Red Hidrográfica 1:50 000"

Direcciones de Flujo 1:200 000 1:3 500

Puntos de Drenaje 1:200 000 1:3 500 Hidrográfica Transfronteriza EUA (USGS)

Hidrografía Transfronteriza EUA 1:8 500 000 1:3 500

Unidades de Captación (SubRegion, Bassin y SubBassin)

1:30 000 000 1:3 500

Clasificación de la Red (Subcuenca) Magnitud de Orden (Strahler) 1:2 300 000 1:3 500

Nivel de Corriente 1:2 300 000 1:3 500

Clasificación de la Red (cuenca)

Magnitud de Orden (Strahler) 1:2 300 000 1:3 500

Nivel de Corriente 1:2 300 000 1:3 500

Unidades de Captación de Aguas

Page 31: TallerTaller_SIATL_2013 Siatl 2013

31

Superficiales Regiones 1:14 000 000 1:3 500

Cuencas 1:14 000 000 1:3 500

Subcuencas 1:14 000 000 1:3 500

Clasificación de Subcuencas

Coeficiente de Comapcidad 1:20 000 000 1:3 500 Densidad de Drenaje 1:20 000 000 1:3 500

Long. Promedio de Flujo Superficial

1:20 000 000 1:3 500

Pendiente Media de la Cuenca 1:20 000 000 1:3 500

Sinuosidad 1:20 000 000 1:3 500 Etiquetas Unidades de Captación 1:14 000 000 1:3 500

Grupo "Uso de Suelo y Vegetación IV 1:250000."

Vegetación 1:14 000 000 1:3 500

Grupo "Vías de Transporte"

Caminos 1:50 000 1:3 500 Carreteras 1:6 000 000 1:3 500

Vías de Ferrocarril 1:250 000 1:3 500

Grupo "Geoestadístico y Social"

División Estatal, Municipal y Localidades

Etiquetas de Estados y Municipios 1:50 000 000 1:3 500 División Estatal 1:50 000 000 1:3 500

División Municipal 1:50 000 000 1:3 500

Localidades Urbanas

Etiquetas de Localidades Urbanas 1:750 000 1:3 500

Localidades Urbanas 1:3 550 000 1:3 500

Colonias (varias fuentes) 1:100 000 1:3 500 AGEB 1:100 000 1:3 500

Manzanas 1:100 000 1:3 500

Localidades Rurales

Etiquetas de Localidades Rurales 1:80 000 1:3 500

Localidades Rurales 1:550 000 1:3 500 Catastro de la propiedad social

Núcleos Agrarios 1:750 000 1:3 500

Área Parcelada 1:750 000 1:3 500

Tierra Uso Común 1:750 000 1:3 500

Asentamientos Humanos 1:750 000 1:3 500 Grupo "División Cartográfica"

Canevá 1:50 000 1:500 000 1:3 500

Grupo "Altimetría"

Nombre de Rasgos Orográficos 1:200 000 1:3 500

Curvas de Nivel 1:50 000 1:75 000 1:3 500 Modelo de Relieve

Hipsográfico 1:14 000 000 1:2 500 000

Hipsográfico CEM 2.0 1:14 000 000 1:20 000

Sombreado 1:14 000 000 1:20 000

Sombreado para Anaglifos (3D) 1:14 000 000 1:20 000

Grupo "Servicios de Imagen" Imagen Cartográfica 1:50 000 1:14 000 000 1:3 500

Ortofoto 1:20 000 1:300 000 1:3 500

Imagen Spot 2009 1:300 000 1:3 500

Imagen Global MODIS NASA 1:14 000 000 1:5 000 000

Grupo “Servicios Atmosféricos (NOAA/NOS now COAST)” Nubosidad satélite GOES visible 1:15 000 000 1:100 000

Page 32: TallerTaller_SIATL_2013 Siatl 2013

32

Nubosidad satélite GOES Infrarrojo

1:15 000 000 1:100 000

Grupo “Sitios de Interés”

Sequía en México

Sequía(SMN-CONAGUA Dic 2011)

Anormalmente Seco 1:12 000 000 1:100 000 Sequía moderada 1:12 000 000 1:100 000

Sequía severa 1:12 000 000 1:100 000

Sequía extrema 1:12 000 000 1:100 000

Sequía excepcional 1:12 000 000 1:100 000

Sequía Dominante(SMN-CONAGUA)

1:12 000 000 1:100 000

Región Tarahumara

Alta 1:12 000 000 1:100 000

Baja 1:12 000 000 1:100 000

Sistema del Río Conchos RH24L 1:12 000 000 1:100 000

RH24M 1:12 000 000 1:100 000

RH24N 1:12 000 000 1:100 000

RH24K 1:12 000 000 1:100 000

RH24J 1:12 000 000 1:100 000 Sistema Hidrográficos Chihuahua

RH09 1:12 000 000 1:100 000

RH10 1:12 000 000 1:100 000

RH24 1:12 000 000 1:100 000

RH34 1:12 000 000 1:100 000 RH35 1:12 000 000 1:100 000

Explosión San Martín Texmelucan (19/12/2010)

Mayor afectación 1:250 000 1:1 000

Menor afectación 1:250 000 1:1 000

Proyecto: Presa El Zapotillo 1:250 000 1:1 000 Proyecto: Arco Norte 1:250 000 1:1 000

Inundación Cuautitlán (4/9/2011)

Colonias Afectadas 1:500 000 1:1 000

Área Inundada (CONAGUA) 1:500 000 1:1 000

Afectación: Río de los Remedios 1:500 000 1:1 000

Cuenca del Valle de México (CONAGUA)

1:50 000 000 1:1 000

Incendios en SLP (aproximación) 1:50 000 000 1:1 000

Afectaciones Huracanes Manuel e Ingrid 2013

Mpios declarados en emergencia 1:9 200 000 1:1 000 Mpios declarados en desastre 1:9 200 000 1:1 000

La escala de visualización actual pude ser verificada en el recuadro de Referencia Espacial.

6.4 Panel de Herramientas Básicas

Page 33: TallerTaller_SIATL_2013 Siatl 2013

33

6.4.1 Mover: Al dar clic sobre el mapa (sin soltar el mouse) y a la vez arrastrar el mouse, esta

herramienta le permitirá desplazar la posición del mapa.

6.4.2 Acercar: Al dar un clic sobre el mapa (sin soltar en botón del mouse) le permitirá seleccionar el

área a la que desea hacer un acercamiento.

6.4.3 Alejar: Al dar un clic sobre el mapa (sin soltar en botón del mouse) le permitirá seleccionar el área

a la que desea hacer un alejamiento.

6.4.4 Vista Anterior: Esta herramienta le permitirá regresar a la vista anterior en el mapa.

6.4.5 Siguiente Vista: Si uso la herramienta “Vista Anterior” esta herramienta le permitirá posicionarse

en la siguiente vista almacenada en el arreglo de vistas.

6.4.6 Actualizar: Esta herramienta actualiza todos los datos que estén en el mapa.

6.4.7 Extensión Máxima: Esta herramienta lo coloca en las coordenadas máximas de visualización que

en este caso son las que abarcan la extensión del territorio nacional.

6.4.8 Guardar Imagen o descargar red hidrográfica: Permite capturar lo visualizado en el área de

mapa en un archivo de imagen jpg o png, o elegir la opción para descargar la red hidrográfica de interés.

Opciones:

Page 34: TallerTaller_SIATL_2013 Siatl 2013

34

Guardar imagen

Descargar la red hidrográfica

De clic sobre el mapa en la red o área de interés y seleccione la unidad que desea descargar: el nivel más

desagregado que es la subcuenca, la cuenca o la región hidrográfica.

