introducciontux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · primer...

114
Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera Cesar Augusto Peña Fonseca, Facultad de ciencias, Escuela de Biología, UIS, 2010 INTRODUCCION Los primeros registros fósiles de machos de vida libre fueron encontrados en ámbar báltico. Las diferentes autapomorfias de los endopterigota Strepsiptera han sido la principal causa que dificulta la posición filogenética del orden dentro de Holometábola (Pohl et al., 2005b), el segundo estado larval de todas las especies son endoparásitos de varios taxa de insectos incluyendo Zygentoma, Blattaria, Mantodea, Ortóptera, Hemíptera, Himenóptera y Díptera (Pohl et al., 2005b). Los machos presentan alas delanteras reducidas, que asemejan los halteres y funcionan de manera similar, alas posteriores en forma de abanico y ojos compuestos (con forma de frambuesa) y las hembras carecen de alas. Publicaciones recientes rechazan la Hipótesis de relación de hermandad establecida por el grupo Hatería, el cual forma un clado que muestra a Díptera como el grupo hermano de Strepsiptera ((Lawrence (2004); Duane (2010); Ishiwata (2010); Friedrich (2010); Longhorn (2010); Wiegmann (2009), Beutel (2010)). Actualmente, la hipótesis más aceptada opta por reconocer las relaciones de hermandad establecidas por el grupo Coleopterida, quien agrupa a Coleóptera y Strepsiptera ( Kukalovà -Peck & Lawrence (2004); Wiegmann (2009); Ishiwata (2010); Friedrich (2010); Longhorn (2010), Beutel (2010). Coleopterida y Neuropterida (Neuroptera, Megaloptera y Raphidioptera) forman la subclase llamada Neuropteroidea, dividiendo de esta forma a los Holometabolos en los dos grandes grupos Neuropteroidea y Mecopteroidea (Wiegmann, 2009). Duane (2010) no recupera evidencia de una cercana relación entre Strepsiptera y cualquier otro grupo de insectos Holometábolos fuera de Neuropteroidea. Este tipo de observaciones son consistentes con la también contradicha relación entre Díptera y Strepsiptera ((Lawrence (2004); Duane (2010); Ishiwata (2010); Friedrich (2010); Longhorn (2010); Wiegmann (2009); Hennig (1981); Boudreaux (1971); Beutel (2010), concordando así con Bonneton (2006) quien ubica a Strepsiptera fuera de Mecopterida. Duane y Farrell (2010) proponen tres hipótesis para ubicar a Strepsiptera: (a) como grupo hermano de Coleóptera Longhorn (2010); Wiegmann (2009); Hennig (1981); Friedrich (2010); (b) como grupo hermano de Neuropterida Duane (2010); y (c) dentro de coleóptera Duane (2010). Es por ello que en el presente trabajo se pretende elucidar el lugar de Strepsiptera dentro de Neuropteroidea, usando secuencias parciales de los genes ribosomales 18S y 28S, junto con la matriz morfológica propuesta por Beutel (2010) quien adopta la matriz morfología más grande para Holometábola compilada hasta ahora (Beutel, 2010), mediante el uso de diferentes metodologías tales como la optimización directa, análisis mediante parsimonia y máximum likelihood.

Upload: others

Post on 20-Jul-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

Cesar Augusto Peña Fonseca, Facultad de ciencias, Escuela de Biología, UIS, 2010

INTRODUCCION Los primeros registros fósiles de machos de vida libre fueron encontrados en ámbar báltico. Las diferentes autapomorfias de los endopterigota Strepsiptera han sido la principal causa que dificulta la posición filogenética del orden dentro de Holometábola (Pohl et al., 2005b), el segundo estado larval de todas las especies son endoparásitos de varios taxa de insectos incluyendo Zygentoma, Blattaria, Mantodea, Ortóptera, Hemíptera, Himenóptera y Díptera (Pohl et al., 2005b). Los machos presentan alas delanteras reducidas, que asemejan los halteres y funcionan de manera similar, alas posteriores en forma de abanico y ojos compuestos (con forma de frambuesa) y las hembras carecen de alas. Publicaciones recientes rechazan la Hipótesis de relación de hermandad establecida por el grupo Hatería, el cual forma un clado que muestra a Díptera como el grupo hermano de Strepsiptera ((Lawrence (2004); Duane (2010); Ishiwata (2010); Friedrich (2010); Longhorn (2010); Wiegmann (2009), Beutel (2010)). Actualmente, la hipótesis más aceptada opta por reconocer las relaciones de hermandad establecidas por el grupo Coleopterida, quien agrupa a Coleóptera y Strepsiptera ( Kukalovà -Peck & Lawrence (2004); Wiegmann (2009); Ishiwata (2010); Friedrich (2010); Longhorn (2010), Beutel (2010). Coleopterida y Neuropterida (Neuroptera, Megaloptera y Raphidioptera) forman la subclase llamada Neuropteroidea, dividiendo de esta forma a los Holometabolos en los dos grandes grupos Neuropteroidea y Mecopteroidea (Wiegmann, 2009). Duane (2010) no recupera evidencia de una cercana relación entre Strepsiptera y cualquier otro grupo de insectos Holometábolos fuera de Neuropteroidea. Este tipo de observaciones son consistentes con la también contradicha relación entre Díptera y Strepsiptera ((Lawrence (2004); Duane (2010); Ishiwata (2010); Friedrich (2010); Longhorn (2010); Wiegmann (2009); Hennig (1981); Boudreaux (1971); Beutel (2010), concordando así con Bonneton (2006) quien ubica a Strepsiptera fuera de Mecopterida. Duane y Farrell (2010) proponen tres hipótesis para ubicar a Strepsiptera: (a) como grupo hermano de Coleóptera Longhorn (2010); Wiegmann (2009); Hennig (1981); Friedrich (2010); (b) como grupo hermano de Neuropterida Duane (2010); y (c) dentro de coleóptera Duane (2010). Es por ello que en el presente trabajo se pretende elucidar el lugar de Strepsiptera dentro de Neuropteroidea, usando secuencias parciales de los genes ribosomales 18S y 28S, junto con la matriz morfológica propuesta por Beutel (2010) quien adopta la matriz morfología más grande para Holometábola compilada hasta ahora (Beutel, 2010), mediante el uso de diferentes metodologías tales como la optimización directa, análisis mediante parsimonia y máximum likelihood.

Page 2: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

MATERIALES Y METODOS Para obtener la lista de taxa examinados, ver anexo Tabla 1. los taxa seleccionados fueron tomados de Beutel (2010), quien argumenta el uso de la mayoría de sus taxa debido a su representatividad como taxones basales, es decir, que tienen un alto número de plesiomorfias dividiendo la base del nodo de cada orden (i.e. Nevrorthidae para Neuróptera, Xyelidae para Himenóptera, Mengenillidae para Strepsiptera). El ingroup comprende taxa representativos de Neuropteridae (Wiegmann, 2009), como uot-group fueron usados taxa representativos de Mecoptera (Panorpidae, Neopanorpa sp. y Panorpa vulgairs), Himenóptera (Xyelidae, Macroxyela Ferruginea; Diprionidae, Monoctenus junipteri) y Plecoptera (Pteronarcidae, Pteronarcys californica). (Ver anexo tabla 1). La matriz morfología fue tomada de la recopilación morfológica realizada por Beutel 2010, el mapeo de caracteres se llevo a cabo mediante una combinación de los Software WINCLADA y NONA (Goloboff, 1999; Nixon, K. C. 1999) mediante una búsqueda heurística. Los caracteres moleculares fueron tomados directamente del GenBank usando para tal fin secuencias parciales de los genes ribosomales 16S y 18S, el alineamiento de dichas secuencias se llevo a cabo mediante el Software MUSCLE (Edgar, R.C. 2004) implementado por el programa SEAVIEW 4.2.11 (Galtier, 1996) tomando como puntaje para el alineamiento los valores promedios de BLOSUM62 sobre el par de nucleótidos de la columna. El análisis de sensibilidad fue llevado a cabo usando el método de optimización directa descrito por Wheeler, (1996) implementado en el programa de computo POY (Gladstein and Wheeler, 1997) y probando 3 combinaciones de costos (ver anexo MC) con el fin de encontrar la matriz que minimizara la incongruencia entre los diferentes caracteres, dada por POY y seleccionada teniendo en cuenta el índice de incongruencia (ILD) ( Farris, 1985) para su posterior uso en el programa de análisis filogenético bajo parsimonia TNT (Goloboff et. al, 2008) con 1000 replicas para la obtención de un soporte de Bremer relativo. El análisis filogenético probabilístico hecho a la evidencia total (Matriz morfológica junto con la matriz molecular de las secuencias parciales de los genes 16S y 18S) se realizo mediante inferencia Bayesiana (BI) en el programa MrBayes 3.1.2 (Huelsenbeck and Ronquist, 2001; Ronquist and Huelsenbeck, 2003) con 4 cadenas y 2 millones de generaciones a la matriz de evidencia total (particines: morfología, 16s y 18S), con el modelo de sustitución nucleotidica GTR+I+G, una desviación estándar de 0,002 y un burnin del 25% a cada una de las 4 cadenas cada mil árboles, para obtener un árbol consenso de la mayoría con un corte del 50% considerando las probabilidades a posteriori superiores al 95%. El máximum likelihood (ML) (Máxima verosimilitud) fue inferido en el programa PhyML 3.0 (Guindon y Gascuel, 2003) para el gen 18S con el modelo de sustitución nucleotidica TIM2 y un análisis de bootstrap con 100 replicas considerando los máximum likelihood del soporte de bootstrap superiores al 95%. Se uso jModeltest 0.1.1 (Posada, 2003) para la selección estadística del modelo de sustitución nucleotidica (Nivel de confianza de LRT´s =0,01 con longitudes de ramas contadas como parámetros)

Page 3: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

RESULTADOS Y ANALISIS DE RESULTADOS Las sinapomorfias que soportan a coleopterida (Coleóptera + Strepsiptera) se pueden ver en el anexo MC (mapeo de caracteres) tales sinapomorfias son: la ausencia del esclerito lateral cervical (exceptuando polyphaga en Coleóptera) ( carácter 112); la punta del brazo profurcal no se encuentra firmemente ajustada con la apófisis pleural (carácter 120); metatórax fuertemente engrosado (carácter 126) y la ausencia de una membrana definida entre el mesoscutellum y el mesopostnotum (carácter 129).(ver anexo LC ―listado de caracteres‖). El análisis mediante parsimonia obtenido a partir de la matriz generada a través de optimización directa con un costo de 2224(transición, transversion, gaps y morfología respectivamente) no logra establecer claramente las relaciones de hermandad de Strepsiptera y las relaciones de ancestría conocidas para Neuropteroidea y Mecopteroidea en la literatura (ver anexo AS ―análisis de sensibilidad‖). El análisis de inferencia bayesiana muestra a coleóptera como el grupo hermano de Strepsiptera con una probabilidad a posterior igual a 1.0, recuperando a Coleopterida, Mecopterida y Neuropterida (ver anexo IB ―análisis de Inferencia Bayesiana‖). No se pudieron establecer relaciones filogenéticas a partir del análisis de máximum likelihood con el gen 18S, debido a que no recupera relaciones entre y dentro de los grandes grupos y ordenes analizados en el presente trabajo, arrojando soportes de bootstrap relativamente deficientes para poder establecer grupos desde la base del árbol (ver anexo ML). ANALISIS Se evidencia al posteromotorismo como un carácter de gran importancia para establecer la relación de hermandad entre Strepsiptera y coleóptera, debido a que las sinapomorfias que soportan el clado en el mapeo de caracteres se encuentran estrechamente relacionadas con la acción de volar con las alas posteriores (Beutel, 2010).‖La monofília de coleopterida implica que el posteromotorismo ha evolucionado solamente una vez en Holometábola, en contraste al anteromotorismo, que probablemente evoluciono de manera independiente en Himenóptera, Bittacidae, Díptera, y otros grupos‖ (Beutel, 2010). El análisis de inferencia bayesiano es tajante al afirmar la relación de grupo hermano de Strepsiptera dada a coleóptera asignando probabilidades a posteriori iguales a uno (p=1) en todos los nodos del cladograma de evidencia total. Según lo documentado por Whithing, (1998),‖ los análisis basados en matrices moleculares son claramente inadecuados para la reconstrucción de las relaciones de los holometábolos‖, lo cual concuerda con los resultados obtenidos a partir el análisis de ML (con puntajes insuficientes para establecer relaciones de ancestría entre los taxa examinados) y optimización directa (debido al alineamiento implícito que usa para la construcción del primer árbol del análisis implementado)

Page 4: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

CONCLUSIONES Los caracteres morfológicos son categóricos para establecer relaciones de ancestría entre los diferentes grupos en estudio y en este caso para evidenciar la relación de grupo hermano entre Strepsiptera y coleóptera. Se hace evidente la necesidad de reunir una mayor compilación de caracteres moleculares para poder dar una respuesta categórica referente a cual es el grupo hermano de Strepsiptera. BIBLIOGRAFIA Rolf G. Beutel, Frank Friedrich, Thomas Hornschemeyer, Hans Pohl, Frank H?nefeld, Felix Beckmann, Rudolf Meier, Bernhard Misof, Michael F. Whiting, Lars Vilhelmsen (2010) Morphological and molecular evidence converge upon a robust phylogeny of the megadiverse Holometabola. Cladistics (30 September 2010). doi:10.1111/j.1096-0031.2010.00338.x Boudreaux, H.B. 1979. Arthropod Phylogeny, with Special Reference to Insects. John Wiley & Sons, New York. Edgar, R.C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput.Nucleic Acids Res. 32(5):1792-1797. Farris, 1985 J.S. Farris, Distance data revisited, Cladistics 1 (1985), pp. 67–85. Friedrich F, Beutel RG (2010) Goodbye Halteria? The thoracic morphology of Endopterygota (Insecta) and its phylogenetic implications. Cladistics 26: 1–34. Galtier, N., Gouy, M. & Gautier, C. (1996) SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny. Comput. Appl. Biosci., 12:543-548. Gladstein, D. S., and Wheeler, W. C. (1997). ―POY: The Optimization of Alignment Characters.‖ American Museum of Natural History, New York.

Goloboff, P., 1999. NONA (No Name) ver. 2. Published by the author, Tucuman,

Argentina.

Goloboff, P.A., Farris, J.S., Nixon, K.C., 2008. TNT, a free program for

phylogenetic analysis. Cladistics 24, 774–786 Guindon S., Gascuel O (2003) A Simple, Fast, and Accurate Algorithm to Estimate Large Phylogenies byMaximum Likelihood Systematic Biology, 52(5):696-704.

Page 5: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

HANS POHL, ROLF G. BEUTEL & RAGNAR KINZELBACH (2005) Protoxenidae fam. nov. (Insecta, Strepsiptera) from Baltic amber — a ‗missing link‘ in strepsipteran phylogeny— Zoologica Scripta, 34, 57–69. Hennig W (1981) Insect Phylogeny. New York: Academic Press. 536 p. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17: 754–755. Ronquist A, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574 Ishiwata, K., Sasaki, G., Ogawa, J., Miyata, T., Su, Z-H., Phylogenetic relationships among insect orders based on three nuclear protein-coding gene sequences, Molecular Phylogenetics and Evolution (2010) Kukalova-Peck J, Lawrence JF (2004) Relationships among coleopteran suborders and major endoneopteran lineages: Evidence from hind wing characters. Eur J Entomol 101: 95–144. Longhorn SJ, Pohl HW, Vogler AP (2010) Ribosomal protein genes of holometabolan insects reject the Halteria, instead revealing a close affinity of Strepsiptera with Coleoptera. Mol Phylogenet Evol 55: 846–59. McKenna DD, Farrell BD (2010) 9-Genes Reinforce the Phylogeny of Holometabola and Yield Alternate Views on the Phylogenetic Placement of Strepsiptera. PLoS ONE 5(7): e11887. doi:10.1371/journal.pone.0011887 Nixon, K. C. 1999. Winclada (BETA) ver. 0.9.9 PUBLISHED BY THE AUTHOR, ITHACA, NY. I have become weary of Clados generated trees being published without citation. Please cite the program. Posada D. In press. jModelTest: Phylogenetic Model Averaging. Molecular Biology and Evolution. Guindon S and Gascuel O (2003). A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood". Systematic Biology 52: 696-704. Wheeler, W. C. (1996). Optimization alignment: The end of multiple sequence alignment in phylogenetics? Cladistics 12, 1–9. Wiegmann BM, Trautwein MD, Kim J, Cassel BK, Bertone M, et al. (2009) Single-copy nuclear genes resolve the phylogeny of the holometabolous insects. BMC Biol 7: 34.

Page 6: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

ANEXOS Tabla 1. Genes muestreados para Neuropteroidea y out-groups.

Orden Familia Genero Genes

Megaloptera

Corydalidae (chimaera)

Corydalinae

18S 16S

Corydalus sp.

AY620025.1 AY620139.1

Chauliodinae

Archichauliodes sp.

EU815228.1 AY620140.1

Chauliodes sp.

EU815233.1

Raphidioptera

Raphidiidae

Phaeostigma notata

X89494.1

Mongoloraphidia martynovae

EU815252.1 EU734870.1

Neuroptera

Nevrorthidae

Nevrorthus apatelios

AY620042.1 AY620179.1

Osmylidae

Osmylus fulvicephalus

EU815271.1 EU734887.1

Hemerobiidae

Hemerobius sp.

AF423790.1

Coleoptera

Cupedidae (chimaera)

Priacma serrata

EU797411.1 EU734895.1

Micromalthidae

Micromalthus debilis

EU797409.1 EF517576.1

Page 7: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

Trachypachidae

Trachypachus holmbergi

AF201394.1 EF517582.1

Strepsiptera

Xenidae

Xenos vesparum

AY039107.1

Mengenillidae

Mengenilla sp

HM156715.1

Mecoptera

Panorpidae

Neopanorpa sp.

AF136877.1 AF180059.1

Panorpa vulgaris

DQ008177.1 AF180066.1

Hymenoptera

Xyelidae (chimaera)

Macroxyela ferruginea

GQ410574.1 AY206773.2

Diprionidae

Monoctenus junipteri

EF032312.1 EF032168.1

Plecoptera

Pteronarcyidae

Pteronarcys californica

AY521880.1

-Los fragmentaos genéticos fueron obtenidos a través del genbank. L-os taxa resaltados en rojo representan a los taxa out-group

MC. matrices de costos Mc1 Mc2 Mc3 Mc4

Page 8: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

AS. Análisis de sensibilidad mostrando los soportes de Bremer relativo en las ramas

-Árbol obtenido a partir del análisis de sensibilidad con un ILD=0,1036 (Farris, 1985). Los valores en las ramas corresponden al soporte de Bremer relativo. La topología no resuelve las relaciones conocidas entre los grandes grupo (i.e. Neuropteroidea). (Pteronarcys,(((Micromalthus,(Trachypachus,Priacma)),(Archichauliodes,((Phaeostigma,Mongoloraphidia),(Osmylus,Hemerobius)))),((Panorpa_,Macroxyela),(Mengenilla,(Monoctenus,(Chauliodes,(Nevrorthus,(Corydalus,(Xenos,Panorpa)))))))))[26782.];

Page 9: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

IB. Análisis de inferencia Bayesiana

-Las probabilidades a posteriori en todos los nodos son iguales a 1.0 (p=1,0)

Page 10: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

ML. Máximum Likelihood.

-(no se encontraron valores de likelihood superiores al 95% para poder establecer relaciones entre los grandes grupo)

Tabla 2. Tabla de Farris y cálculo del ILD

Columna1 1 2 3 4 5 6 7 8

16S 2 2 2 2112 2112 2112 2112 2112 2112 2112 2112

18S 10064 10064 16446 16446 18070 18070 23000 23000

MORFO 1558 3116 3116 6232 3116 6232 6232 12464

Σ long. Indiv. 13734 15292 21674 24790 23298 26414 31344 37576

E. TOTAL 15352 17692 24280 29072 28818 30534 42744 52328

ILD 0,1053934 0,1356545 0,1073311 0,1472895 0,1915469 0,1349316 0,2667041 0,2819141

1 2 3 4 5 6 7 8

16S 2 2 4 2820 2820 2820 2820 2820 2820 2820 2820

18S 10064 10064 16446 16446 18070 18070 23000 23000

MORFO 3116 6232 3116 6232 3116 6232 6232 12464

Σ long. Indiv. 16000 19116 22382 25498 24006 27122 32052 38284

E. TOTAL 18672 23336 25296 30088 26782 31550 43846 53436

ILD 0,1431020 0,1808365 0,1151961 0,1525525 0,1036517 0,3814259 0,4001797 0,2835542

Page 11: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

1 2 3 4 5 6 7 8

16S 2 4 4 3746 3746 3746 3746 3746 3746 3746 3746

18S 10064 10064 16446 16446 18070 18070 23000 23000

MORFO 3116 6232 3116 6232 3116 6232 6232 12464

Σ long. Indiv. 16926 20042 23308 26424 24932 28048 32978 39210

E. TOTAL 19812 24422 26378 31158 27854 32622 44902 54462

ILD 0,1456693 0,1793465 0,1163849 0,1519353 0,1049041 0,1402121 0,2655561 0,2800485

1 2 3 4 5 6 7 8

16S 2 4 8 5016 5016 5016 5016 5016 5016 5016 5016

18S 10064 10064 16446 16446 18070 18070 23000 23000

MORFO 6232 12464 6232 12464 6232 12464 6232 12464

Σ long. Indiv. 21312 27544 27694 33926 29318 35550 34248 40480

E. TOTAL 26188 34962 33092 42356 34430 43562 46836 56396

ILD 0,1861921 0,2121732 0,1631210 0,1990273 0,1484752 0,1839218 0,2687676 0,2822186

16S 18S Gap Morf ILD

ts2tv2g2 ts2tv2g2 8 3116 0,1356545

ts2tv2g4 ts2tv2g2 8 3116 0,10365171

ts2tv4g4 ts2tv2g2 8 3116 0,10490414

ts2tv4g8 ts2tv2g2 8 6232 0,14847517

LC. Listados de caracteres (Characters used in the phylogenetic analysis)

Almost all scored character states are either based on our own observations or on

detailed taxon specific studies such as for instance Bierbrodt (1942) or Wundt

(1961) (see Table I). Characters 6 (number of retinula cells in ommatidia or

stemmata), 350-353 (Malpighian tubules, digestive tract and ovarioles) and 354-

357 (development) were were mainly taken from the literature (e.g., Hennig, 1973;

Lawrence, 1982; Biliński et al., 1998; Kubrakiewicz et al., 1998; Kristensen, 1999;

Simiczyjew, 2002; Barbehenn and Kristensen, 2003; Büning, 2005) and

generalising assumptions were made when taxon specific information was

unavailable (e.g., Trachypachidae). For more detailed explanations and

illustrations see Beutel and Ge (2008), Beutel et al. (2008a), Beutel and Friedrich

(2008), and Beutel et al. (2009, 2010) for larval characters, and Beutel and Pohl

(2005), Beutel and Vilhelmsen (2007), Beutel and Baum (2008), Beutel et al.

Page 12: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

(2007, 2008a), Friedrich and Beutel (2008, 2010, acc. for publ.), Hünefeld and

Beutel (in press), and Hünefeld and Kristensen (in press) for characters of adults.

Larval head

1. Orientation of head: (0) orthognathous; (1) prognathous or slightly inclined.

The head is prognathous or very slightly inclined in Neuropterida (e.g., Beutel and

Friedrich, 2008), Coleoptera (partim; e.g., Beutel, 1993, 1999), Strepsiptera (Pohl,

2000), ‗spicipalpian‘ Trichoptera (e.g., Rhyacophila; Hasenfuss and Kristensen,

2003; Wiggins, 1987), several basal groups of Lepidoptera (e.g., Micropterigidae,

Agathiphagidae, Eriocraniidae; Kristensen, 1984; Hasenfuss and Kristensen,

2003), Nannochoristidae (Beutel et al., 2009), Siphonaptera (e.g., Sharif, 1937), in

basal lineages of Diptera (e.g., Cook, 1944a, b, 1949; Foote, 1991), and usually

also in Plecoptera (Baumann, 1987). It is orthognathous in some groups of

Coleoptera, in basal hymenopteran lineages (e.g., Xyela, Tenthredinidae; Parker,

1935; Smith and Middlekauff, 1987), in ‗non-spicipalpian groups‘ of Trichoptera

(e.g., Limnophilus; Winkler, 1959), in many groups of Lepidoptera-Ditrysia

(Hasenfuss and Kristensen, 2003), and in Mecoptera (excl. Nannochoristidae;

Applegarth, 1939; Setty, 1939; Russell, 1979, 1982; Byers, 1987). It is also

orthognathous in the outgroup taxa (with the exception of Plecoptera).

2. Shape of anterior (dorsal) side of head: (0) distinctly convex; (1) very slightly

convex or flat, nearly parallel to ventral side of head capsule. The dorsal side of the

head capsule, i.e. the morphological anterior side, is flat and nearly parallel to the

ventral side in the prognathous larvae of Megaloptera (Röber, 1942; Kramer,

1955), Raphidioptera (Aspöck et al., 1991; Beutel and Ge, 2008) and Nevrorthidae

(Beutel et al., 2010), and a similar condition is found in some groups of Coleoptera

(e.g., major part of Adephaga [not in Trachypachus] and Hydrophiloidea; Beutel,

1993; 1999) and in some trichopteran larvae with a prognathous head (e.g.,

Rhyacophila). It is more or less distinctly convex in larvae of the other groups

under consideration (e.g., Pohl, 2000; Hasenfuss and Kristensen, 2003: fig. 5.4).

3. Neck region: (0) absent; (1) distinctly developed. A distinctly defined, narrow

neck region present in larvae of Nevrorthidae and some other groups of

Page 13: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

Neuroptera (absent in larvae of the hemerobiform lineage), in Corydalidae

(Crampton, 1921; Kramer, 1955), Raphidioptera (Aspöck et al., 1991; Beutel and

Ge, 2008), and in few groups of Coleoptera (e.g. Gyrinidae [partim], Dytiscidae

[partim]; Beutel, 1993). The very narrow collar-like structure occurring in larvae of

Culicidae (Cook, 1944) is coded as (0).

4. Split cranial setae: (0) absent; (1) present. Split or branched cranial setae

occur in Nannochorista and in several nematoceran groups including members of

Culicomorpha, Ptychopteromorpha and Psychodomorpha (e.g., Nilsson [ed.],

1997; Neugart et al., 2009).

5. Lateral eyes: (0) well developed, with or without crystalline cones; (1)

distinctly reduced, with ca. 10 ommatidia and lacking a cornea lens; (2) well

developed stemmata; (3) stemmata closely aggregated, with or without single

cornea lense; (4) strongly reduced, 1-2 stemmata or single eyespot. Simplified

compound eyes without a crystalline cone occur in some Xyelidae and in

Tenthredinoidea, but are reduced or absent in other symphytan lineages and in

Apocrita. They are also present in most known mecopteran larvae but not in larvae

of Boreidae (Russell, 1979, 1982; Byers, 1987; Beutel et al., 2009). The compound

eye is distinctly reduced in the aquatic larvae of Nannochoristidae. They are

composed of ca. 10 ommatidia and lack a cornea lense (Melzer et al., 1994).

Compound eyes develop and become visible below the cuticle in early stages of

some dipteran groups (e.g., Culicidae, Chironomidae; Constantineanu, 1930; Sato,

1951; Hennig, 1973). This is not coded as present (0) as it is not a larval structure

(see below). Several stemmata are occur in different holometabolan groups (e.g.,

Beutel, 1993, 1999; Röber, 1942; Pohl, 2000; Kristensen, 1984 [Micropterigidae]).

