supramolecularhydrogelsforproteincrystallizaon · 2. protein#crystallizaon #...

1
2. Protein crystalliza1on Supramolecular Hydrogels for Protein Crystalliza1on Mª Teresa ConejeroMuriel a , Estela PinedaMolina a , Mónica Moral Muñoz b , Juan de Dios GarcíaLópez Durán b , Luis Álvarez de Cienfuegos c , Juan J. DíazMochón d, e and José A. Gavira a . a Laboratorio de Estudios Cristalográficos InsLtuto Andaluz Ciencias de la Tierra, Avda de las Palmeras, 4, Armilla, 18100, Granada, Spain. b Dpto. de Física Aplicada, c Dpto. de Química Orgánica, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain. d Dpto. de Química FarmacéuLca y Orgánica, Facultad de Farmacia, Universidad de Granada, 18071 Granada, Spain. e GENYO. Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, PTS Granada, Avenida de la Ilustración 114, 18016 Granada, Spain Email: [email protected] 3. Results Acknowledgements This work was supported by project BIO201016800 and the “Factoría de Cristalización”, CONSOLIDER INGENIO2010 from the Ministerio de Ciencia e Innovación, Spain. MTCM thanks CSIC for her JAE-Pre research contract. EPM is supported by a `Ramón y Cajal´ research contract (MINECO). JJD M benefits from Ministerio de Economia y CompeLLvidad "Ramon y Cajal Fellowoship" . References [1]. a) Terech, P.; Weiss, R. G. Chem. Rev. 1997, 97, 3133. b) George, M.; Weiss, R. G. Acc. Chem. Rev. 2006,39, 489. [2]. a) Piepenbrock, M.O. M.; Lloyd, G. O.; Clarke, N., Steed, J. W. Chem. Rev. 2010, 110, 1960. b) Maeda, H. Chem. Eur. J. 2008, 36, 11274. [3]. Reches, M.; Gazit, E. Science 2003, 300, 625. [4]. a) Sangeetha, N. M.; Maitra, U. Chem. Soc. Rev. 2005, 34, 821. b) Hirst, A. R.; Escuder, B.; Miravet, J. F.; Smith, D. K. Angew. Chem. Int. Ed. 2008, 47, 8002. c) Escuder, B.; RodríguezLlansola, F.; Miravet, J. F. New J. Chem. 2010, 34, 1044. d) Steed, J. W. Chem. Soc. Rev. 2010, 39, 3686. e) Steed, J. W. Chem. Commun., 2011, 47, 1379. [5]. Antara Dasgupta, Julfikar Hassan Mondal and DebapraLm Das, RSC Adv., 2013, 3, 9117–9149. [6]. a) Lorber, B.; Sauter, C.; TheobaldDietrich, A.; Moreno, A.; Schellenberger, P.; Robert, M.C.; Capelle, B.; Sanglier, S.; PoLer, N.; Giege, R. Prog Biophys Mol Biol 2009, 101, (1), 1325. b) Gavira, J. A.; Van Driessche, A. E. S.; GarciaRuiz, J.M., Crystal Growth & Design 2013, 13, (6), 25222529. [7]. Otálora F, Gavira JA, Ng JD, GarcíaRuiz JM. Prog Biophys Mol Biol. 2009 Nov;101(13):2637. 1. Introduc1on Gels are systems with a high proporLon of liquid but behave as solids with viscoelasLc properLes. Recently, novel gels based on low molecular weight gelators (LMWGs) have been developed and studied [1]. LMWGs are capable of selfassemble by secondary forces to give 3D supramolecular networks of nanofibers that immobilize the liquid. Supramolecular gels have inherent properLes derived from the low molecular weight and weak interacLons of the monomers such as reversibility [2] and well defined 2D structures [3]. Thus, it has allowed the development of gels with very specific and parLcular properLes that have found applicaLons in a great variety of fields from medicine to electronics [4]. PolypepLdes Supramolecular Gel (PSG) belongs to this group of LMWGs adding to their general characterisLcs a high level of biocompaLbility and tunable interacLon properLes [5]. In protein crystallizaLon the use of gels of different nature has also been widely studied and its benefits have been highlighted at different levels, i.e. the growth: improving the crystal quality or controlling the morphology; the nucleaLon: inducing or inhibiLng the nucleaLon as a funcLon of the gel nature; the crystal protecLon: prevenLng osmoLc shock, avoiding the use of cryoprotectants, etc [6 and references herein]. We have synthesized and characterized a family of LMWHydrogelators (HG2.6) based on selfassembling of small polypepLdes formed in pure water. Due to its parLcular properLes we have explored the use of PSG on the crystallizaLon of two model proteins, lysozyme (HEWL) and glucose isomerase and two target proteins, Tcm16 and TodT. DiffracLon data of these four proteins have been compared with those obtained in agarose gel. 