Tenga en cuenta que a mayor área, mayor cantidad de datos y tiempo de descarga.

El archivo que se descarga es un empacado en formato ZIP que contiene archivos shapefile de la red

hidrográfica, de puntos de drenaje, del polígono de subcuenca, de cuerpos de agua y de topónimos,

organizados en carpetas por cada subcuenca. Además se incluyen metadatos y el documento técnico

descriptivo.

6.4.9 Información: Muestra los datos tabulares asociados al elemento geográfico seleccionado. La

información a visualizar sólo estará disponible para elementos contenidos en cualquiera de las capas de la red

hidrográfica, subcuencas, coeficiente de escurrimiento, localidades urbanas o rurales.

9.4.10 Medir: Esta herramienta permite realizar mediciones a través de una ruta o de un área.

Page 35: TallerTaller_SIATL_2013 Siatl 2013

35

9.4.11 Vista 3D: Este botón activa el entorno de visualización en tres dimensiones.

Panel de Control:

1) Nivel de Exageración: Esta herramienta le permitirá aumentar o reducir la exageración de la elevación con la

que es rende rizado el terreno.

2) Inclinación del plano: Esta herramienta le permitirá le permitirá inclinar el plano de 0° a 90° sobre el eje “X”

3) Velocidad de Avance: Con esta herramienta podrá aumentar o reducir la velocidad de avance horizontal de

la cámara.

4) Grados de Giro: Con esta herramienta puede aumentar o reducir la velocidad con la que la cámara hace el

giro al presionar las flechas izquierda o derecha de su teclado. Los valores permitidos son los que se

encuentran en el rango de 1 a 8 y están dados en grados.

5) Salir: Este botón le permite salir del modulo de “Vista 3D” del SIATL y regresar a la aplicación SIATL.

Herramienta de Navegación:

1) Indicador de grados.

Page 36: TallerTaller_SIATL_2013 Siatl 2013

36

2) Brújula: La brújula le permitirá identificar hacia donde queda cada uno de los puntos cardinales. Con este

indicador le será más fácil navegar por el escenario 3D.

3) Botones de navegación Horizontal:

Estas herramientas le permitirán mover la cámara de manera horizontal sobre el escenario 3D. Al presionar las

flechas de este control usted podrá desplazarse hacia adelante (flecha arriba), atrás (flecha abajo), izquierda

(flecha izquierda) o hacia la derecha (flecha derecha). Adicionalmente puede usar las flechas de su teclado para

desplazarse de manera similar con la diferencia de que cuando presiona la flecha izquierda o derecha en el

teclado obtendrá un giro en lugar de un desplazamiento vertical.

4) Botones de navegación Vertical:

Los botones de navegación vertical le permitirán mover la cámara sobre el eje “Y”, es decir, usted podrá

aumentar o reducir la posición de la cámara con respecto a la elevación. (arriba o abajo)

6.4.12 Pantalla Completa: Aumenta el tamaño de la aplicación para aprovechar lo ancho y largo de la

pantalla ocultando el encabezado y las barras de estado y menús del navegador que se esté utilizando.

Nota: Esta herramienta automáticamente deshabilita la entrada de datos desde el teclado y por tanto de

querer realizar una búsqueda deberá desactivar la pantalla completa. Para regresar a su diseño normal

presione la tecla ESC.

Otra modalidad para ocultar elementos del navegador y ampliar la pantalla sin desactivar el teclado, es utilizar

la tecla F11 y para restablecer oprima nuevamente dicha tecla.

6.4.13 Ayuda: Al activar este botón se activa la ventana de ayuda, la cual se divide en 5 opciones que

son:

o Ayuda

o Preguntas frecuentes

o Especificaciones de la red

o Documentos .- Contiene 3 documentos descargables en formato PDF

o Contacto

Page 37: TallerTaller_SIATL_2013 Siatl 2013

37

6.5 Panel de herramientas avanzadas

La información que puede ser consultada en el SIATL ha sido agrupada por tema para facilitar su manejo, la cual puede ser encendida o apagada dependiendo de la necesidad del usuario.

6.5.1 Administración de capas

Page 38: TallerTaller_SIATL_2013 Siatl 2013

38

Puede consultar los datos por subcuenca, región hidrológica, del estado, municipio, localidad, según el nombre del rasgo o bien, por coordenadas.

En este conjunto de herramientas se agrupan aquellas más especializadas que facilitan el análisis de los escurrimientos de agua superficial y de las cuencas, como son: la selección de líneas en función de los flujos de agua, determinar índices morfométricos, generar el perfil de elevaciones y calcular el caudal, entre otras.

6.5.3.1 Flujos Corrientes Arriba: Una vez seleccionada esta función y dando un clic sobre un segmento de la red hidrográfica, se muestran en color rojo todos los flujos tributarios al segmento de referencia en sentido aguas arriba acotado a la divisoria de la subcuenca y el cauce principal se resalta en color naranja con una línea más gruesa a las demás.

6.5.2 Búsquedas

6.5.3 Funciones de Redes

Page 39: TallerTaller_SIATL_2013 Siatl 2013

39

Además para algunas regiones se muestra el polígono de captación o de área drenada, en función de la existencia de información procesada y derivada del modelo digital de elevación. De tal manera que la función para determinar el área, estará condicionada a la existencia de los datos. No obstante, para las cuencas donde el SIATL no determine de forma automática este valor, se tendrá que utilizar la herramienta para su medición manual trazando con el mouse el área de interés.

6.5.3.2 Flujo Corriente Abajo: Dando un clic sobre un segmento de la red hidrográfica, en color rojo se muestra la trayectoria en dirección aguas abajo hasta la divisoria de la subcuenca.

Page 40: TallerTaller_SIATL_2013 Siatl 2013

40

6.5.4 Intersección de Localidades: Muestra todas aquellas localidades urbanas y rurales que se encuentran en un margen de las líneas de flujo que previamente fueron seleccionadas con las funciones de Flujos Corrientes Arriba o Flujos Corriente Abajo.

El resultado son polígonos y puntos de localidades urbanas y rurales

6.5.5 Índices Morfométricos: Con esta función se determinan algunos valores morfométricos del cauce principal (color naranja) para el caso de la selección con la función de Flujos Corriente Arriba o del cauce seleccionado Flujo Corriente Abajo. Los índices son:

o Elevación Máxima o Elevación Media

Page 41: TallerTaller_SIATL_2013 Siatl 2013

41

o Elevación Mínima o Longitud o Pendiente Media o Tiempo de Concentración o Área Drenada (de la microcuenca o escorrentía, sólo para la función Flujo Corrientes Arriba y

disponibilidad de la información procesada del modelo digital de elevación de esa subcuenca)

6.5.5.1 Perfil de Elevaciones: Esta grafica muestra los desniveles del cauce, su representación está en función del rango de elevaciones en metros en el eje Y, y en kilómetros en el eje X.

6.5.5.2 Calcular Caudal Pico: El modelado de los escurrimientos de agua superficial es sumamente complejo y para la obtención de resultados precisos, se requieren de mediciones más detalladas y por consecuencia más datos, además de modelos digitales de elevación con mayor resolución por debajo de los 5 metros por pixel, así como de métodos más sofisticados que se traducen en algoritmos.

Page 42: TallerTaller_SIATL_2013 Siatl 2013

42

En el SIATL se incluye el método racional para el cálculo del caudal, que por sus características permite la estimación con pocos parámetros de forma sencilla, no obstante su precisión estará en función del tamaño de las áreas y de la fidelidad de los datos adicionales que deberán ingresarse. Es decir a mayor extensión, mayor margen de error. Además, la funcionalidad de selección aguas arriba y aguas abajo funcionan a nivel subcuenca y por consecuencia los cálculos deben considerarse parciales porque no se consideran las aportaciones de cuencas tributarias entre otros aspectos. Por tanto es recomendable leer las implicaciones que tiene el utilizar la función del cálculo del caudal.

