taller delgado-ullaguari_1d

10
COMPUTACION BASICA Integrantes: Daniel Delgado; Jorge Ullaguari Paralelo: D-107 Fecha: 2010-04-23 Fibra Óptica en redes Las redes de fibra óptica se emplean cada vez más en telecomunicación, debido a que las ondas de luz tienen una frecuencia alta y la capacidad de una señal para transportar información aumenta con la frecuencia. Actualmente se utilizan tres tipos de fibras ópticas para la transmisión de datos: 1. Fibra monomodo. Permite la transmisión de señales con ancho de banda hasta 2 GHz. 2. Fibra multimodo de índice gradual. Permite transmisiones de hasta 500 MHz. 3. Fibra multimodo de índice escalonado. Permite transmisiones de hasta 35 MHz. Se han llegado a efectuar transmisiones de decenas de miles de llamadas telefónicas a través de una sola fibra, debido a su gran ancho de banda. Otra ventaja es la gran fiabilidad, su tasa de error es mínima. Su peso y diámetro la hacen ideal frente a cables de pares o coaxiales. Normalmente se encuentra instalada en grupos, en forma de mangueras, con un núcleo metálico que les sirve de protección y soporte frente a las tensiones producidas. Su principal inconveniente es la dificultad de realizar una buena conexión de distintas fibras con el fin de evitar reflexiones de la señal, así como su fragilidad. Aplicaciones LAN de fibra son ampliamente utilizadas para comunicación a larga distancia, proporcionando conexiones

Upload: jorge-andres

Post on 04-Jun-2015

233 views

Category:

Education


0 download

DESCRIPTION

Taller

TRANSCRIPT

Page 1: Taller delgado-ullaguari_1D

COMPUTACION BASICA

Integrantes: Daniel Delgado; Jorge Ullaguari

Paralelo: D-107

Fecha: 2010-04-23

Fibra Óptica en redes

Las redes de fibra óptica se emplean cada vez más en telecomunicación, debido a que las ondas de luz tienen una frecuencia alta y la capacidad de una señal para transportar información aumenta con la frecuencia.

Actualmente se utilizan tres tipos de fibras ópticas para la transmisión de datos:

1. Fibra monomodo. Permite la transmisión de señales con ancho de banda hasta 2 GHz.

2. Fibra multimodo de índice gradual. Permite transmisiones de hasta 500 MHz.3. Fibra multimodo de índice escalonado. Permite transmisiones de hasta 35

MHz.

Se han llegado a efectuar transmisiones de decenas de miles de llamadas telefónicas a través de una sola fibra, debido a su gran ancho de banda.

Otra ventaja es la gran fiabilidad, su tasa de error es mínima. Su peso y diámetro la hacen ideal frente a cables de pares o coaxiales. Normalmente se encuentra instalada en grupos, en forma de mangueras, con un núcleo metálico que les sirve de protección y soporte frente a las tensiones producidas.

Su principal inconveniente es la dificultad de realizar una buena conexión de distintas fibras con el fin de evitar reflexiones de la señal, así como su fragilidad.

Aplicaciones

LAN de fibra son ampliamente utilizadas para comunicación a larga distancia, proporcionando conexiones transcontinentales y transoceánicas, ya que una ventaja de los sistemas de fibra óptica es la gran distancia que puede recorrer una señal antes de necesitar un repetidor o regenerador para recuperar su intensidad.

En la actualidad, los repetidores de los sistemas de transmisión por fibra óptica están separados entre sí unos 100 km, frente a aproximadamente 1,5 km en los sistemas eléctricos. Los amplificadores ópticos recientemente desarrollados pueden aumentar todavía más esta distancia.

Page 2: Taller delgado-ullaguari_1D

Una aplicación cada vez más extendida de la fibra óptica son las redes de área local, Las redes de área local están formadas por un conjunto de computadoras que pueden compartir datos, aplicaciones y recursos, por ejemplo impresoras.

Las computadoras de una red de área local están separadas por distancias de hasta unos pocos kilómetros, y suelen usarse en oficinas o campus universitarios. Una LAN permite la transferencia rápida y eficaz de información entre un grupo de usuarios y reduce los costes de explotación. Este sistema aumenta el rendimiento de los equipos y permite fácilmente la incorporación a la red de nuevos usuarios. El desarrollo de nuevos componentes electroópticos y de óptica integrada aumentará aún más la capacidad de los sistemas de fibra.