1. Hydrogel characteriza1on 2. Protein crystalliza1on Lysozyme Glucose isomerase Tcm16 1. Gel characteriza1on Rheometer Transmission Electron Microscopy Circular Dichroism Crystalliza1on method Protein concentra1on (mg/ml) Precipitant Lysozyme Two layer (2L) counter difussion 140220 3.510% NaCl Glucose isomerase Batch 100140 30%PEG 4K, 0.1M Tris pH 8.5, 0.2M MgCl 2 Tcm16 Counter difussion GCB 2040 10mM Tris pH 8.5, 1M ammonium sulphate TodT Batch 1014 10% Isopropanol, 20%PEG 4K, 0.1M Hepes pH7.5 Ini1al protein concentra1on (mg/ml) Protein concentra1on in gel (mg/ml) Precipitant Lysozyme 200 140 6% NaCl Glucose isomerase 110 100 30%PEG 4K, 0.1M Tris pH 8.5, 0.2M MgCl 2 Tcm16 28 20 10mM Tris pH 8.5, 1M ammonium sulphate TodT 12 9,5 10% Isopropanol, 20%PEG 4K, 0.1M Hepes pH7.5 2. Experimental methods RAMC 2013 Sunday, 08 September 2013 Wednesday, 11 September 2013 Table 1. IniLal crystallizaLon experiments were performed to find the best crystallizaLon condiLons for each protein. Table 2. CrystallizaLon condiLons used in agarose gel and HG2.6. Rheology 0.1 1 10 100 0.01 0.1 1 10 100 1000 10000 G' / G'' (Pa) σ (Pa) G' (2,6) - 2 mM G'' (2,6) - 2 mM G' (2,6) - 3 mM G'' (2,6) - 3 mM Fig. 2. Oscillatory rheology of HG. The values of the storage modulus (G´) and the loss modulus (G´´) exhibit a weak dependence from 0.1 to 1.0% of strain (with G´dominaLng G´´) indicaLng that HG2.6 is a hydrogel. 4. Conclusions Fig. 3. A) Transmission electron microscopy image of HG2.6. B) Transmission electron microscopy image of negaPvely stained HG2.6. HG2.6 selfassembles into nanofibers from 20 nm diameters to the range of microns. Electron microscopy A B Circular dichroism Fig. 4. Circular dichroism (CD) spectrum of HG2.6. It exhibits a posiLve band near 200 nm (ππ* transiLon), a negaLve band near 215 nm (nπ* transiLon), and a negaLve band near 280 nm (ππ* of benzyl groups). These peaks are consistent with the supramolecular organizaLon of pepLdes in a βsheet conformaLon. Lysozyme Glucose isomerase TodT 3. Crystal quality evalua1on 3. XRay data collec1on A Protein + gel Precipitant B Data were collected under the same condiLons, i.e: crystal to detector distance; exposure Lme; oscillaLon degree and number of images. Fig. 5. Lysozyme crystals grown in A) D5 agarose gel and B) in HG2.6. In both cases, crystals had similar morphology. Glucose isomerase crystals grown in C) D5 agarose gel and D) in HG2.6. In both cases, crystals had similar morphology. Tcm16 crystals grown in E) D5 agarose gel and in F) HG2.6. In both cases, crystals had similar morphology. G) TodT crystallizaPon experiment in D5 agarose gel. H) TodT crystal grown in HG2.6. In this case, crystal only grew in HG2.6. From I to L it is shown a magnificaLon of each protein crystal.. A B C D E F I J K As expected, HG2.6 shows the typical βsheet structure and behaves as a hydrogel compose by fibers of approximately 20 nm in diameter and several microns length. HG2.6 is a suitable gel to grow protein crystals as demonstrate with two model proteins (lysozyme and glucose isomerase) and two target proteins (Tcm16 and TodT). Taking into account the crystal quality indicators, it seems that lysozyme crystals grown in HG2.6 gel present higher quality than crystals grown in agarose gel. In the case of glucose isomerase, we cannot compare the data since they belong to two different space groups. More crystals need to be analysed before we can conclude that HG2.6 grown crystals are of be|er quality than those grown in agarose. DiffracLon data from Tcm16 in agarose gel and HG2.6 were not of sufficient quality and crystal improvement is under going. However, TodT crystal was only obtained in HG2.6 and its diffracLon data will be used for Molecular Replacement. It is also remarkable that HG2.6 also acts as cryoprotectant. Crystals from HG2.6 present be|er quality than crystals from agarose gel. We propose HG2.6 as a validate candidate for protein crystallizaLon. TodT Lysozyme, glucose isomerase and Tcm16 crystals were diffracted at 100K with and without glycerol as cryoprotectant. TodT crystal was diffracted with PEG 400 as cryoprotectant. G H L Fig. 6. Lysozyme