De requerir estudios más detallados, se podrá solicitar la Red Hidrográfica al INEGI para utilizarla como uno de los insumos que requieren diversos programas especializados en el modelado hidrológico. Para mayor información sobre la referencia teórica consúltese el anexo I Escurrimiento Superficial.

Page 43: TallerTaller_SIATL_2013 Siatl 2013

43

Pasos para realizar el Cálculo del Caudal:

1. Seleccione las líneas de flujo de una escorrentía a partir de un clic en uno de los segmentos de la red hidrográfica con la función “Aguas arriba”.

2. Consulte el coeficiente de escurrimiento, encendiendo la capa que se encuentra en el grupo “Rasgos Hidrográficos” y utilizando la herramienta para solicitar información de los atributos y pondere los valores en los casos donde se presentan más de un valor para el área de estudio.

3. Consulte la lluvia para la tormenta de diseño, esto puede ser con las isoyetas para un periodo de retorno específico o determínelo con el módulo de cuantificación “Análisis de la escorrentía”. También es posible utilizar el dato medido de alguna tormenta.

4. Dar clic a la herramienta “Índices morfométricos” para ver los datos que el SIATL determina de la escorrentía seleccionada y necesarios para calcular el caudal.

5. Dar clic en el botón “Calcular caudal” y aceptar los términos para utilizar este módulo. 6. Ingresar los valores consultados referentes al coeficiente de escurrimiento y la lluvia. 7. Dar clic en el botón “Calcular”

6.5.6 Ver Selección: Esta herramienta permite visualizar todos las corrientes de agua resultado de ejecutar cualquiera de las funciones de Flujo Corrientes Arriba o Flujo Corriente Abajo.

6.5.7 Limpiar Selección: Está herramienta permite limpiar los datos previamente seleccionados, ya sean corrientes de agua o bien las localidades.

6.5.8 Perfil de Elevaciones: Esta herramienta grafica el perfil de elevaciones a partir de 2 puntos dados, con una distancia máxima de 5 kilómetros.

El objetivo de estas herramientas es hacer partícipe a los usuarios en la mejora continua de la red hidrográfica y de la información en general, además en la ilustración de rasgos hidrológicos con fotografías. Para insertar tanto observaciones como fotografías, es necesario que el usuario solicite su registro llenando un formulario que se activa desde la pantalla de bienvenida.

6.5.9.1 Mostrar Observaciones o Cuando el simbolo este en color azul significa que la observación ha sido atendida por parte de INEGI. o Cuando el simbolo este en color rojo significa que la observación aún NO ha sido atendida por parte de

INEGI.

6.5.9 Cartografía Participativa

Page 44: TallerTaller_SIATL_2013 Siatl 2013

44

Las observaciones no se publican y quedan de referencia y antecedente para el usuario que las ingresó.

6.5.9.2 Mostrar Fotografías

La funcionalidad de “Mostrar Fotografías” no requiere de registro y está abierto a cualquier usuario con el acceso como invitado.

Donde exista una fotografía la podrán indentificar con el símbolo:

Lugares donde usted puede ver algunas fotografías: Búsqueda por Rasgo Hidrográfico: Presa Zimapan en el estado de Querétaro Búsqueda por Rasgo Hidrográfico: Presa Malpaso en el estado de Aguascalientes Para ver una fotografía es necesario pasar el cursor del mouse por arriba del recuadro e inmediatamente se despliega la imagen.

Page 45: TallerTaller_SIATL_2013 Siatl 2013

45

Sí desea ampliar la imagen y ver otros detalles como la fecha de la toma, su descripción y datos del autor, de

clic sobre la imagen.

Nota: en caso de no desplegar la imagen, asegúrese de no tener activada alguna de las herramientas para navegación como: mover, acercar, alejar, etc. Cuando está activada una de estas herramientas el ícono se ve más grande:

Desactivela dando clic sobre la función.

Page 46: TallerTaller_SIATL_2013 Siatl 2013

46

6.5.9.3 Insertar Observaciones

Con esta función el usuario registrado podrá registrar observaciones referenciadas espacialmente, respecto a datos mal representados en función del conocimiento de una región, para considerarlas en la siguiente versión de la red.

Procedimiento 1. Localice el rasgo y verifique estar en el rango de escala permitido para ingresar observaciones de

1:3500 a 1:100 2. de un clic sobre este ícono y posteriormente de clic en el mapa sobre el rasgo del cual usted desea

hacer una observación. 3. capture la observación 4. de clic en el botón Insertar

La siguiente ventana aparecerá al seleccionar la herramienta y darle clic al rasgo que se quiera comentar.

6.5.9.4 Insertar Fotografías

Con esta herramienta el usuario registrado podrá subir fotos de rasgos hidrográficos de interés en condiciones normales o extraordinarias como inundaciones. Procedimiento

1. Localice el rasgo y verifique estar en el rango de escala permitido para ingresar fotografías de 1:3500 a 1:10000

2. De un clic sobre este ícono y posteriormente de clic en el mapa sobre el rasgo del cual usted desea insertar la imagen.

3. Capture el título y comentarios. 4. Ingrese la fecha de la toma de la foto. 5. Con el botón “Seleccionar”, ubique el archivo en su computadora. 6. Active con un clic el recuadro para ceder los derechos y autorizar al INEGI de publicar la fotografía.

Page 47: TallerTaller_SIATL_2013 Siatl 2013

47

7. De clic en el botón Insertar

Las fotografías registradas pasarán por un filtro para verificar en la medida de lo posible su correspondencia espacial además de su contenido, para posteriormente autorizar su publicación. No se publicaran imágenes en las cuales aparezcan personas en primer plano o aquellas que no cumplan con el objetivo de esta función.

Permite cambiar la notación de las coordenadas geográficas que se despliegan en el recuadro de referencia espacial de sexagesimales a decimales y viceversa. Además es posible activar el fondo del área de mapa, así como seleccionar un color para el mismo, además de configurar el nivel de transparencia.

o Simbología.- Función dinámica de acuerdo a las capas visibles para facilitar su interpretación.

6.5.10 Configuración

6.5.11 Simbología y Ubicación

Page 48: TallerTaller_SIATL_2013 Siatl 2013

48

o Ubicación.- Índice espacial que permite la ubicación en el territorio nacional de lo que se está visualizando.

Page 49: TallerTaller_SIATL_2013 Siatl 2013

49

7. Ejercicios

7.1 Ejercicio 1. Análisis de una cuenca vinculado a un evento de tormenta para

evaluar el caudal pico.

Los días 13 al 15 de septiembre de 2013 se recordarán por muchos años, debido a que se presentaron dos

tormentas tropicales de manera simultánea en el territorio mexicano, Manuel en el océano Pacífico a 209 km.

de la costa del estado de Guerrero con el pronóstico de impactar el sábado 14 de septiembre a las 5 p.m. y la

tormenta Ingrid sobre el litoral del Golfo de México proveniente del mar Caribe y que había cruzado la

península de Yucatán.

La influencia de los dos meteoros con una rotación en sentido contrario a las manecillas del reloj y con

tendencia de convergencia al centro del País, fueron factores que provocaron una lluvia mayor a lo esperado

de acuerdo a su categoría, además de un desplazamiento prácticamente estacionario.

De acuerdo a las mediciones de lluvia en estaciones climatológicas y observatorios donde se presentaron las

afectaciones en Guerrero, se reportan hasta 395 mm de lluvia en los días 13 al 15 de septiembre.