Three are present in Hesperoboreus and Boreus and seven in Caurinus (Russell,

1982; Byers, 1987). The stemmata are closely aggregated, with or without single

cornea lense in Trichoptera (Wiggins, 1987), and a single stemma or eyespot is

present in larvae of some groups of Coleoptera (Beutel, 1995), Lepidoptera (e.g.,

Agathiphagidae, Eriocraniidae [vestigial]; Kristensen, 1984; Stehr, 1987), and

Diptera (e.g., Culicidae, Bibio; divided by diagonal light strip in Tipula [coded as 4];

Cook, 1944a, b, 1949; Hennig, 1973). Eyes are absent in Cupedidae (Beutel and

Page 14: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

Hörnschemeyer, 2002b), Siphonaptera, and many groups of Diptera (e.g., Cook,

1949; Hennig, 1973; Foote, 1991) (coded as inapplicable).

6. Number of retinula cells in ommatidia or stemmata; (0) less than 15; (1) 15 or

more. The number of retinula cells is strongly increased in Neuropterida, especially

in Megaloptera (ca. 40) (Paulus, 1986; Melzer et al., 1994).

7. Paired ocelli: (0) absent; (1) present. Ocelli are generally absent in

holometabolan larvae. They are present in Plecoptera (Baumann, 1987),

Tettigoniidae, in alate zorapteran nymphs (Riegel, 1987), and in Psocoptera

(Mockford, 1987). A median ocellus was described for larvae of Bittacidae and

Choristidae (e.g., Byers, 1991). However, whether the structure in question truly

represents a light sense organ needs confirmation (not coded here).

8. Transverse facial strengthening line (frontoclypeal suture): (0) absent or only

vaguely indicated; (1) present and distinct. The transverse facial strengthening line

(frontoclypeal suture) is absent in Raphidioptera (Beutel and Ge, 2008),

Corydalidae, Neuroptera (e.g., Crampton, 1921), in many groups of Coleoptera

(e.g., Beutel, 1993, 1999: e.g., Adephaga, Hydrophiloidea; vestigial in Omma

[coded as 1]; Lawrence, 1999), in Strepsiptera (Pohl, 2000), Hymenopotera (excl.

Xyelidae; Parker, 1935; Beutel et al., 2008b), Trichoptera (partim, e.g.,

Rhyacophila, Limnophilus; Winkler, 1959; Wiggins, 1987), Siphonaptera (e.g.,

Sharif, 1937), in Diptera (Cook, 1949; Hennig, 1973), and also in Zoraptera (Beutel

and Weide, 2005). It is present in Sialidae (Röber, 1942), in some groups of

beetles (e.g., Beutel and Molenda, 1997), in Xyelidae, in Lepidoptera (Hasenfuss

and Kristensen, 2003), in some groups of Trichoptera (Wiggins, 1987), in

Mecoptera (somewhat less distinct in Boreus; Russell, 1982; Beutel et al., 2009), in

Plecoptera (Baumann, 1987: fig. 20.1; pers. obs. Beutel), in Tettigoniidae, and in

Pscoptera (Badonell, 1934).

9. Division of clypeal area into anteclyepus and postclypeus: (0) absent; (1)

present. The clypeus is distinctly divided into an anterior, transparent anteclypeus

(without muscle attachment) and a posterior postclypeus in Megaloptera and

Raphidioptera (Beutel and Ge, 2008), in symphytan larvae (Beutel et al., 2008b:

Xyela; Parker, 1935: Tenthredinidae), in Lepidoptera (ground plan, e.g.,

Page 15: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

Micropterix, Agathiphaga; Kristensen, 1984; Hasenfuss and Kristensen, 2003 [not

in Eriocraniidae]; Davis, 1987), in Trichoptera (Winkler, 1959; Rhyacophila; pers.

obs. Beutel), in Nannochoristidae, Panorpidae and Bittacidae (Bierbrodt, 1942;

Applegarth, 1939) (not in Boreus), and also in the siphonapteran larvae examined.

It is also subdivided in Zoraptera and Psocoptera.

10. Shape of clypeal part anterad of transverse strengthening line: (0) broader

than long; (1) longer than wide, trapezoid, anteriorly converging. The clypeal part

anterad of the transverse strengthening line is longer than wide (at the anterior

margin) and trapezoid in Apterobittacus (Applegarth, 1939), Panorpa (Bierbrodt,

1942) and Boreus (not in Caurinus; Russell, 1982: fig. 2). It is short and transverse

in the other holometabolan taxa with a defined clypeus (coded as inapplicable for

taxa without transverse strengthening line).

11. Occipital furrow: (0) absent; (1) present. Present in symphytan larvae (Smith

and Middlekauff, 1987) and in larvae of Mecoptera (Russell, 1982; Byers, 1987;

Bierbrodt, 1942; Beutel et al., 2009).

12. Gula: (0) absent; (1) undivided sclerotized quadrangular gula; (2) strongly

narrowed gula. A well developed undivided gula is present in larvae of

Raphidioptera, Corydalidae (Crampton, 1921; Beutel and Friedrich, 2008),

Coleoptera (partim; e.g., Beutel, 1993, 1999), Siphonaptera (partim; Beutel et al.,

2009), and Nevrorthidae (Zwick, 1967; Beutel et al., 2010). It is strongly narrowed

in most adephagan and hydrophiloid larvae (e.g., Trachypachus, Helophorus;

Beutel, 1993, 1999). A gula is absent in trichopteran larvae (posterior tentorial pits

adjacent with head capsule) and also missing in other holometabolan lineages

(e.g., Crampton, 1921; Parker, 1935; MacLeod, 1964; Hasenfuss and Kristensen,

2003) and in nymphs of the outgroup taxa (weakly sclerotised transverse plate of

Zorotypus coded as 0).

13. Hypostomal/postgenal bridge: (0) absent; (1) present, not separated from

genal area; (2) present, distinctly separated from genal area. A hypostomal or

postgenal bridge not separated from the genal region, with or without median

suture or zone of weakness, is present in basal lepidopteran lineages (Hasenfuss

and Kristensen, 2003), in Trichoptera (Winkler, 1959; Malicky, 1973 Hasenfuss and

Page 16: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

Kristensen, 2003), and in Pistillifera (e.g., Bierbrodt, 1942; Applegarth, 1939). It is

also possibly present in the groundplan of Diptera (Anthon, 1943; Hennig, 1973),

but absent in many groups (e.g., Cook, 1949: Bibionidae; Chiswell, 1955:

Tipulidae). The region posterad of the posterior tentorial grooves in Culicidae (e.g.,

Cook, 1944; see also Hennig, 1973) is probably not homologous with a hypostomal

bridge (coded as ?). A sclerotised plate likely representing a hypostomal or

postgenal bridge is also present in larvae of Nannochoristidae (Beutel et al., 2009).

However, it is very distinctly delimited laterally. A ventral closure is absent in

Boreus (Beutel et al., 2009). The condition in Caurinus (Russell, 1982: fig. 4) is

unclear.

14. Posterior tentorial grooves: (0) close to hind margin of head capsule; (1)

shifted anterad. Distinctly shifted anteriorly in Nevrorthidae, Raphidioptera,

Corydalidae (Beutel and Friedrich, 2008), Coleoptera (partim; e.g., Adephaga,

Hydrophilidae, Histeridae, Staphylinininae; Beutel, 1993, 1999; Beutel and

Molenda, 1997), Culicidae (Cook, 1944), and Siphonaptera (pers. obs. Beutel).

15. Dorsal tentorial arm: (0) well developed, sclerotized; (1) strongly reduced and

ligament-like or absent. The dorsal tentorial arm is well developed in Neuroptera

(e.g., Rousset, 1966; Beutel et al., 2010), in most groups of Coleoptera (e.g.,

Beutel, 1993, 1999), in symphytan larvae (Parker, 1935; Beutel et al., 2008b

[short]; Grabarek, 2008), and also in the outgroup taxa. It is absent in some groups

of Coleoptera (e.g., Elateriformia [partim]; Beutel, 1995), in Strepsiptera (Pohl,

2000), in Trichoptera (partim [Rhyacophilidae]), in Micropterigidae, in

Nannochorista (Beutel et al., 2009), Boreus, and Apterobittacus (Applegarth,

1939), in Siphonaptera (Sharif, 1937; Widhalm-Finke, 1974), and in most or all

groups of Diptera (Beutel et al., 2009). A vestigial, ligament-like dorsal arm occurs

in Sialis, Panorpa (with muscle attachment) and Drusus (Fotius-Jaboulet, 1961). It

is also present in Agathiphaga as an ―excrescence on the anterior arm‖, which is

connected with the head capsule by ligamentous strands (Kristensen, 1984)

(without muscle attachment, coded as 1). The character is coded as inapplicable

for Strepsiptera and Tipulidae (tentorium entirely reduced; Pohl, 2000; Cook, 1949;

Neugart et al. 2009).

Page 17: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

16. Shape of tentorium: (0) not X-shaped, without distinct constriction between

anterior and posterior arms; (1) X-shaped, with distinct constriction between

anterior and posterior arms; (2) largely or completely reduced. The posterior and

anterior tentorial arms and the tentorial bridge form an X-shaped structure in larvae

of some groups of Coleoptera (e.g., Leiodidae, Hydraenidae; Beutel and Molenda,

1997), in symphytan larvae (e.g., Parker, 1935; Beutel et al., 2008b), in larvae of

Mecoptera excluding Nannochorista (condition in Caurinus unclear; Bierbrodt,

1942; Beutel et al., 2009), Plecoptera (partim, e.g., Pteronarcys; Hoke, 1924),

Zoraptera (Beutel and Weide, 2005) and Psocoptera (Badonnel, 1934). It is more

or less H-shaped in nymphs of Tettigonia and in larvae of other groups of

Holometabola such as for instance Neuropterida (e.g., Röber, 1942; Kramer, 1955;

Wundt, 1961; Beutel and Ge, 2008; Beutel et al., 2010), Coleoptera (partim;

Beutel, 1993, 1999), Trichoptera (partim; Fotius-Jaboulet, 1961: figs 23, 28), basal

groups of Lepidoptera (Kristensen, 1984: fig. 4; Hasenfuss and Kristensen, 2003),

Siphonaptera (Sharif, 1937) and basal groups of Diptera (e.g., Culicidae,

Bibionidae; Cook, 1944a, b). The character is coded as inapplicable for

Rhyacophila as the posterior part of the tentorium with the thin, thread-like bridge is

separated from the main arms, which arise with massive bases posteromedially

from the ventral wall of the head capsule.

17. Dorsoventral muscle spanning the foramen occipitale: (0) absent; (1) present.

A unique dorsoventral muscle spanning the foramen occipitale is a synapomorphy

of Agathiphagidae, Heterobathmioidea and Glossata according to Kristensen

(1984, 1999). It is missing in Micropterigidae and other groups.

18. Articulation of labrum: (0) labrum free; (1) labrum fused with clypeus. The

labrum is fused to the head capsule in larvae of many groups of Coleoptera

(usually predacious forms; e.g., Arndt and Beutel, 1995; Beutel, 1993, 1995; Beutel

and Molenda, 1997), in Neuroptera (e.g., MacLeod, 1964; Zwick, 1967), in different

groups of Diptera (e.g., Tipulidae, Bibionidae; e.g., Cook, 1949; Neugart et al.,

2009), and in 1st instar larvae of Strepsiptera (Pohl, 2000).

19. Exposure of anterior epipharynx: (0) not exposed; (1) slightly exposed; (2)

distinctly exposed. A large part of the anterior epipharynx is exposed in

Page 18: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

Nannochorista (Beutel et al., 2009) and this is also the case in larvae of some

nematoceran groups such as Ptychopteridae (Bittacomorpha; Kramer, 1954: fig.

6), Ansisopodidae (Olbiogaster; Anthon, 1943), Chironomidae (Foote, 1991), and

Culicidae (partim, coded as 1&2, Cook, 1944a), and and to a lesser degree in Bibio

and some tipulid larvae (Cook, 1949; Neugart et al., 2009), and in larvae of

Rhyacophila (Trichoptera; pers. obs. Friedrich; coded as 1). The anterior

epipharynx is completely concealed in Boreidae (Russell, 1982) and Panorpa

(Bierbrodt, 1942), and this is also the case in other groups of Holometabola, such

as Neuropterida (Crampton, 1921; Röber, 1942; Wundt, 1961), Coleoptera (e.g.,

Beutel and Hörnschemeyer, 2002a, b; Beutel and Molenda, 1997) and Lepidoptera

(Hasenfuss and Kristensen, 2003: figs. 5.3A-C), and in symphytan larvae (e.g.,

Parker, 1935) and larvae of some nematoceran groups (e.g., Tipulidae partim;

pers. obs. Beutel; Cook, 1949; Foote, 1991). A somewhat intermediate condition is

found in in Siphonaptera (coded as 1), where the mandibles are strongly flexed in

their resting position, thus leaving an open space between the dorsal surface of the

maxillae and the anterior epipharynx. The anterior part of the clypeolabrum is

inflected in larvae of Osmylus (Wundt, 1961) and partly exposed, but this condition

is clearly different from an exposed anterior epipharynx as it is found in

Nannochorista and others (coded as 0).

20. M. frontolabralis with attachment to external wall of labrum: (0) absent; (1)

present. A typical frontolabral muscle is present in Mecoptera (Bierbrodt, 1942;

Beutel et al., 2009), Raphidia (Beutel and Ge, 2008), Megaloptera (Röber, 1942;

Beutel and Friedrich, 2008), Trichoptera (Rhyacophila, Anabolia, Limnophilus; Das,

1937; Winkler, 1959), Micropterigidae (Hasenfuss and Kristensen, 2003),

Siphonaptera (Sharif, 1937; Widhalm-Finke, 1973), in symphytan larvae (Das,

1937; Parker, 1935; Beutel et al., 2008b; Grabarek, 2008), and in the outgroup

taxa. It is absent in Lepidoptera (excluding Micropterigidae; Hasenfuss and

Kristensen, 2003), Neuroptera (Beutel et al., 2010), Coleoptera (Das, 1937;

Dorsey, 1943; Arndt and Beutel, 1995; Beutel, 1993, 1995, 1999; Beutel and

Molenda, 1997; Beutel and Hörnschemeyer, 2002a, b), and Strepsiptera (Pohl,

Page 19: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

2000). Extrinsic muscles attached to the outer wall of the labrum are also absent

from dipteran larvae (Beutel et al., 2009).

21. M. frontoepipharyngalis: (0) absent; (1) present, inserted on tormae or

posterolaterally on epipharynx; (2) inserted close to median line; (3) attached to

messores. The muscle is present with a typical insertion on the tormae or

posterolaterally on the epipharynx in some groups of Coleoptera (e.g.,

Archostemata [not verified for Ommatidae]; Beutel and Hörnschemeyer, 2002a, b;

Das, 1937), Raphidia (Beutel and Ge, 2008), Megaloptera (Das, 1937; Röber,

1942; Kramer, 1955), Osmylus (Wundt, 1961: fig. 20), Chrysopa (Rousset, 1966:

mlrp), Trichoptera (e.g., Rhyacophila; Das, 1937; Winkler, 1959), Lepidoptera

(Hasenfuss and Kristensen, 2003), in Bibio (Cook, 1949: tormal muscle), in

symphytan larvae (Beutel et al., 2008b; Parker, 1935; Das, 1937; Grabarek, 2008),

and in the outgroup taxa. A muscle with an unusual insertion immediately close to

the median line is present in Siphonaptera (Sharif, 1937; Widhalm-Finke, 1971)

and Nannochorista (Beutel et al., 2009). It is likely homologous with M 9 (coded as

1). The muscle is attached to movable messores in Culicidae and other

nematoceran larvae (e.g., Simulidae; Cook, 1949). It is absent in Nevrorthidae

(Beutel et al., 2010), Panorpa (Bierbrodt, 1942), Boreus, Strepsiptera (Pohl, 2000),

and in many groups of Coleoptera (Dorsey, 1943; Arndt and Beutel, 1995; Beutel,

1993, 1995, 1999).

22. Antennal segmentation: (0) multisegmented, antennomeres distinctly

separated; (1) pseudo-multisegmented, with mid-segment subdivided; (2) 5-7

antennomeres; (3) 4 antennomeres; (4) 3 antennomeres; (5) less than 3

antennomeres. The antennae are multisegmented in the outgroup taxa, and

pseudo-multisegmented with a subdivided mid-segment in some groups of Neu-

roptera (e.g., Nevrorthidae, Osmylidae, Chrysopidae; MacLeod, 1964; Tauber,

1991; Beutel et al., 2010). Three antennomeres are present in larvae of

Nannochoristidae, Panorpidae, Bittacidae (Bierbrodt, 1942; Pilgrim, 1972; Byers,

1987), Lepidoptera (groundplan, e.g., Micropterigidae, Heterobathmioidea;

Hasenfuss and Kristensen, 2003), and in most polyphagan larvae (e.g., Beutel,

1995, 1999; Beutel and Molenda, 1997). Five antennomeres are present in

Page 20: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

Corydalidae (Crampton, 1921), Ithonidae (New, 1991) and in some symphytan

larvae, four in Sialidae (Röber, 1042), Cupedidae and Adephaga (Beutel, 1993;

Beutel and Hörnschemeyer, 2002b), two in Boreidae (Russell, 1982; Byers, 1987),

Siphonaptera (Sharif, 1937; Widhalm-Finke, 1974), and some groups of Diptera

(e.g., Pediciidae, Limoniidae; Cook, 1949), and only one in Trichoptera (Hasenfuss

and Kristensen, 2003), Agathiphagidae (Kristensen, 1984), and in several basal

groups of Diptera (e.g., Bittacomorpha, Tipulidae, Culicidae; Cook, 1944a, b, 1949;

Kramer, 1954; Foote, 1991; Neugart et al. 2009). The number of antennomeres

varies widely in Hymenoptera. It is composed of six segments in Xyelidae, usually

of four or five in Tenthredinidae, three segments in Diprionidae and Anaxyelidae,

and only one or two in Argidae, Cimbicidae and Orussidae (Smith and Middlekauff,

1987). The antennae are extremely reduced or absent in larvae of Trichoptera and

Bibionidae, and in primary larvae of Strepsiptera (Pohl, 2000) (coded as -).

23. Sensorium on antepenultimate antennomere: (0) absent; (1) present. Present

in larvae of Megaloptera (Beutel and Friedrich, 2008). The presence of a

sensorium on the penultimate antennomere is a common feature in Holometabola

(e.g., Beutel, 1993, 1999; Beutel et al., 2009).

24. Specialised terminal seta of flagellum (MacLeod 1964: FITS): (0) absent; (1)

present. A specialised long terminal seta is present in Chrysopidae and Osmylidae,

and most other groups of the hemerobiform lineage of Neuroptera (absent in

Ithonidae and Polystoechotidae) (MacLeod, 1964 [FITS]; Beutel et al., 2010).

25. Number of extrinsic antennal muscles: (0) 4; (1) 3; (2) 2; (3) 1; (4) absent.

Three extrinsic antennal muscles are present in Corydalidae (Kramer, 1955; Beutel

and Friedrich, 2008), in most groups of Coleoptera (e.g., Arndt and Beutel, 1995;

Beutel, 1993; Beutel and Molenda, 1997; Beutel and Hörnschemeyer, 2002b), and

in Siphonaptera (Sharif, 1937). Four are present in Raphidia (Beutel and Ge, 2008)

and some groups of Neuroptera (e.g., Nevrorthidae, Osmylus, Chrysopa,

Coniopterygidae; Wundt, 1961; Rousset, 1966; Beutel et al., 2010), Xyela (Beutel

et al., 2008b), in larvae of some groups of Lepidoptera (Kristensen, 1994, 2003),

and in Pteronarcys. Only two are preserved in Micropterix (F. Vegliante, pers.

comm.), Sialis (Röber, 1942), Boreus (Beutel et al., 2009) and Tettigoniidae

Page 21: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

(Khattar, 1964; Wada, 1965; 2 pairs of muscles attached with one tendon each),

and only one in Myrmeleon (Korn, 1943) and some other lineages (e.g., Parker,

1935 [Tenthredinidae: muscle 10]; Bierbrodt, 1942; Kramer, 1954). Total reduction

occurs in groups with strongly or completely reduced antennae (e.g., Cook, 1949;

Winkler, 1959; Kristensen, 1984; Pohl, 2000).

26. Intrinsic antennal muscles (Mm. scapopedicellares): (0) absent; (1) present.

Absent in larvae of all holometabolan lineages (e.g., Bierbrodt, 1942; Röber, 1942;

Korn, 1943; Kramer, 1954; Wundt, 1961; Kristensen, 1984; Beutel, 1993, 1995,

1999; Beutel and Ge, 2008; Beutel, et al. 2008; Neugart et al. 2009).

27. Mola: (0) absent or strongly reduced; (1) present. A mandibular mola with a

grinding surface is absent in Neuropterida (e.g., Röber, 1942; MacLeod, 1964;

Beutel and Ge, 2008) and in some groups of Coleoptera (e.g., Adephaga,

Hydrophiloidea; Arndt and Beutel, 1995; Beutel, 1993, 1999), and is also missing in

Strepsiptera (Pohl, 2000), Hymenoptera (Parker, 1935; Smith and Middlekauff,

1987), Trichoptera (Wiggins, 1987), Mecoptera (excl. Panorpa; Pilgrim, 1972;

Applegarth, 1939; Byers, 1987; Beutel et al., 2009), Siphonaptera (Sharif, 1937)

and Diptera (Cook, 1949; Foote, 1991). It is present in larvae of Panorpa

(Bierbrodt, 1942), in many groups of Coleoptera (Archostemata, Myxophaga,

Polyphaga partim; Beutel and Hörnschemeyer, 2002a; Beutel and Haas, 1998;

Beutel and Molenda, 1997), and in most groups of Lepidoptera (absent in

Micropterix but present in Neomicropterix; Hasenfuss and Kristensen, 2003)

(coded as 0&1).

28. Articulated lacinia mobilis: (0) absent; (1) present. A lacinia mobilis is present

in Nannochoristidae (Pilgrim, 1972) and does also occur in larvae of Tipuloidea

(Chiswell, 1955; Wood and Borkent, 1989; Oosterbroek and Theowald, 1991;

Neugart et al. 2009). It is absent in other groups of Mecoptera (Byers, 1987;

Russell, 1982) and Diptera (Cook, 1944a, b, 1949; Hennig, 1973), and also absent

in the other groups of Holometabola (e.g., Röber, 1942; Beutel, 1993, 1995, 1999;

Beutel and Haas, 1998; Beutel and Hörnschemeyer, 2002a, b; Pohl, 2000;

Wiggins, 1987; Parker, 1935; Smith and Middlekauff, 1987; Hasenfuss and

Kristensen, 2003; Sharif, 1937; Widhalm-Finke, 1974).

Page 22: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

29. Mandibulo-maxillary sucking apparatus: (0) absent; (1) present. A sucking

apparatus formed by the mandibles and maxillae is a unique feature of

neuropteran larvae (e.g., Wundt, 1961; Zwick, 1967; Grebennikov, 2004).

30. Poison channel of maxillary stylet: (0) absent; (1) present. A mesal poison

channel is present on the mesal side of the maxillary stylet of larvae of Neuroptera

(Wundt, 1961; Rousset, 1966; Gaumont, 1976).

31. Position of maxilla: (0) retracted; (1) protracted, cardines at level of

prementum, maxillary groove absent. The maxillary bases are in a strongly

protracted position in larvae of Raphidioptera and a similar condition is found in

Adephaga (excl. Gyrinidae; Beutel, 1993) and few other goups of beetles (e.g.,

Histeridae; Beutel, 1999), and also in Siphonaptera (Widhalm-Finke, 1974),

Panorpa (Bierbrodt, 1942), Apterobittacus (Applegarth, 1939), and in nematoceran

lineages (e.g., Cook, 1944a, b, 1949; Kramer, 1954). The maxillary groove is

absent in larvae of these groups. The maxillae are less strongly protracted in

larvae of Megaloptera, Neuroptera (partim; e.g., MacLeod, 1964) and Trichoptera

(level of the mentum; Winkler, 1959; Wiggins, 1987) (coded as 0). The maxillae are

distinctly retracted in the other groups of Holometabola (e.g., Beutel and Molenda,

1997; Beutel and Hörnschemeyer, 2002a, b; Parker, 1935; Smith and Middlekauff,

1987; Kristensen, 2003). The ventral mouthparts and their articulation are highly

modified in primary larvae of Strepsiptera (coded as inapplicable). The maxillae are

medially fused and form a plate-like structure (coded as -) (Pohl, 2000).

32. Maxillolabial complex: (0) absent; (1) present. A maxillolabial complex is

present in symphytan larvae (e.g., Parker, 1935; Beutel et al., 2008b; Grabarek,

2008), in Trichoptera (e.g., Winkler, 1959; Fotius-Jaboulet, 1961), Lepidoptera

(Kristensen, 1984; Hasenfuss and Kristensen, 2003), Mecoptera (Byers, 1987;

Beutel et al., 2009), and in some groups of beetles (e.g., Elateriformia [major part],

Beutel, 1995). The maxillary bases are distinctly separated from the anterior labium

in Neuropterida (Crampton, 1921; Das, 1937; Röber, 1942; Wundt, 1961; New,

1991), most groups of Coleoptera (e.g., Beutel, 1993, 1999; Beutel and Molenda,

1997; Beutel and Hörnschemeyer, 2002a, b), in Strepsiptera (Pohl, 2000), Diptera

(e.g., Cook, 1949; Kramer, 1954), and in Siphonaptera (Sharif, 1937; Widhalm-

Page 23: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

Finke, 1974).

33. Shape of the proximal parts of maxilla: (0) not ‗transverse‘; (1) ‗transverse‘

(i.e., distinctly wider than long). The main elements of the maxilla (excluding lobes

and palp) usually form a more or less elongate structure in holometabolan larvae.

In contrast to that, a very unusually shaped transverse proximal element of the

maxilla is present larvae of Panorpa and Bittacidae (Bierbrodt, 1942; Currie, 1932;

Applegarth, 1939; Beutel et al., 2009), and also in bibionid larvae (Cook, 1949: figs

1, 3) and some groups of Tipuloidea (Oosterbroek and Theowald, 1991).

34. Posteromesal process of cardo/proximal element of maxilla: (0) absent; (1)

present. A strongly developed, backwards directed mesal process of the proximal

element of the maxilla is present in larvae of Panorpa and Apterobittacus

(Bierbrodt, 1942; Applegarth, 1939; Beutel et al., 2009), and in Siphonaptera

(Sharif, 1937; Hinton, 1958; Widhalm-Finke, 1974).

35. Galea and lacinia: (0) present as discrete structures; (1) extensively or

completely united. A discrete hook-shaped lacinia with mesally directed stout setae

co-occurs with a galea in nymphs of many hemimetabolous insects, but is

generally absent in holometabolan larvae, with the possible exception of Sialidae

(Crampton, 1921; Das, 1937, Beutel and Friedrich, 2008). Within Mecopterida a

sclerotized (but non-spinose) lacinia clearly separated from the galea is probably

only retained in Lepidoptera-Micropterigidae (e.g., Hinton, 1958; Hasenfuss and

Kristensen, 2003). A distinct furrow demarcating the galea from the lacinia is

present in Nannochorista (Beutel et al., 2009), Panorpa (Bierbrodt, 1942) and

Apterobittacus (Applegarth, 1939). In contrast, an obvious border between the

components of the inner maxillary lobe is not recognisable in Boreus (Potter, 1938)

and a similar condition is described for Caurinus (Russell, 1982), However, the

condition in these tiny larvae need to be clarified with adequate techniques. Both

lobes are also fused in larval Trichoptera, non-micropterigid Lepidoptera,

Siphonaptera, and in Diptera. Small, but discrete maxillary lobes are present in

Raphidioptera and Corydalidae (Beutel and Ge, 2008; Beutel and Friedrich, 2008)

and they also occur in symphytan larvae (Parker, 1935; Smith and Middlekauff,

1987; Beutel et al., 2008b; Grabarek, 2008: fig. 16). Discrete lobes are also

Page 24: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

present in many groups of Coleoptera (e.g., Beutel and Hörnschemeyer, 2002a, b;

Beutel, 1993; Beutel and Molenda, 1997), but are absent in primary larvae of

Strepsiptera (Pohl, 2000) and in larvae of Neuroptera (e.g., Beutel et al., 2010).