diffrac5on results. A) Lysozyme diffracLon pa|ern. B) Plot of I/σ against resoluLon to compare lysozyme crystal quality grown in agarose gel and HG2.6 and collected with and without cryoprotectant at 100K. The table resumes the XRay datacollecLon staLsLcs. Values in parentheses are for the highest resoluLon bin. Rmerge = Σ hkl Σ i │I i (hkl) – (I(hkl))│/ Σ hkl Σ i I i (hkl) , where I i (hkl) is the ith observaLon of reflecLon hkl and (I(hkl)) is the weighted average intensity for all observaLons i of reflecLon hkl. SETUP Gel preparaLon: agarose and HG2.6 Protein soaking (1 week/20 o C) Remove protein excess and concentraLon measurement Precipitant diffusion (20 o C) 2.2. Counter difussion in gel: two layers (2L) configura1on 2.1. Preliminary crystalliza1on assays Fig. 7. Glucose Isomerase diffrac5on results. A) Glucose Isomerase diffracLon pa|ern. B) Plot of I/σ against resoluLon to compare glucose isomerase crystal quality grown in agarosed and in HG2.6. In this case the purpose is not the comparison since they belong to different space groups. The table resumes XRay datacollecLon staLsLcs. Values in parentheses are for the highest resoluLon bin. Fig. 8. TodT diffrac5on results. A) TodT diffracLon pa|ern. B) Plot of I/σ against resoluLon of TodT crystal quality grown in HG2.6. The table resumes XRay datacollecLon staLsLcs. Values in parentheses are for the highest resoluLon bin. A A A Rmerge = Σ hkl Σ i │I i (hkl) – (I(hkl))│/ Σ hkl Σ i I i (hkl) , where I i (hkl) is the ith observaLon of reflecLon hkl and (I(hkl)) is the weighted average intensity for all observaLons i of reflecLon hkl. Rmerge = Σ hkl Σ i │I i (hkl) – (I(hkl))│/ Σ hkl Σ i I i (hkl) , where I i (hkl) is the ith observaLon of reflecLon hkl and (I(hkl)) is the weighted average intensity for all observaLons i of reflecLon hkl. Fig. 1. A) RepresentaLve picture of agarose gel and HG2.6 in eppendorf. B) 2L (two layers) schemaLc configuraLon of counterdiffusion setup [7]. Lzm_Agarose_NoCryo Lzm_Agarose_Cryo Lzm_HG2.6_NoCryo Lzm_HG2.6_Cryo Beamline ID231, ESRF ID231, ESRF ID231, ESRF ID231, ESRF Space group P4 3 2 1 2 P4 3 2 1 2 P4 3 2 1 2 P4 3 2 1 2 Unit cell parameters (Å) a=79,b=79, c=37.29 a=78.69,b=78.69, c=36.97 a=78.74,b=78.74, c=37.33 a=78.59, b=78.59, c=36.99 Wavelength (Å) 0.972 0.972 0.972 0.972 ResoluLon (Å) 39.50–1.20 (1.221.20) 39.351.20 (1.221.20) 39.371.20 (1.221.20) 39.29–1.20 (1.221.20) Total number of reflecLons 457266 (22508) 462926 (22039) 469290 (22705) 453679 (22146) Total unique reflecLons 37449 (1794) 36915 (1788) 37314 (1810) 36835 (1784) Rmerge * (%) 3.6 (39.8) 6.0 (51.1) 3.9 (30.8) 3.7 (23.4) I/σ(I) 31.1 (6.2) 17.3 (3.7) 33.3 (7.8) 34.0 (9.3) Completeness (%) 99.9 (99.5) 100.0 (100.0) 100.0 (100.0) 100.0 (100.0) Redundancy 12.2 (12.5) 12.5 (12.3) 12.6 (12.5) 12.3 (12.4) Bfactor (Å 2 ) 11.3 10.6 11.3 11.5 Mosaicity 0.10 0.18 0.06 0.11 Glucose Isomerase_Agarose_Cryo Glucose isomerase_HG2.6_Cryo Beamline BM14U, ESRF BM14U, ESRF Space group P222 I222 Unit cell parameters (Å) a=78.19, b= 97.38, c= 128.9 a=92.33, b=98.21, c=101.7 Wavelength (Å) 0.954 0.954 ResoluLon range (Å) 44.302.56 (2.672.56) 40.57–2.56 (2.672.56) Total number of reflecLons 119120 (14433) 56389 (6839) Total unique reflecLons 31389 (3826) 14012 (1719) Rmerge * (%) 23.8 (68.7) 11.5 (31.1) I/σ(I) 5.2 (1.7) 11.3 (4.2) Completeness (%) 97.4 (98.7) 92.6 (94.7) Redundancy 3.8 (3.8) 4.0 (4.0) Bfactor (Å 2 ) 7.7 4.0 Mosaicity 0.13 0.11 TodT_HG2.6_Cryo Beamline ID231, ESRF Space group P4 1 2 1 2 Unit cell parameters (Å) a=76.66, b= 76.66, c= 36.65 Wavelength (Å) 0.972 ResoluLon range (Å) 38.331.49 (1.521.49) Total number of reflecLons 146544 (7111) Total unique reflecLons 18420 (898) Rmerge * (%) 4.9 (37.6) I/σ(I) 22.9 (4.4) Completeness (%) 100.0 (100.0) Redundancy 8.0 (7.9) Bfactor (Å 2 ) 9.7 Mosaicity 0.19 B 5 4.5 4 3.5 3 2.5 5 10 15 20 2 Resolution I/σ I/Sigma Glucose Isomerase HG2.6 Cryo I/Sigma Glucose Isomerase Agarose Cryo B 5 4 3 2 1 20 40 60 80 2 Resolution I/σ I/Sigma Lys HG2.6 Cryo I/Sigma Lys HG2.6 NoCryo I/Sigma Lys Agarose Cryo I/Sigma Lys Agarose No Cryo B 5 4 3 2 20 40 60 80 2 Resolution I/σ I/Sigma TodT HG2.6 Cryo