Page 50: TallerTaller_SIATL_2013 Siatl 2013

50

Área de estudio:

Coordendas: W 99° 30’ 37” N 17° 33’ 40”

Río: Huacapa

Localidad: Chilpancingo de los Bravo

Entidad federativa: Guerrero

Subcuenca: RH20Ed Río Azul

Cuenca: RH20E Río Papagayo

Región Hidrológica: RH20 Costa Chica – Río Verde

Procedimiento para analizar la cuenca del Río Huacapa

1. En el módulo de administrador de capas en el grupo de Servicios de Imagen, encienda las capas

Ortofoto 1:20 000 y en el grupo del Marco Geoestadístico también la capa Manzanas que se ubica en

el subgrupo de Localidades Urbanas aplicando una transparencia mayor.

2. Con la “Herramienta de Búsqueda” localice el área de interés; seleccione la opción “División

política (Estado, Municipio y Localidad)”; capture “Chilpancingo de los Bravo” y de clic en el botón

“Buscar”; dentro de los resultados obtenidos seleccione a nivel localidad.

3. Analice el área e identifique el Río Huacapa, utilizando diversas capas de información como Direcciones

de Flujo, Nombres de Rasgos Hidrográficos, y realice acercamientos , alejamientos y

desplazamiento de pantalla o paneo . Además investigue la población de la localidad con la función

.

4. Con la “Herramienta de Búsqueda” localice la coordenada W 99° 30’ 37” N 17° 33’ 40”.

5. A continuación utilice la herramienta de selección de flujos “corriente aguas arriba”.- En el menú

“Funciones de Redes” , con el botón “Selección aguas arriba” , de clic sobre el segmento que se

indica en la siguiente imagen.

13 14 15

ACAPULCO (EHCA) 110.4 154.9 130.5 745.6 395.8

OBSERVATORIO ACAPULCO 111.4 169.0 35.2 639.8 315.6

ACAPULCO (AUTOMATICA) 109.4 173.6 620.2 283.0

OBSERVATORIO DE ACAPULCO 114.0 194.4 566.0 308.4

ACAPULCO 114.0 188.7 473.4 302.7

CHILPANCINGO 30.8 169.4 126.5 480.5 326.7

Precipitación Septiembre (mm)Estación climatológica Precipitación

Mensual

(mm)

Precipitación días

significativos

(mm)

Page 51: TallerTaller_SIATL_2013 Siatl 2013

51

Ajuste o extienda la visualización a todo lo seleccionado con la herramienta .

6. Con la herramienta de administración de capas encienda las Estaciones Climatológicas y consulte sus

datos asociados para lluvias con un tiempo de retorno de 50 años, así como isoyetas probabilísticas.

Page 52: TallerTaller_SIATL_2013 Siatl 2013

52

7. Encienda la capa del Coeficiente de Escurrimiento en el grupo “Rasgos Hidrográficos” y utilizando la

herramienta para solicitar información de los atributos pondere los valores en los casos donde se

presentan más de un valor para el área de estudio.

8. Analice el área drenada con la herramienta “Análisis de escorrentía” que se ubica en el módulo

“Funciones de Red”.

a. Población, vivienda y servicios en las viviendas.

b. Distribución de la vegetación.

c. Datos de clima y lluvia.

d. Lluvia probabilística.

9. De clic a la herramienta “Índices morfométricos” para analizar las magnitudes del área drenada y

analice cada uno de los datos.

Page 53: TallerTaller_SIATL_2013 Siatl 2013

53

10. Active el botón de “Perfil de Elevaciones” para analizar los desniveles a lo largo de la cañada del cauce

principal.

11. Active el botón “Calcular Caudal” e ingrese los datos obtenidos del coeficiente de escurrimiento y lluvia

para determinar el caudal pico instantáneo (avenida del río).

a. Ingrese el máximo del coeficiente de escurrimiento dado que estamos analizando un escenario

de una tormenta: 20

b. Ingrese el tiempo de retorno o frecuencia de lluvia de 50 años.

c. Escriba la cantidad de lluvia que corresponde al periodo de retorno de la tormenta de diseño:

144 mm.

Cálculo de la intensidad de lluvia.

Para el cálculo de la intensidad de lluvia se utiliza la formula siguiente:

Page 54: TallerTaller_SIATL_2013 Siatl 2013

54

Donde i representa la intensidad media de la precipitación durante un periodo de tiempo que

para este fin será el tiempo en que el total de la cuenca drena al sitio de interés y que

corresponde al tiempo de concentración.

De esta forma:

d. De clic en el botón “Calcular”

12. Analice el caudal máximo en el tiempo de concentración calculado, que se da cuando la totalidad de la

cuenca aporta el escurrimiento: 337.04 m3/s

Page 55: TallerTaller_SIATL_2013 Siatl 2013

55

Procedimiento para analizar la capacidad del segmento de interés del Río Huacapa

Para fines prácticos de este ejercicio y poder comparar de forma rápida los resultados del caudal contra la

capacidad de un segmento del cauce, se utilizará una plantilla en Excel para el análisis numérico que incluye la

fórmula de Manning, considerando una constante de sus valores a lo largo del segmento. Conociendo la

complejidad que representa el estudio del movimiento del agua, se recomienda a sobre manera aplicar las

metodologías que en materia de hidráulica se utilizan, además de software especializado.

1. Calcule la distancia del segmento de interés con la herramienta “Medir” .

2. Determine la elevación inicial y final del segmento, pasando el cursor y tomando la elevación del panel

inferior izquierdo.

3. Determine las medidas del canal del segmento de interés.

Page 56: TallerTaller_SIATL_2013 Siatl 2013

56

4. Utilice la plantilla de análisis numérico que se provee en este tallar para determinar la capacidad del

segmento del cauce.

5. Llene los valores de la plantilla en los espacios en color verde. Cabe mencionar que esta plantilla

solamente es para canales trapezoidales o rectangulares.

Page 57: TallerTaller_SIATL_2013 Siatl 2013

57

El coeficiente de rugosidad consúltelo en la tabla 5 del anexo y si en la tabla no se encuentra el tipo de

cauce o canal investíguelo en cualquier bibliografía. Por ejemplo:

http://es.wikipedia.org/wiki/Rugosidad_(hidr%C3%A1ulica)

De esta forma se obtiene que la velocidad de 8.01 m/s y la capacidad de 360.29 m3/s.

6. Compare el caudal máximo instantáneo contra la capacidad del segmento del cauce.

Conteste las siguientes preguntas:

¿A partir de cual periodo de retorno rebasa la capacidad?

¿Cuál será el caudal pico considerando las mediciones por cada día de lluvia medida?

¿Qué pasa si los suelos ya están saturados por lluvias previas a la tormenta y el coeficiente se considera

mayor?

¿Cuál será el caudal pico considerando el total de lluvia de los tres días?

Page 58: TallerTaller_SIATL_2013 Siatl 2013

58

Revisar las fotografías de la cartografía participativa

1. Desactive cualquier función que esté activada.

El siguiente ejemplo muestra la herramienta de paneo activa y se observa maximizada en la barra de

herramienta.

Dando clic en la herramienta se desactiva.

2. Pase el cursor por cualquiera de los símbolos dentro del área del mapa o de clic sobre estos:

3. De clic sobre la fotografía para ver más datos.

4. Vea más fotografías de las afectaciones.

Page 59: TallerTaller_SIATL_2013 Siatl 2013

59

7.2 Ejercicio 2. Identificación de localidades sobre la trayectoria del cauce aguas

abajo.

1. Ubique en el mapa el sur de Chilpancingo, active la función “Selección Aguas Abajo”.

2. De clic sobre el Río Huacapa.

3. Maximice la extensión del mapa a lo seleccionado con la herramienta:

Page 60: TallerTaller_SIATL_2013 Siatl 2013

60

Con esto, se puede observar la trayectoria del cauce hasta el límite de la subcuenca. Cabe mencionar

que las herramientas de redes solamente trabajan al interior de cada unidad hidrológica de este nivel.