36. Stipital flexor muscles of lacinia and galea: (0) both present; (1) only a single

muscle present; (2) no stipital lobe muscles present. The stipital muscles of the

maxillary inner lobes are absent in larvae of Mecopterida (Beutel et al., 2009). Both

muscles are present in Raphidioptera (Beutel and Ge, 2008) and Megaloptera

(Beutel and Friedrich, 2008). One muscle is preserved in Neuroptera (Beutel et al.,

2010), in different groups of Coleoptera (but see Das, 1937: two in Sinodendron),

and in Hymenoptera (Parker, 1935; Beutel et al., 2008b; Grabarek, 2008).

37. M. craniocardinalis: (0) well developed; (1) absent. The muscle is always

absent in larvae of Mecopterida (Hinton, 1958; Beutel et al., 2009). It is present in

Megaloptera (Beutel and Friedrich, 2008) and Raphidioptera (Beutel and Ge,

2008), but is absent in Neuroptera (Rousset, 1966; Beutel et al., 2010). It is also

present in most symphytan larvae (Parker, 1935; Das, 1937; Beutel et al., 2008b:

absent in Xyela, very thin in other symphytan larvae) and in most larvae of

Coleoptera (e.g., Das, 1937; Arndt and Beutel, 1995; Beutel, 1993, 1995, 1999).

38. Maxillary palp: (0) absent: (1) present. The maxillary palp and its muscles are

absent in Neuroptera (MacLeod, 1964; Rousset, 1966; Beutel et al., 2010).

39. ‗M. craniodististipitalis‘: (0) absent; (1) present. A muscle with a cranial origin

and an insertion dorsally on the stipes close to the insertion of the palp is present

in larvae of Nannochorista (two bundles), Boreus (two bundles), Mecoptera-

Pistillifera (Hinton, 1958), Trichoptera (Das, 1937; Winkler, 1959; Badcock, 1961;

Fotius-Jaboulet, 1961), Lepidoptera (Hasenfuss and Kristensen, 2003), and

probably also in the ground plan of Diptera (e.g., Culicidae, Bibio, Bittacomorpha;

Kramer, 1954: mfx; Das, 1937 muscle 18; Cook, 1944a, b, 1949). Its homologue

within the unusual complement of extrinsic maxillary muscles in flea larvae remains

uncertain (coded as ?; see Beutel et al., 2009). The muscle may also be reduced in

various subordinate mecopterids (e.g., Tipula; Das, 1937; Neugart et al. 2009). A

cranial stipital muscle does also occur in larval Neuroptera (Coniopterygidae,

Chrysopidae, Osmylidae, Myrmeleontidae; Rousset, 1966), but is absent in

Page 25: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

Nevrorthidae (Beutel et al., 2010). A cranial muscle attached to the stipital base in

some coleopteran larvae (e.g., Adephaga excl. Gyrinidae; Beutel, 1993) is coded

as 0.

40. M. submentopraementalis: (0) absent; (1) present. M. submentopraementalis

is absent in Tenthredinidae, in primary larvae of Strepsiptera (Pohl 2000), in

Mecoptera (e.g., Bierbrodt, 1942; Beutel et al., 2009), and in larvae of most other

groups of Mecopterida with the possible exception of Siphonaptera (coded as ?;

Widhalm-Finke, 1974; but see Sharif 1937: 14-17). It is generally present in

Neuropterida (e.g., Chrysopa; Das, 1937: fig. 63) and also in the groundplan of

Coleoptera (e.g., Arndt and Beutel, 1995; Beutel, 1993, 1995, 1999), but reduced

in larvae of Archostemata (Beutel and Hörnschemeyer, 2002a, b: all labial muscles

absent) and some other groups of beetles (Beutel, 1993).

41. M. praementoparaglossalis: (0) absent; (1) present. Absent in all

holometabolan larvae (e.g., Beutel et al., 2008b, 2009, 2010).

42. M. praementoglossalis: (0) absent; (1) present. Absent in all holometabolan

larvae (e.g., Beutel et al., 2008b, 2009, 2010).

43. Apical prelabial region: (0) without process or extension or with short

unsclerotised ligula; (1) with wedge-shaped, strongly sclerotised ligula; (2)

sclerotised prelabial extension distinctly developed; (3) together with hypopharynx

forming compact lobe with salivary (silk) orifice on apex. A sclerotised premental

lobe (labial element of prelabio-hypopharyngeal complex) distinctly protruding

beyond the palp bases is present in Caurinus (Russell, 1979, 1982: figs 4, 6) and is

very prominent in Siphonaptera (Beutel et al., 2009). A similarly prominent prelabial

lobe is present in Bibio (Cook, 1949), but the labium is strongly modified (and

reduced) in most dipteran larvae (e.g., Cook, 1949: figs 6, 12, 16). The character is

coded as ? for Culicidae due to homology problems and as inaplicable for

Tipulidae (prementum extremely modified, forming toothed plate). A distinctly

developed extension is not present in Boreus and the nearly vertical prelabial part

anterad of the palps is coded as 0, even though this condition may arguably be

related withwhat is found in Caurinus and Siphonaptera. A produced prelabial lobe

is absent in Apterobittacus (Applegarth, 1939) and Panorpa (Bierbrodt, 1942). A

Page 26: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

membranous or semimembranous ligula as occuring in Raphidioptera (Beutel and

Ge, 2008), Megaloptera (Beutel and Friedrich, 2008) and many groups of

Coleoptera (e.g. Beutel, 1993) is coded as 0. The ligula is strongly sclerotised and

wedge-shaped in Archostemata (Beutel and Hörnschmeyer, 2002a, b). A compact

prelabio-hypopharyngeal lobe which bears the salivary (silk) gland orifice on the

apex is present in larval Hymenoptera and Amphiesmenoptera (e.g., Snodgrass,

1935; Parker, 1935; Hinton, 1958), sometimes referred to as ‗spinneret‗, which is

however used in a different sense by lepidoterists (e.g., Hasenfuss and Kristensen,

2003).

44. Salivary duct: (0) absent; (1) well developed; (2) strongly narrowed, without

recognisable lumen. A narrow, vestigial proximal salivary tube is present in

Neohermes and also in Sialis (not described by Röber [1942]). It is well developed

in Raphidia (Beutel and Ge, 2008) and usually also in Neuroptera (e.g.,

Polystoechotidae, Osmylidae, Chrysopidae; Wundt, 1961; MacLeod, 1964;

Rousset, 1966; Beutel et al., 2010) and also in most other groups of holometabolan

insects (e.g., Parker, 1935; Kristensen, 1984; Cook, 1949). It is absent in

Nevrorthidae and Coleoptera (Beutel and Hörnschemeyer, 2002a, b; Beutel, 1993,

1995, 1999; Beutel and Molenda, 1997) and Strepsiptera (Pohl, 2000).

Larval thorax

45. Cervix: (0) absent; (1) present. A distinct separate cervix is present in

Neuroptera (MacLeod, 1964; Zwick, 1967). It is absent in all other groups of

insects.

46. Legs: (0) absent; (1) present. Usually present but absent in Siphonaptera,

Diptera (Teskey, 1991), Agathiphagidae (Hasenfuss and Kristensen, 2003), and in

few groups of Coleoptera (e.g., Micromalthidae [second and following instars];

Curculionidae) (Beutel and Hörnschemeyer, 2001a). Also absent or reduced in

most Hymenoptera, except Xyelidae and Tenthredinoidea.

47. Number of leg segments: (0) more than 4; (1) 3. The legs are usually 5- or 6-

segmented in holometabolan larvae, but 3-segmented in larvae of Mecoptera

Page 27: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

excluding Nannochoristidae (Byers, 1987). The legs are 5-segmented in larvae of

Nannochorista (Pilgrim, 1972; pers. obs. Beutel).

48. Claws: (0) double; (1) single; (2) absent. Double claws are present in

Raphidioptera (Tauber, 1991), Megaloptera (Neunzig and Baker, 1991), in most

groups of Neuroptera (single claw in Coniopterygidae and Sisyridae; New, 1989;

Tauber, 1991), in Ommatidae and first instar larvae of Micromalthidae (Lawrence,

1991, 1999), and in most adephagan larvae. Single claws are present in larvae of

Hymenoptera and Mecopterida (e.g., Kristensen, 1999), and also in larvae of

Cupedidae, Myxophaga and Polyphaga (e.g., Beutel and Haas, 2000). Claws are

absent in strepsipteran larvae (Pohl 2000).

Larval abdomen

49. Segment XI: (0) absent; (1) present. Segment XI is present in Strepsiptera

(Pohl, 2000) and Boreidae (Russell, 1982), but absent in the other holometabolan

lineages. It is present in Orthoptera and Psocoptera (composed of epiproct and

paraprocts; Mockford, 1987), but absent in plecopteran nymphs. The abdomen is

11-segmented in Zoraptera according to Günther (2005), but we could not observe

the terminal segments in the nymphs (coded as 1).

50. Retractile prolegs on segments II-VII: (0) absent; (1) present. Prolegs are

absent in most groups of Holometabola, but distinctly developed, retractile

abdominal appendages are present on most abdominal segments in larvae of

basal hymenopteran groups (e.g., Macroxyela: I-VIII [reduced in internally feeding

larvae], Dipronidae: II-VII, X, Tenthredinidae: II-VII or II-VIII, X; Smith and

Middlekauff, 1987). Prolegs are usually present on segments III-VI and X in

caterpillars, but are absent in the basal groups of Lepidoptera (non-retractile

processes present in larvae of the genus Micropterix; Hasenfuss and Kristensen,

2003).

51. Conical ventral protuberances on segments I-VIII: (0) absent; (1) present.

Conical fleshy protuberances are present on the ventral side of abdominal

Page 28: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

segments I-VIII of Panorpidae and Bittacidae. They are absent in Boreidae and

Nannochoristidae and also in Panorpodidae (Pilgrim, 1972; Byers, 1987).

52. Setiferous lateral filaments: (0) absent; (1) present. Setiferous lateral tracheal

gills are present in larvae of Megaloptera (New and Theischinger, 1993). The

tracheal gills occurring in larvae of some groups of Trichoptera (Wiggins, 1987) are

distinctly different (coded as 0).

53. Cerci: (0) absent; (1) present. Present and equipped with well developed

muscles in Strepsiptera (Pohl 2000) but absent in all other groups of Holometabola

and also in Acercaria. Present in Plecoptera, Orthoptera and Zoraptera.

54. Urogomphi: (0) absent; (1) present. Urogomphi are present on segment IX of

larvae of many groups of Coleoptera, but are always absent in Archostemata (e.g.,

Beutel and Haas, 2000).

55. Terminal hooks: (0) absent; (1) single hook on fleshy lobes of segment X; (2)

single hook on subdivided prolegs with scerotised elements; (3) double hooks on

unsclerotised proleg. A well developed single hook is present on each of the well

developed, partly sclerotised prolegs of segment X of Trichoptera (e.g., Wiggins,

1987). Double hooks are inserted on a proleg X without sclerotised elements in

Corydalidae. The hooks are inserted on a fleshy lobe of segment X in the aquatic

larvae of Nannochorista (Pilgrim, 1972). Small terminal hooks occur in few groups

of Coleoptera with aquatic or semiaquatic larvae (Gyrinidae, Hydraenidae).

56. Malpighian tubules: (0) all free; (1) several cryptonephric malpighian tubules.

Cryptonephric Malpighian tubules are present in larvae of Neuroptera excluding

Nevrorthidae (e.g., Aspöck and Aspöck, 2007). They are free in the other groups

with the exception of cucujiform Coleoptera.

Larval ecology

57. Larval habitat: (0) terrestrial; (1) semiaquatic; (2) aquatic. Nymphs of

Plecoptera and larvae of Nevrorthidae, Megaloptera, Trichoptera,

Nannochoristidae and many groups of Diptera are aquatic. Larvae of Osmylidae

Page 29: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

are semiaquatic. Tipulid larvae occur in a wide variety of habitats (coded as

0&1&2).

58. Endoparasitism of larvae: (0) absent; (1) present. Immature stages of

Strepsiptera are endoparasitic. The minute first larvae enter the host.

Pupal characters

59. Movability of pupal mandible: (0) absent; (1) present. The pupal mandible is

movable in Neuropterida (Aspöck and Aspöck, 2005), Xyela, Trichoptera, basal

lineages of Lepidoptera (Hasenfuss and Kristensen, 2003), in Mecoptera, and also

in Strepsiptera according to Kinzelbach (1971).

60. Size of pupal mandible: (0) not hypertrophied; (1) hypertrophied.

Hypertrophied and bent in Agathiphagidae, Eriocraniidae, and Heterobathmiidae

(Hasenfuss and Kristensen, 2003).

Adult head

61. Exposure of posterior head region: (0) fully exposed; (1) at least partly

retracted. The posterior head is fully exposed in basal groups of Hymenoptera

(with the exception of Siricidae; Beutel and Vilhelmsen, 2007), in Strepsiptera, in

Trichoptera, in Lepidoptera, in most subgroups of Mecoptera (not in Boreidae;

Kaltenbach, 1978), in Diptera (e.g., Colless and Alpine, 1991), in Zoraptera, and in

Psocoptera. The posterior head region is at least covered by the dorsal part of the

anterior collar of the prothorax in the other groups under consideration (e.g.,

Hörnschemeyer, et al. 2002; Maki, 1936; Röber, 1942).

62. Orientation of head: (0) orthognathous; (1) prognathous or slightly inclined.

The head is orthognathous in Hymenoptera (with few exceptions; Beutel and

Vilhelmsen, 2007), in Neuroptera, Stylopidia (Beutel and Pohl, 2005), Trichoptera

(Klemm, 1966; Malicky, 1973), Lepidoptera (groundplan; Kristensen, 2003),

Mecoptera (Kaltenbach, 1978; Beutel et al. 2008a), Siphonaptera, and Diptera, and

also in most hemimetabolous groups such as e.g., in Zoraptera, Psocoptera and

Page 30: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

Orthoptera. The head is prognathous or slightly inclined in Coleoptera,

Megaloptera, Raphidioptera (e.g., Aspöck and Aspöck, 1971; Hörnschemeyer et

al., 2002; Röber, 1942), in basal groups of Strepsiptera (Beutel and Pohl, 2005),

and in Plecoptera.

63. Rostrum: (0) absent or extremely short; (1) elongated, not including parts of

maxillae and labium; (2) elongated, including parts of maxillae and labium. A

rostrum formed by an elongation of the clypeus and genae is usually present in

Mecoptera but absent in Nannochorista and Caurinus (very short in

Brachypanorpa) (Hepburn, 1989a; Beutel and Baum, 2008; Beutel et al., 2008a).

The rostrum of Tipuloidea contains also elements of the maxillae and labium

(Weber, 1933; Rees and Ferris, 1939; Hennig, 1973; Schneeberg and Beutel, in

press).

64. Frontal apodeme: (0) absent; (1) present. A well developed median internal

frontal apodeme is present in Nannochorista and Culicidae and some other

members of Diptera (e.g., Schiemenz, 1957; Wenk, 1962; Hennig, 1973). It is

absent in Bibio (Bibionidae) and Tipulomorpha (Rees and Ferris, 1939; Hennig,

1973; Schneeberg and Beutel, in press) and in Mecoptera (excluding

Nannochoristidae) (Hepburn, 1969; Beutel and Baum, 2008) and other groups of

Holometabola (e.g., Crampton, 1921; Röber, 1942; Anton and Beutel, 2004; Beutel

and Pohl, 2005; Beutel and Vilhelmsen, 2007; Klemm, 1966; Hannemann, 1956;

Wenk, 1953).

65. Shape of posterior side of head: (0) not concave; (1) concave. The head

capsule is compressed between its frontal and posterior surface in Hymenoptera

(with some exceptions; Beutel and Vilhelmsen, 2007) and also in different groups

of Diptera (not in Culicidae, Tipulidae and Bibionidae; e.g., Hennig, 1973). The

posterior surface of the head is primarily flattened in Lepidoptera (Kristensen 2003)

(coded as 0), but more or less strongly convex in other groups of holometabolan

insects (e.g., Neuropterida, Coleoptera, Strepsiptera, Mecoptera; Röber, 1942;

Beutel and Pohl, 2005; Hörnschemeyer et al., 2002; Hepburn, 1969; Beutel and

Baum, 2008; Beutel et al., 2008a).

66. Postgenal bridge: (0) absent; (1) present, not delimited laterally; (2) laterally

Page 31: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

delimited sclerite. The postgenal bridge is present in adults of Boreidae,

Panorpidae, Bittacidae (e.g., Hepburn, 1969; Beutel et al., 2008a), Siphonaptera

(Snodgrass, 1946; Wenk, 1953), and some groups of Diptera (e.g., Tipulidae;

Schneeberg and Beutel, in press). The homology of the ventral closure in

Bibionidae and Culicidae is unclear (coded as ?). A laterally delimited sclerite

probably representing a modified postgenal bridge is present in Nannochorista

(Beutel and Baum, 2008). The postgenal bridge is absent in non-apocritan

Hymenoptera with the exception of Siricidae and Orussidae (Beutel and

Vilhelmsen, 2007), and in other groups of Holometabola.

67. Dense vestiture of microtricha: (0) absent; (1) present. The head capsule and

other body parts are densely covered with very short microtrichiae in Strepsiptera

(Beutel and Pohl, 2005).

68. Clypeus: (0) not inflected; (1) inflected. An inflected clypeus with a more or

less sharp anterior edge is an autapomorphy of Hymenoptera (Vilhelmsen, 1996).

A similar condition is found in Siphonaptera (Ctenocephalus; Wenk, 1953:

‗Clypealwulst‘, fig. 38).

69. Shape of posterior tentorium: (0) not collar-like; (1) strongly developed, collar-

like; (2) completely reduced. The posterior tentorial arms and the tentorial bridge

form a very extensive and strongly sclerotised vertical collar-like structure in

Hymenoptera (Beutel and Vilhelmsen, 2007; Tait, 1962: ―central body‖). The

posterior tentorium is less strongly developed in other holometabolan groups (e.g.,

Beutel et al., 2008a; Hepburn, 1969; Hannemann, 1956), and the entire structure is

absent in Strepsiptera (Beutel and Pohl, 2005) and Tipulidae (Rees and Farris,

1939). The posterior parts of the tentorium are also strongly developed in Sialis

(Röber, 1942). However, they do not form a collar-like structure as it is the case in

Hymenoptera (coded as 0).

70. Movability of labrum: (0) absent; (1) present. The labrum is immobilised in

Trichoptera (fused with the clypeus) and in Antliophora. The labrum is vestigial or

absent in Strepsiptera (Beutel and Pohl, 2005; coded as inapplicable).

71. Mouthfield sclerite: (0) absent; (1) present. Present in Strepsiptera.

Page 32: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

72. Labro-epipharyngeal food canal: (0) absent; (1) present. A narrow food canal

is present on the ventral side of the labrum of Nannochorista (Beutel and Baum,

2008) and this is usually also the case in Diptera (e.g., Snodgrass, 1959: ventrally

closed in Culicidae; Schiemenz, 1957; Hennig, 1973; Krenn et al., 2005; shallow in

Bibio, pers. obs. Beutel) and in Siphonaptera (Snodgrass, 1946; Wenk, 1953: fig.

21).

73. M. frontolabralis: (0) absent; (1) present, origin on frons; (2) present, origin on

clypeus. The muscle is absent in Amphiesmenoptera (Kristensen, 2003),

Mecoptera (Heddergott, 1938; Beutel and Baum, 2008; Beutel et al., 2008a),

Siphonaptera (Wenk, 1962), Xyelidae, Tenthredinidae (partim), Diprionidae

(Vilhelmsen, 1996; Beutel and Vilhelmsen, 2007), Coleoptera (e.g.,

Hörnschemeyer et al., 2002), and Strepsiptera (Beutel and Pohl, 2005). It is

present in Diptera (partim; Schiemenz, 1957; Wenk, 1962) but with an atypical

origin on the clypeus. It arises on the frons in several groups of holometabolan

insects (e.g., Tenthredinidae part., Megaloptera, Raphidioptera; e.g., Röber, 1942;

Matsuda, 1956; Achtelig, 1967; Vilhelmsen, 1996).

74. M. frontoepipharyngalis: (0) absent; (1) present. The muscle is absent in

Strepsiptera (Beutel and Pohl, 2005), Trichoptera (Klemm, 1966; Kristensen,

2003), Mecoptera (Beutel and Baum, 2008; Beutel et al., 2008a), and also in

Diptera (Bibio, pers. obs. Beutel; Schiemenz, 1957; Wenk, 1962; Hennig, 1973)

and Siphonaptera (see above). It is also missing in some groups of Coleoptera

(e.g., Hörnschemeyer et al., 2002; Dressler, 2007), but is well developed in

Helophorus and others (Anton and Beutel, 2004). The muscle is present in basal

groups of Lepidoptera (absent in Lophocoronoidea and Myoglossata; Kristensen,

2003). It was reduced in most specimens of Rhyacophila examined by Klemm

(1966) but was found in two individuals (coded as 0).

75. Insertion of antennae: (0) anteriorly between compound eyes, adjacent; (1)

anteriorly between compound eyes, not adjacent; (2) laterally. The antennal

insertions are nearly adjacent or adjacent on the anterior side of the head capsule

between the compound eyes in most groups of Hymenoptera (Beutel and

Vilhelmsen, 2007), Osmylidae, Inocelliidae (Aspöck and Aspöck, 1971: fig. 6),

Page 33: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

Trichoptera (Klemm, 1966), Lepidoptera (Kristensen, 2003), Mecoptera (except for

Caurinus; Hepburn, 1969; Russell, 1979), and Diptera (e.g., Rees and Ferris,

1939; Hennig, 1973). The insertion is also on the anterior side (dorsal side in

prognathous heads) but more widely separated in Chauliodes (Megaloptera) (Maki,

1936), Osmylidae, and Raphidiidae (Achtelig, 1967; Aspöck and Aspöck, 1971).

The antennae are inserted anterolaterally in front of the compound eyes in

Caurinus, in most Coleoptera, and in Sialis (e.g., Beutel et al., 2007;

Hörnschemeyer et al., 2002; Röber, 1942).

76. Number of antennal segments: (0) more than 11; (1) 11 or less, flagellomeres

not forming a clava; (2) 11 or less, flagellomeres forming a clava; (3) 8 or less,

flagellomeres flabellate. The antennae of Coleoptera and Siphonaptera are

composed of 11 antennomeres or less and nine segments are usually present in

Tenthredinidae. The flagellomeres form a clava in fleas. Eight or less

antennomeres are present in males of Strepsiptera. Several flagellomeres are

conspicuously extended.

77. Intercalary sclerite in lateral scapo-pedicellar membrane: (0) absent; (1)

present. Present in Lepidoptera (Kristensen and Skalski, 1999; Kristensen, 2003).

78. Shape and size of mandible: (0) not elongated and blade-like or lamelliform;

(1) elongated, flattened and lamelliform; (2) blade-like. The mandibles are

elongated, strongly flattened distally and lamelliform in Nannochorista, which is

similar to the blade-like condition found in members of Diptera with preserved

mandibles (e.g., Schiemenz, 1957; Hennig, 1973). Blade-like or lamelliform

mandibles are not found in other lineages of Holometabola.

79. Mandibular mola: (0) distinctly developed; (1) strongly reduced or absent. The

mola is well developed in adults of Xyelidae but strongly reduced or absent in other

groups of Hymenoptera. It is also well developed in subgroups of Coleoptera

(Myxophaga, Polyphaga partim; e.g., Anton and Beutel, 2004), in basal groups of

Lepidoptera (greatly reduced in Agathiphagidae [coded as 1]; Kristensen, 2003),

and in most hemimetabolous insects (e.g., Psocoptera, Badonell, 1934; Zoraptera,

Beutel and Weide, 2005). It is absent in Strepsiptera, Archostemata, Adephaga

(Coleoptera), Neuropterida, Trichoptera (pupae and adults; Malicky, 1973),

Page 34: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

Mecoptera (with the exception of Caurinus; Beutel et al., 2008a; Hepburn, 1969;

Kaltenbach, 1978), and the groups with strongly modified (or reduced) mandibles

(e.g., Nannochoristidae, Diptera, e.g., Beutel and Baum, 2008; Hennig, 1973).

80. Haustellum: (0) absent; (1) present. A characteristic haustellum which

includes parts of the labium and hypopharynx is present in Trichoptera (e.g.,

Klemm, 1966; Malicky, 1973).

81. Labio-maxillary complex: (0) absent; (1) present. The maxilla and labium form

a structural and functional complex in Mecopterida (Hepburn, 1969; Klemm, 1966;

Hannemann, 1956; Hennig, 1973; Beutel et al., 2008a) and also in Hymenoptera

(Beutel and Vilhelmsen, 2007). The maxillary parts of Siphonaptera and Diptera

are strongly modified (e.g., Rees and Ferris, 1939; Schiemenz, 1957; Hennig,

1973) (coded as -), but a lateral movability of the proximal parts is never retained.

82. Dorsal concavity of anterior labium for reception of elements of paired

mouthparts: (0) absent; (1) present. The proximal part of the basal palpomere and

the unsclerotized dorsal side of the prementum form a trough or sheath, which

encloses the laciniae in Nannochorista (Beutel and Baum, 2008) and in

Siphonaptera (Wenk, 1953: fig. 28). This is also often the case in Diptera and likely

a groundplan feature of the order (Hennig, 1973: figs 80, 81, ―…Dorsalfläche ist

rinnenartig vertieft, und in dieser Rinne liegen [falls vorhanden] die

Stechborsten..‖).

83. Cardines: (0) not fused to labial elements; (1) fused. Completely fused with

the other parts of the maxillolabial plate in Boreidae (Beutel et al., 2008a).

84. Fusion of stipites and anterior postmentum: (0) absent; (1) present. The mesal

edges of proximal stipites are completely fused with the anterior part of the

postmentum in Boreidae (Russell, 1979; Beutel et al., 2008a).

85. Galea: (0) vestigial or absent; (1) distinctly developed. Absent in

Nannochoristidae (Beutel and Baum, 2008), Diptera (Hennig, 1973) and

Siphonaptera (Snodgrass, 1946; Wenk, 1953; Michelsen, 1996/97).

86. Galea enfolds lateral part of labrum and lateral mandibular base: (0) absent;

(1) present. The distal part of the maxillary lobe and galea enfolds the lateral part

of the labrum or clypeus and lateral mandibular base in Mecoptera (excl.

Page 35: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

Nannochoristidae: coded as inapplicable) (Beutel et al., 2008a).

87. Shape of lacinia: (0) not elongated and blade-like; (1) elongated and blade-

like. The lacinia is elongated and blade-like in Acercaria (e.g., Psocoptera) and in

Nannochoristidae, Siphonaptera and basal lineages of Diptera (Beutel and Baum,

2008). The laciniae of Zoraptera are slender and devoid of mesally directed spines

but differ distinctly form the blade-like laciniae in these holometabolan groups

(coded as 0) (Beutel and Weide, 2005).

88. Salivary channel formed by laciniae: (0) absent; (1) present. Present on the

mesal side of the lacinia in Nannochorista (Beutel and Baum, 2008) and

Siphonaptera (Wenk, 1953).

89. Sensorium of third maxillary palpomere: (0) absent; (1) present. A round and

deeply excavated pit with characteristic club-shaped sensilla on the mesal side of

palpomere 3 is present in Nannochorista and arguably in the groundplan of Diptera

(e.g., Bibio). The ovoid sensillum of basal lineages of Strepsiptera (Beutel and Pohl

2006) is almost certainly not homologous with this structure. It lies on the lateral

side of the unsegmented palp and is only slightly concave. The sensorium is

absent in Siphonaptera (Snodgrass, 1946; Wenk, 1953; Michelsen, 1996/97) and

in other groups of holometabolan insects.

90. M. craniocardinalis: (0) absent; (1) present. The muscle is generally absent in

Antliophora (Beutel and Baum, 2008; Beutel et al., 2008a; Schiemenz, 1957;

Wenk, 1953, 1962; Snodgrass, 1946; Michelsen, 1996/97) and is also missing in

Lepidoptera-Glossata (Kristensen 2003).