Requerimientos técnicos y económicos

Las redes por fibra óptica son un modelo de red que permite satisfacer las nuevas y crecientes necesidades de capacidad de transmisión y seguridad demandadas por las empresas operadoras de telecomunicación, todo ello además con la mayor economía posible.

Mediante las nuevas tecnologías, con elementos de red puramente ópticos, se consiguen los objetivos de aumento de capacidad de transmisión y seguridad.

Aumento de la capacidad de transmisión

Cuando las empresas encargadas de abastecer las necesidades de comunicación por medio de fibra necesitaron mayor capacidad entre dos puntos, pero no disponían de las tecnologías necesarias o de unas fibras que pudieran llevar mayor cantidad de datos, la única opción que les quedaba era instalar más fibras entre estos puntos. Pero para llevar a cabo esta solución había que invertir mucho tiempo y dinero, o bien añadir un mayor número de señales multiplexadas por división en el tiempo en la misma fibra, lo que también tiene un límite.

Es en este punto cuando la multiplexación por división de longitud de onda (WDM) proporcionó la obtención, a partir de una única fibra, de muchas fibras virtuales, transmitiendo cada señal sobre una portadora óptica con una longitud de onda diferente. De este modo se podían enviar muchas señales por la misma fibra como si cada una de estas señales viajara en su propia fibra.

Aumento de la seguridad

Los diseñadores de las redes utilizan muchos elementos de red para incrementar la capacidad de las fibras ya que un corte en la fibra puede tener serias consecuencias.

En las arquitecturas eléctricas empleadas hasta ahora, cada elemento realiza su propia restauración de señal. Para un sistema de fibras tradicional con muchos canales en una fibra, una rotura de la fibra podría acarrear el fallo de muchos sistemas independientes. Sin embargo, las redes ópticas pueden realizar la protección de una

Page 3: Taller delgado-ullaguari_1D

forma más rápida y más económica, realizando la restauración de señales en la capa óptica, mejor que en la capa eléctrica. Además, la capa óptica puede proporcionar capacidad de restauración de señales en las redes que actualmente no tienen un esquema de protección. Así, implementando redes ópticas, se puede añadir la capacidad de restauración a los sistemas asíncronos embebidos sin necesidad de mejorar los esquemas de protección eléctrica.

Reducción de Costos

En los sistemas que utilizan únicamente multiplexación eléctrica, cada punto que demultiplexa señales necesitará un elemento de red eléctrica para cada uno de los canales, incluso si no están pasando datos en ese canal. En cambio, si lo que estamos utilizando es una red óptica, solo aquellas longitudes de onda que suban o bajen datos a un sitio necesitarán el correspondiente nodo eléctrico. Los otros canales pueden pasar simplemente de forma óptica, proporcionando así un gran ahorro de gastos en equipos y administración de red.

Otro de los grandes aspectos económicos de las redes ópticas es la capacidad para aprovechar el ancho de banda, algo que no sucedía con las fibras simples. Para maximizar la capacidad posible en una fibra, las empresas de servicios pueden mejorar sus ingresos con la venta de longitudes de onda, independientemente de la tasa de datos (bit rate) que se necesite. Para los clientes, este servicio proporciona el mismo ancho de banda que una fibra dedicada.entre otros

Sección longitudinal de una fibra óptica

Page 4: Taller delgado-ullaguari_1D

Topologías del Canal de fibra

Un enlace en el Canal de Fibra consiste en dos fibras unidireccionales que transmiten en direcciones opuestas. Cada fibra está unida a un puerto transmisor (TX) y a un puerto receptor (RX). Dependiendo de las conexiones entre los diferentes elementos, podemos distinguir tres topologías de Canal de fibra principales:

Punto a punto (FC-P2P)

Dos dispositivos se conectan el uno al otro directamente. Es la topología más simple, con conectividad limitada a dos elementos.