Por tanto para continuar con el análisis de la trayectoria se debe hace un acercamiento justo donde las

aguas se drenan al siguiente subcuenca y repetir la selección con la función “Selección Aguas Abajo”.

4. Para identificar las localidades urbanas y rurales que se encuentran en los márgenes del cauce utilice la

función “Intersección con Localidades” en el panel Funciones de Redes.

5. Seleccione localidades a una distancia de 250 metros y de clic en Aceptar.

6. Revise la lista de localidades de acuerdo a su población. Las localidades seleccionadas tienen el

contorno en color naranja. Para ver el nombre de localidades rurales, encienda las etiquetas en el

grupo de Marco Geoestadístico.

7. Al dar clic en cada localidad se moverá el área del mapa ubicando al centro ésta, la localidad de interés.

De requerir conocer otras variables del Censo de Población y Vivienda 2010 utilice la herramienta

“Identificar Rasgo” y clic sobre el polígono o punto de la localidad.

8. Justo donde las flujos de agua se drenan a la siguiente subcuenca.

Page 61: TallerTaller_SIATL_2013 Siatl 2013

61

9. Con la herramienta “Perfil de Elevaciones” , trace una línea recta transversal al cauce que se está

analizando, para analizar la cañada. Apóyese con la capa “Hipsográfico CEM 2.0 o el Sombreado de

Relieve” para observar el lugar de mayor profundidad.

10. Repita el procedimiento de “Selección Aguas Abajo” hasta llegar a la costa.

Page 62: TallerTaller_SIATL_2013 Siatl 2013

62

11. Analice la cuenca del Río La Sabana en Acapulco.

Page 63: TallerTaller_SIATL_2013 Siatl 2013

63

7.3 Ejercicio 3. Cartografía participativa

Revisar las fotografías de la cartografía participativa

1. Desactive cualquier función que esté activada.

El siguiente ejemplo muestra la herramienta de paneo activa y se observa maximizada en la barra de

herramienta.

Dando clic en la herramienta se desactiva.

2. Pase el cursor por cualquiera de los símbolos dentro del área del mapa o de clic sobre estos:

3. De clic sobre la fotografía para ver más datos.

Page 64: TallerTaller_SIATL_2013 Siatl 2013

64

Utilizar la función “Ver listado de Fotografías”

4. En el panel de herramientas avanzadas active el módulo “Cartografía Participativa” y de clic en la

opción “Ver listado de fotografías”.

5. El sistema abrirá un listado de fotografías registradas ordenadas por entidad federativa y municipio. Al

dar clic cualquiera en el listado se moverá el área del mapa hacia el lugar de la imagen.

Page 65: TallerTaller_SIATL_2013 Siatl 2013

65

6. Presione el botón “Ver fotografías de afectaciones Tormentas Manuel e Ingrid” para filtrar solo

aquellas fotos de dichas afectaciones.

Page 66: TallerTaller_SIATL_2013 Siatl 2013

66

¿Cómo registrar fotografías?

Para ingresar fotografías y observaciones georreferenciadas es necesario contar con una cuenta de

colaborador. Para ello, es necesario solicitar su cuenta desde la pantalla inicial.

1. En la pantalla inicial de clic en el botón “Registro”.

2. Llene el formulario. Al día hábil siguiente recibirá un correo con su cuenta.

3. Una vez obtenida su cuenta ingrese como colaborador.

4. Localice la ubicación de la fotografía. Ejemplo: Puente Colapsado en Coyuca de Benítez.

Page 67: TallerTaller_SIATL_2013 Siatl 2013

67

5. Asegúrese de estar a una escala 1:3500 a 1:5000.

6. En el módulo de cartografía participativa seleccione la función “Insertar fotografía”.

Page 68: TallerTaller_SIATL_2013 Siatl 2013

68

7. Dar clic sobre el mapa donde se ubicará la fotografía

8. Llenar el formulario: título de la fotografía, comentarios o reseña, fecha de la toma, seleccionar el archivo, marcar

la autoría y dar clic en el botón “Insertar”.

Políticas

1. Las fotografías no deben tener personas en primer plano ni posando. (para salvaguardar la privacidad y seguridad de las personas).

2. Las fotografías y reseñas no deben mostrar tintes políticos. 3. Las fotografías deben ser acordes al título y reseña. 4. La fotografía, el titulo y la reseña deben tener elementos necesarios para su georreferenciación y

validación. 5. Las fotografías no deben tener en primer plano anuncios o propaganda. 6. Las fotografías deben tener buena resolución. (tamaño mínimo 500x500 pixeles). 7. Las fotografías no deben tener marcas de agua con referencia a la fuente ni textos referentes a la

imagen. 8. Las fotografías deben ser a color, o en blanco y negro o sepia siempre y cuando sean de buena

resolución y calidad. 9. La imagen no debe ser un compuesto o collage de fotografías.

Page 69: TallerTaller_SIATL_2013 Siatl 2013

69

8. Anexo I Escurrimiento superficial

La estimación de indicadores de escurrimiento superficial en condiciones naturales es demasiado compleja, debido a que intervienen diversos factores como son: tipos de suelos y rocas, relieve, pendientes, vegetación, área de captación o cuenca, longitud del cauce principal, precipitación-tiempo, condiciones y dimensiones del cauce que por tratarse de condiciones naturales las dimensiones son variadas a lo largo de éste, entre otros.

Es por ello que para el cálculo de los diversos indicadores se debe hacer una planeación del escurrimiento por analizar y determinarlos en algunos de los casos, agrupando secciones que reúnan características similares así como cierto comportamiento en común.

Esta unidad tiene como objetivo dar los conocimientos básicos para el cálculo de caudales máximos en función de un método probabilístico y con el modelo de lluvia-escurrimiento con el método racional.

8.1 Determinación de caudales.

Para determinar el gasto o caudal que llega al punto "a", bajo la lluvia máxima que se presenta con una frecuencia dada, apreciaremos lo siguiente:

Durante los primeros minutos de la lluvia, la intensidad de ésta es muy alta, pero como el tiempo es corto, no se ha alcanzado a drenar toda la cuenca, por lo que el gasto que pasa por el punto ¨a ¨ no es muy grande.

A medida que transcurre el tiempo, la cuenca comienza a aportar más agua por efecto de que es mayor el área que se drena, pero por otro lado la intensidad de la lluvia va disminuyendo poco a poco.

a

Page 70: TallerTaller_SIATL_2013 Siatl 2013

70

El valor numérico del gasto o caudal se determina mediante el método racional: 1

Ecuación 1

Donde:

Q= es el caudal en metros cúbicos por segundo. I = es la intensidad en milímetros por hora. A = es la superficie de la cuenca en hectáreas. C = es un coeficiente de escorrentía sin dimensiones. 360: ajuste para conversión de unidades inglesas a métricas

8.2 Tiempo de concentración (Tc) 2

Si graficamos el gasto que pasa por el punto ¨a¨ en función del tiempo de duración de la lluvia, obtendremos una figura de la siguiente naturaleza:

El tiempo T1, correspondiente al gasto máximo y es el tiempo mínimo en el cual se drena toda la cuenca. Valor que coincide con el tiempo de concentración Tc.

Por lo tanto, el tiempo de concentración de la lluvia (Tc) es el valor que se emplea como (t) en la ecuación 2, para la obtención de la intensidad promedio para de la lluvia de MÁXIMA intensidad.