91. Origin of M. tentoriocardinalis and M. tentoriostipitalis: (0) tentorium; (1)

frontoclypeal region; (2) laterally from head capsule. The extrinsic tentorial muscles

of the maxilla arise at least partly from the head capsule in Boreus (Hepburn 1969:

frons and clypeus), Hesperoboreus (Beutel et al., 2008a), and Panorpa

(Heddergott 1938: clypeus). They arise laterally on the head capsule in Tipula and

Limonia.

92. Flexion points between maxillary palpomeres 1 and 2 and 3 and 4: (0)

absent; (1) present. Present in the groundplan of Lepidoptera (Kristensen and

Skalski, 1999; Kristensen, 2003).

Page 36: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

93. Arched sclerite with long piliform scales formed by postlabium: (0) absent; (1)

present. Present in basal lepidopteran lineages (Kristensen and Skalski, 1999;

Kristensen, 2003).

94. Internal ridge of maxillolabial plate or postlabium: (0) absent; (1) present.

Persent but thin in Caurinus. Thick and strongly sclerotised in Hesperoboreus and

Boreus (Beutel et al., 2008a). Absent in the other groups under consideration.

95. Number of labial palpomeres: (0) three; (1) five; (2) two or less. Two

palpomeres are present in Mecoptera (Hepburn, 1969; Beutel and Baum, 2008)

and also in the groundplan of Diptera (Rees and Ferris, 1939; Snodgrass, 1959;

Hennig, 1973). The palps are also greatly reduced in Micropterigidae (Kristensen,

2003). Three are present in most members of other holometabolan lineages (e.g.,

Aspöck and Aspöck, 1971; Kristensen, 2003). In basal Hymenoptera, the labial

palps usually appear to be four-segmented, but there is no muscle connecting the

two distalmost palpomeres. Indeed, the configuration of the labial palps in the

Xyelidae indicates that this condition has arisen in the groundplan of Hymenoptera

by subdivision of the original third palpomere (Vilhelmsen, 1996; Beutel and

Vilhemsen, 2007). The palps are five-segmented in Siphonaptera (Michelsen

1996/97) and absent in Strepsiptera (coded as -).

96. Secondary subdivision of apical labial palpomere: (0) absent; (1) indistinct, (2)

distinct, appearing as two separate palpomeres. An indistinct subdivision occurs in

Xyelidae and a clearly subdivided apical palpomere is found in most

Tenthredinidae, see previous characters. Secondary reduction to three segments

abound throughout Hymenoptera (Vilhelmsen, 2001)

97. Shape of apical labial palpomere: (0) not spoon-shaped; (1) spoon-shaped.

The apical labial palpomere is medially concave and only sclerotised on its lateral

side in Nannochorista (Beutel and Baum, 2008). This is also the case in

Siphonaptera (Wenk 1953). A spoon-shaped apical palpomere is unknown in the

other groups of Holometabola (see Beutel and Baum, 2008).

98. Paraglossae: (0) vestigial or absent, without muscles; (1) present. The

paraglossae are usually well developed in Hymenoptera (Vilhelmsen, 1996; Beutel

and Vilhelmsen, 2007) and also present in Micropterix (Hannemann, 1956: fig. 16),

Page 37: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

but absent or vestigial and devoid of muscles in the other groups of Holometabola

(e.g., Crampton, 1921; Röber, 1942; Aspöck and Aspöck, 1971; Miller, 1933;

Beutel and Pohl, 2005; Beutel and Baum, 2008; Beutel et al., 2008a). They are

well developed in Tettigoniidae, Zoraptera (Beutel and Weide, 2005) and

Psocoptera.

99. M. praementoparaglossalis: (0) absent; (1) present. Present in basal

hymenopteran lineages (Beutel and Vilhelmsen, 2007) and Micropterix (Kristensen

2003). The homology of the single ligula muscle in Priacma (Hörnschemeyer et al.,

2002) is unclear (coded as ?). The muscle is absent in non-archostematan beetles

(including Tetraphalerus [Ommatidae]) and the other holometabolan lineages.

100. M. praementoglossalis: (0) absent; (1) present. Present in Xyela and

Tenthredo (Beutel and Vilhelmsen, 2007), Micropterix and Agathiphaga

(Kristensen, 2003).

101. Size of Mm. praementopalpales: (0) not enlarged; (1) enlarged. The

prementopalpal muscles are unusually large in Nannochorista, Bittacus, Diptera

(e.g., Tipula, Bibio, pers. obs. Beutel; Schiemenz, 1957; Beutel and Baum, 2008)

and Siphonaptera (Michelsen, 1996/97). The single prementopalpal muscle of

Panorpa is elongate but slender (Heddergott, 1938: fig. 9). It is also moderately

sized in Boreus and Caurinus (Beutel et al., 2008a). Both prementopalpal muscles

are absent in Strepsiptera (Beutel and Pohl, 2006), and they are not enlarged in

other holometabolan insects (e.g., Hannemann, 1956; Maki, 1936; Röber, 1942;

Hörnschemeyer et al., 2002; Anton and Beutel, 2004).

102. Sclerotised sitophore plate: (0) absent; (1) present. The sclerotised sitophore

plate is present in Mecopterida (Hannemann, 1956; Schiemenz, 1957:

Fulcralplatte; Klemm, 1966; Heddergott, 1938; Kristensen, 1999b) and in

Hymenoptera (Vilhelmsen, 1996; Beutel and Vilhelmsen, 2007). A sclerotised

transverse hypopharyngeal bar occurs in Coleoptera (e.g., Beutel, 1986), but a

typical sitophore plate is not present in beetles (e.g., Hörnschemeyer et al., 2002),

Strepsiptera (Beutel and Pohl, 2005) or Neuropterida (e.g., Maki, 1936; Röber,

1942).

103. Epipharyngopharyngeal lobe reaching into pharynx posteriorly: (0) absent; (1)

Page 38: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

present. A large epipharyngopharyngeal lobe with spines on its surface and

sclerotised posterolateral processes which reach into the pharynx is present in

basal lineages of Hymenoptera (Beutel and Vilhelmsen, 2007). It is absent in other

groups of holometabolan insects (e.g., Hörnschemeyer et al., 2002; Beutel and

Pohl, 2005; Röber, 1942; Hannemann, 1956; Kristensen, 2003; Heddergott, 1938;

Schiemenz, 1957) and also in the outgroup taxa.

104. Size of M. clypeopalatalis: (0) not enlarged; (1) enlarged, two major

subcomponents and multiple bundles; (2) arranged as a long series of bundles. M.

clypeoopalatalis is composed of multiple bundles and two major subcomponents in

Nannochorista and a similar condition is found in Diptera (e.g., Tipula, Bibio, pers.

obs. Beutel; Schiemenz, 1957; Hennig 1973), Siphonaptera (Snodgrass, 1946;

Wenk, 1953), and in Rhyacophila (Klemm, 1966). The muscle is also

comparatively large and complex in Mengenilla (Beutel and Pohl, 2006: 3 bundles)

and Xyela (Beutel and Vilhelmsen, 2007), but arranged in a different manner

(coded as 0). It is moderately sized in Tenthredinidae (Taylor, 1931). M. 43 is

composed of a long series of bundles in Boreus and Panorpa, but not in Caurinus

(Heddergott, 1938; Beutel et al., 2008a). The muscle is not distinctly enlarged in

the other groups of holometabolan insects (Beutel and Vilhelmsen, 2007;

Hannemann, 1956; Röber, 1942; Korn, 1943; Hörnschemeyer et al., 2002; Beutel

and Pohl, 2006).

105. Transverse muscles of the epipharynx: (0) absent; (1) present. The transverse

musculature of the epipharynx is absent in all adults of all groups of Antliophora

examined (e.g., Heddergott, 1938; Schiemenz, 1957; Hennig, 1973; Wenk, 1953:

fig. 38; Beutel et al., 2008a).

106. Precerebral pharyngeal pumping chamber with chitinous clasps: (0) absent;

(1) present. A characteristic precerebral pharyngeal pumping chamber reinforced

by chitinous clasps (Grell, 1938: ‗Mundpumpe‘, ‗Vorderpharynxspange‘) is present

in Boreidae (Beutel et al., 2008a), Panorpa (Grell, 1938; Heddergott, 1938),

Bittacus and Merope (pers. obs. Friedrich), but absent in Nannochorista (Beutel

and Baum, 2008) and other adults of Holometabola examined.

107. Postcerebral pharyngeal pumping apparatus: (0) absent; (1) present. Well

Page 39: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

defined and equipped with very strong musculature in Nannochorista,

Siphonaptera (Wenk, 1953), Tipula, Culicidae (Schiemenz, 1957; Snodgrass,

1959; Schneeberg and Beutel, in press) and Wilhelmia (Wenk, 1962: fig. 2). Less

strongly developed in Bibio. Absent in all other groups of Holometabola (e.g.,

Hannemann, 1956; Maki, 1936; Röber, 1942; Hörnschemeyer et al., 2002).

108. Strongly developed intrinsic muscle of salivarium: (0) absent; (1) present. This

muscle, which is likely a detached hypopharyngeal dilator of the salivary duct, is

usually present and strongly developed in Mecoptera (―Sekretformer‖), but an M.

hypopharyngosalivarialis with a typical hypopharyngeal origin is present in

Nannochorista and also in Diptera (Schiemenz, 1957: M. fulcrosalivaris) and

Siphonaptera (Wenk, 1953: M. dilatator salivarii). It is also present in most other

groups of holometabolan insects with a well developed salivary duct (e.g., Beutel

and Vilhelmsen, 2007).

109. Configuration of brain and suboesophageal complex: (0) both parts of central

nervous system distinctly separated by the circumoesophageal connectives; (1)

forming a compact mass around the pharynx. In Boreidae and members of other

groups of the antliophoran lineage the brain and suboesophageal complex form a

compact structure around the pharynx, without more or less elongate

circumoesophageal connectives (Hennig, 1973: ‗cephales Verbundganglion‘;

Wenk, 1953; Beutel et al., 2008a; Schneeberg and Beutel, acc. for publ.).

Adults, thorax

110. Membranes interconnecting thoracic sclerites: (0) exposed; (1) reduced, not

exposed. Not visible externally in Coleoptera (see e.g., Larsén, 1966; Friedrich et

al., 2009) and Caurinus (Beutel et al., 2008a).

111. Dorsal cervical sclerites: (0) absent; (1) present. Present in Neuroptera

(Morse, 1931; Acker, 1958), Corydalus (Kelsey, 1954), in few mecopteran taxa

(Panorpidae, Boreus, Eomeropidae; Ferris and Rees, 1939; Füller, 1954; Mickoleit,

1971), in few hymenopterans (e.g., Pamphiliidae, Tenthredinidae [part.];

Vilhelmsen, 2000a), in some strepsipterans (see Kinzelbach, 1971), and in many

Page 40: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

hemimetabolous taxa (e.g., Plecoptera, Blattodea, Orthoptera, Zoraptera;

Crampton, 1926a; Matsuda, 1956, 1970; Friedrich and Beutel, 2008). Absent in

Caurinus (Russell, 1979), Diptera (e.g., Crampton, 1942), Sialidae (Czihak, 1953),

Coleoptera (e.g., Larsén, 1966; Friedrich et al., 2009), most Strepsiptera

(Kinzelbach, 1971; Koeth, 2007) and in some Mecoptera (e.g., Bittacidae,

Nannochoristidae; Friedrich and Beutel, 2010).

112. Lateral cervical sclerite: (0) absent; (1) single pair of sclerites present; (2) two

pairs of sclerites present. Two pairs of lateral cervical sclerites are present in

Neuroptera (e.g., Crampton, 1926a; Morse, 1931; Ferris, 1940a), Psocoptera

(Badonell, 1934) and Zoraptera (Friedrich and Beutel, 2008). These structures are

completely absent in Strepsiptera (Kinzelbach, 1971; Koeth, 2007) and non-

polyphagan Coleoptera (see e.g., Friedrich et al., 2009), but vestiges are present in

the proventrite of few archostematan and adephagan species (see Hlavac, 1972;

Friedrich et al., 2009: fig. 5A). A single pair of lateral cervical sclerites is present in

other holometabolan groups (see e.g., Matsuda, 1970). The lateral cervical

sclerites are partly or completely fused with the propleuron in Hymenoptera (see

char. 114). This condition is scored as 1 here.

113. Posteromedian corner of lateral cervical sclerite: (0) not protruding; (1)

The posteromedian edge of the lateral cervical sclerite is produced toward the

prosternum in the majority of Lepidoptera (except e.g., Heterobathmia; Kristensen

and Nielsen, 1979), in Trichoptera (see Matsuda, 1970; Kristensen and Nielsen,

1979; Kristensen, 1984), and in Hymenoptera (Weber, 1927; Vilhelmsen, 2000a).

This condition occurs in few members of other holometabolan groups such as for

instance in Diptera (Culicidae, Tipulidae; Crampton, 1925, 1942; Owen, 1977),

Sialis (Czihak, 1953) and Chrysopa (Morse, 1931). The lateral cervical sclerites are

medially fused forming a single structure in Raphidioptera (e.g., Matsuda, 1956)

and Corydalus (Crampton, 1926a: fig. 99; Kelsey, 1954).

114. Lateral cervical sclerite and propleuron: (0) not fused; (1) partly fused; (2)

entirely fused. Incompletely fused in Xyelidae and Blasticotomidae, but completely

Page 41: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

fused in other groups of Hymenoptera (Vilhelmsen, 2000a; Vilhelmsen, pers. obs.

Friedrich).

115. Length of pronotum: (0) shorter than pterothoracic nota; (1) longer than

pterothoracic nota. Longer than both the meso- and metanotum in Raphidioptera,

Corydaliae (Matsuda, 1970), some Neuroptera, and in few members of Coleoptera

(see Friedrich et al., 2009). The pronotum is also enlarged in Orthoptera (e.g.,

Snodgrass, 1929; Kramer, 1944) and Zoraptera (Friedrich and Beutel, 2008) and

members of some other hemimetabolous groups.

116. Lateral connection of pronotum and propleuron: (0) absent; (1) partly or

completely connected. A firm connection of both elements occurs in Diptera (Rees

and Ferris, 1939; Michelsen, 1996), Strepsiptera (Kinzelbach, 1971; Koeth, 2007),

Coleoptera (e.g., Baehr, 1975; Friedrich et al., 2009) and in some hemimetabolous

groups (e.g., Orthoptera; Snodgrass, 1929; Kramer, 1944). Distinctly separated by

a membrane in most holometabolan lineages.

117. Prothoracic-mesopleural connection: (0) absent; (1) pronotal and anterior

mesepisternal process connected; (2) posterior propleuron connected to anterior

mesepisternum; (3) pronotum and propleura connected by intersegmental sclerites

(1st link plate). The pronotal- and anterior mesepisternal process are connected in

Mecoptera (see Friedrich and Beutel, 2010). In Diptera, the posterior (―epimeral‖)

part of the propleuron contacts the anterior mesepisternum (see e.g., Crampton,

1925, 1926b: figs 1-7; Rees and Ferris, 1939: fig. 76). Similar conditions occur in

basal representatives of Coleoptera (Friedrich et al., 2009) and in some groups of

Hymenoptera (e.g., Tenthredinidae, Diprionidae; Vilhelmsen, 2000a). The lateral

intersegmental sclerites (1st link plate; Schlein, 1980) connect the pronotum and

mesopleura in Siphonaptera.

118. Externally visible part of prothoracic basisternum: (0) small or absent; (1)

large. A large basisternal area in front of the precoxal bridge is present in

Megaloptera (very extensive in Corydalidae; Crampton, 1926a; Maki, 1936; Kelsey,

1954), Raphidioptera (Crampton, 1926a: fig. 88; Matsuda, 1956, 1970) and

Coleoptera (see e.g., Hlavac, 1972). The basisternal area is moderately enlarged

(coded as 1) in Siphonaptera (e.g., Snodgrass, 1946).

Page 42: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

119. Prothoracic precoxal bridge: (0) absent; (1) present; (2) basisternum and

propleuron attached, but not fused. Present in Megaloptera (Maki, 1936; Czihak,

1953; Kelsey, 1954), Coleoptera (see Larsén, 1966; Friedrich et al., 2009),

Strepsiptera (Kinzelbach, 1971; Koeth, 2007), Siphonaptera (Snodgrass, 1946), in

several dipteran groups (e.g., Limoniidae, Culicidae, Bibionidae; Crampton, 1925,

1942; Christophers, 1960; Owen, 1977; Michelsen, 1996), and in most

hemimetabolan groups (see e.g., Crampton, 1926a). Absent in Hymenoptera,

except for a few genera of Cimbicidae (Wong, 1963; Vilhelmsen, 2000a),

Neuroptera (e.g., Nevrorthus [pers. obs. Friedrich]; Crampton, 1926a; Czihak,

1957), Trichoptera [pers. obs. Friedrich]; Crampton, 1920, 1926a), basal groups of

Lepidoptera (Kristensen, 2003), Mecoptera (see e.g., Hepburn, 1970; Friedrich and

Beutel, 2010, acc. for publ.) and some groups of Diptera (e.g., Tipulidae,

Muscidae; Crampton, 1925, 1942). The basisternum and propleura are laterally

attached to each other, but not fused in Raphidioptera (see Ferris and Pennebaker,

1939: fig. 61a, d).

120. Profurcal arm and propleura: (0) not connected; (1) not fused, furca and

pleural apophysis connected by muscle; (2) furca and pleural apophysis firmly

fused; (3) furca and dorsal propleural rim specifically articulated. The tip of the

profurcal arm is firmly fused with the propleural apophysis in the majority of

holometabolan lineages, with the exception of Coleoptera (see Larsén, 1966;

Friedrich et al., 2009) and Strepsiptera (Kinzelbach, 1971; Koeth, 2007), where the

propleural apophysis is missing. The structures are separated from each other and

connected by a muscle in most hemimetabolan groups (e.g., Plecoptera,

Zoraptera; see Friedrich and Beutel, 2008), but also fused in Psocoptera (e.g.,

Badonnel, 1934). The profurcal arm is specifically articulated with the dorsal

propleural rim close to the pleural apodeme in Hymenoptera (Vilhelmsen, 2000a:

fig. 6; Vilhelmsen et al., in prep.)

121. Profurca with free dorsal arms: (0) absent; (1) present. Dorsally orientated,

free profurcal arms are only described for Lepidoptera (Kristensen, 1984, 2003;

Kristensen et al., 2007).

Page 43: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

122. Prospina: (0) absent; (1) present. Present in Hymenoptera (pers. obs.

Friedrich; Vilhelmsen, 2000a), Neuropterida (pers. obs. Friedrich; Czihak, 1953;

Kelsey, 1954), Archostemata (see Baehr, 1975; Friedrich et al., 2009: char. 47),

Amphiesmenoptera (pers. obs. Friedrich; Tindall, 1965; Kristensen, 2003),

Mecoptera (partim, e.g., Nannochoristidae, Meropidae; see Friedrich and Beutel,

2010), and also in most hemimetabolous insects (e.g., Zoraptera, Blattodea,

Orthoptera; Kramer, 1944; Chadwick, 1959a; Friedrich and Beutel, 2008). Absent

in Diptera (Crampton, 1942), Strepsiptera (Kinzelbach, 1971; Koeth, 2007),

Siphonaptera (Snodgrass, 1946; Lewis, 1961), non-archostematan Coleoptera

(Larsén, 1966; Friedrich et al., 2009), and some Mecoptera (e.g., Boreidae,

Bittacidae; Füller, 1954; Mickoleit, 1968).

123. Protrochantin: (0) absent; (1) distinctly reduced; (2) well developed; (3) fused

with propleura. Moderately sized and distinct in Amphiesmenoptera (e.g.,

Crampton, 1926a; Kristensen, 1968) but weakly developed in Neuroptera,

Megaloptera (see Kelsey, 1954: p. 15), Hymenoptera (e.g., Wong, 1963: TRO1;

Vilhelmsen, 2000a: ke) and Mecoptera (see Hepburn, 1970, Friedrich and Beutel,

2010). Reduction or loss of the protrochantin is a trend occurring within all

holometabolan orders (cf. Matsuda, 1970). It is absent in Raphidioptera (Ferris and

Pennebacker, 1939), Siphonaptera (F. Friedrich, pers. obs. Friedrich; Snodgrass,

1946), Strepsiptera (Kinzelbach, 1971; Koeth, 2007), and presumably in the

groundplan of Diptera (present in some groups of Brachycera according to

Michelsen [1996: p. 74]). The sclerite is completely fused with the propleuron in

myxophagan and polyphagan Coleoptera (see Larsén, 1966; Friedrich et al., 2009;

coded as 0).

124. Antenna-cleaning apparatus of foreleg: (0) absent; (1) formed by pre-apical

tibial spur and distal part of protibia; (2) formed by an apical tibial spur and inner

side of pro-basitarsus; (3) formed by 2 protibial spurs and a comb of smaller spines

between them. A cleaning apparatus formed by a pre-apical spur and the distal

part of the protibia is present in basal lepidopteran lineages (see Kristensen, 2003).

A cleaning device is formed by an apical tibial spur (calcar) and the inner side of

the pro-basitarsus in Hymenoptera, and by two protibial spurs with a comb of

Page 44: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

smaller spines between them in Trachypachidae and Carabidae (see Friedrich et

al., 2009).

125. Movable ‗epiphysis‘ of fore tibia: (0) absent; (1) present. A movable epiphysis

is present on the fore tibia of Trichoptera and Lepidoptera.

126. Relative size of pterothoracic segments: (0) th2≈th3; (1) th2>th3; (3) th2<th3.

The pterothoracic segments are almost equally sized in most groups of Neuroptera

(not in Nemopteridae and some others; pers. obs. Friedrich; Morse, 1931; Korn,

1943), in Raphidioptera (Ferris and Pennebaker, 1939; Matsuda, 1956) and

Megaloptera (Maki, 1936; Czihak, 1953; Kelsey, 1957), in the wingless

holometabolan taxa under consideration (e.g., Siphonaptera; Snodgrass, 1946),

and in several hemimetabolous groups (e.g., Plecoptera, Orthoptera, Zoraptera;

Kamer, 1944; Friedrich and Beutel, 2008; Willkommen, 2008). The metathorax is

strongly enlarged in Coleoptera (see e.g., Larsén, 1966; Friedrich et al., 2009) and

Strepsiptera (Kinzelbach, 1971, Koeth, 2007), whereas the mesothorax is distinctly

larger than the metathorax in Hymenoptera (e.g., Wong, 1963; Vilhelmsen, 2000b),

Amphiesmenoptera (e.g., Tindall, 1965; Kristensen, 2003), Diptera (see Crampton,

1942), in winged representatives of Mecoptera (see Friedrich and Beutel, 2010),

and in Psocoptera (Badonnel, 1934; Cope, 1940).

127. Relative size of wings: (0) equally sized; (1) fore wings distinctly larger; (2)

hind wings distinctly larger. The hind wings are larger than the fore wings in

Coleoptera, Strepsiptera and some hemimetabolous groups (e.g., Plecoptera,

Orthoptera; Nelson and Hanson, 1968, 1971; Kramer, 1944). The fore wings are

larger in Hymenoptera, Lepidoptera, Trichoptera, Mecoptera and Diptera. Both

wing pairs are of nearly equal size in Raphidioptera, Megaloptera and Neuroptera.

128. Median mesonotal suture: (0) absent; (1) present. Distinctly developed in

basal Hymenoptera (Wong 1963), Neuroptera (e.g., Crampton, 1919; Ferris,

1940a), Megaloptera (except Chauliodes; pers. obs. Friedrich; Maki, 1938; Czihak,

1953; Kelsey, 1957), Raphidioptera (Ferris and Pennebaker, 1939; Aspöck and

Aspöck, 2005a), Lepidoptera (Kristensen, 2003), Trichoptera (Crampton, 1919,

1920) and Plecoptera (Nelson and Hanson, 1971: fig. 14). Absent in Mecoptera

(Friedrich and Beutel, 2010), Diptera (Christophers, 1960; Mickoleit, 1962),

Page 45: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

Siphonaptera (Snodgrass, 1946), Coleoptera (Larsén, 1966; Baehr, 1975; Friedrich

et al., 2009), Strepsiptera (Kinzelbach, 1971; Koeth, 2007) and several

hemimetabolous groups (e.g., Orthoptera, Zoraptera; Matsuda, 1970; Friedrich and

Beutel, 2008).

129. Membranous area between mesoscutellum and mesopostnotum: (0) absent;

(1) present. A well defined membranous field between the mesoscutellum and

mesopostnotum is present in Mecoptera (see Friedrich and Beutel, 2010), Diptera

(except e.g., Culicidae; Crampton, 1925, 1942), Lepidoptera; (Kristensen, 2003),

Trichoptera (e.g., Crampton, 1919, 1920), Neuroptera (except Osmylidae; pers.

obs. Friedrich), Megaloptera (Maki, 1938; Czihak, 1953; Kelsey, 1957),

Raphidioptera (Ferris and Pennebaker, 1939; Aspöck and Aspöck, 2005a), basal

Hymenoptera (pers. obs. Vilhelmsen, Friedrich; Wong, 1963) and Plecoptera (e.g.,

Nelson and Hanson, 1971). It is absent in Coleoptera (Larsén, 1966; Friedrich et

al., 2009), Strepsiptera (Kinzelbach, 1971; Koeth, 2007) and Siphonaptera

(Snodgrass, 1946). The character is coded as inapplicapple for the flightless taxa.

130. Mesoscutellar fore wing locking device: (0) absent; (1) present. The

mesoscutellum forms a specific locking device in Coleoptera (see e.g., Friedrich

and Beutel, 2006).

131. Mesothoracic postalar bridge: (0) absent; (1) present, mesopostnotum and

mesepimeron firmly fused. The lateral edge of the mesopostnotum is fused with

the dorsal rim of the mesepimeron in Megaloptera (Maki, 1936; Czihak, 1953;

Kelsey, 1957), Mecoptera (see Friedrich and Beutel, 2010), Diptera (e.g., Rees

and Ferris, 1939; Crampton, 1942; Owen, 1977), Strepsiptera (Kinzelbach, 1971;

Koeth, 2007), Psocoptera (Badonnel, 1934: fig. 41; Cope, 1940: fig. 43),

Plecoptera (Nelson and Hanson, 1971: poa) and Ephemeroptera (Kluge, 1994: fig.

2). Both sclerites are also fused in basal representatives of Hymenoptera (e.g.,

Wong, 1963; pers. obs. Vilhelmsen). A clear separation occurs in the majority of

Neuroptera (distinct bridge present in Nemopteridae; Acker, 1958), Coleoptera

(e.g., Larsén, 1966; Friedrich et al., 2009).

132. Size of mesothoracic postalar bridge: (0) broad; (1) small. Broad in basal

groups of Diptera (e.g., Tipulidae; Rees and Ferris, 1939; Crampton, 1925), in

Page 46: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

many mecopterans (e.g., Nannochoristidae, Meropidae, Bittacidae; Mickoleit,

1967, 1968; Friedrich and Beutel, 2010), in basal groups of Hymenoptera (pers.

obs. Friedrich; pers. obs. Vilhelmsen) and in Psocoptera (Badonnel, 1934; Cope,

1940). Less than half as wide in Panorpidae and Panorpodidae (Mickoleit, 1967: p.

337) and other holometabolan insects.

133. Lateral part of mesopostnotum: (0) small, pointed; (1) enlarged, tongue-like.

The anterior margin of the lateral mesopostnotum is enlarged and appears tongue-

like in Eomeropidae, Bittacidae and Panorpidae (Mickoleit, 1971), whereas it is

laterally pointed in the remaining mecopterans (e.g., Hepburn, 1970; Mickoleit,

1971) and members of other holometabolan lineages.

134. Mesothoracic prealare: (0) absent; (1) present. Distinct in Megaloptera,

Neuroptera, Trichoptera, and Lepidoptera, and in the majority of hemimetabolous

insects (see Matsuda, 1970). Absent in Mecoptera, Diptera, Hymenoptera,

Raphidioptera and Strepsiptera (see e.g., Mickoleit, 1966, 1969; Kinzelbach, 1971;

Gibson, 1993).