Anillo arbitrado (FC-AL)

En este diseño, todos los dispositivos están en un bucle o anillo, similar a una red token ring. El añadir o quitar un elemento del anillo hace que se interrumpa la actividad en el mismo. El fallo de un dispositivo hace que se interrumpa el anillo

Un anillo también se puede hacer conectando cada puerto al siguiente elemento formando el anillo. A menudo, un anillo arbitrado entre dos dispositivos negociará para funcionar como conexión P2P.

Medio conmutado (FC-SW)

Todos los dispositivos o bucles de dispositivos se conectan a conmutadores (switches) de Canal de fibra, conceptualmente similares a las modernas implementaciones ethernet. Los conmutadores controlan el estado del medio físico, proporcionando interconexiones optimizadas.

Page 5: Taller delgado-ullaguari_1D

CONECCIONES INALAMBRICAS EN TIPOS DE REDES

Redes inalambricas.

Una de las tecnologías más prometedoras y discutidas en esta década es la de poder comunicar computadoras mediante tecnología inalámbrica. La conexión de computadoras mediante Ondas de Radio o Luz Infrarroja, actualmente está siendo ampliamente investigado. Las Redes Inalámbricas facilitan la operación en lugares donde la computadora no puede permanecer en un solo lugar, como en almacenes o en oficinas que se encuentren en varios pisos.

También es útil para hacer posibles sistemas basados en plumas. Pero la realidad es que esta tecnología está todavía en pañales y se deben de resolver varios obstáculos técnicos y de regulación antes de que las redes inalámbricas sean utilizadas de una manera general en los sistemas de cómputo de la actualidad.

No se espera que las redes inalámbricas lleguen a remplazar a las redes cableadas. Estas ofrecen velocidades de transmisión mayores que las logradas con la tecnología inalámbrica. Mientras que las redes inalámbricas actuales ofrecen velocidades de 2 Mbps, las redes cableadas ofrecen velocidades de 10 Mbps y se espera que alcancen velocidades de hasta 100 Mbps. Los sistemas de Cable de Fibra Optica logran velocidades aún mayores, y pensando futuristamente se espera que las redes inalámbricas alcancen velocidades de solo 10 Mbps.

Sin embargo se pueden mezclar las redes cableadas y las inalámbricas, y de esta manera generar una "Red Híbrida" y poder resolver los últimos metros hacia la estación. Se puede considerar que el sistema cableado sea la parte principal y la inalámbrica le proporcione movilidad adicional al equipo y el operador se pueda desplazar con facilidad dentro de un almacén o una oficina. Existen dos amplias categorías de Redes Inalámbricas:

1.1. De Larga Distancia.- Estas son utilizadas para transmitir la información en

espacios que pueden variar desde una misma ciudad o hasta varios países circunvecinos (mejor conocido como Redes de Area Metropolitana MAN); sus velocidades de transmisión son relativamente bajas, de 4.8 a 19.2 Kbps.

1. De Corta Distancia.- Estas son utilizadas principalmente en redes corporativas cuyas oficinas se encuentran en uno o varios edificios que no se encuentran muy retirados entre si, con velocidades del orden de 280 Kbps hasta los 2 Mbps.

Existen dos tipos de redes de larga distancia: Redes de Conmutación de Paquetes (públicas y privadas) y Redes Telefónicas Celulares. Estas últimas son un medio para transmitir información de alto precio. Debido a que los módems celulares actualmente son más caros y delicados que los convencionales, ya que requieren circuiteria especial, que permite mantener la pérdida de señal cuando el circuito se alterna entre una célula y otra. Esta pérdida de señal no es problema para la comunicación de voz debido a que el retraso en la conmutación dura unos cuantos cientos de milisegundos,

Page 6: Taller delgado-ullaguari_1D

lo cual no se nota, pero en la transmisión de información puede hacer estragos. Otras desventajas de la transmisión celular son:

La carga de los teléfonos se termina fácilmente.

La transmisión celular se intercepta fácilmente (factor importante en lo relacionado con la seguridad).

Las velocidades de transmisión son bajas.

Todas estas desventajas hacen que la comunicación celular se utilice poco, o únicamente para archivos muy pequeños como cartas, planos, etc.. Pero se espera que con los avances en la compresión de datos, seguridad y algoritmos de verificación de errores se permita que las redes celulares sean una opción redituable en algunas situaciones.