Este parámetro se refiere al tiempo que tarda el agua en su recorrido entre dos puntos determinados, los cuales son: el extremo superior de la cuenca y el punto donde se mide el gasto pluvial. Si consideramos la cuenca que muestra la siguiente figura:

1 Fórmula expuesta en el documento “Medición sobre el Terreno de la Erosión del Suelo y de la Escorrentía” – Boletín de

Suelos de la FAO -68, Autor.- N.W. Hudson Silsoe Associates. 2 Manual para Diseño de Redes de Drenaje Pluvial - Ing. Raúl Cadena Cepeda 1998

Page 71: TallerTaller_SIATL_2013 Siatl 2013

71

El tiempo de concentración se refiere al lapso que transcurre para que el agua de lluvia, transite desde el punto A al punto B.

Para el caso de escurrimiento superficial, se obtiene mediante la fórmula de Kirpich.3

Ecuación 2

77.0

0663.0

P

LTc

Donde: Tc = El tiempo de escurrimiento en horas.

L = Longitud de la cuenca en su cañada principal, en metros.

P = Pendiente promedio de la cuenca, a lo largo de su cañada principal, en valor absoluto.

8.3 Intensidad de lluvia promedio 4

Si nos paramos un momento bajo la lluvia, y ponemos una probeta frente a nosotros, notaremos que ésta se llena de agua. La cantidad que se almacena en ella, depende del tiempo que la tengamos bajo la lluvia.

Si el recipiente tiene una entrada de un centímetro cuadrado, el volumen recolectado es V= cm3/ cm2, lo que nos proporciona unidades de cm.

El segundo parámetro que nos interesa, es el volumen llovido por unidad de tiempo, en cm/ hora. A este parámetro se le denomina. Intensidad de la lluvia.

3 Fórmula expuesta en el libro “Introducción a la Hidrología Superficial” del Dr. Sergio Ignacio Martínez Mtz.

4 Tema extraído del Manual para Diseño de Redes de Drenaje Pluvial - Ing. Raúl Cadena Cepeda 1998

Page 72: TallerTaller_SIATL_2013 Siatl 2013

72

Ahora bien, si medimos la cantidad de lluvia que se obtiene en un tiempo tn, y obtenemos la relación volumen / tn, tendremos la información de intensidad de lluvia, para el tiempo tn.

Este valor se denomina: Intensidad de lluvia promedio, para el tiempo tn.

Cuando se haga mención en este documento, de la intensidad de la lluvia, o de la intensidad de lluvia máxima, nos referimos a los valores promedios de las mismas, y nunca a los valores instantáneos.

Si obtenemos los valores de los volúmenes llovidos, para tiempos de cero a una hora, en intervalos de cinco minutos. Y calculamos la intensidad (promedio) de la lluvia, tendremos la información básica para dibujar la gráfica: Intensidad- tiempo de duración, de la lluvia.

Si colocamos un embudo bajo la lluvia, notaremos que el caudal que sale de él, es proporcional a le intensidad instantánea de la lluvia. Si el embudo tiene una entrada de un cm2, el gasto de salida será exactamente igual al valor de la intensidad instantánea de la lluvia, en cm3/seg.

A primera vista parece que para obtener el caudal que escurre en una cuenca, requeriremos los valores de la intensidad instantánea de la lluvia. Pero no es así.

Consideremos ahora una cuenca totalmente impermeable, de dimensiones, 500 metros de largo por 100 metros de ancho.

Supongamos que en el parte aguas se encuentra el punto A y en la parte más baja, el punto B.

Nosotros deseamos saber el caudal en el punto B, por efecto de una lluvia.

Supongamos además que el agua que escurre por el terreno tarda 30 minutos en recorrer toda la cuenca, desde A, hasta B.

Debemos saber también que las lluvias comienzan con una intensidad alta y a medida que el tiempo pasa van disminuyendo de intensidad.

Consideremos que el agua que pasa por B, está en proporción de la intensidad de la lluvia y el área drenada.

Ahora bien, en el tiempo cero no existe gasto que pase por el punto B.

A los cinco minutos de haber comenzado la lluvia, la intensidad es muy alta, pero se está drenando una parte muy pequeña de la cuenca. Pues el agua que cayó en A, y en la mayor parte de la cuenca viene aún en tránsito y no ha pasado por B. La cuenca está aportando en ese caso una fracción muy pequeña de su área de captación.

El momento más desfavorable es exactamente a los 30 minutos de haber comenzado la lluvia, pues en ese instante, toda la cuenca está aportando agua al punto B. Y a partir de ese momento, la intensidad sigue bajando y ya no puede haber mayor aportación por efecto de área drenada.

La solución parece sencilla. El gasto debería ser el producto del área drenada, por la intensidad instantánea de la lluvia, en el tiempo T2 = 30 minutos.

Page 73: TallerTaller_SIATL_2013 Siatl 2013

73

Sin embargo, si consideramos lo que sucede en el punto B, a los treinta minutos de haber comenzado la lluvia, es algo más complicado. Pues el área inmediata al punto B, aporta agua con una intensidad del tiempo T2, pero el agua que recorrió el terreno desde el punto A, está llegando retrasada y corresponde a la lluvia de intensidad en tiempo T0= 0 segundos.

Para determinar el caudal, tendremos que hacer una suma de cada segmento de la cuenca, multiplicado por la intensidad instantánea, en función del tiempo que se tarda el agua en llegar desde ese segmento, al punto B. Y esto es muy laborioso.

Es por ello que optamos por un método más sencillo, al que se le denomina Racional. En este método se emplean los valores de las intensidades promedio de la lluvia, y el área drenada total y sin sectorizar.

Supongamos que hemos medido los valores de intensidad promedio, para la lluvia máxima que se presenta cada 20 años.

Para dt = 5 minutos = 1/12 hora.

Tiempo min 5 10 15 20 25 30

Volumen medido cm 2.83 4.17 5.15 6 6.79 7.5

Diferencial de Vol. cm 2.83 1.34 0.98 0.85 0.79 0.71

Dv / dt cm /hr 33.96 16.08 11.76 10.2 9.48 8.52

Vol / tiemp.tot. = Intensidad media

cm /hr 33.96 25.02 20.6 18 16.3 15

D= distancia entre el punto A y B = 500 metros Dv= diferencial del volumen Dt= diferencial del tiempo = 5 minutos = 1/12 hora = 0.0833333333 I= intensidad de la lluvia (cm/hora)

Si consideramos que en el ejemplo anterior, el valor de los caudales aportados por el punto A, corresponden al tiempo t0=0, con un valor de dv/dt= 34 cm/hr.

Y los del punto B, para T2= 30 min, con dv/dt = 8.52 cm/hr. Podríamos suponer que el valor promedio en la cuenca, es el que corresponde a T= 15 minutos.

Sin embargo, la mayoría de la cuencas tiene un área mayor del lado del parte aguas que de la descarga, por lo que será más cercano a la realidad, suponer que el valor real del promedio es cuando se tiene un t = 40% de T2.

Que en nuestro caso será de 12 minutos, y que nos proporcionará una intensidad instantánea (dv/dt) de 15 cm/hr. (Interpolando en la tabla)

Ahora bien, si en lugar de lo anterior, utilizamos la intensidad media de la lluvia para T2= 30 minutos, tendremos un valor de I= 15 cm/hr. Que es idéntico al anteriormente descrito.

De este ejemplo deducimos que la intensidad de la lluvia promedio puede usarse en conjunto con la superficie drenada total, y el tiempo que tarda toda la cuenca en ser drenada, para obtener el gasto máximo existente.

Page 74: TallerTaller_SIATL_2013 Siatl 2013

74

Conociendo el valor de frecuencia de diseño (F), se despeja el valor de la intensidad promedio para la lluvia MÁXIMA (I).