135. Mesothoracic tegular arm: (0) absent; (1) present. An anteriorly directed

process of the dorsalmost part of the pleural ridge is present in Lepidoptera

(Sharplin, 1964; Mickoleit, 1969; Kristensen, 1984).

136. Elongated ventral process of mesothoracic pleural ridge: (0) absent; (1)

present. The ventral end of the mesopleural ridge bears an elongated process

(―unterer Pleuralarm‖ of German authors) in Mecoptera (Friedrich and Beutel,

2010) and Diptera (e.g., Smart, 1959; Mickoleit, 1962; Owen, 1977). A similarly

shaped processus is absent in other holometabolan lineages but present in

Orthoptera (Snodgrass, 1929: fig. 28; Kramer, 1944: pleural leg process).

137. Mesothoracic meron and epimeron: (0) separate; (1) broadly fused. Usually

separated in Holometabola but fused in the majority of Diptera (e.g., Crampton,

1925, 1942).

138. Mesosternum: (0) externally exposed; (1) invaginated. The mesoventrite is

formed by pleural sclerites in holmetabolan insects (see Ferris, 1940b). The

mesosternum (basisternum) is broadly exposed externally in hemimetabolous taxa.

Page 47: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

139. Mesofurca and -epimeron: (0) discrete; (1) fused. Fused in Lepidoptera and

Trichoptera (Tindall, 1965; Brock, 1971; Kristensen, 1975, 1984), but separate in

other holometabolan lineages.

140. Ventral mesosternal process (below mesofurca) forming sterno-coxal joint: (0)

absent; (1) present. Only occurring in Holometabola (see also Matsuda, 1970: 46),

but absent in Coleoptera (see Larsén, 1966; Friedrich and Beutel, 2006; Friedrich

et al., 2009) and Strepsiptera (e.g., Koeth, 2007). The sclerite interconnecting the

furcasternum and the medial mesocoxal rim in Siphonaptera (Snodgrass, 1946: fig.

8H: q) represents very likely the ventral process (coded as 1).

141. Size of ventral mesosternal process: (0) not elongated; (1) elongated. Rather

short in Hymenoptera (see also Johnson, 1988), Neuropterida and Diptera, but

distinctly elongated in Amphiesmenoptera, Mecoptera and Siphonaptera.

142. Mesospina: (0) absent; (1) present. Well developed in Neuropterida,

Archostemata, Hymenoptera and Amphiesmenoptera (with few exceptions), and in

the majority of hemimetabolous insects (pers. obs. Friedrich; Czihak, 1953;

Chadwick, 1959a; Matsuda, 1956; Tindall, 1965; Kristensen, 2003; Friedrich and

Beutel, 2008a; Friedrich et al., 2009). Absent in Mecoptera (see Hepburn, 1970;

Friedrich and Beutel, 2010), Diptera (e.g., Smart, 1959; Christophers, 1960;

Mickoleit, 1962; Owen, 1977), Siphonaptera (pers. obs. Friedrich; Snodgrass,

1946; Lewis, 1961), in non-archostematan Coleoptera (e.g., Larsén, 1966;

Friedrich and Beutel, 2006; Friedrich et al., 2009), and in Strepsiptera (Koeth,

2007).

143. Proximal part of mesocoxae: (0) recessed into coxal cavities; (1) not recessed

into cavities. Recessed into cavities in Coleoptera (see e.g., Lawrence, 1982).

144. Mesocoxae: (0) distinctly separated from each other; (1) closely adjacent

medially. Closely adjacent medially in Holometabola, but distinctly separated from

each other in other pterygote lineages.

145. Mesothoracic sternocoxale (Weber, 1928): (0) continuous with anterior

eucoxal sclerotisation, articulated with posterior part of coxa; (1) continuous with

posterior coxal sclerotisation, articulated with anterior part of coxa; (2) articulated

with anterior and posterior part of the coxa. The sternocoxal sclerite is broadly

Page 48: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

continuous with the anterior part of the coxa in Mecoptera and some dipteran

groups (e.g. Trichoceridae, Blepharoceridae, Culicoidea), where it is posteriorly

truncate and articulates with the posterior coxal sclerotisation (see Friedrich and

Beutel, 2009; Frantsevich, 2004). The sternocoxale is slender and continuous with

the posterior coxal sclerotisation and articulates with the anterior part of the eucoxa

in Lepidoptera (e.g., Weber, 1928), Trichoptera (pers. obs. Friedrich; Tindall, 1965:

fig. 11) and few groups of Diptera (Tipulidae, Limoniidae [part.]; pers. obs.

Friedrich; Frantsevich, 2004). In the majority of dipteran taxa the sternocoxale is

anteriorly and posteriorly separated from and articulated with the remaining coxa

(see Frantsevich, 2004). Due to the dissimilar formation of the structure in different

lineages the homology was questioned by Mickoleit (1967). A distinctly separated

sclerite is absent in Neuropterida (pers. obs. Friedrich; Mickoleit, 1967: p.339),

Coleoptera (e.g., Larsén, 1966; Friedrich et al., 2009), Hymenoptera (pers. obs.

Friedrich), Strepsiptera (Kinzelbach, 1971; Koeth, 2007), Siphonaptera (e.g.,

Snodgrass, 1946) and in hemimetabolous insects (e.g., Friedrich and Beutel,

2008a).

146. Mesocoxal meron: (0) absent; (1) present. A distinct mesocoxal meron is

present in Neuropterida, Amphiesmenoptera, Mecoptera and Diptera (see

Willmann, 2005). It is absent in Hymenoptera, Coleoptera (see Friedrich and

Beutel, 2006), Strepsiptera (Kinzelbach, 1971; Koeth, 2007) and Siphonaptera

(e.g., Snodgrass, 1946).

147. Mesotrochantin: (0) absent; (1) present. Present in Neuropterida (e.g., Morse,

1931; Ferris and Pennebaker, 1939; Czihak, 1953; Kelsey, 1957), Coleoptera (e.g.,

Larsén, 1966; Friedrich et al., 2009), Amphiesmenoptera (see Kristensen, 2003),

Mecoptera (except Boreidae; see Hepburn, 1970; Friedrich and Beutel, 2010) and

hemimetabolous lineages (e.g., Matsuda, 1970; Friedrich and Beutel, 2008a).

Absent in Hymenoptera (e.g., Gibson, 1993), Strepsiptera (Kinzelbach, 1971;

Koeth, 2007), Siphonaptera (e.g., Snodgrass, 1946) and Diptera (see Crampton,

1942).

148. Size of mesotrochantin: (0) well developed; (1) small. A well developed

mesotrochantin is present in Neuropterida and many hemimetabolous groups (e.g.,

Page 49: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

Plecoptera, Zoraptera; Nelson and Hanson, 1968, 1971; Friedrich and Beutel,

2008a). The sclerite is reduced in size in Amphiesmenoptera (Tindall, 1965;

Kristensen, 2003), Coleoptera (Larsén, 1966; Friedrich et al., 2009) and Mecoptera

(see Friedrich and Beutel, 2010), but also in some hemimetabolous insects (e.g.,

Psocoptera; Orthoptera; Snodgrass, 1929; Badonnel, 1934; Cope, 1940; Kramer,

1944).

149. Transverse ridge of metascutum: (0) absent; (1) present. Present in

Coleoptera (see Friedrich et al., 2009).

150. Alacristae: (0) absent; (1) present. Present in Coleoptera (see e.g., Larsén,

1966; Friedrich et al., 2009).

151. Metathoracic postalar bridge: (0) absent; (1) present, metapostnotum and

metepimeron firmly fused. The lateral edge of the mesopostnotum is fused with the

dorsal rim of the mesepimeron in Megaloptera (Maki, 1936; Czihak, 1953; Kelsey,

1957), Trichoptera (pers. obs. Friedrich; Tindall, 1965), Mecoptera (see Friedrich

and Beutel, 2010), Diptera (e.g., Crampton, 1925, 1942; Rees and Ferris, 1939;

Owen, 1977), Plecoptera (e.g., Nelson and Hanson, 1971: poa) and

Ephemeroptera (Kluge, 1994: fig. 2). The pterothoracic postnota and pleura are

completely fused in Apteropanorpidae (Hepburn, 1970) and basal Strepsiptera

(see Koeth, 2007). Both sclerites are separated in the remaining holometabolan

insects (Mickoleit, 1967: p. 337).

152. Metathoracic tegular arm: (0) absent; (1) present. Only present in Lepidoptera

(Sharplin, 1964; Mickoleit, 1969; Kristensen, 1984).

153. Metapostnotum: (0) single sclerite; (1) medially divided. Medially divided in

Neuroptera, Raphidioptera and Megaloptera (except for Chauliodes; Maki, 1936;

Achtelig, 1975; Aspöck and Aspöck, 2005a, b).

154. Size of metapostnotum: (0) small to moderately sized; (1) strongly elongated,

shield like. Strongly elongated in Strepsiptera (see Kinzelbach, 1971).

155. Metapostnotum and first abdominal tergum: (0) not fused; (1) firmly fused.

Both sclerites are firmly fused in Mecoptera (Figs 1, 2; Ferris and Rees 1939;

Mickoleit, 1967, 1971; Hepburn, 1970), Hymenoptera (Vilhelmsen, 2000b),

Lepidoptera (pers. comm. N.P. Kristensen) and some hemimetabolous groups

Page 50: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

(e.g., Orthoptera; Snodgrass, 1929; Kramer, 1944). The sclerites are separated in

Diptera (e.g., Crampton, 1942) and Siphonaptera (Snodgrass 1946).

156. Metathoracic katepisternum: (0) absent; (1) present. Katepisterna are present

in the majority of holometabolan lineages (see below), but are completely absent in

Strepsiptera (Kinzelbach, 1971; Koeth, 2007), some non-archostematan

Coleoptera (Friedrich et al., 2009) and Siphonaptera (e.g., Snodgrass, 1946).

157. Elongated ventral process of metathoracic pleural ridge: (0) absent; (1)

present. Among Holometabola, the ventral end of the metapleural ridge bears an

elongated process (―unterer Pleuralarm‖ of German authors) in Mecoptera (see

Friedrich and Beutel, 2010) and Diptera (Smart, 1959; Mickoleit, 1962; Owen,

1977). The apodemes present in basal Hymenoptera (Vilhelmsen, 2000b: char. 30,

fig. 7E) are probably homologous structures, because they also receive a ventral

furco-pleural muscle (pers. obs. Vilhelmsen). Similarly shaped processus occur in

Orthoptera (Snodgrass, 1929; Kramer, 1944).

158. Metasternum: (0) externally exposed; (1) invaginated. The ventral part of the

metathoracic skeleton is formed by pleural sclerites in Holometabola (see Ferris,

1940b). The metasternum (basisternum) is broadly exposed externally in

hemimetabolous taxa.

159. Fusion of metafurca and hind margin of epimeron: (0) absent; (1) present.

Both elements are fused in Lepidoptera and Trichoptera (Tindall, 1965; Brock,

1971; Kristensen, 1975, 1984), and also in Psocoptera (Badonnel, 1934; Cope,

1940) and in many groups of Apocrita.

160. Position of metafurca: (0) posterior end of discriminal ridge; (1) anterior end of

discriminal ridge. The metafurca is located anterioly on the discriminal ridge in

Hymenoptera (Vilhelmsen, 2000b), but posteriorly in all other groups. A discriminal

ridge is rarely present in Coleoptera (e.g., Scirtoidea [part.]; Friedrich and Beutel,

2006; see also Larsén, 1966, Baehr, 1975; Friedrich et al., 2009) and absent in

Siphonaptera (e.g., Snodgrass, 1946).

161. Anteromedian metafurcal process closely associated with metadiscrimen: (0)

absent; (1) present. An anteriorly directed metafurcal process with bifurcated tip

articulating with the discriminal ridge is present in all non-micropterigid Lepidoptera

Page 51: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

(pers. comm. N.P. Kristensen). A shorter or longer free median metafurcal

projection is present in certain Coleoptera (see e.g., Baehr, 1975: fig. 8; Friedrich

et al., 2009: figs 3C, 8B) and in Strepsiptera (e.g., Koeth, 2007).

162. Ventral metasternal process (below metafurca) forming sterno-coxal joint: (0)

absent; (1) present. Occurring only in Holometabola (see also Matsuda, 1970: 46),

but absent in Coleoptera (e.g., Larsén, 1966; Friedrich et al., 2009) and

Strepsiptera (Kinzelbach, 1971; Koeth, 2007). The sclerite interconnecting the

furcasternum and the medial metacoxal rim in Siphonaptera (Snodgrass, 1946: fig.

9G: q) very likely represents the ventral process.

163. Size of ventral metasternal process: (0) not elongated; (1) elongated. Rather

short in Neuropterida, Hymenoptera and Diptera, but distinctly elongated in

Amphiesmenoptera and Mecoptera.

164. Connection between metafurcal arm and epimeral apophysis: (0) no

connection; (1) muscular connection; (2) connected by tendon; (3) completely

fused. The distal part of the metafurcal arm and the posterior process of the

epimeron or the adjacent membrane, respectively, are connected by a short

muscle in Raphidioptera and by a strong tendon in Corydalinae and Chauliodinae

(Achtelig, 1975). Both elements are fused in Sialidae and Osmylus (Achtelig,

1975). The secondary metafurcal arms are fused with the epimeron in

Amphiesmenoptera (char. 159; see also Kristensen, 2003). This formation is

distinctly different from fusions occurring in other groups.

165. Metatrochantin: (0) absent; (1) present, externally visible; (2) internalized.

Absent as externally visible sclerite in Diptera (e.g., Crampton, 1942), Strepsiptera

(Kinzelbach, 1971; Koeth, 2007), non-archostematan Coleoptera (e.g., Larsén,

1966), some Hymenoptera (e.g., Tenthredinidae; Weber, 1927; Vilhelmsen, 2000b)

but probably present in the hymenopteran ground plan, Siphonaptera (e.g.,

Snodgrass, 1946) and other flightless groups (e.g., Boreidae; see Füller, 1954).

Internalized in polyphagan beetles.

166. Orientation of metacoxae: (0) not transverse; (1) transverse. Transverse in

Coleoptera (see Lawrence, 1982; Friedrich et al., 2009).

Page 52: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

167. Metacoxae: (0) distinctly delimited from each other; (1) adjacent or almost

adjacent medially. The metacoxae are adjacent or almost adjacent medially in

holometabolan insects, but distinctly separated in other pterygote insects.

168. Metacoxal meron: (0) absent; (1) present. Present in Neuropterida,

Amphiesmenoptera, Mecoptera and Diptera (see Willmann, 2005). The presence

in Coleoptera is discussed controversially (see e.g., Larsén, 1945a, b; Willmann,

2005; Friedrich and Beutel, 2006). It is absent in Strepsiptera (Kinzelbach, 1971;

Koeth, 2007) and Siphonaptera (e.g., Snodgrass, 1946).

169. Meron and epimeron of metathorax: (0) separate; (1) broadly fused. The

metacoxal meron and the epimeron are usually distinctly separated in

Holometabola with a well developed meron, but both sclerites are fused in the

majority of Diptera (e.g., Crampton, 1925, 1942).

170. Metathoracic sternocoxale (Weber, 1928): (0) continuous with anterior

eucoxal sclerotisation, articulated with posterior part of coxa; (1) continuous with

posterior coxal sclerotisation, articulated with anterior part of coxa; (2) articulated

with anterior and posterior part of metacoxa. A metathoracic sternocoxal sclerite is

more or less distinctly separated from the posterior part of the eucoxa in Mecoptera

(Ferris and Rees, 1939: fig. 43; Mickoleit, 1967: fig. 6; Friedrich and Beutel, 2010:

fig. 4b). In Lepidoptera (e.g., Weber, 1928; Kozlov, 1986; Kristensen, 2003) and

some Trichoptera (see Ivanov and Kozlov, 1987) the slender sclerite is posteriorly

continuous with the eucoxa and articulates with its anteriormost tip with the anterior

sclerotisation of that structure. The sternocoxale is completely separated from the

remaining coxa in few dipterans (e.g. Mycetophiloidea, Psychodidae; Frantsevich,

2004). A distinct metathoracic sternocoxale is absent in the majority of dipteran

groups (e.g. Tipuloidea, Bibionoidea; see also Frantsevich, 2004), some

Trichoptera (see Tindall, 1965; Ivanov and Kozlov, 1987), and in members of all

remaining holometabolan lineages.

171. Fore wings: (0) wings; (1) elytra; (2) halteres; (3) clasping organs (males). The

fore wings are transformed into elytra in Coleoptera (see Friedrich et al., 2009) and

into halteres in Strepsiptera (Kinzelbach, 1971). The fore wings are transformed

Page 53: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

into curved clasping organs in males of Boreidae (e.g., Füller, 1954) and absent in

Siphonaptera. Complete absence in Siphonaptera is coded as (-).

172. Hind wings: (0) wings; (1) halteres; (2) peg-like sclerites (males). Metathoracic

halteres are present in Diptera (e.g., Hennig, 1953). Wings are reduced to narrow

appendages in Boreidae (e.g., Füller, 1954) and are absent in Siphonaptera (e.g.,

Snodgrass, 1946) (coded as inapplicable).

173. Transverse hindwing folding mechanism: (0) absent; (1) present. Present in

Coleoptera (Beutel and Haas, 2000).

174. Number of costal cross veins: (0) more than 5; (1) less than 5. More than five

costal cross veins are present in Neuropterida.

175. Dense vestiture of scales on wings: (0) absent; (1) present. Present in

Lepidoptera (e.g., Kristensen and Simonsen, 2003).

176. Hamuli: (0) absent; (1) present, connecting fore wings and hind wings. The

fore and hind wings are connected by hamuli in Hymenoptera. A fold of the

posterior margin of the fore wing is coupled with a fold of the anterior margin of the

hind wing in Psocoptera.

177. Insertion site of the anterior pronoto-cervical muscle: (0) lateral cervical

sclerite or posterolateral head capsule; (1) corpotentorium. The muscle connects

the corpotentorium and the dorsal area of the cervical membrane in Trichoptera

(pers. obs. Friedrich; Tindall, 1965: 3.01). In other holometabolan insects the

muscle (if present) has its insertion on the lateral cervical sclerite or rarely on the

posterolateral head capsule (e.g., Hymenoptera; Vilhelmsen, 2000a; Brachycera;

Maki, 1936; Bonhag, 1949).

178. M. profurca-phragmalis: (0) absent; (1) present. The muscle is present in the

majority of pterygote insects (see e.g., Matsuda, 1970). It is absent in Diptera

(pers. obs. Friedrich Friedrich; Bonhag, 1949; Mickoleit, 1962; Owen, 1977),

Bittacidae (Mickoleit, 1968; Storch and Chadwick, 1968) and in apocritan

Hymenoptera (see Vilhelmsen et al., in press).

179. Origin of M. profurca-phragmalis: (0) profurca; (1) posteriormost part of

propleura. Arises on the posterior face of the propleural apophysis in Boreidae

(Füller, 1955) and Nannochoristidae (Friedrich and Beutel, 2010), and on the

Page 54: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

posteriormost part of the propleuron in other mecopterans (except Meropidae;

Friedrich and Beutel, 2010; Hepburn, 1970). Attached to the profurcal arm in

Meropidae (Friedrich and Beutel, 2010) and other pterygote insects (see e.g.,

Matsuda, 1970; Friedrich and Beutel, 2008a).

180. M. pronoto-coxalis posterior: (0) absent; (1) present. Present in the majority of

pterygote groups (see Matsuda, 1970; Friedrich and Beutel, 2008a). Absent in

Coleoptera (Friedrich et al., 2009), Siphonaptera (pers. obs. Friedrich; Lewis,

1961) and Diptera (Christophers, 1960; Mickoleit, 1962; Owen, 1977). It is likely

that the ―pleural remoter of the coxa‖ in Tabanus (Bonhag, 1949: 15) represents

this muscle (Matsuda, 1970: p. 329). Whether the pronoto-coxal muscle of

Strepsiptera is homologous with muscle Idvm16 or Idvm17 is uncertain (Koeth,

2007) (coded as ?).

181. M. pronoto-trochanteralis: (0) absent; (1) present. Present in Diptera (pers.

obs. Friedrich; Bonhag, 1949; Christophers, 1960; Mickoleit, 1962; Owen, 1977)

and in hemimetabolous insects (except Mantodea; see Friedrich and Beutel,

2008a). Absent in all non-dipteran holometabolan insects.

182. Origin of M. propleura-occipitalis: (0) anterodorsal edge of propleuron; (1)

close to propleural ridge; (2) propleural apodeme; (3) profurca. The muscle arises

on the anteriormost edge of the propleura in Bittacidae (Mickoleit, 1968) and on the

dorsal propleural margin close to the propleural ridge in Nannochoristidae

(Friedrich and Beutel, 2010). It is attached to the point of fusion of the propleural

apodeme and profurca in other Mecoptera (see Friedrich and Beutel, 2010) and

Corydalus (Kelsey, 1954: 60). A profurcal attachment point of the muscle is found

in Trichoptera (e.g., Tindall, 1965: 3.05), Lepidoptera (Kristensen, 2003),

Hymenoptera (pers. obs. Friedrich; Vilhelmsen, 2000a, acc. for publ.),

archostematan Coleoptera (Baehr, 1975; Friedrich et al., 2009), Raphidioptera

(pers. obs. Friedrich; Matsuda, 1956) and most megalopterans (except Corydalus;

Maki, 1936; Czihak, 1953; Kelsey, 1954). The muscle connecting the anterior

margin of the propleura and the anteriormost part of the first cervical sclerite in

Tipula (Mickoleit, 1962: 3) is probably homologous. It is not described for non-

tipulid Diptera and is also absent in Neuroptera, non-archostematan Coleoptera

Page 55: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

(see Larsén, 1966), Siphonaptera (Lewis, 1961) and Strepsiptera (Kinzelbach,

1971; Koeth, 2007).

183. M. prospina-mesopleuralis: (0) absent; (1) present. Present in Raphidioptera

(pers. obs. Friedrich; Matsuda, 1956), Sialidae (Czihak, 1953), Archostemata

(Baehr, 1975; Friedrich et al., 2009), in basal lepidopterans (e.g., Micropterigidae,

Agathiphagidae; pers. obs. Friedrich; Kristensen, 2003), and in many

hemimetabolous groups (see Friedrich and Beutel, 2008a). Absent in Trichoptera

(pers. obs. Friedrich; Maki, 1938; Tindall, 1965), Mecoptera (Friedrich and Beutel,

2010), Diptera (pers. obs. Friedrich; Mickoleit, 1962; Owen, 1977), Hymenoptera

(pers. obs. Friedrich; Vilhelmsen, 2000a, acc. for publ.), Neuroptera (pers. obs.

Friedrich; Korn, 1943), Corydalidae (Maki, 1936; Kelsey, 1957), non-

archostematan Coleoptera (see Friedrich et al., 2009), Orthoptera (Snodgrass,

1929; Maki, 1938) and Plecoptera (Wittig, 1955; Barlet, 1987).

184. M. procoxa-cervicalis: (0) absent; (1) present. A muscle connecting the

procoxa and lateral cervical sclerite is present in Hymenoptera (pers. obs.

Friedrich; Vilhelmsen, 2000a, acc. for publ.), Mecoptera (excl. Bittacidae; see

Friedrich and Beutel, 2010), Lepidoptera (e.g., Hannemann, 1957; MacFarlane and

Eaton, 1973; Kristensen, 1968, 2003), Trichoptera (pers. obs. Friedrich; Tindall,

1965), Megaloptera (Maki, 1936; Czihak, 1953; Kelsey, 1954), several

representatives of Neuroptera (e.g., Osmylidae, Nevrorthidae), Bibionidae,

Brachycera (e.g., Maki, 1938; Bonhag, 1949), and in the majority of

hemimetabolous insects (e.g., Orthoptera, Plecoptera; Snodgrass, 1929; Barlet,

1987). It is absent in most non-brachyceran dipterans (e.g., Tipulidae, Limoniidae,

Culicidae; pers. obs. Friedrich; Maki, 1938; Mickoleit, 1962; Owen, 1977;

Michelsen, 1996), in members of the myrmeleontiform lineage of Neuroptera (Korn,

1943; Czihak, 1957), in Raphidioptera (pers. obs. Friedrich; Matsuda, 1956),

Coleoptera (Friedrich et al., 2009), Strepsiptera (Koeth, 2007), and in Siphonaptera

(Lewis, 1961).

185. Origin of M. procoxa-cervicalis: (0) lateral cervical sclerite; (1) corpotentorium.

Connects the corpotentorium and anterior procoxal rim in Lepidoptera (e.g.,

Hannemann, 1957: 15; MacFarlane and Eaton, 1973: t2; Kristensen, 2003: cx1-te)

Page 56: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

and Trichoptera (pers. obs. Friedrich; Tindall, 1965). Arises on the lateral cervical

sclerite in all other pterygote groups (see e.g., Matsuda, 1970).

186. Orientation of both bundles of M. procoxa-cervicalis: (0) parallel to each other;

(1) crossing each other. The bundles of the paired muscle stretching between the

anterior procoxal rim and the contralateral cervical sclerite intersect each other in

midline in Neuroptera (e.g., Nevrorthus, Sisyra, Osmylus; pers. obs. Friedrich),

Hymenoptera (pers. obs. Friedrich; Vilhelmsen, 2000a: 7; Mikó et al., 2007: cv-

cx1), in supposedly ―primitive‖ trichopterans (e.g., Rhyacophila, pers. obs.

Friedrich; Kristensen, 2003), in Mecoptera (except Boreus; Friedrich and Beutel,

2010), and in Orthoptera (Snodgrass, 1929; Maki, 1938). The bundles run parallel

in Megaloptera (Maki, 1936: 84; Czihak, 1953: M. cerv. cox.; Kelsey, 1954: 87), in

Lepidoptera (see Kristensen, 2003), in few members of Trichoptera (e.g.,

Limnephilus; pers. obs. Friedrich), in Bibionidae (origin on second lateral cervical

sclerite), in Brachycera (Maki, 1938; Bonhag, 1949) and in Boreus (not in

Caurinus; Füller, 1955: 0ism3).

187. Origin of M. profurca-tentorialis: (0) laterally on corpotentorium; (1)

posteroventrally on head capsule; (2) gula; (3) anteroventral area of cervical

membrane. Arises on the corpotentorium in Mecoptera (see Friedrich and Beutel,

2010), Diptera (excl. Tipulidae, Limoniidae; Bonhag, 1949; Christophers, 1960;

Owen 1977), Megaloptera (with a second bundle on the posterior gula; pers. obs.

Friedrich; Czihak, 1953), Neuroptera, Coleoptera (Larsén, 1966; Baehr, 1975), in

many groups of Lepidoptera (e.g., Micropterix, Eriocrania, Glossata [partim];

Hannemann, 1957; Kristensen, 1968, 2003), in Plecoptera (e.g., Barlet, 1987), and

in Orthoptera (e.g., Snodgrass, 1929). Exclusively attached to the gula in

Raphidioptera (Matsuda, 1956). Attached to the cervical membrane close to the

posteroventral rim of the head capsule in Tipulidae (Mickoleit, 1962) and

Limoniidae, and directly to the head capsule in Hymenoptera (Vilhelmsen, 2000a,

acc. for publ.), Trichoptera (pers. obs. Friedrich; Tindall, 1965), Siphonaptera (pers.

obs. Friedrich; Wenk, 1953), Strepsiptera (postgena; Kinzelbach, 1971; Koeth,

2007), and few groups of Lepidoptera (e.g., Agathiphaga, Glossata [partim];

Kristensen, 2003).