La otra opción que existe en redes de larga distancia son las denominadas: Red Pública De Conmutación De Paquetes Por Radio. Estas redes no tienen problemas de pérdida de señal debido a que su arquitectura está diseñada para soportar paquetes de datos en lugar de comunicaciones de voz. Las redes privadas de conmutación de paquetes utilizan la misma tecnología que las públicas, pero bajo bandas de radio frecuencia restringidas por la propia organización de sus sistemas de cómputo.

Tipos de redes inalámbricas. (B/G). El estándar 802.11b especifica 4 velocidades diferentes de funcionamiento, que son: 1, 2, 5.5 y 11 Mbps. La capacidad máxima de 11 Mbps sólo se consigue en condiciones óptimas, es decir, en áreas próximas al Punto de Acceso y sin elementos que interfieran la comunicación como interferencias electromagnéticas o elementos arquitectónicos (muros de hormigón). Si la señal no fuera lo suficientemente fuerte, la velocidad se reducirá automáticamente, por tanto conforme nos vamos alejando del Punto de Acceso la velocidad se reduce. El nuevo estándar 802.11g permite hasta 54 Mbps, todavía lejos de los 100 Mbps de velocidad máxima que se consiguen en una red Fast Ethernet.

Con respecto al alcance máximo del área de cobertura, las distancias son equiparables a las conseguidas con cableado (alrededor de 100 metros) si bien se pueden conseguir mayores distancias utilizando antenas. El alcance máximo es teórico ya que en la práctica, se ve reducido por interferencias electromagnéticas y elementos arquitectónicos.

CONECCIONES INALÁMBRICAS EN LAS TOPOLOGIAS

TOPOLOGÍA DE INTERNET”

Una de las topologías más importantes en la actualidad sobre redes inalámbricas es la topología de Internet, que muestra como es que se interconectan grandes grupos de trabajo para compartir información.

Varias computadoras individuales conectadas entre sí forman una red de área local

Page 7: Taller delgado-ullaguari_1D

(LAN). Internet consiste en una serie de redes (LAN) interconectadas. Las computadoras personales y las estaciones de trabajo pueden estar conectadas a una red de área local mediante un módem a través de una conexión RDSI o RTC, o directamente a la LAN. También hay otras formas de conexión a redes, como la conexión T1 y la línea dedicada. Los puentes y los hubs vinculan múltiples redes entre sí. Un enrutador transmite los datos a través de las redes y determina la mejor ruta de transmisión.

TOPOLOGIA Y COMPONENTES DE UNA LAN HIBRIDA

En el proceso de definición de una Red Inalámbrica Ethernet debe de olvidar la existencia del cable, debido a que los componentes y diseños son completamente nuevos. Respecto al CSMA/CD los procedimientos de la subcapa MAC usa valores ya definidos para garantizar la compatibilidad con la capa MAC. La máxima compatibilidad con las redes Ethernet cableadas es, que se mantiene la segmentación.

Además la células de infrarrojos requieren de conexiones cableadas para la comunicación entre sí. La radiación infrarroja no puede penetrar obstáculos opacos. Una LAN híbrida (Infrarrojos/Coaxial) no observa la estructura de segmentación de la Ethernet cableada pero toma ventaja de estos segmentos para interconectar diferentes células infrarrojas.

La convivencia de estaciones cableadas e inalámbricas en el mismo segmento es posible y células infrarrojas localizadas en diferentes segmentos pueden comunicarse por medio de un repetidor Ethernet tradicional. La LAN Ethernet híbrida es representada en la Fig. 3.3 donde se incluyen células basadas en ambas reflexiones pasiva y de satélite.

FIG 3.3.

Page 8: Taller delgado-ullaguari_1D

En comparación con los componentes de una Ethernet cableada (Por ejemplo MAU´S, Repetidores), 2 nuevos componentes son requeridos para soportar la Red híbrida. Un componente para adaptar la estación al medio óptico, la Unidad Adaptadora al Medio Infrarrojo (IRMAU), descendiente del MAU coaxial, y otro componente para el puente del nivel físico, del coaxial al óptico, la Unidad Convertidora al Medio (MCU), descendiente del repetidor Ethernet. La operación de estos componentes es diferente para las células basadas en reflexión activa (satélite) y las de reflexión pasiva.