Upload: others

Post on 24-Jun-2020

10 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: SupramolecularHydrogelsforProteinCrystallizaon · 2. Protein#crystallizaon # SupramolecularHydrogelsforProteinCrystallizaon! Mª!Teresa Conejero-Muriela,!EstelaPineda Molinaa, Mónica!Moral!Muñozb,!Juan!de!Dios

   

   

2.  Protein  crystalliza1on  

Supramolecular  Hydrogels  for  Protein  Crystalliza1on  Mª  Teresa  Conejero-­‐Muriela,  Estela  Pineda-­‐Molinaa,  Mónica  Moral  Muñoz  b,  Juan  de  Dios  García-­‐López  Duránb,  Luis  

Álvarez  de  Cienfuegosc,  Juan  J.  Díaz-­‐Mochónd,  e  and  José  A.  Gaviraa.    

a  Laboratorio  de  Estudios  Cristalográficos  InsLtuto  Andaluz  Ciencias  de  la  Tierra,  Avda  de  las  Palmeras,  4,  Armilla,  18100,  Granada,  Spain.    b  Dpto.  de  Física  Aplicada,    c  Dpto.  de  Química  Orgánica,  Facultad  de  Ciencias,  Universidad  de  Granada,  18071  Granada,  Spain.    d  Dpto.  de  Química  FarmacéuLca  y  Orgánica,  Facultad  de  Farmacia,  Universidad  de  Granada,  18071  Granada,  Spain.  e  GENYO.  Centre  for  Genomics  and  Oncological  Research:  Pfizer,  University  of  Granada,  Andalusian  Regional  Government,  PTS  Granada,  Avenida  de  la  Ilustración  114,  18016  Granada,  Spain  

Email:  [email protected]    

3.  Results  

Acknowledgements    This  work  was  supported  by  project  BIO2010-­‐16800  and  the  “Factoría  de  Cristalización”,  CONSOLIDER  INGENIO-­‐2010  from  the  Ministerio  de  Ciencia  e  Innovación,  Spain.  MTCM thanks CSIC for her JAE-Pre research contract. EPM is supported by a `Ramón y Cajal´ research contract (MINECO).  JJD  M  benefits  from  Ministerio  de  Economia  y  CompeLLvidad  "Ramon  y  

Cajal  Fellowoship"  .  !