Page 57: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

188. M. profurca-spinalis: (0) absent; (1) present, connecting profurca and

prospina; (2) present, connecting profurcal arms. Stretches between the profurca

and prospina in basal Hymenoptera (pers. obs. Friedrich; Maki, 1938: fig. 41, 3;

Vilhelmsen, 2000a: 23), in Raphidioptera (pers. obs. Friedrich; Matsuda 1956),

Megaloptera (except Chauliodinae; Czihak, 1953; Kelsey, 1957), in some

lepidopterans (see Kristensen, 2003) and trichopterans (e.g., Limnephilus; pers.

obs. Friedrich; Tindall, 1965: 2.01), and also in hemimetabolous insects (except

Mantodea; Chadwick, 1959a; Friedrich and Beutel, 2008a). Interconnects both

profurcal arms in Mecoptera (see Friedrich and Beutel, 2010) and Siphonaptera

(pers. obs. Friedrich; Lewis, 1961). A similar muscle described in the tipulid

Ctenacroscelis by Maki (1938: fig. 44: 5) is probably homologous. The muscle is

absent in Neuroptera (pers. obs. Friedrich; Korn, 1943), Coleoptera (Baehr, 1975;

Friedrich et al., 2009), Diptera (except for Ctenacroscelis, Maki, 1938; pers. obs.

Friedrich; Bonhag, 1949; Mickoleit, 1962; Owen, 1977) and Strepsiptera (Koeth,

2007).

189. M. profurca-mesospinalis: (0) absent; (1) present. Present in Corydalus

(Kelsey, 1957: 122), few neuropterans (e.g., Nevrorthus, Osmylus), and in many

hemimetabolous groups (e.g., Plecoptera, Blattodea, Dermaptera; Chadwick,

1959a; Friedrich and Beutel 2008a). Absent in other holometabolan lineages.

190. M. profurca-mesofurcalis: (0) strongly reduced or absent; (1) present. Well

developed in all pterygote insects with the exception of Diptera, where the muscle

is strongly reduced or absent (pers. obs. Friedrich; Bonhag, 1949; Smart, 1959;

Mickoleit, 1962; Owen, 1977).

191. M. prospina-mesofurcalis: (0) absent; (1) present. Present in

Amphiesmenoptera (pers. obs. Friedrich; Tindall, 1965; Kristensen, 2003),

Neuropterida (pers. obs. Friedrich; Maki, 1938; Czihak, 1953; Matsuda, 1956;

Kelsey, 1957), Cupedidae (Baehr, 1975), few Mecoptera (e.g., Nannochoristidae,

Meropidae; Friedrich and Beutel, 2010), few hymenopterans (e.g., Xyelidae,

Anaxyelidae, Pamphiliidae; Vilhelmsen, 2000a), and in the majority of

hemimetabolous lineages (e.g., Plecoptera, Orthoptera, Dictyoptera; Chadwick,

1959a). Absent in Diptera (pers. obs. Friedrich; Bonhag, 1949; Mickoleit, 1962;

Page 58: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

Owen, 1977), Siphonaptera (Lewis, 1961), Strepsiptera (Kinzelbach, 1971; Koeth,

2007), non-archostematan Coleoptera (Larsén, 1966) and many groups of

Mecoptera (e.g., Boreidae, Bittacidae; Füller, 1955; Mickoleit, 1968).

192. M. profurca-coxalis medialis: (0) absent; (1) present. Present in Neuroptera,

Raphidioptera, Sialidae (pers. obs. Friedrich; Korn, 1943; Matsuda, 1956),

Trichoptera (pers. obs. Friedrich), some Mecoptera (e.g., Nannochoristidae,

Meropidae, Bittacidae; Friedrich and Beutel, 2010), and in hemimetabolous insects

(except Dermaptera; see Friedrich and Beutel, 2008a). In Diptera recorded for

Tipula (Mickoleit, 1962: 8), Limonia, Bibio (pers. obs. Friedrich) and Tabanus

(Bonhag, 1949). Absent in Lepidoptera (Kristensen, 2003), some groups of

Mecoptera (e.g., Boreidae, Panorpidae; Hasken, 1939; Füller, 1955), Hymenoptera

(pers. obs. Friedrich; Tait, 1962), Siphonaptera (pers. obs. Friedrich; Lewis, 1961),

Coleoptera (e.g., Larsén, 1966; Friedrich et al., 2009) and Strepsiptera (Koeth,

2007).

193. M. prospina-coxalis: (0) absent; (1) present. Present in Neuroptera, Sialidae

(pers. obs. Friedrich; Czihak, 1953), Hymenoptera (e.g., Vilhelmsen, 2000a: 16),

Trichoptera (pers. obs. Friedrich; Tindall, 1965: 7.56), in basal groups of

Lepidoptera (Kristensen, 2003), and in the majority of hemimetabolous insects

(Chadwick, 1959a; Friedrich and Beutel, 2008a). Absent in Mecoptera (see

Friedrich and Beutel, 2010), Diptera (Bonhag, 1949; Mickoleit, 1962; Owen, 1977),

Siphonaptera (pers. obs. Friedrich, Lewis, 1961), Raphidioptera (pers. obs.

Friedrich; Matsuda, 1956), Corydalidae (Maki, 1936; Kelsey, 1957), Coleoptera

(Larsén, 1966; Baehr, 1975; Friedrich et al., 2009) and Strepsiptera (Kinzelbach,

1971; Koeth, 2007).

194. M. mesoscutello-postnotalis: (0) absent; (1) present. Present in Neuropterida

(pers. obs. Friedrich; Czihak, 1953, 1957; Matsuda, 1956; Kelsey, 1957),

Trichoptera, Lepidoptera (pers. obs. Friedrich; see also Kristensen, 2003),

Hymenoptera (pers. obs. Friedrich) and in few Mecoptera (e.g., Panorpidae; see

Friedrich and Beutel, 2010). Absent in Diptera (e.g., Smart, 1959; Mickoleit, 1962;

Owen, 1977), Siphonaptera (pers. obs. Friedrich; Lewis, 1961), Coleoptera (e.g.,

Larsén, 1966; Friedrich et al., 2009), Strepsiptera (Koeth, 2007) and the majority of

Page 59: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

mecopteran lineages (e.g., Nannochoristidae, Bittacidae; see Friedrich and Beutel,

2010).

195. M. mesonoto-sternalis: (0) absent; (1) present. Absent in non-archostematan

Coleoptera (e.g., Friedrich et al., 2009). Present in all other winged insects.

196. M. mesonoto-coxalis posterior: (0) absent; (1) present. Present in

Neuropterida (pers. obs. Friedrich; Korn, 1943; Larsén, 1948; Czihak, 1953;

Matsuda, 1956; Mickoleit, 1966), Coleoptera (Larsén, 1966: M40; Baehr, 1975: 37;

Friedrich et al., 2009: M. 60), Agathiphaga (pers. obs. Friedrich; Kristensen, 1984,

2003), and in many hemimetabolous groups (see Friedrich and Beutel, 2008a).

Absent in Antliophora, Amphiesmenoptera (pers. obs. Friedrich; Larsén 1945a, b,

1948; Mickoleit, 1966), Strepsiptera (Koeth, 2007), and in the majority of

hymenopteran groups (see Vilhelmsen et al., in press). The mesotergo-coxal

muscle of Xyelidae (Gibson, 1993: 158; Vilhelmsen et al., in press: t2-cx2)

probably represents IIdvm5 (homologised with IIdvm4,5 by Vilhelmsen et al., in

press).

197. M. mesonoto-trochanteralis: (0) absent; (1) present. Absent in Strepsiptera

(Kinzelbach, 1971; Koeth, 2007), Polyphaga (e.g., Larsén, 1966), some

hymenopteran groups (e.g., Tenthredinoidea; pers. obs. Friedrich; Weber, 1927;

Vilhelmsen et al., in press), and in all non-brachyceran Diptera examined so far

(see also Maki, 1938; Mickoleit, 1962; Owen, 1977). Present in other

holometabolan and hemimetabolous groups (see Matsuda, 1970; Friedrich and

Beutel, 2008a).

198. M. mesofurca-phragmalis: (0) absent; (1) present. Present in Neuropterida

(pers. obs. Friedrich; Korn, 1943; Czihak, 1953; Matsuda, 1956), Hymenoptera

(pers. obs. Friedrich; see also Tait, 1962: 20; Mikó et al., 2007: fu2-ph2;

Vilhelmsen et al., in press: fu2a,b-ph2), Coleoptera (Baehr, 1975: 32; Friedrich et

al., 2009: M. 45), Meropidae (Friedrich and Beutel, 2010), Strepsiptera (Koeth,

2007: m21), Trichoptera (pers. obs. Friedrich; Maki 1938: 34), and in basal

lepidopterans (except Micropterix; Kozlov, 1986; Kristensen, 2003). Absent in

Mecoptera (except Merope; Friedrich and Beutel, 2010), Diptera (pers. obs.

Page 60: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

Friedrich; Smart, 1959; Mickoleit, 1962; Owen, 1977) and Siphonaptera (pers. obs.

Friedrich; Lewis, 1961).

199. Insertion of M. mesofurca-phragmalis: (0) muscular; (1) with long thin tendon.

Attached to the mesofurca by means of a long and thin tendon in Trichoptera.

200. Size of M. prophragma-mesanepisternalis: (0) strongly developed; (1)

moderately sized to small. Strongly developed in Megaloptera (not in Chauliodes;

see Mickoleit, 1966: fig.1, 1969: fig. 1), winged Mecoptera (Friedrich and Beutel,

2010), Diptera (pers. obs. Friedrich; Bonhag, 1949; Smart, 1959; Mickoleit, 1962;

Owen, 1977; Miyan and Ewing, 1985), and also in Plecoptera (Wittig, 1955:

IItpm46a). Moderately sized (e.g., Lepidoptera, Neuroptera) or very small

(Trichoptera) in the other pterygote lineages. Absent in Coleoptera (Larsén, 1966;

Friedrich et al., 2009), Strepsiptera (Kinzelbach, 1971; Koeth, 2007), some

Hymenoptera (e.g., Tenthredinidae; pers. obs. Friedrich), in Siphonaptera (Lewis,

1961), and in other wingless insects.

201. Number of bundles of M. prophragma-mesanepisternalis: (0) 1; (1) 2.

Consists of two large bundles in Megaloptera (except Chauliodes; pers. obs.

Friedrich; Mickoleit, 1969; Maki, 1938) and some Plecoptera (see Willkommen,

2008: fig. 81: tpm 46a). Two thin, parallel bundles are present in some

neuropterans (e.g., Sisyra, Osmylus). One bundle is present in all other

holometabolan insects examined (absent in wingless forms).

202. M. mesonoto-basalaris: (0) absent; (1) present. Present in all winged

holometabolan insects with the exception of Coleoptera (Larsén, 1966; Friedrich et

al., 2009) and Strepsiptera (Kinzelbach, 1971; Koeth, 2007). Rarely present in

hemimetabolous groups (see Matsuda, 1970; Friedrich and Beutel, 2008a).

203. Insertion of M. mesonoto-basalaris: (0) immediately mediad of basalar stalk;

(1) ventrolateral part of basalar disc. Attached to the ventrally elongated lateral part

of the basalare in Neuroptera, Megaloptera, Raphidioptera, Mecoptera and

Plecoptera (Wittig, 1955; Willkommen, 2008). Inserts close to the basalar stalk in

Hymenoptera, Trichoptera and Lepidoptera. Due to the far-reaching modification of

the basalare, the condition in Diptera is difficult to interpret (coded as ―?‖).

Page 61: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

204. M. mesonoto-pleuralis anterior: (0) absent; (1) present. Present in winged

Mecoptera (see Friedrich and Beutel, 2010), Diptera (e.g., Smart, 1959; Mickoleit,

1962, 1966; Miyan and Ewing, 1985) and basal groups of Lepidoptera (e.g.,

Micropterigidae, Agathiphagidae; pers. obs. Friedrich; Kristensen, 2003). A tergo-

pleural muscle attached to the first axillary sclerite is also present in some

hemimetabolous groups (e.g., Zoraptera, Psocoptera; see Friedrich and Beutel,

2008a). The muscle is absent in Hymenoptera, Neuropterida (pers. obs. Friedrich;

Korn, 1943; Czihak, 1953) and Coleoptera (Friedrich et al., 2009), in the majority of

Trichoptera (Tindall, 1965; Mickoleit, 1966; Ivanov and Kozlov, 1987; present in

Philopotamidae [Mickoleit, 1969]), some Lepidoptera (e.g., Eriocrania; Kozlov,

1986), and in Boreidae and Siphonaptera (e.g., Lewis, 1961). Coded as

inapplicable for the wingless taxa.

205. Number of distinct bundles of M. mesonoto-pleuralis anterior: (0) 1; (1) 2. Two

bundles with distinctly separated origins on the mesanepisternum and mesopleural

arm, respectively, are present in Diptera (pers. obs. Friedrich; Bonhag, 1949;

Smart, 1959; Mickoleit, 1962, 1966, 1969; Miyan and Ewing, 1985). A single

bundle occurs in other holometabolan groups.

206. M. mesonoto-pleuralis medialis: (0) absent; (1) present. Present in

Megaloptera (pers. obs. Friedrich; Maki, 1936; Czihak, 1953; Kelsey, 1957),

Raphidioptera (pers. obs. Friedrich; Matsuda, 1956), basal Neuroptera, and in

Hymenoptera (pers. obs. Friedrich). Also present in some groups of Mecoptera

(e.g., Nannochoristidae, Panorpidae, Eomeropidae; see Friedrich and Beutel,

2010), Diptera (e.g., Tipulidae, Limoniidae; Mickoleit, 1962, 1969) and Trichoptera

(e.g., Rhyacophilidae; Mickoleit, 1969; Ivanov and Kozlov, 1987), and in most

groups of Lepidoptera (absent in Micropterigidae, Eriocraniidae and some other

families; Mickoleit, 1969; Kristensen, 2003). Always absent in Coleoptera (see

Friedrich et al., 2009) and Strepsiptera (Kinzelbach, 1971; Koeth, 2007), and in

Siphonaptera (Lewis, 1961) and other wingless insects. Coded as inapplicable for

the wingless taxa.

207. Size of M. mesonoto-pleuralis medialis: (0) moderate; (1) large. Distinctly

enlarged in Hymenoptera. Coded as inapplicable for the wingless taxa.

Page 62: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

208. M. mesonoto-pleuralis posterior: (0) absent; (1) present. Present in

Megaloptera (pers. obs. Friedrich; Maki, 1936; Czihak, 1953; Kelsey, 1957),

Raphidioptera (pers. obs. Friedrich; Matsuda, 1956), Archostemata (Baehr, 1975;

Friedrich et al., 2009), Mecoptera (Friedrich and Beutel, 2010), Diptera (pers. obs.

Friedrich; Bonhag, 1949; Christophers, 1960; Mickoleit, 1962, 1969; Owen, 1977)

and basal groups of Neuroptera (e.g., Nevrorthus, Sisyra, Ithone; pers. obs.

Friedrich; Mickoleit, 1969). Absent in Hymenoptera, Lepidoptera, Trichoptera,

(pers. obs. Friedrich; Mickoleit, 1966, 1969; Kozlov, 1986; Ivanov and Kozlov,

1987), non-archostematan Coleoptera (Larsén, 1966; Friedrich et al., 2009),

Strepsiptera (Koeth, 2007) and Siphonaptera (Lewis, 1961). Present in few

hemimetabolous groups (e.g., Plecoptera, Dictyoptera; see Friedrich and Beutel,

2008a). Coded as inapplicable for the wingless taxa.

209. Bundle of M. mesonoto-pleuralis posterior originating on dorsal third of pleural

ridge: (0) absent; (1) present. The dorsal bundle of IItpm6 arises from the pleural

ridge between the pleural wing process and the pleural arm in Mecoptera (except

Bittacidae; Friedrich and Beutel, 2010) and in many dipterans (absent in

acalyptrate flies; see e.g., Mickoleit, 1962: fig. 13; Miyan and Ewing, 1985: fig. 17).

The muscle arises exclusively in this area in Megaloptera, Raphidioptera,

Neuroptera (see e.g., Mickoleit, 1969: figs 1, 2) and Archostemata (Baehr, 1975:

fig. 14: 28; Friedrich et al., 2009: fig. 9: 46).

210. Bundle of M. mesonoto-pleuralis posterior originating on pleural arm: (0)

absent; (1) present. A strong ventral bundle of IItpm6 is attached to the tip of the

pleural arm in Mecoptera (see Friedrich and Beutel, 2010) and Diptera (often

subdivided; e.g., Mickoleit, 1962; Miyan and Ewing, 1985). The muscle is never

attached to the pleural arm in Neuropterida (pers. obs. Friedrich; see also

Mickoleit, 1969: figs 1, 2) or Coleoptera (Baehr, 1975; Friedrich et al., 2009).

211. Insertion of M. mesonoto-pleuralis posterior: (0) posterolateral mesoscutal

rim; (1) posterior mesonotal process; (2) fourth axillary sclerite. Inserted on the

posterolateral mesoscutal rim in Neuropterida (pers. obs. Friedrich; see also

Mickoleit, 1969: figs 1, 2) and Coleoptera (Baehr, 1975; Friedrich et al., 2009).

Attached to the posterior notal process in Mecoptera (see Friedrich and Beutel,

Page 63: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

2010) and to the 4th axillary sclerite in Diptera (pers. obs. Friedrich; Bonhag, 1949;

Smart, 1959; Mickleit, 1962, 1966, 1969; Miyan and Ewing, 1985).

212. M. mesanepisterno-axillaris: (0) absent; (1) present. The muscle is present in

all Holometabola with the exception of Strepsiptera (Kinzelbach, 1971; Koeth,

2007) and flightless groups (e.g., Siphonaptera, Boreidae). It is rarely present in

hemimetabolous lineages (e.g., Plecoptera, Thysanoptera; see Friedrich and

Beutel, 2008a). Coded as inapplicable for the wingless taxa.

213. M. mesepimero-subalaris: (0) absent; (1) present. Absent in Diptera (pers.

obs. Friedrich; Maki, 1938; Mickoleit, 1962), Boreidae, Siphonaptera (Lewis, 1961),

Strepsiptera (Kinzelbach, 1971; Koeth, 2007) and various coleopteran lineages.

Present in the remaining holometabolan groups and very few hemimetabolous

lineages (e.g., Plecoptera; Wittig, 1955; Willkommen, 2008). The muscle

connecting the anteriormost part of the dorsal mesepimeron or the dorsal

mesopleural ridge and the subalare in basal Hymenoptera (e.g., Xyeloidea,

Pamphiloidea; Gibson, 1993: 161; Vilhelmsen et al., in press: 66) is probably

homologous (coded as ―?‖ for Xyelidae). Coded as inapplicable for the wingless

taxa.

214. M. mesopleura-subalaris: (0) absent; (1) present. Present in some Mecoptera

(e.g., Bittacidae, Panorpidae, Eomeropidae; see Hepburn, 1970; Friedrich and

Beutel, 2010). A similar muscle is recorded for few hymenopteran groups (e.g.,

Xyelidae, Pamphilioidea; Gibson, 1993; Vilhelmsen et al., in press). Absent in other

neopteran taxa. Coded as inapplicable for the wingless taxa.

215. M. mesopleura-sternalis: (0) absent; (1) present. Absent in non-

archostematan Coleoptera (e.g., Friedrich et al., 2009), some Diptera (e.g.,

Culicidae; Christophers, 1960; Owen, 1977) and in secondary flightless species.

216. M. mesofurca-pleuralis: (0) absent; (1) present. Absent in Strepsiptera

(Kinzelbach, 1971; Koeth, 2007), Siphonaptera (Lewis, 1961), in some coleopteran

species (Larsén, 1966; Baehr, 1975; Friedrich et al., 2009), and in Boreidae (e.g.,

Füller, 1955). Present in other pterygote insects (except Psocoptera; see Friedrich

and Beutel, 2008a).

Page 64: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

217. Origin of M. mesofurca-pleuralis: (0) without tendon; (1) with a tendon

(Kristensen, 1984). Attached to the mesofurca with a tendon in Lepidoptera and

Trichoptera (pers. obs. Friedrich; Chadwick, 1959b; Tindall, 1965; Kristensen,

1984).

218. M. mesofurca-metanepisternalis: (0) absent; (1) present. Present in all basal

hymenopteran groups (Vilhelmsen, 2000b, acc. for publ.), in Neuroptera (e.g.,

Nevrorthus, Osmylidae), Raphidioptera, Sialidae (pers. obs. Friedrich), and

Archostemata (Baehr, 1975: 68; Friedrich et al., 2009: 88), in basal lepidopteran

groups (pers. obs. Friedrich; Kozlov, 1986), some trichopterans (e.g., Limnephilus)

and in very few hemimetabolous groups (e.g., Psocoptera; Badonnel, 1934).

219. Insertion of M. mesobasalare-trochantinalis: (0) trochantin; (1) anterior

mesocoxal rim. Strongly developed and attached to the trochantin in Megaloptera,

Neuroptera, Raphidioptera (pers. obs. Friedrich; Larsén, 1948; Maki, 1936; Czihak,

1953; Kelsey, 1957) and Orthoptera (e.g., Snodgrass, 1929). Insertion moved to

the anterior coxal rim in Mecoptera (see Friedrich and Beutel, 2010), Trichoptera,

Lepidoptera (Tindall, 1965; Kozlov, 1986; Kristensen, 2003), few Hymenoptera

(e.g., Xyelidae, Pamphilioidea; Gibson, 1993; Vilhelmsen et al., in press), in many

Coleoptera (Larsén, 1966; Friedrich et al., 2009), and in Plecoptera (Wittig, 1955;

Willkommen, 2008). Completely absent in Diptera (pers. obs. Friedrich; Bonhag,

1949; Mickoleit, 1962; Owen, 1977), Siphonaptera (Lewis, 1961) and Strepsiptera

(Kinzelbach, 1971; Koeth 2007).

220. M. mesanepisterno-coxalis posterior: (0) absent; (1) present. Present in

Neuropterida (pers. obs. Friedrich; Korn, 1943; Czihak, 1953; Kelsey, 1957),

Coleoptera (Larsén, 1966; Baehr, 1975; Friedrich et al., 2009), Hymenoptera (pers.

obs. Friedrich;Tait, 1962; Gibson, 1993; Vilhelmsen et al., in press), Mecoptera

(except Bittacidae; see Friedrich and Beutel, 2010), and Lepidoptera (Kozlov,

1986; Kristensen, 2003), in few trichopterans (e.g., Hydropsyche; Ivanov and

Kozlov, 1987), and in many hemimetabolous groups (see Friedrich and Beutel,

2008a). Absent in Diptera (pers. obs. Friedrich; Bonhang, 1949; Christophers,

1960; Mickoleit, 1962; Owen, 1977), Siphonaptera (Lewis, 1961), Strepsiptera

Page 65: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

(Koeth, 2007), and in the majority of trichopteran taxa (Tindall, 1965; Maki, 1938;

Ivanov and Kozlov, 1987).

221. M. mesospina-metafurcalis: (0) absent; (1) present. Moderately sized in

Hymenoptera (pers. obs. Friedrich; Tait, 1962; Vilhelmsen, 2000b, acc. for publ.)

and few coleopteran groups (e.g., Archostemata, Carabidae; Larsén, 1966; Baehr,

1975; Friedrich et al., 2009). Very thin in Neuropterida and some

amphiesmenopterans (e.g., Limnephilus, Agathiphaga). The muscle occurs in most

hemimetabolous lineages (e.g., Plecoptera, Psocoptera, Orthoptera; Chadwick,

1959a; Friedrich and Beutel, 2008a). Absent in Mecoptera (see Hepburn, 1970;

Friedrich and Beutel, 2010), Diptera (pers. obs. Friedrich; Bohang, 1949;

Christophers, 1960; Mickoleit, 1962; Owen, 1977), Siphonaptera (pers. obs.

Friedrich; Lewis, 1961), Strepsiptera (Koeth, 2007) and most non-archostematan

Coleoptera (see Larsén, 1966).

222. M. metascutello-postnotalis: (0) absent; (1) present. Present in Trichoptera,

Lepidoptera (see Kristensen 2003), Hymenoptera (pers. obs. Friedrich; Vilhelmsen,

2000b) and Neuropterida (pers. obs. Friedrich; Czihak, 1953, 1957; Matsuda,

1956; Kelsey, 1957). Absent in Mecoptera (Hepburn, 1970; Friedrich and Beutel,

2010), Diptera (pers. obs. Friedrich; Smart, 1959; Mickoleit, 1962; Owen, 1977),

Coleoptera (e.g., Baehr, 1975; Friedrich et al., 2009), Strepsiptera (Kinzelbach,

1971; Koeth, 2007) and Siphonaptera (pers. obs. Friedrich; Lewis, 1961).

223. M. metanoto-sternalis: (0) absent; (1) present. Among winged insects absent

in basal lepidopteran groups (e.g., Micropterigidae, Agathiphagidae; see

Kristensen, 2003) and in few dipterans (e.g., Culicidae; Christophers, 1960; Owen,

1977). Coded as inapplicable for flightless taxa.

224. M. metanoto-coxalis posterior: (0) absent; (1) present. Present in

Neuropterida (pers. obs. Friedrich; Larsén, 1948; Mickoleit, 1966) and Coleoptera

(except Myxophaga; Larsén, 1966; Baehr, 1975; Friedrich et al., 2009). According

to Vilhelmsen (2000b: p. 210f) the muscle is present in several basal

hymenopteran lineages. Like its mesothoracic equivalent, it is absent in

Amphiesmenoptera, Antliophora (Larsén, 1945a, b, 1948; Mickoleit, 1966;

Kristensen, 2003; Friedrich and Beutel, 2010) and Strepsiptera (e.g., Koeth, 2007).

Page 66: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

225. M. metafurca-phragmalis: (0) absent; (1) present. Present in Neuropterida

(pers. obs. Friedrich; see also Korn, 1943; Czihak, 1953; Matsuda, 1956),

Coleoptera (Larsén, 1966; Friedrich et al., 2009), Hymenoptera (pers. obs.

Friedrich; Tait, 1962; Vilhelmsen, 2000b, acc. for pub.), Strepsiptera (Kinzelbach,

1971; Koeth, 2007), Trichoptera (pers. obs. Friedrich; Maki, 1938; Ivanov and

Kozlov, 1987) and in basal lepidopteran groups (see Kristensen 2003: fu3-3lph).

Absent in Mecoptera (see Friedrich and Beutel, 2010), Diptera (pers. obs.

Friedrich; Maki, 1938; Mickoleit, 1962; Owen, 1977) and Siphonaptera (pers. obs.

Friedrich; Lewis, 1961).

226. M. metanoto-basalaris: (0) absent; (1) present. Usually absent in Diptera, but

present even though very thin in Limonia (pers. obs. Friedrich; Bonhag, 1949;

Mickoleit, 1962; Owen, 1977). Also absent in Strepsiptera (Kinzelbach, 1971;

Koeth, 2007), the majority of hymenopteran lineages (see Vilhelmsen et al., in

press: t3-ba3) and in flightless groups (e.g., Siphonaptera, Boreidae; Füller, 1955;

Lewis, 1961).

227. Insertion of M. metanoto-basalaris: (0) immediately medially of basalar stalk;

(1) ventrolateral part of basalar disc. Inserts on the ventromedian face of the

enlarged basalar disc in Mecoptera (see Friedrich and Beutel, 2010) and

Neuropterida, but on the dorsal basalar face (close to the basalar stalk) in

Coleoptera (e.g., Friedrich et al., 2009), Hymenoptera and Amphiesmenoptera.

228. M. metanoto-pleuralis anterior: (0) absent; (1) present. Present in winged

Mecoptera (see Hepburn, 1970; Friedrich and Beutel, 2010), Lepidoptera

(Mickoleit, 1969; Kristensen, 2003) and in most Trichoptera (pers. obs. Friedrich;

Mickoleit, 1966, 1969; Ivanov and Kozlov, 1987). Absent in Diptera (Mickoleit,

1962, 1966, 1969; Miyan and Ewing, 1985), Boreidae, Siphonaptera (e.g., Lewis,

1961), Neuropterida (pers. obs. Friedrich; Korn, 1943; Czihak, 1953; Matsuda,

1956), Coleoptera (see Friedrich et al., 2009), and Hymenoptera (Mickoleit, 1969;

Vilhelmsen, 2000b). Coded as inapplicable for wingless taxa.