Ecuación 3

Donde

I = Intensidad promedio de la lluvia máxima en cm/hora.

F = Frecuencia de presentación de la lluvia máxima en años.

t = Tiempo de duración de la lluvia, en minutos.

Nota: Esta ecuación fue determinada por el Ing. Raúl Cadena Cepeda, mediante el análisis de todas las lluvias ocurridas entre 1926 y 1966 y se acepta como válida en las revisiones oficiales por la SECRETARÍA DE DESARROLLO URBANO DEL ESTADO DE N.L.

Tabla 2

Frecuencia de lluvia (años)

minutos 2 5 10 20

5 10.79 17.06 24.13 34.13

6 9.92 15.69 22.19 31.38

7 9.24 14.62 20.67 29.23

8 8.69 13.75 19.44 27.49

9 8.24 13.02 18.41 26.04

10 7.85 12.41 17.54 24.81

11 7.51 11.87 16.79 23.75

12 7.21 11.41 16.13 22.81

13 6.95 10.99 15.55 21.99

14 6.72 10.63 15.03 21.25

15 6.51 10.29 14.56 20.59

16 6.32 9.99 14.13 19.99

17 6.15 9.72 13.74 19.44

18 5.99 9.47 13.39 18.93

19 5.84 9.23 13.06 18.47

20 5.7 9.02 12.75 18.04

21 5.58 8.82 12.47 17.64

22 5.46 8.63 12.21 17.26

23 5.35 8.46 11.96 16.91

24 5.24 8.29 11.73 16.59

25 5.15 8.14 11.51 16.28

26 5.06 7.99 11.3 15.99

27 4.97 7.86 11.11 15.71

28 4.89 7.73 10.93 15.45

29 4.81 7.6 10.75 15.2

30 4.73 7.48 10.58 14.97

32 4.59 7.27 10.27 14.53

34 4.47 7.07 9.99 14.13

36 4.35 6.88 9.73 13.76

38 4.25 6.71 9.49 13.43

40 4.15 6.56 9.27 13.11

45 3.93 6.21 8.78 12.42

50 3.74 5.92 8.37 11.83

60 3.44 5.44 7.69 10.88

70 3.21 5.07 7.17 10.14

80 3.01 4.77 6.74 9.53

90 2.86 4.51 6.39 9.03

100 2.72 4.3 6.08 8.6

110 2.6 4.12 5.82 8.23

120 2.5 3.96 5.59 7.91

130 2.41 3.81 5.39 7.62

140 2.33 3.68 5.21 7.37

150 2.26 3.57 5.05 7.14

160 2.19 3.47 4.9 6.93

170 2.13 3.37 4.77 6.74

INTENSIDADES MEDIAS PARA LLUVIAS MÁXIMAS

I = intensidad de la lluvia (cm/hora)

Page 75: TallerTaller_SIATL_2013 Siatl 2013

75

La frecuencia de presentación de la lluvia de máxima intensidad, es un parámetro importante, a emplearse para la determinación de los caudales.

Para obtener el valor de la intensidad de la lluvia es necesario primero, determinar el tiempo de concentración (tc) según la ecuación 2, además de igualar ese valor con el del tiempo de duración de la lluvia. t = tc

A continuación los valores recomendados para diferentes proyectos:

Valores de frecuencia de presentación de la lluvia de máxima intensidad, a emplearse en:

USO DEL SUELO...............FRECUENCIA (F), EN AÑOS

Zonas sin urbanizar 5 años Zonas suburbanas 10 años Zonas residenciales 20 años Centros de ciudades 25 años Plantas industriales 20años Azoteas de edificios 20 años Bajantes pluviales 20 años

Nota: debido al cambio climatológico mundial, esta tabla fue modificada en enero del 2,000.

8.4 Coeficiente de escurrimiento (c)

Es la relación del caudal que fluye sobre el terreno, al caudal llovido. Este parámetro no debe confundirse con el coeficiente de infiltración, el cual no es empleado en nuestro estudio.

Los valores que se recomiendan para el coeficiente de escurrimiento son los siguientes:

Tabla 3 Coeficiente de escurrimiento:

Uso del suelo y pendiente del terreno

Textura del suelo

Gruesa Media Fina

Bosque Plano (0-5% pendiente) Ondulado (6-10% pendiente) Escarpado (11-30% pendiente)

0.10 0.25 0.30

0.30 0.35 0.50

0.40 0.50 0.60

Pastizales Plano (0-5% pendiente) Ondulado (6-10% pendiente) Escarpado (11-30% pendiente)

0.10 0.16 0.22

0.30 0.36 0.42

0.40 0.55 0.60

Terrenos cultivados Plano (0-5% pendiente) Ondulado (6-10% pendiente) Escarpado (11-30% pendiente)

0.30 0.40 0.52

0.50 0.60 0.72

0.60 0.70 0.82

Page 76: TallerTaller_SIATL_2013 Siatl 2013

76

Se obtiene el valor del coeficiente de escurrimiento (C), de acuerdo con los tipos de suelos, uso del suelo y pendiente. Cuando el área de drenaje presenta diferentes tipos de suelos, vegetación y pendiente media. El coeficiente de escurrimiento (C), se obtendrá para cada área parcial y posteriormente se calculará el promedio ponderado.

Otro medio para obtener el coeficiente de escurrimiento, es utilizando la capa de unidades de escurrimiento del continuo de hidrología superficial escala 1:250,000 de INEGI o bien la carta hidrológica.

8.5 Determinación del área drenada

El área drenada se obtiene de los planos topográficos y se refiere a la superficie de la cuenca tributaria del punto ¨a ¨.

8.6 Velocidad del caudal o gasto. 5

La velocidad del agua que se desliza en una corriente o en un canal abierto está determinada por varios factores.

El gradiente o la pendiente. Si todos los demás factores son iguales, la velocidad de la corriente

aumenta cuando la pendiente es más pronunciada.

La rugosidad. El contacto entre el agua y los márgenes de la corriente causa una resistencia (fricción) que depende de la suavidad o rugosidad del canal. En las corrientes naturales la cantidad de vegetación influye en la rugosidad al igual que cualquier irregularidad que cause turbulencias.

Forma. Los canales pueden tener idénticas áreas de sección transversal, pendientes y rugosidad, pero puede haber diferencias de velocidad de la corriente en función de su forma. La razón es que el agua que está cerca de los lados y del fondo de una corriente se desliza más lentamente a causa de la fricción; un canal con una menor superficie de contacto con el agua tendrá menor resistencia fricción y, por lo tanto, una mayor velocidad.

El parámetro utilizado para medir el efecto de la forma del canal se denomina radio hidráulico del canal. Se define como la superficie de la sección transversal dividida por el perímetro mojado, o sea la longitud del lecho y los lados del canal que están en contacto con el agua. El radio hidráulico tiene, por consiguiente, una cierta longitud y se puede representar por las letras M o R. A veces se denomina también radio medio hidráulico o profundidad media hidráulica.

Todas estas variables que influyen en la velocidad de la corriente se han reunido en una ecuación empírica conocida como la fórmula de Manning, tal como sigue:

5 Tema extraído del documento “Medición sobre el Terreno de la Erosión del Suelo y de la Escorrentía” – Boletín de Suelos

de la FAO -68, Autor.- N.W. Hudson Silsoe Associates.