References  [1].   a)   Terech,   P.;  Weiss,   R.   G.  Chem.   Rev.   1997,   97,   3133.   b)   George,  M.;  Weiss,  R.  G.  Acc.  Chem.  Rev.  2006,  39,  489.  [2].  a)  Piepenbrock,  M.-­‐O.  M.;  Lloyd,  G.  O.;  Clarke,  N.,  Steed,  J.  W.  Chem.  Rev.  2010,  110,  1960.  b)  Maeda,  H.  Chem.  Eur.  J.  2008,  36,  11274.  [3].  Reches,  M.;  Gazit,  E.  Science  2003,  300,  625.  [4].  a)  Sangeetha,  N.  M.;  Maitra,  U.  Chem.  Soc.  Rev.  2005,  34,  821.  b)  Hirst,  A.  R.;   Escuder,  B.;  Miravet,   J.   F.;   Smith,  D.  K.  Angew.  Chem.   Int.   Ed.  2008,  47,  8002.  c)  Escuder,  B.;  Rodríguez-­‐Llansola,  F.;  Miravet,  J.  F.  New  J.  Chem.  2010,  34,   1044.   d)   Steed,   J.   W.   Chem.   Soc.   Rev.   2010,   39,   3686.   e)   Steed,   J.   W.  Chem.  Commun.,  2011,  47,  1379.  [5].  Antara  Dasgupta,  Julfikar  Hassan  Mondal  and  DebapraLm  Das,  RSC  Adv.,  2013,  3,  9117–9149.  [6].   a)   Lorber,   B.;   Sauter,   C.;   Theobald-­‐Dietrich,   A.;   Moreno,   A.;  Schellenberger,  P.;  Robert,  M.-­‐C.;  Capelle,  B.;  Sanglier,  S.;  PoLer,  N.;  Giege,  R.  Prog  Biophys  Mol  Biol  2009,  101,  (1),  13-­‐25.  b)  Gavira,  J.  A.;  Van  Driessche,  A.  E.  S.;  Garcia-­‐Ruiz,  J.-­‐M.,  Crystal  Growth  &  Design  2013,  13,  (6),  2522-­‐2529.    [7].  Otálora  F,  Gavira  JA,  Ng  JD,  García-­‐Ruiz  JM.  Prog  Biophys  Mol  Biol.  2009  Nov;101(1-­‐3):26-­‐37.        

1.  Introduc1on  Gels  are  systems  with  a  high  proporLon  of  liquid  but  behave  as  solids  with  viscoelasLc  properLes.  Recently,  novel  gels  based  on  low  molecular  weight  gelators  (LMWGs)  have  been  developed  and  studied   [1].   LMWGs  are   capable  of   self-­‐assemble  by   secondary   forces   to  give  3D   supramolecular  networks  of  nanofibers   that   immobilize   the   liquid.   Supramolecular   gels  have   inherent  properLes  derived  from  the   low  molecular  weight  and  weak   interacLons  of  the  monomers  such  as  reversibility  [2]  and  well  defined  2D  structures  [3].  Thus,   it  has  allowed  the  development  of  gels  with  very  specific  and  parLcular  properLes  that  have  found  applicaLons   in  a  great  variety  of  fields   from  medicine  to  electronics   [4].  PolypepLdes  Supramolecular  Gel   (PSG)  belongs  to  this  group  of  LMWGs  adding  to  their  general  characterisLcs  a  high  level  of  biocompaLbility  and  tunable  interacLon  properLes  [5].    In  protein  crystallizaLon  the  use  of  gels  of  different  nature  has  also  been  widely  studied  and   its  benefits  have  been  highlighted  at  different   levels,   i.e.   the  growth:   improving  the  crystal  quality  or  controlling  the  morphology;  the  nucleaLon:  inducing  or  inhibiLng  the  nucleaLon  as  a  funcLon  of  the  gel  nature;  the  crystal  protecLon:  prevenLng  osmoLc  shock,  avoiding  the  use  of  cryo-­‐protectants,  etc  [6  and  references  herein].  We  have  synthesized  and  characterized  a  family  of  LMW-­‐Hydrogelators  (HG2.6)  based  on  self-­‐assembling  of  small  polypepLdes  formed  in  pure  water.  Due  to  its  parLcular  properLes  we  have  explored  the  use  of  PSG  on   the  crystallizaLon  of   two  model  proteins,   lysozyme   (HEWL)  and  glucose   isomerase  and  two  target  proteins,  Tcm16  and  TodT.  DiffracLon  data  of   these   four  proteins  have  been  compared  with  those  obtained  in  agarose  gel.    