229. M. metanoto-pleuralis medialis: (0) absent; (1) present. Present in

Neuropterida (except Osmylidae; pers. obs. Friedrich; Czihak, 1953; Matsuda,

1956), Hymenoptera (pers. obs. Friedrich; Vilhelmsen, 2000b: 10) and Diptera

Page 67: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

(pers. obs. Friedrich; Mickoleit, 1962, 1969). Also present in the majority of

Mecoptera (e.g., Nannochoristidae, Panorpidae; see Friedrich and Beutel, 2010)

and in very few amphiesmenopterans (e.g., Hydropsychidae, Agathiphagidae;

pers. obs. Friedrich; Mickoleit, 1969). Always absent in Coleoptera (see Friedrich

et al., 2009), Strepsiptera (Kinzelbach, 1971; Koeth, 2007), Siphonaptera (Lewis,

1961) and other wingless insects, and also in many hemimetabolous groups (see

Friedrich and Beutel, 2008a). Coded as inapplicable for wingless taxa.

230. M. metanoto-pleuralis posterior: (0) absent; (1) present. Present in

Megaloptera (pers. obs. Friedrich; Czihak, 1953; Kelsey, 1957; Mickoleit, 1969),

Raphidioptera (pers. obs. Friedrich; Matsuda, 1956), Cupedidae (Baehr, 1975),

Diptera (Mickoleit, 1962, 1969; Owen, 1977), in some Mecoptera (e.g.,

Eomeropidae, Panorpidae; Hasken, 1939; Hepburn, 1970), and in Ithonidae

(Mickoleit, 1969). Absent in Lepidoptera (probably present in Agathiphaga;

Kristensen, 2003), Trichoptera (Tindall, 1965; Ivanov and Kozlov, 1987),

Hymenoptera, Siphonaptera (Lewis, 1961), Strepsiptera (Koeth, 2007), non-

archostematan Coleoptera (see Friedrich et al., 2009), in the majority of

neuropteran groups, and in many mecopterans (see Friedrich and Beutel, 2010).

231. Insertion of M. metanoto-pleuralis posterior: (0) posterolateral margin of

metascutum; (1) posterior metanotal process. Attached to the posterior notal

process in Mecoptera (Hasken, 1939; Mickoleit, 1966, 1969). Inserts on the

posterolateral metascutal margin in Megaloptera, Raphidioptera, Ithonidae (pers.

obs. Friedrich; see also Mickoleit, 1969: figs 1, 2) and Cupedidae (Baehr, 1975).

232. M. metanepisterno-axillaris: (0) absent; (1) present. Present in all groups of

Holometabola with the exception of Diptera (Kinzelbach, 1971; Koeth, 2007) and

flightless groups (e.g., Siphonaptera, Boreidae). Rarely present in hemimetabolous

lineages (e.g., Plecoptera, Embioptera; see Friedrich and Beutel, 2008a).

233. M. metepimero-subalaris: (0) absent; (1) present. Absent in Diptera (pers.

obs. Friedrich; Maki, 1938; Mickoleit, 1962; Owen, 1977), Strepsiptera (Kinzelbach,

1971; Koeth, 2007) and Siphonaptera (Lewis, 1961).

234. M. metafurca-pleuralis: (0) absent; (1) present. Absent in Coleoptera (see

Friedrich et al., 2009), Siphonaptera (Lewis, 1961), Culicidae (Christophers, 1960;

Page 68: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

Owen, 1977) Boreidae (Füller, 1955). Present in most other pterygote insects

(except e.g., Psocoptera; see Friedrich and Beutel, 2008a).

235. Insertion of M. metabasalare-trochantinalis: (0) metatrochantin; (1) anterior

metacoxal rim. The muscle inserts on the metatrochantin in Megaloptera,

Neuroptera and Raphidioptera (pers. obs. Friedrich; Larsén, 1948; Czihak, 1953;

Matsuda, 1956; Kelsey, 1957), whereas it is attached to the anterior metacoxal

margin in Mecoptera (see Hepburn, 1970; Friedrich and Beutel, 2010), Lepidoptera

(Kristensen, 2003), Trichoptera (pers. obs. Friedrich; Ivanov and Kozlov, 1987),

Hymenoptera (Vilhelmsen, 2000b, acc. for publ.) and Coleoptera (Friedrich et al.,

2009: M. 104). Due the absence of the metabasalare in Diptera, the homology of

M. abductor coxae pleuralis in Tipula (Mickoleit, 1962: 52) is uncertain (coded as

?). The muscle is absent in Strepsiptera (Kinzelbach, 1971; Koeth, 2007),

Siphonaptera (Lewis, 1961) and non-tipulid dipterans (Bonhag, 1949; Owen,

1977).

236. Bundle of M. metafurca-trochanteralis with origin on discrimen: (0) absent; (1)

present. A bundle of the muscle originating on the metathoracic discrimen is

present in Nannochoristidae (Friedrich and Beutel, 2010), Tipulidae (Mickoleit,

1962: 53a, b) and Limnephilus (Tindall, 1965: 8.11). It is exclusively attached to the

metafurca in other holometabolan insects.

237. Muscle between second abdominal sternum and metacoxa: (0) absent; (1)

present. Only described for Hymenoptera (Vilhelmsen, 2000b: 34).

238. Furcostigmal muscle between metafurcal arm and first abdominal stigma: (0)

absent; (1) present. Present in Raphidioptera, Neuroptera and Megaloptera, but

absent in other holometabolan groups (Achtelig, 1975; pers. obs. Friedrich). It is

uncertain whether the bundle stretching between the secondary metafurcal arm

and the first abdominal stigma in Micropterigidae (Kristensen, 1984) represents this

muscle.

239. Arolium: (0) absent; (1) present. An arolium is present in Neuroptera (with

few exceptions), Hymenoptera, Trichoptera (partim, e.g., Rhyacophila,

Limnephilus), Lepidoptera (groundplan), Mecoptera (excl. Boreidae),

Tipulomorpha, and in Plecoptera (Beutel and Gorb, 2001, 2006). It is absent in the

Page 69: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

other taxa under consideration.

240. Ventral hairy soles on tarsomeres: (0) absent; (1) present, microtrichia without

pedestal; (2) present, microtrichia with pedestal. Hairy soles on the ventral sides of

tarsomeres occur in many groups of Coleoptera (absent e.g., in Helophoridae), in

Megaloptera and Raphidioptera, and in Stylopidia (Beutel and Gorb, 2001, 2006). It

is absent in all other holometabolan lineages and also in the outgroup taxa. The

microtrichia are inserted on a pedestal in Coleoptera, but not in Raphidioptera and

Megaloptera (Beutel and Gorb, 2006).

241. Hairy pulvilli: (0) absent; (1) present. Hairy pulvilli are present in basal

Lepidoteran groups (e.g., Micropterix, Agathiphaga) and in Diptera excluding

Tipulomorpha (Beutel and Gorb, 2001). Smooth pulvilli occur in Psocoptera,

Siphonaptera (Beutel and Gorb, 2001), and Trichoptera, but they are absent in

Rhyacophila and Limnephilus.

Characters of meso- and metathoracic wing bases

242. Tegula of fore wing: (0) absent; (1) present. A tegula, i.e. a well defined field

of sensilla trichodea, usually placed on an elevation, is present in the basal area of

the fore wing in all Pterygota with the exception of Coleoptera (Hörnschemeyer and

Willkommen, 2007; Yoshizawa and Saigusa, 2001).

243. Shape of anterior notal wing process (ANP) of the mesonotum: (0) nearly

triangular in shape, tip not directed anteriorly; (1) elongate triangular, tip directed

anteriorly; (2) not triangular. The ANP is distinctly triangular in some members of

Megaloptera, Raphidioptera, Mecoptera and Lepidoptera. It is usually more

elongate in the other groups under consideration. The distribution of the triangular

type in Holometabola indicates that this type arose several times independently.

244. Shape of the posterior notal wing process (PNP) of the mesonotum: (0) long

and slender process (at least two times longer than wide); (1) other shape; (2) no

distinct PNP present. A long and slender PNP is usually present in holometabolan

insects. A shortened or vestigial and indistinct PNP occurs in some representatives

of Neuroptera, Mecoptera, and in many groups of Hymenoptera. The PNP is also

Page 70: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

shorter or broader in the outgroup taxa, with the exception of Plecoptera. The

character state distribution suggests that the long and slender PNP may represent

a groundplan autapomorphy of Holometabola.

245. Shape of fore wing 4Ax: (0) 4Ax absent; (1) approximately as wide as long,

triangular; (2) clearly (more than 2 times) longer than wide; (3) about twice as long

as wide. A fourth axillary is only present in few groups. In Mecoptera it is very long

and slender, whereas it is moderately long in Diptera. The shape varies within

Hymenoptera. The presence is probaby not a groundplan feature of Pterygota

(Hörnschemeyer, 1998, 2002; Hörnschemeyer and Willkommen, 2007) and it is

likely that the sclerite evolved several times independently.

246. Distal tip of fore wing 4Ax: (0) bent anteriorly; (1) not bent anteriorly. The

distal tip of 4Ax is extended in Mecoptera, Hymenoptera and Diptera. The apical

part is bent anteriorly in Mecoptera.

247. Fore wing 1Ax: (0) individual sclerite; (1) fused to notum or absent. 1Ax is a

distinct, free sclerite in almost all fully winged pterygote insects. Usually the fusion

or reduction is correlated with wing reduction and flightlessness (Hörnschemeyer,

1998). Males of Mengenillidae are an exception, with a 1Ax partly fused to the

notum despite of a fully functional flight apparatus.

248. Angle between distal margins of body and neck of fore wing 1Ax: (0) less than

120°; (1) between 120° and 180°; (2) 180° or more. The shape of the 1Ax of the

hind wing varies slightly in Holometabola (Hörnschemeyer, 1998, 2002). In

Archostemata, 1Ax is conspicuously elongate and slender. The angle between the

distal margins of the neck and body is larger than 180°. 1Ax has a distinct distal

projection in Mecopterida (see char. 249) and the neck is distinctly and abruptly set

off from the body in Corydalidae, Panorpidae, Bittacidae, Eriocraniidae and

Tipulidae (see char. 250).

249. Shape of neck of fore wing 1Ax: (0) narrow, distal margin without projections;

(1) distal margin with more or less distinct projection; (2) no distinction between

neck and body possible. (see char. 248)

250. Transition from body to neck in fore wing 1Ax: (0) continuous; (1) neck and

body distinctly separated (by incision or abrupt change of width). (see char. 248)

Page 71: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

251. Radial plate of fore wing: (0) absent; (1) present. A radial plate, i.e. a very

wide sclerite resulting from the fusion of the base of the radial vein and the DMP, is

only present in Lepidoptera.

252. Contact between base of radial vein (BR) and 2Ax of fore wing: (0) BR not

fused to 2Ax, membranous intersection present; (1) BR approximately as wide as

2Ax and fused to it; (2) BR approximately half as wide as 2Ax and fused to it; (3)

BR connected to 2Ax by a narrow sclerotized stripe, 1/3 or less of the width of 2Ax.

In the hind wing BR is connected with 2Ax by a narrow sclerotised band in

Archostemata. In Raphidioptera the connection is approximately half as wide as

the 2Ax. In the other groups the connection is as wide as 2Ax or missing as in

Diptera.

253. Contact between fore wing 2Ax and 1Ax: (0) complete proximo-caudal part of

2Ax articulates with 1Ax; (1) proximo-caudal part of 2Ax separated from 1Ax by a

membranous area; (2) articulation between 2Ax and 1Ax formed by proximo-

cranial and disto-caudal process, both separated by a narrow membranous area.

1Ax is closely associated with 2Ax over the complete length of this sclerite in

nearly all holometabolan insects. The articulation is restricted to two points with a

membrane between them in Lepidoptera. It is restricted to the anterior area of the

two sclerites in Diptera and the outgroup taxa.

254. Number of elements of fore wing 3Ax: (0) 1; (1) 2 or more. In Holometabola

and most other groups of Pterygota 3Ax is usually a single sclerite in the base of

the wing (Hörnschemeyer, 1998). 3Ax is composed of at least two elements in

Neuropterida.

255. Shape of fore wing 3Ax: (0) narrow, more than 4 times longer than wide; (1)

plate like, at most 3 times longer than wide; (2) narrow, elongated, 3 to 4 times

longer than wide, perpendicular projection of distal anterior corner at least half as

long as entire sclerite. A plate-like 3Ax is probably a groundplan feature of

Pterygota (Hörnschemeyer and Willkommen, 2007). In Holometabola this shape is

conserved with two exceptions. The sclerite is slender in Raphidioptera, and a

perpendicular projection is present at the anterior end of 3Ax in Lepidoptera.

Page 72: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

256. Orientation of distal tip of fore wing 3Ax (wing extended): (0) cranially

orientated; (1) distally orientated. In the outgroup taxa, the distal tip of 3Ax points

towards to apex of the extended wing, whereas in the majority of the

holometabolan groups 3Ax is rotated, with its distal tip pointing cranially.

257. Caudal arm of fore wing 3Ax: (0) no recognisable separation between caudal,

distal and proximal arm; (1) caudal arm recognisable, parallel-sided. A parallel-

sided caudal arm is reconisable as a distinct element of 3Ax in Amphiesmenoptera,

Bittacidae and Tipulidae.

258. Distance of articulation of distal area of fore wing 3Ax from metanotal margin:

(0) at least 2 times the maximum width of 1Ax; (1) less than 2 times the maximum

width of 1Ax. Depending on the configuration of the wing base the distal area of

3Ax articulates with a median plate, the 2Ax or the 1Ax. This articulation is usually

quite close to the notum, but widely separated from it in Amphiesmenoptera.

259. Median plates of fore wing: (0) absent; (1) separate; (2) fused. The distal and

proximal median plates are usually fused in holometabolan insects, but separated

in Raphidioptera and Panorpidae. They are missing in Strepsiptera.

260. Length of mesothoracic posterior notal wing process (PWP): (0) ends on the

same level as basalare; (1) distinctly overtops basalare. The PWP clearly overtops

the basalare in the outgroup taxa, and this is also the case in Amphiesmenoptera,

Mecoptera and Megaloptera. Both elements end on the same level in the other

holometabolan groups.

261. Externally visible mesothoracic subalare: (0) with process in the middle of the

dorsal margin; (1) without process; (2) dorsally deeply emarginate; (3) absent.

Distinct projections are usually not present on the subalare of pterygote insects. A

dorsal process is present in Mecoptera and Amphiesmenoptera. A dorsal process

is present in Mecoptera and Amphiesmenoptera. It is not visible externally in

Strepsiptera, in some groups of Hymenoptera, and in some hemimetabolous taxa.

262. Shape of externally visible mesothoracic subalare: (0) approximatly as long

as high; (1) longer than high. The externally visible subalare is usually longer than

high, but as long as high in Zorotypidae and Tettigoniidae.

Page 73: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

263. Tegula of hind wing: (0) present; (1) absent. A tegula of the hind wing, i.e. a

well defined field of sensilla trichodea, usually on an elevation, is usually present,

but missing Coleoptera, Lepidoptera, Neuroptera and Caecilidae.

264. Subtegula of hind wing: (0) distinct, embracing anterior wing margin; (1) small

sclerite in dorsal wing membrane; (2) absent. The subtegula is a small sclerite in

the anterior basal area of the wing base. It is missing in the outgroup taxa and also

absent in most holometabolan groups. The sclerite is restricted to the dorsal wing

membrane in Mecoptera, whereas it embraces the anterior wing margin in Sialidae.

265. Proportions of flat part of anterior notal wing process (ANP) of hind wing: (0)

about as long as wide; (1) distinctly wider than long; (2) clearly longer than wide;

(3) absent. The shape of the ANP is variable in the outgroup taxa. It is not distinctly

developed in Osmylidae, Nevrorthidae and Mecoptera, whereas is is distinct and

about as long as wide in Sialidae, Chrysopidae, Raphidioptera and Coleoptera.

266. Humeral plate of hind wing: (0) separated from costal vein by membrane; (1)

formed by widened end of costal vein; (2) not recognisable, missing or

indistinguishably fused to costal vein. Present as a separate element without

sclerotised connection to the costal vein in Archostemata, Adephaga,

Micropterigidae, Eriocraniidae and Diptera. Absent in Strepsiptera and

Zorotypidae. Formed by the widened proximal end of the costal vein in other

groups.

267. Shape of anterior notal wing process of hind wing: (0) nearly triangular; (1)

with bifurcate apex; (2) not bifurcate and triangular. (see char. 265)

268. Shape of posterior notal wing process (PNP) of hind wing: (0) long and

slender process, at least 2 times longer than wide; (1) long and widened apically;

(2) shorter, distinctly less than 2 times longer than wide; (3) absent. The PNP is

very short or absent in the outgroup taxa, whereas it is long and apically widened

in Coleoptera. It is narrowing towards the tip in Lepidoptera.

269. Hind wing 4Ax: (0) absent; (1) not U-shaped with the open side anteriorly

directed; (2) U-shaped with the open side anteriorly directed. A 4Ax of the hind

wing does only occur in Neuropterida, Mecoptera and Hymenoptera. Mecoptera

are characterised by a U-shaped 4Ax with the open side directed anteriorly.

Page 74: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

270. Width of neck of hind wing 1Ax: (0) distinctly narrower than head region of

1Ax, with approximately straight distal margin; (1) distinctly narrower than head

region, distal margin concave; (2) about as wide as indistinct head region; (3) very

slender with a distinct process at its distal margin; (4) extremely short or absent. A

neck is missing or extremely short in Hymenoptera and a distinct head region is

also absent. In Neuroptera the head is well developed and bent distally (ca. 90°)

(char. 271). The proximal margin of the 1Ax body is distinctly elongate in

Coleoptera and its caudal margin is straight in Neuropterida and in Mecoptera.

271. Orientation of head and neck of hind wing 1Ax: (0) head and neck cranially

directed; (1) head and/or neck bent at about 90° distally; (2) head absent. (see

char. 270).

272. Proximo-caudal part of body of hind wing 1Ax: (0) distinctly longer than disto-

caudal part; (1) as long as disto-caudal part; (2) part shorter than disto-caudal part.

(see char. 270)

273. Distal part hind wing 1Ax body: (0) curved, tip pointing caudally; (1) tip of

pointing distally; (2) tip absent, distal corner blunt, rounded. (see char. 270)

274. Caudal margin of body of hind wing 1Ax: (0) concave; (1) straight; (2) convex.

(see char. 270)

275. Angle α between metathoracic 1Ax and notal margin: (0) wider than 50°; (1)

between 25° and 50°; (2) less than 25°. The angle α is usually wider than 50°

(Hörnschemeyer, 1998, 2002), but smaller than 25° in Strepsiptera. It lies between

25° and 50° in Coleoptera, Diptera, Hymenoptera and Orthoptera.

276. Length ratio of 1Ax and notum: (0) notum more than 3.8 times longer; (1)

notum 3-3.8 times longer; (2) notum 2-3 times longer; (3) notum 1.3-2 times longer.

1Ax is usually comparatively short in relation to the notum, but is at least half as

long in Coleoptera.

277. Angle between distal margins of body and neck of hind wing 1Ax: (0) less

than 110°; (1) wider than 110°. In the outgroup taxa and in Strepsiptera the body of

Ax is narrow. The angle between the distal margins of the neck and body is wider

than 110°. A wider 1Ax body is widespread in Holometabola.

Page 75: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

278. Shape and configuration of hind wing basiradiale: (0) not fused with 2Ax; (1)

at least half as wide as 2Ax and fused to it; (2) less than half as wide as 2Ax and

fused to it. The basiradiale, i.e. the base of the radial vein, is generally closely

associated with 2Ax. In Raphidioptera, Planipennia and Archostemata it is

comparatively narrow and fused to it. In most other holometabolan groups the

connection between basiradiale and 2Ax is distinctly broader. A sclerotised

connection is missing in the outgroup taxa.

279. Position of contact between hind wing basiradiale and 2Ax: (0) middle of BR

cranial margin; (1) proximo-cranial area of BR; (2) disto-cranial area of 2Ax. The

position of the contact between basiradiale and 2Ax is highly variable in

Holometabola. A distinct pattern is not recognisable.

280. Shape of hind wing 2Ax in dorsal view: (0) triangular; (1) semicircular; (2)

elongated and rod-shaped; (3) irregular. A triangular 2Ax is present in Coleoptera,

Corydalidae, Raphidioptera, Panorpidae, Bittacidae and Zorotypidae. It is usually

more or less irregularly shaped in the remaining groups.

281. Lateral process of hind wing 2Ax extending under body of 1Ax: (0) absent; (1)

present. The process is present in adephagan and polyphagan Coleoptera. It limits

the movability of the two sclerites. It is absent in all other groups examined.

282. Caudal process of hind wing 3Ax: (0) absent; (1) present. The process, which

connects 3Ax and PNP, is present in all hymenopterans examined and in

Megaloptera, Neuroptera and Panorpidae.

283. Contact between caudal process of hind wing 3Ax and posterior notal wing

process (PNP) or 4Ax: (0) apical parts of caudal process and PNP in contact; (1)

contact extended over a longer distance; (2) 3Ax without notal contact area,

articulates with caudo-distal tip of 1Ax. The contact areas of 3Ax and the PNP are

usually the very narrow apical regions of both elements. Other configurations occur

in Tenthredinidae, Diprionidae, Tipulidae, Helophoridae and Zorotypidae.

284. Shape of distal process of hind wing 3Ax: (0) with one tip; (1) distal process

absent; (2) 3Ax fused to bases of anal veins. The process is usually distinct but

missing in Megaloptera, Neuroptera, Hymenoptera and Amphiesmenoptera.

Page 76: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

285. Number of parts of hind wing 3Ax: (0) one element; (1) more than one

element. The 3Ax is composed of two or more elements in Corydalidae,

Raphidiidae, Mecoptera and Agathiphagidae, but undivided in the other groups

(Hörnschemeyer, 1998, 2002).

286. Axillary muscle disc of hind wing: (0) absent; (1) present. Present in

Coleoptera and Inocellidae.

287. Shape of metathoracic posterior notal wing process (PNP) in ventro-lateral

view: (0) large sclerite with long caudal process; (1) not large and/or without caudal

process. PNP enlarged and caudally pointed in Inocellidae and winged Mecoptera.

288. Shape of metathoracic basalare (Ba): (0) simple plate; (1) ventral plate and

dorsal extended head; (2) extended head or knob; (3) narrow crescent shaped

sclerite; (4) two separate simple Ba sclerites. Neuroptera are characterised by a

narrow, crescent shaped Ba. It is small and inconspicuous in Hymenoptera.

289. Shape of dorsal head of metathoracic basalare: (0) at least as wide as the

widest part of the ventral plate; (1) narrower. The dorsal head of the basalare is

narrower than its ventral area in Neuropterida, Nannochoristidae and Diptera,

whereas both areas are equally wide in the other groups.

290. Process of anterior margin of metathoracic basalare: (0) absent; (1) present,

connected to the anterior wing margin. The process is present in Coleoptera and

connected with the wing margin by a narrow sclerotised band.

291. Shape of knob of metathoracic basalare: (0) simple convexity; (1) very small;

(2) long and flat; (3) large and distended. An interlocking structure with a more or

less extended knob on the basalare and a corresponding cavity in the ventral wing

base does only occur in Holometabola and Zorotypidae. Archostemata are

characterised by a conspicuously large knob and Neuroptera by a cavity that is

formed by the base of the subcosta only.

292. Cavity for knob of metathoracic basalare at ventral side of hind wing: (0)

ventral bases of subcosta (BSc) and humerus simple, pit absent; (1) humerus and

BSc together form cavity for reception of basalar knob in resting position; (2) cavity

formed by BSc only. (see char. 291)

Page 77: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

293. Position of metathoracic pleuro-axillary joint: (0) fulcrum articulates with 2Ax;

(1) fulcrum articulates with 1Ax and 2Ax; (2) fulcrum articulates with 1Ax; (3)

fulcrum-2Ax joint is replaced by a joint formed by basalare (Ba) and base of

subcosta (BSc). The articulation of the fulcrum with the 2Ax is likey ancestral for

Pterygota (Hörnschemeyer, 1998; Hörnschemeyer and Willkommen, 2007). In

Adephaga and Polyphaga and in Neuroptera the articulation is shifted to the 1Ax.

An intermediate state is present in Megaloptera and Raphidioptera, with 1Ax and

2Ax forming part of the articulation. A Ba-BSc joint is present in Diptera.

294. Length of metathoracic pleural wing process (PWP): (0) ends on same level

with basalare (Ba); (1) distinctly overtops Ba. The PWP distinctly overtops the Ba

in nearly all taxa examined, but ends at the same level as the Ba in Raphidioptera

and Xyelidae.

295. Size of externally visible metathoracic subalare: (0) between one sixth and

one third of length of notum; (1) size exceeds one third of notal length; (2) less than

one sixth of notal length. Subalare is comparatively large and longer than high In

Coleoptera and Neuropterida (see 296:0). It lacks a dorsal process (see char. 297).

296. Shape of externally visible metathoracic subalare: (0) longer than high; (1)

about as long as high. (see char. 295)

297. Process of dorsal margin of externally visible metathoracic subalare: (0)

present; (1) absent. (see char. 295)

298. Field of sensilla trichodea in membrane between subalare and dorsal

epimeral margin: (0) absent; (1) present. Present in Amphiesmenoptera

(Hörnschemeyer, 2002).

General features of the abdomen

299. Close association between metapostnotum and tergum I: (0) absent; (1)

present. Present in Hymenoptera.

300. Fusion of abdominal tergites and sternites IX: (0) not fused; (1) partly fused;

(2) fused and forming a ring-like structure. Usually fused in males of Mecoptera

(Willmann, 1980) but separated in most Boreidae including Caurinus (fused in

Page 78: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

some species of Boreus; Willmann, 1980). Only partly fused in Bittacidae

(Willmann, 1981).

Female postabdomen

301. Tergum VIII: (0) ventral margins normal, not enlarged; (1) saddle-shaped,

ventral margins enlarged; (2) connected with ventral sclerites by slender sclerite

band; (3) fused with ventral sclerites. Tergum VIII is saddle-shaped, with

conspicuously enlarged ventral margins in Tettigoniidae, and a similar condition is

found in the examined neuropteran, raphidiopteran and hymenopteran females, in

Sialidae (Aspöck and Aspöck, 2008, Mickoleit, 1973; Vilhelmsen, 2001), and in

Boreus (Mickoleit, 1975). Tergum VIII is connected with the ventral sclerotisation of

the same segment by a slender sclerotised stripe in Eriocraniidae (Kristensen,

2003). It is fused with the venter VIII-sclerotisation in Rhyacophilidae (Nielsen,

1980).

302. Ventral sclerites of segment VIII (gonocoxae and gonapophyses): (0) distinct;

(1) not distinct. Gonocoxae and gonapophyses VIII are clearly distinguishable in

Tettigoniidae, Caeciliidae, Nevrorthidae, Raphidioptera, Sialidae (Aspöck and

Aspöck, 2008), and in the hymenopteran terminals (see Vilhelmsen, 2000c). The

character is scored as inapplicable if genital sclerites of segment VIII are absent

(Pteronarcyidae, Zoraptera).

303. Connection of gonocoxae VIII of right and left body half: (0) absent; (1) fused

ventromedially. The gonocoxae VIII of both body halves are fused in Neuropterida

(Aspöck and Aspöck, 2008) and in the examined females of Amphiesmenoptera

and Antliophora with the exception of Nannochoristidae and Bittacidae (Hünefeld

and Beutel, in press; Mickoleit, 1975). The situation is ambiguous in Cupedidae.

The anterior parts of the venter VIII- sclerotisation are very close to each other in

the ventral midline, but an area of fusion is not recognisable. The character is

scored as inapplicable for taxa without well defined genital sclerites of segment VIII

(Pteronarcyidae, Zorotypidae).