Juan
Resaltado
Page 77: TallerTaller_SIATL_2013 Siatl 2013

77

Donde:

V = es la velocidad media de la corriente en metros por segundo

R = es el radio hidráulico en metros (la letra M se utiliza también para designar al radio hidráulico, con el significado de profundidad hidráulica media)

S = es la pendiente media del canal en metros por metro (también se utiliza la letra i para designar a la pendiente)

n = es un coeficiente, conocido como n de Manning o coeficiente de rugosidad de Manning.

a) Canales sin vegetación

Sección transversal uniforme, alineación regular sin guijarros ni vegetación, en suelos sedimentarios finos

0,016

Sección transversal uniforme, alineación regular, sin guijarros ni vegetación, con suelos de arcilla duros u horizontes endurecidos

0,018

Sección transversal uniforme, alineación regular, con pocos guijarros, escasa vegetación, en tierra franca arcillosa

0,020

Pequeñas variaciones en la sección transversal, alineación bastante regular, pocas piedras, hierba fina en las orillas, en suelos arenosos y arcillosos, y también en canales recién limpiados y rastrillados

0,0225

Alineación irregular, con ondulaciones en el fondo, en suelo de grava o esquistos arcillosos, con orillas irregulares o vegetación

0,025

Sección transversal y alineación irregulares, rocas dispersas y grava suelta en el fondo, o con considerable vegetación en los márgenes inclinados, o en un material de grava de hasta 150 mm de diámetro

0,030

Canales irregulares erosionados, o canales abiertos en la roca 0,030

(b) Canales con vegetación

Gramíneas cortas (50-150 mm) 0,030-0,060 Gramíneas medias (150-250 mm) 0,030-0,085

Gramíneas largas (250-600 mm) 0,040-0,150

(c) Canales de corriente natural

Limpios y rectos 0,025-0,030

Sinuosos, con embalses y bajos 0,033-0,040 Con muchas hierbas altas, sinuosos 0,075-0,150

Tabla 5. Coeficientes de rugosidad

En sentido estricto, el gradiente de la superficie del agua debería utilizarse en la fórmula de Manning; es posible que no sea el mismo gradiente del lecho de la corriente cuando el agua está subiendo o bajando. Sin embargo, no es fácil medir el nivel de la superficie con precisión por lo que se suele calcular una media del gradiente del canal a partir de la diferencia de elevación entre varios conjuntos de puntos situados a 100 metros de distancia entre ellos.

Page 78: TallerTaller_SIATL_2013 Siatl 2013

78

Otra fórmula empírica sencilla para calcular la velocidad de la corriente es la fórmula de zanjas colectoras de Elliot, que es la siguiente:

Donde:

V = es la velocidad media de la corriente en metros por segundo.

m = es el radio hidráulico en metros.

h = es la pendiente del canal en metros por kilómetro.

Esta fórmula parte del supuesto de un valor de n de Manning de 0,02 y, por consiguiente, sólo es adecuada para caudales naturales de corriente libre con escasa rugosidad.

8.7 Radio Hidráulico6

Es un parámetro importante en el dimensionado de canales, tubos y otros componentes de las obras hidráulicas, generalmente es representado por la letra R, y expresado en m es la relación entre:

El área mojada (A, en m²). El perímetro mojado (P, en m).

Es decir:

Las expresiones que permiten su cálculo son función de la forma geométrica de la sección transversal del canal.

Donde: L = ancho de la base del canal (en m).

Área mojada:

Perímetro mojado:

6 Tema extraído de Wikipedia – La enciclopedia libre

8.7.1 Canales de sección rectangular

Page 79: TallerTaller_SIATL_2013 Siatl 2013

79

Donde: siendo: (α) el ángulo del talud con la vertical.

Área mojada:

Perímetro mojado:

Área mojada:

Perímetro mojado:

Donde: r = radio de la sección circular (en m); la sección mojada limitada por la cuerda c, que sostiene el ángulo al centro Φ medido en grados sexagesimales.

Área mojada:

Perímetro mojado:

En el caso particular de las circulares trabajando con sección plena, es decir en presión, el radio hidráulico es:

Se han usado en el pasado y se siguen usando, especialmente para canalizaciones de aguas servidas, o canalizaciones mixtas de aguas servidas y aguas de lluvia, donde la variación de caudales en el tiempo puede ser considerable, secciones especiales o compuestas. En estos casos la determinación de los parámetros A, P y R se realiza caso por caso en función de la geometría de la sección. El radio hidráulico de un canal o ducto, generalmente representado por la letra R y expresado en m, es la relación entre:

8.7.2 Canales de sección triangular

8.7.3 Canales de sección trapezoidal

8.7.4 Canales de sección circular

8.7.5 Canales de secciones especiales

Page 80: TallerTaller_SIATL_2013 Siatl 2013

80

El área mojada (A, en m²); y,

El perímetro mojado (P, en m)

Su determinación es función de la forma geométrica del canal.

Es el caso general para los canales naturales, pero existen también canales construidos con secciones geométricas definidas, y que en el transcurso del tiempo, por efecto de la erosión, se han transformado en irregulares y deben ser tratados como tales para obtener resultados de análisis correctos.

En estos casos se determina, durante visitas de campo, los tramos que se pueden considerar homogéneos con buena aproximación. Después del levantamiento topográfico y batimétrico de la sección, se divide la misma en fajas verticales. Para cada faja vertical "i" se determina Ai, considerándolo un triángulo, o un trapecio; y como Pi, se considera el respectivo tramo de fondo. De esta forma el cálculo del área mojada y del perímetro mojado se hace con las expresiones:

La capacidad del cauce se determina multiplicando el área mojada por la velocidad media de la corriente que

se obtuvo con la fórmula de Manning.

8.7.6 Canales de sección irregular

8.7.7 Capacidad del cauce.

Page 81: TallerTaller_SIATL_2013 Siatl 2013

81

9. Bibliografía CRWR (2007). Curso –Taller de ArcHydro –WrapHydro , Universidad de Texas, 2007, Texas, USA.

Cadena R. (1998). Manual para Diseño de Redes de Drenaje Pluvial, Nuevo León: http://www.rcadena.com/dp/index.html

ESRI (2006). What is a geometric network?, ArcGis9.2 DeskTop Help,

http://webhelp.esri.com/arcgisdesktop/9.2/index.cfm?TopicName=What_is_a_geometric_network?

Hudson N. (1997). Medición sobre el Terreno de la Erosión del Suelo y de la Escorrentía, Silsoe Associates ,Ampthill,

Bedford, Reino Unido Reino Unido: (Boletín de Suelos de la FAO - 68).

INEGI. (2010). Documento Técnico Descriptivo de la Red hidrográfica. Escala 1:50 000 Edición 2.0.

Martínez S. (2008). Introducción a la Hidrología Superficial. Universidad Autónoma de Aguascalientes: Edición del autor.

McKay, C., Hill, J., Bondelid, Tim., (2008). Super-Charging the NHD with Value-Added Attributes, USA: US

Environmental Protection Agency, Office of Water

Rupert B. (2003). Processing hydrologic networks, Canada.

Sondheim, M., Skea D., De Olivera, J. (2011). Feature Skeletonizer Utility, Canada: BC Ministry of Sustainable Resource

Management, British Columbia.

Wikipedia- La enciclopedia libre

Zoun R., Schneider K., Whiteaker T., Maidment D. (2001). Applying the ArcGIS Hydro Data Model CE 394K GIS in Water

Resources, USA: University of Texas at Austin.

Page 82: TallerTaller_SIATL_2013 Siatl 2013

82

Elaboró

Departamento de Análisis Espacial

Subdirección de Edición Digital

Dirección de Edición de Información Geográfica

Dirección General Adjunta de Integración de Información Geoespacial

Dirección General de Geografía y Medio Ambiente

Instituto Nacional de Estadística y Geografía

Edificio Sede, Oficinas Centrales

Av. Héroe de Nacozari Sur 2301

Jardines del Parque CP.20276

Aguascalientes, Ags., México

Puerta 9 acceso.

Tel.- (449) 9105300 ext. 1759