   

1.  Hydrogel  characteriza1on   2.  Protein  crystalliza1on  Lysozyme     Glucose  isomerase   Tcm16    

1.  Gel  characteriza1on  

Rheometer     Transmission  Electron  Microscopy  

 Circular  Dichroism  

Crystalliza1on  method  

Protein  concentra1on    

(mg/ml)  

Precipitant    

Lysozyme     Two  layer  (2L)  counter  difussion  

140-­‐220   3.5-­‐10%  NaCl  

Glucose  isomerase   Batch     100-­‐140   30%PEG  4K,  0.1M  Tris  pH  8.5,  0.2M  MgCl2  

Tcm16     Counter  difussion-­‐GCB  

20-­‐40   10mM  Tris  pH  8.5,  1M  ammonium  sulphate  

TodT   Batch   10-­‐14   10%  Isopropanol,  20%PEG  4K,  0.1M  

Hepes  pH7.5  

Ini1al  protein  concentra1on  

(mg/ml)  

Protein  concentra1on  in  gel  (mg/ml)  

Precipitant    

Lysozyme     200   140   6%  NaCl  

Glucose  isomerase  

110   100     30%PEG  4K,  0.1M  Tris  pH  8.5,  0.2M  MgCl2  

Tcm16     28   20   10mM  Tris  pH  8.5,  1M  ammonium  sulphate  

TodT   12   9,5   10%  Isopropanol,  20%PEG  4K,  0.1M  Hepes  

pH7.5  

2.  Experimental  methods  

 RAMC  2013    

Sunday,  08  September  2013  -­‐  Wednesday,  11  September  2013  

Table  1.  IniLal  crystallizaLon  experiments  were  performed  to  find  the  best  crystallizaLon  condiLons  for  each  protein.  

Table  2.  CrystallizaLon  condiLons  used  in  agarose  gel  and  HG2.6.    

Rheology    

0.1 1 10 1000.01

0.1

1

10

100

1000

10000

G' /

G''

(Pa)

σ (Pa)

G' (2,6) - 2 mM G'' (2,6) - 2 mM G' (2,6) - 3 mM G'' (2,6) - 3 mM

Fig.  2.  Oscillatory   rheology  of  HG.  The  values  of   the   storage   modulus   (G´)   and   the   loss  modulus   (G´´)   exhibit   a   weak   dependence  from  0.1  to  1.0%  of  strain  (with  G´dominaLng  G´´)  indicaLng  that  HG2.6  is  a  hydrogel.    

4.  Conclusions  

Fig.   3.   A)   Transmission   electron   microscopy   image   of   HG2.6.   B)   Transmission  electron  microscopy  image  of  negaPvely  stained  HG2.6.  HG2.6  self-­‐assembles  into  nanofibers  from  20  nm  diameters  to  the  range  of  microns.    

Electron  microscopy  A   B  

Circular  dichroism  

Fig.   4.   Circular   dichroism   (CD)   spectrum   of  HG2.6.   It   exhibits   a   posiLve   band   near   200  nm   (ππ*   transiLon),   a   negaLve   band   near  215  nm  (nπ*  transiLon),  and  a  negaLve  band  near   280   nm   (ππ*   of   benzyl   groups).   These  peaks  are  consistent  with  the  supramolecular  organizaLon   of   pepLdes   in   a   β-­‐sheet  conformaLon.    

Lysozyme     Glucose  isomerase   TodT    

3.  Crystal  quality  evalua1on  

3.  X-­‐Ray  data  collec1on  

A

Protein  +  gel    

Precipitant  B

Data   were   collected   under   the   same   condiLons,   i.e:   crystal   to  detector   distance;   exposure   Lme;   oscillaLon   degree   and   number   of  images.  

Fig.  5.  Lysozyme  crystals  grown  in  A)  D5  agarose  gel  and  B)  in  HG2.6.  In  both  cases,  crystals  had  similar  morphology.  Glucose  isomerase  crystals  grown  in  C)  D5  agarose  gel  and  D)  in  HG2.6.   In  both  cases,   crystals  had  similar  morphology.  Tcm16  crystals  grown   in  E)  D5  agarose  gel  and   in  F)  HG2.6.   In  both  cases,   crystals  had  similar  morphology.  G)  TodT  crystallizaPon  experiment  in  D5  agarose  gel.  H)  TodT  crystal  grown  in  HG2.6.  In  this  case,  crystal  only  grew  in  HG2.6.  From  I  to  L  it  is  shown  a  magnificaLon  of  each  protein  crystal..    

A B C D E F

I   J   K  

-­‐  As  expected,  HG2.6  shows  the  typical  β-­‐sheet  structure  and  behaves  as  a  hydrogel  compose  by  fibers  of  approximately  20  nm  in  diameter  and  several  microns  length.  -­‐  HG2.6  is  a  suitable  gel  to  grow  protein  crystals  as  demonstrate  with  two  model  proteins  (lysozyme  and  glucose  isomerase)  and  two  target  proteins  (Tcm16  and  TodT).  -­‐  Taking  into  account  the  crystal  quality  indicators,  it  seems  that  lysozyme  crystals  grown  in  HG2.6  gel  present  higher  quality  than  crystals  grown  in  agarose  gel.  In  the  case  of  glucose  isomerase,  we  cannot  compare  the  data  since  they  belong  to  two  different  space  groups.  More  crystals  need  to  be  analysed  before  we  can  conclude  that  HG2.6  grown  crystals  are  of  be|er  quality  than  those  grown  in  agarose.    

-­‐  DiffracLon  data  from  Tcm16  in  agarose  gel  and  HG2.6  were  not  of  sufficient  quality  and  crystal  improvement  is  under  going.  However,  TodT  crystal  was  only  obtained  in  HG2.6  and  its  diffracLon  data  will  be  used  for  Molecular  Replacement.  

-­‐  It  is  also  remarkable  that  HG2.6  also  acts  as  cryo-­‐protectant.  Crystals  from  HG2.6  present  be|er  quality  than  crystals  from  agarose  gel.    -­‐  We  propose  HG2.6  as  a  validate  candidate  for  protein  crystallizaLon.  

TodT    

Lysozyme,   glucose   isomerase   and   Tcm16   crystals   were   diffracted   at  100K   with   and   without   glycerol   as   cryo-­‐protectant.   TodT   crystal   was  diffracted  with  PEG  400  as  cryo-­‐protectant.  

G H

L  

Fig.   6.   Lysozyme   diffrac5on   results.   A)   Lysozyme   diffracLon   pa|ern.   B)   Plot   of   I/σ  against  resoluLon  to  compare  lysozyme  crystal  quality  grown  in  agarose  gel  and  HG2.6  and  collected  with  and  without  cryo-­‐protectant  at  100K.  The  table  resumes  the  X-­‐Ray  data-­‐collecLon  staLsLcs.  Values  in  parentheses  are  for  the  highest  resoluLon  bin.    

R-­‐merge  =  Σhkl  Σi     │Ii   (hkl)  –   (I(hkl))│/  ΣhklΣi   Ii   (hkl)   ,  where   I   i(hkl)   is   the   ith  observaLon  of   reflecLon  hkl   and   (I(hkl))   is   the  weighted  average   intensity   for  all  observaLons  i  of  reflecLon  hkl.  

SET-­‐UP  

-­‐  Gel  preparaLon:  agarose  and  HG2.6  -­‐  Protein  soaking  (1  week/20oC)  -­‐  Remove  protein  excess  and  

concentraLon  measurement    -­‐  Precipitant  diffusion  (20oC)  

2.2.  Counter  difussion  in  gel:  two  layers  (2L)  configura1on  2.1.  Preliminary  crystalliza1on  assays  

Fig.   7.   Glucose   Isomerase   diffrac5on   results.   A)  Glucose   Isomerase   diffracLon  pa|ern.  B)  Plot   of   I/σ   against   resoluLon   to   compare   glucose   isomerase   crystal   quality   grown   in  agarosed      and  in  HG2.6.  In  this  case  the  purpose  is  not  the  comparison  since  they  belong  to  different   space   groups.   The   table   resumes   X-­‐Ray   data-­‐collecLon   staLsLcs.   Values   in  parentheses  are  for  the  highest  resoluLon  bin.    

Fig.  8.  TodT  diffrac5on  results.  A)  TodT  diffracLon  pa|ern.  B)  Plot  of  I/σ   against   resoluLon   of   TodT   crystal   quality   grown   in   HG2.6.   The  table  resumes  X-­‐Ray  data-­‐collecLon  staLsLcs.  Values   in  parentheses  are  for  the  highest  resoluLon  bin.    

A A A

R-­‐merge  =  Σhkl  Σi    │Ii  (hkl)  –  (I(hkl))│/  ΣhklΣi  Ii  (hkl)  ,  where  I   i(hkl)   is  the   ith  observaLon  of  reflecLon  hkl  and  (I(hkl))   is  the  weighted  average  intensity  for  all  observaLons  i  of  reflecLon  hkl.  

R-­‐merge  =  Σhkl  Σi    │Ii  (hkl)  –  (I(hkl))│/  ΣhklΣi  Ii  (hkl)  ,  where  I  i(hkl)  is  the  ith  observaLon  of  reflecLon   hkl   and   (I(hkl))   is   the   weighted   average   intensity   for   all   observaLons   i   of  reflecLon  hkl.  

Fig.   1.   A)  RepresentaLve   picture   of  agarose  gel  and  HG2.6  in  eppendorf.  B)   2L   (two   layers)   schemaLc  configuraLon   of   counterdiffusion  set-­‐up  [7].      

    Lzm_Agarose_NoCryo   Lzm_Agarose_Cryo   Lzm_HG2.6_NoCryo   Lzm_HG2.6_Cryo  Beamline   ID23-­‐1,  ESRF   ID23-­‐1,  ESRF   ID23-­‐1,  ESRF   ID23-­‐1,  ESRF  Space  group   P43212   P43212   P43212   P43212  Unit  cell  parameters  (Å)   a=79,b=79,  c=37.29   a=78.69,b=78.69,  c=36.97   a=78.74,b=78.74,  c=37.33   a=78.59,  b=78.59,  c=36.99  Wavelength  (Å)   0.972   0.972   0.972   0.972  ResoluLon  (Å)   39.50–1.20  (1.22-­‐1.20)   39.35-­‐1.20  (1.22-­‐1.20)   39.37-­‐1.20  (1.22-­‐1.20)   39.29–1.20  (1.22-­‐1.20)  Total  number  of  reflecLons   457266  (22508)   462926  (22039)   469290  (22705)   453679  (22146)  Total  unique  reflecLons   37449  (1794)   36915  (1788)   37314  (1810)   36835  (1784)  R-­‐merge  *  (%)     3.6  (39.8)   6.0  (51.1)   3.9  (30.8)   3.7  (23.4)  I/σ(I)   31.1  (6.2)   17.3  (3.7)   33.3  (7.8)   34.0  (9.3)  Completeness  (%)   99.9  (99.5)   100.0  (100.0)   100.0  (100.0)   100.0  (100.0)  Redundancy   12.2  (12.5)   12.5  (12.3)   12.6  (12.5)   12.3  (12.4)  B-­‐factor  (Å2)   11.3   10.6   11.3   11.5  Mosaicity     0.10   0.18   0.06   0.11  

    Glucose  Isomerase_Agarose_Cryo   Glucose  isomerase_HG2.6_Cryo  Beamline   BM14U,  ESRF   BM14U,  ESRF  Space  group   P222   I222  Unit  cell  parameters  (Å)   a=78.19,  b=  97.38,  c=  128.9   a=92.33,  b=98.21,  c=101.7  Wavelength  (Å)   0.954   0.954  ResoluLon  range  (Å)   44.30-­‐2.56  (2.67-­‐2.56)   40.57–2.56  (2.67-­‐2.56)  Total  number  of  reflecLons   119120  (14433)   56389  (6839)  Total  unique  reflecLons   31389  (3826)   14012  (1719)  R-­‐merge  *  (%)   23.8  (68.7)   11.5  (31.1)  I/σ(I)   5.2  (1.7)   11.3  (4.2)  Completeness  (%)   97.4  (98.7)   92.6  (94.7)  Redundancy   3.8  (3.8)   4.0  (4.0)  B-­‐factor  (Å2)   7.7   4.0  Mosaicity     0.13   0.11  

    TodT_HG2.6_Cryo  Beamline   ID23-­‐1,  ESRF  Space  group   P41212  Unit  cell  parameters  (Å)   a=76.66,  b=  76.66,  c=  36.65  Wavelength  (Å)   0.972  ResoluLon  range  (Å)   38.33-­‐1.49  (1.52-­‐1.49)  Total  number  of  reflecLons   146544  (7111)  Total  unique  reflecLons   18420  (898)  R-­‐merge  *  (%)   4.9  (37.6)  I/σ(I)   22.9  (4.4)  Completeness  (%)   100.0  (100.0)  Redundancy   8.0  (7.9)  B-­‐factor  (Å2)   9.7  Mosaicity     0.19  

B  

5 4.5 4 3.5 3 2.5

5

10

15

20

2

Resolution

I/σ

I/Sigma Glucose Isomerase HG2.6 CryoI/Sigma Glucose Isomerase Agarose Cryo

B  

5 4 3 2 1

20

40

60

80

2

Resolution

I/σ

I/Sigma Lys HG2.6 CryoI/Sigma Lys HG2.6 NoCryoI/Sigma Lys Agarose CryoI/Sigma Lys Agarose No Cryo

B  

5 4 3 2

20

40

60

80

2

Resolution

I/σ

I/Sigma TodT HG2.6 Cryo