Page 79: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

304. Connection of gonapophyses VIII of right and left body half: (0) separate; (1)

fused. The gonapophyses VIII are medially fused in Nevrorthidae, Raphidioptera

and Sialidae (Aspöck and Aspöck, 2008). They are separated in Tettigoniidae and

Caeciliidae and in the hymenopteran females examined (see also Vilhelmsen,

2000c). The character is scored as inapplicable for all taxa without clearly defined

gonapophyses.

305. Length of ventral sclerites of segment VIII: (0) not distinctly longer than

tergum VIII; (1) gonapophyses elongate, distinctly longer than tergum VIII; (2)

entire sclerotisation strongly prolonged caudally (gonocoxae and gonapophyses

not clearly distinguishable). The gonapophyses VIII are elongate in Tettigoniidae,

Caeciliidae, Raphidioptera (Aspöck and Aspöck, 2008), and in basal hymenopteran

lineages (see Vilhelmsen, 2000c). The entire venter VIII sclerotisation is elongated

in Boreus (Mickoleit, 1975) and Tipulidae (Rees and Ferris, 1939). A distinction of

gonapophyses is not possible in these cases. The character is scored as

inapplicable if the identification of genital sclerites of segment VIII is uncertain

(Pteronarcyidae, Zorotypidae).

306. Degree of fusion of terminal segments (IX – XI): (0) clearly separated; (1)

terminal segments partially fused; (2) completely fused, segmental margins not

traceable. The terminal segments are partially fused in the trichopteran females

examined (tergum X and cerci distinguishable; see Nielsen, 1980). They are totally

fused in the hymenopteran terminals (see Vilhelmsen, 2000c) and in Lepidoptera

except for Micropterigidae (Kristensen, 2003).

307. Sclerotisation of tergum IX: (0) evenly sclerotised; (1) ventral margins of

sclerotised area enlarged; (2) all parts weakly sclerotised; (3) sclerotisation not

continuous, band-like; (4) fusion with ventral sclerites. The ventral margins of

tergum IX are distinctly enlarged in Tettigoniidae, Nevrorthidae, Osmylidae

(Aspöck and Aspöck, 2008), and Raphidioptera (Aspöck and Aspöck, 2008). The

entire tergal region of segment IX is weakly sclerotised in Cupedidae and Caurinus

(Russell, 1979). A discontinuous, band-like sclerotisation is present in trichopteran

females (Nielsen, 1980). The tergum is fused with the ventral sclerites of the same

segment in Helophoridae and Trachypachidae (Bils, 1976). The character is scored

Page 80: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

as inapplicable if segment IX is extensively fused with the following segments

(Hymenoptera, Lepidoptera; see also Kristensen, 2003; Vilhelmsen, 2000c).

308. Length of tergum IX: (0) about as long as preceding tergites; (1) about half as

long as preceding tergites. Tergum IX is markedly shortened in Zorotypidae and

Caeciliidae, and in the examined females of Neuroptera (Aspöck and Aspöck,

2008), Trichoptera (Nielsen, 1980), Caurinus (Russell, 1979), Bittacidae (Mickoleit,

1975) and Diptera (see also Rees and Ferris, 1939). The character is scored as

inapplicable for groups with extensively fused terminal segments (hymenopteran

and lepidopteran taxa; see also Kristensen, 2003; Vilhelmsen, 2000c).

309. Ventral sclerites of segment IX: (0) absent; (1) present. Identifiable ventral

sclerites of segment IX are absent in Pteronarcyidae and Zorotypidae, in all

examined representatives of Amphiesmenoptera, in Boreus (Mickoleit, 1975),

Bittacidae (Mickoleit, 1975) and Strepsiptera.

310. Gonocoxae, gonapophyses and gonoplacs IX: (0) all elements well

developed; (1) gonapophyses reduced; (2) gonapophyses and gonoplacs reduced.

Here and in the following characters (11 – 14) the term gonocoxae IX refers to the

basal part of the ventral sclerotisations of segment IX. Laterocoxal elements

(‗gonangulum‘) (Klass, 2008) may be involved in the formation of this structure

(fusion of gonocoxa and laterocoxa), but a morphological distinction of both areas

is not possible in the groups under consideration. Gonocoxae, gonapophyses and

gonoplacs IX are well developed in Caeciliidae and in the hymenopteran taxa (see

Vilhelmsen, 2000c). Gonapophyses IX are reduced in Tettigoniidae (vestigial),

Osmylidae, Raphidioptera and Megaloptera (see Aspöck and Aspöck, 2008).

Gonapophyses and gonoplacs IX are reduced in Nevrorthidae and Chrysopidae

(Aspöck and Aspöck, 2008). The character is scored as inapplicable if ventral

sclerites of segment IX are lacking (Pteronarcyidae, Zorotypidae, Boreus; see also

Mickoleit, 1975), if the abdomen is generally unsclerotized (Strepsiptera), if

segment IX is fused with the following segments (Amphiesmenoptera; see

Kristensen, 2003), or if a clear morphological distinction of gonocoxae,

gonapophyses and gonoplacs is not possible like in the coleopteran and dipteran

Page 81: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

terminal (Bils, 1976; Rees and Ferris, 1939) and in Caurinus, Panorpidae, and

Nannochorista (Hünefeld pers. obs.; Mickoleit, 1975; Russell, 1979).

311. Fusion of gonocoxae IX of right and left body half: (0) absent; (1) fused

ventromedially; (2) fused dorsomedially. The gonocoxae IX are fused

ventromedially in Panorpidae (Mickoleit, 1975) and in the dipteran representatives

examined (Rees and Ferris, 1939). They are fused dorsomedially in Raphidioptera

(Aspöck and Aspöck, 2008). The character is scored as inapplicable if well defined

ventral sclerites of segment IX are absent (Pteronarcyidae, Zorotypidae,

Amphiesmenoptera, Boreus, Bittacidae, Pulicidae).

312. Fusion of gonapophyses IX of right and left body half: (0) absent; (1) basally

fused; (2) completely fused. The genital appendages IX of both body halves are

basally fused in Tettigoniidae and basal hymenopteran groups. They are fused for

their entire length in the majority of hymenopteran lineages (Vilhelmsen, 2000c).

The character is scored as inapplicable if ventral sclerites of segment IX are absent

(Pteronarcyidae, Zorotypidae, Amphiesmenoptera, Boreus, Bittacidae, Pulicidae,

Strepsiptera) or if gonapophyses IX cannot be identified (mecopterid taxa).

313. Lenght of ventral sclerites of segment IX: (0) not markedly longer than tergum

IX; (1) only gonocoxae caudally prolonged; (2) gonapophyses and gonoplacs

caudally prolonged; (3) only gonoplacs caudally prolonged. Gonocoxae IX are

caudally strongly prolonged in Raphidioptera (Aspöck and Aspöck, 2008). Both

gonapophyses and gonoplacs are distinctly elongate in Caeciliidae and in the

hymenopteran groups under consideration (see Vilhelmsen, 2000c). In

Tettigoniidae, only the gonoplacs are elongated. The character is scored as

inapplicable if ventral sclerites of segment IX are lacking (Pteronarcyidae,

Zorotypidae, Amphiesmenoptera, Boreus, Bittacidae, Pulicidae), or if

gonapophyses and gonoplacs IX are not morphologically distinguishable

(Nannochoristidae, dipteran terminals).

314. Median closure of sclerotisation of tergum X: (0) absent; (1) present with

tergite X distinctly sclerotised; (2) present with tergite X weakly sclerotised. Tergum

X is not closed dorsomedially in Osmylidae (see also Aspöck and Aspöck, 2008;

Mickoleit, 1973), the trichopteran taxa (Nielsen, 1980), and Pulicidae. The entire

Page 82: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

region is weakly sclerotised in Cupedidae. The character is scored as inapplicable

if segment X is extensively fused with the adjacent segments (in the hymenopteran

taxa [see Vilhelmsen, 2000c] and Lepidoptera excl. Micropterigidae [see

Kristensen, 2003]).

315. Fusion of tergum X with ventral sclerotised elements of segment X: (0)

absent; (1) fused to form sclerotized ring. Tergum X and the ventral elements of

the segment form a sclerotised ring in Panorpidae and Nannochoristidae (Grell,

1938; Mickoleit, 1975). The character is scored as inapplicable if segment X is

extensively fused with the adjacent segments (see previous character).

316. Cercus: (0) absent or vestigial; (1) present; (2) socii. Cerci are absent in

Caeciliidae, in the neuropterid taxa (see Aspöck and Aspöck, 2008), in Coleoptera

(e.g., Bils, 1976), in Lepidoptera (Kristensen, 2003), and in Pulicidae, Culicidae

and Strepsiptera. Whether the ―cerci‖ or socii in Hymenoptera are derived from true

cerci is a matter of debate. They are situated in the boundary between the terga IX

and X and do not have extrinsic or intrinsic muscles (coded as 2). Tergum XI is

absent in Hymenoptera.

317. Retractability of postabdominal segments: (0) not or only very slightly

retractable; (1) segments posteriorly tapering, not fused, telescoping (tube-like); (2)

segments IX + X (XI) fused, retractable into segment VIII; (3) segment IX and

gonocoxae VIII retractible (between tgVIII & stVII). The postabdominal segments

are tapering and telescope-like in Caurinus (Russell, 1979), Panorpidae,

Nannochoristidae (Mickoleit, 1975), Culicidae and Bibionidae. Segments IX – X

(XI) are fused and retractible into segment VIII in Amphiesmenoptera (except

Micropterigidae). In Coleoptera tergum VIII and sternum VII are the posteriormost

free elements in repose. The gonocoxae VIII and segment IX (+X) are retracted

between these plates.

318. Anterior apophyses VIII: (0) absent; (1) one pair on gonocoxae VIII; (2) two

pairs on tergum VIII and gonocoxae VIII; (3) one pair on a composite formation of

tergum VIII and gonocoxae VIII. One pair of anterior apophyses arising from the

anterior margin of gonocoxae VIII is present in the coleopteran terminals (see also

Bils, 1976). Two pairs of anterior apophyses are present in Agathiphagidae

Page 83: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

(Hünefeld and Kristensen, in press; Kristensen, 2003). The origin of the single pair

in Rhyacophilidae and Eriocraniidae cannot be ascribed to the gonocoxae or

tergum VIII as individual structures (see Kristensen, 2003, Nielsen, 1980).

319. Posterior apophyses IX: (0) absent; (1) one pair originating from a ventral

area; (2) one pair originating from a dorsal area. A pair of posterior apophyses

arising from a ventral area of the anterior margin of segment IX is present in the

coleopteran terminals (see also Bils, 1976). Paired apophyses arising from a dorsal

area of the anterior margin of segment IX are present in Rhyacophilidae (Nielsen,

1980), Agathiphagidae (Hünefeld and Kristensen, in press; Kristensen, 2003) and

Eriocraniidae (Kristensen, 2003).

320. Extrusion of terminal segments: (0) by hemolymph pressure; (1) segment VIII

and terminal unit (segments IX - XI) extruded by muscle force; (2) gonocoxae VIII

and segment IX extruded by muscle force. Extrusion of terminal segments is

performed by muscle force in the coleopteran taxa and in Rhyacophilidae and

Lepidoptera excl. Micropterigidae (see Kristensen, 2003).

321. Spermathecal process of genital chamber: (0) absent; (1) present, sclerotised;

(2) present, unsclerotised. A sclerotised process bearing the opening of the

spermathecal duct on its apex is present in the trichopteran females examined

(Nielsen, 1980). A similar but unsclerotised process is present in Micropterigidae.

322. Spermathecal duct: (0) absent; (1) present. A distinct spermathecal duct is

absent in the hymenopteran taxa (Togashi, 1970) and in Strepsiptera.

323. Mesocuticle in spermathecal duct: (0) absent; (1) present. The intima of the

spermathecal duct contains mesocuticle in Agathiphagidae and Eriocraniidae (see

Hünefeld and Kristensen, in press.). The character is scored as inapplicable if a

spermathecal duct is lacking (Hymenoptera, Strepsiptera).

324. Muscularis of spermathecal duct: (0) absent; (1) mainly longitudinal fibres; (2)

mainly circular fibres; (3) longitudinal and circular fibres mixed. A muscularis mainly

consisting of longitudinal fibres is present in Caurinus, Bittacidae,

Nannochoristidae, Tipulidae and Bibionidae. The muscularis is mainly composed of

circular fibres in Inocellidae and in the representatives of Amphiesmenoptera.

Page 84: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

Longitudinal and circular fibres are mixed in Tipulidae. The character is scored as

inapplicable for taxa without spermathecal duct (Hymenoptera, Strepsiptera).

325. Spermathecal gland: (0) absent; (1) present. A distinct spermathecal gland is

present in the examined representatives of Amphiesmenoptera (Kristensen, 2003,

Nielsen, 1980). The epithelium of the spermatheca itself has a glandular function in

the other groups under consideration.

326. Bursa copulatrix: (0) absent; (1) present. A morphologically distinct bursa

copulatrix, connected with the genital chamber by a distinct ductus bursae, is

present in all examined representatives of Amphiesmenoptera (Kristensen, 2003b;

Nielsen, 1980).

327. Size of bursa copulatrix: (0) moderate; (1) enlarged, balloon-like. The bursa is

conspicuously enlarged in the representatives of Lepidoptera. The character is

scored as inapplicable for the taxa without a well developed bursa copulatrix.

328. Muscle 06 (isVII-VIII06): (0) absent; (1) present. Present in Lepidoptera,

Boreus, Caurinus, Panorpidae, Nannochorista and Tipulidae. This intersegmental

muscle (secondary segmentation) arises from a paramedian area of sternum VII

and inserts on the anterior margin of the gonocoxa VIII or on a membranous area

in front of this site. It is a retractor of segment VIII.

329. Muscle 08 (isVII-VIII08): (0) absent; (1) present. Present in Rhyacophilidae

and Agathiphagidae. It is an intersegmental muscle arising paralaterally from

midlength of sternum VII and inserting on the apex of the anterior apophysis

(ventral anterior apophysis in Agathiphaga). The muscle is a protruder of segment

VIII.

330. Muscle 11 (isVII-VIII11): (0) absent; (1) present. Present in Rhyacophilidae

and Agathiphagidae. The site of origin is on a lateral area of segment VII close to

the segmental margin in Agathiphagidae, but is shifted to segment VI in

Rhyacophilidae due to the greater relative length of the anterior apophysis. It

inserts on the apex of the anterior apophysis (ventral apophysis in Agathiphagidae)

and functions as a retractor of segment VIII. The primary homology hypotheses for

this and the following muscle are disputable. However, it appears plausible that

Page 85: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

they are indeed homologous considering the spatial interrelationships of the

postabdominal muscles in the amphiesmenopteran terminal taxa.

331. Muscle 12 (isVII-VIII12): (0) absent; (1) present. Present in Agathiphagidae

and Eriocraniidae. The origin lies immediately posterad the anterior margin of

tergum VII in Agathiphagidae, whereas it is shifted to tergum VI in Eriocraniidae

due to the greater relative length of the anterior apophysis. It inserts on the apex of

the anterior apophysis (the dorsal anterior apophysis in Agathiphagidae) and

functions as a retractor of segment VIII.

332. Muscle 24 (isVIII-IX11): (0) absent; (1) present. Present in Rhyacophilidae

and Micropterigidae. The muscle arises paramedially near the anterior margin of

the fused gonocoxae VIII and inserts at the ventral anterior margin of segment IX in

a paramedian position. It is a retractor of the terminal segments.

333. Muscle 29 (isX-XI02): (0) absent; (1) present. Present in Panorpidae,

Bittacidae, Nannochoristidae, Pulicidae and Tipulidae. It arises laterally near the

anterior margin of segment X and inserts on lateral and ventral areas of segment

XI.

334. Muscle 34 (intraIX03): (0) absent; (1) present. Present in Tettigoniidae and

the examined hymenopterans (see also Vilhelmsen, 2000c). The muscle connects

the anterior part of gonocoxa IX and the base of gonapophysis IX.

335. Muscle 35 (intraIX04): (0) absent; (1) present. Present in the hymenopteran

taxa (see also Vilhelmsen, 2000c). It connects the posterior part of gonocoxa IX

and the base of gonapophysis IX.

336. Muscle 48 (tVIII01): (0) absent; (1) present. Present in Boreus, Bittacidae,

Nannochoristidae and Tipulidae. This transverse muscle connects the paired

gonocoxae VIII.

337. Muscle 55 (seVIII-gc01): (0) absent; (1) present. Present in all examined

amphiesmenopteran taxa (except for Micropterigidae), in Bittacidae,

Nannochoristidae and Pulicidae, and all examined representatives of Diptera. The

muscle arises from the anterior region of the venter VIII–sclerotisation and inserts

laterally on the genital chamber in the boundary region of segments VII and VIII.

Page 86: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

338. Muscle 56 (seVIII-gc02): (0) absent; (1) present. Present in Agathiphagidae

and Eriocraniidae. This muscle arises from the venter VIII–sclerotisation of

segment VIII and inserts on the genital chamber ventrolaterally in segment VIII.

339. Muscle 59 (seIX-gc02): (0) absent; (1) present. Present in Panorpidae,

Bittacidae, Nannochoristidae and Pulicidae. Arises laterally on the anterior part of

tergum IX and inserts on the roof of the genital chamber.

340. Trichobothria field on tergum X: (0) absent; (1) present. Present on tergum X

in the examined representatives of Neuropterida.

341. Shape of the trichobothria field on tergum X: (0) dense circular spot; (1)

dense, band-like; (2) loosely arranged trichobothria. The trichobothria field has the

shape of a dense, circular spot in Osmylidae and Chrysopidae, whereas it is band-

like in the raphidiopteran taxa. Loosely arranged trichobothria are reported from

Nevrorthidae, Sialidae and Corydalidae (see Aspöck and Aspöck, 2008). The

character is scored as inapplicable for all taxa that lack the trichobothria field on

tergum X.

Male postabdomen

342. Elongation of tergite IX: (0) absent; (1) present. Short in Nannochorista and

males of other holometabolan orders but moderately elongated in Boreidae and

distinctly elongated and usually bilobed in Pistillifera (Penny, 1975; Willmann,

1981).

343. Genitalic capsule of males: (0) absent; (1) present, basistyli not fused; (2)

present, basistyli fused. Present and fused in Mecoptera excluding Boreidae

(Willmann, 1981, 1987, 1989, 2005). The basistyli are connected by sclerites in

Boreidae (Russell, 1979).

344. Stylar organ on dististylus: (0) absent; (1) present. Usually present in

Mecoptera including Boreidae and Nannochoristidae. A pubescent field is present

in some species of Bittacus (Willmann, 1981) but the homology is unclear (coded

as ?).

345. Sperm pump with genital folds enclosing pumping chamber: (0) absent; (1)

Page 87: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

with movable chamber and longitudinal tegimen formed by roof of endophallus; (2)

with movable chamber and pistil formed by median lobe of fulcrum; (3) with

movable pistil formed by roof of endophallus. A sperm pump of the pistilliferan

type, i.e. with a movable pistill formed by the roof of the endophallus is present in

Mecoptera excluding Boreidae and Nannochoristidae (=Pistillifera; e.g., Willmann,

1981; Hünefeld and Beutel, 2005; Mickoleit, 2009). A movable pumping chamber

interacts with a longitudinal dorsal sclerotisation of the roof of the endophallus

(tegimen) in Nannochoristidae, and with a pistill-like structure formed by a median

lobe of the fulcrum in Siphonaptera (Mickoleit, 2009).

346. Aedeagus apodeme with median longitudinal lamella: (0) absent; (1) well

developed; (2) vestigial, serving as lever of the pistill levator. The aedeagus

apodeme is present and large and equipped with a median longitudinal lamella in

Nannochoristidae and Siphonaptera. It is vestigial and serves as lever of the pistill

levator muscle in Pistillifera (Mickoleit, 2009).

347. Sperm pump formed by modified endophallus: (0) absent; (1) present.

Present in Diptera excluding Culicomorpha (e.g., Hennig, 1973; Wood et al., 1991).

348. Accumulated trichobothria on anal segment: (0) absent; (1) present, forming a

band; (2) present, forming a rosette. The presence of accumulated trichobothria on

the anal segment (ectoprocts) is a unique feature of Neuropterida according to

Aspöck et al. (2001). They are arranged as a band in Raphidioptera and as a

rosette in most groups of Neuroptera and in Megaloptera (Aspöck et al., 2001).

Digestive tract, Malpighian tubules and ovarioles

349. Acanthae of proventriculus close-set, prominently elongated: (0) absent; (1)

present. Present in Mecoptera and Siphonaptera (e.g., Boudreaux, 1980; Beutel

and Gorb, 2001).

350. Number of Malpighian tubules: (0) more than 20; (1) 8 or less. Between 20

and 40 Malpighian tubules are usually present in Hymenoptera. The number is

greatly reduced in Zoraptera (6), Acercaria (4) and the non-hymenopteran groups

of Holometabola (e.g., Lawrence, 1982; Barbehenn and Kristensen, 2003; Hennig,

Page 88: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

1973).

351. Ovarioles: (0) panoistic; (1) meroistic. Panoistic ovarioles are present in

Corydalidae, Boreidae, Nannochoristidae and Siphonaptera (Biliński et al., 1998;

Simiczyjew, 2002), and this condition does also occur in most hemimetabolous

orders such as e.g., Plecoptera, Orthoptera, and Zoraptera. Polytrophic ovarioles

are present in Psocoptera, Neuroptera, Adephaga, Hymenoptera, Trichoptera,

Lepidoptera, Mecoptera-Pistillifera and Diptera (e.g., Hennig, 1973; Biliński et al.,

1998; Kristensen, 2003), and telotrophic ovarioles in Raphidioptera and Sialidae

(see next character). The ovaries of Strepsiptera are extremely modified (coded as

-).

352. Telotrophic ovarioles of specialised type: (0) absent; (1) present. Telotrophic

ovarioles of a specialised type are present in Raphidioptera, Sialidae and

Hydroscapha (Myxophaga) (Kubrakiewicz et al., 1998; Büning, 2005). The anterior

part is is occupied by an elongated, tube-shaped tropharium, the center by a

multinuclear syncytium, and the cortex is formed by one thick layer of germ cells

(tapetum cells). This condition is distinctly different from the telotrophic ovarioles

occurring in archostematan and polyphagan beetles (coded as 0) (Kubrakiewicz et

al., 1998).

Developmental characters

353. Appearance of fully developed compound eyes including external apparatus:

(0) before penultimate (pupal) stage; (1) at pupal stage. Fully developed compound

eyes appear before the penultimate stage in hemimetabolous insects and in

Strepsiptera (Beutel and Gorb, 2006). The simplified compound eyes of larvae of

Hymenoptera and Mecoptera are coded as (0) here (see char. 5).

354. External wing buds: (0) absent; (1) present. External wing buds are present

on the lateral sides of the meso- and metathorax of secondary larvae of

Strepsiptera (Kristensen, 1999; Pohl and Beutel, 2005). They are absent in the

other holometabolan lineages.

Page 89: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

355. Male sex chromosomes: (0) not homogametic; (1) homogametic. The male

sex is homogametic in Amphiesmenoptera (Kristensen and Skalsi, 1999).

356. Haplo-diploidy: (0) absent; (1) present. In Hymenoptera fertilized eggs

develop as diploid females and unfertilized eggs as haploid males.

References (cited in LC)

Achtelig, M., 1967. Über die Anatomie des Kopfes von Raphidia flavipes Stein und

die Verwandtschaftsbeziehungen der Raphidiidae zu dem Megaloptera. Zool.

Jb. Anat. 84, 249-312.

Achtelig, M., 1975. Die Abdomenbasis der Neuropteroidea (Insecta,

Holometabola). Zoomorph. 82, 201-242.

Achtelig, M., 1977. Skelet und Muskulatur des Abdomens weiblicher Raphidioptera

(Insecta, Neuropteroidea). Zool. Jb. Anat. Ontog. Tiere 98, 137-167.

Acker, T.S., 1958. The comparative morphology of Stenorrhachus walkeri

(MacLachlan) and of Nemopterella sp. (Neuroptera; Nemopteridae).

Microentomol. 23, 106-130.

Anton, E., Beutel, R.G., 2004. On the head morphology and systematic position of

Helophorus (Coleoptera: Hydrophiloidea: Helophoridae). Zool. Anz. 242, 313-

346.

Applegarth, A.G., 1939. The larva of Apterobittacus apterus Maclachlan

(Mecoptera: Panorpidae [sic]). Microentomol. 4, 109-120.

Arndt, E., Beutel, R.G., 1995. Larval morphology of Systolosoma Solier and

Trachypachus Motschulsky (Coleoptera: Trachypachidae) with phylogenetic

consideration. Entomol. Scand. 26, 439-446.

Aspöck, H., Aspöck, U., 1971. Raphidioptera (Kamelhalsfliegen). Handb. Zool. IV,

Insecta. Inst. 15. Walter de Gruyter, Berlin, pp. 1-48.

Page 90: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

Aspöck, U., Aspöck, H., 2005: Neuropterida (Neuropteroidea, Neuroptera sensu

lato). In: Dathe, H.H. (Ed.), Lehrbuch der Speziellen Zoologie, begründet von

A. Kaestner, Band I, 5. Teil: Insecta, 2nd ed. Spektrum Akademischer Verlag,

Heidelberg, Berlin, pp. 542-584.

Aspöck, U., Aspöck, H., 2007. Verbliebene Vielfalt vergangener Blüte. Zur

Evolution, Phylogenie und Biodiversität der Neuropterida (Insecta:

Endopterygota). Denisia, 20, 451-516.

Aspöck, U., Aspöck, H., 2008. Phylogenetic relevance of the genital sclerites of

Neuropterida

(Insecta: Holometabola). Syst. Entomol. 33, 97-127.

Aspöck, U., Plant, J.D., Nemeschkal, H.L., 2001. Cladistic analysis of Neuroptera

and their systematic position within Neuropterida (Insecta: Holometabola:

Neuropterida: Neuroptera). Syst. Entomol. 26, 73-86.

Bacetti, B., 1972. Insect spem cells. Adv. Ins. Phys. 9, 315-397.

Badcock, R., 1961. The morphology of some parts of the head and maxillolabium

in larval Trichoptera, with special reference to the Hydropsychidae. Trans.

Roy. Ent. Soc. London 113, 217-248

Badonnel, A., 1934. Recherche sur l‘anatomie des Psoques. Bull. biol. France

Belg. (Suppl.) 18, 1-241.

Baehr, M., 1975. Skelett und Muskulatur des Thorax von Priacma serrata Leconte

(Coleoptera, Cupedidae). Z. Morph. Tiere 81, 55-101.

Barbehenn, R.V., Kristensen, N.P., 2003. Digestive and excretory systems. In:

Kristensen, N.P. (Ed.), Lepidoptera, Moths and Butterflies. Vol. 2: Morphology,

Physiology, and Development. Handbook of Zoology. Vol. IV Arthropoda:

Insecta. Part 36. Walter de Gruyter, Berlin, New York, pp. 165-187.

Barlet, J., 1987. Contribution a` la connaissance de la musculature thoracique des

Plécoptères. Bull Ann Soc Roy Belge Entomol. 123, 165-178.

Page 91: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

Baumann, R.W., 1987. Order Plecoptera. In: Stehr, F. (Ed.), Immature Insects Vol.

1. Kendall/Hunt Publishing Co., Dubuque, Iowa, pp. 186-195.

Beutel, R., 1986. Skelet und Muskulatur des Kopfes und Thorax von Hygrobia

tarda (Herbst). Ein Beitrag zur Klärung der phylogenetischen Beziehungen

der Hydradephaga (Insecta: Coleoptera). Stuttg. Beitr. Naturk. (A) 388, 1-54.

Beutel, R.G., 1993. Phylogenetic analysis of Adephaga (Coleoptera) based on

characters of the larval head. Syst. Entomol. 18, 127-147.

Beutel, R.G., 1994. Study on the systematic position of Systolosoma breve Solier

(Adephaga: Trachypachidae) based on characters of the thorax. Stud.

Neotrop. Fauna Envirom. 29, 161-167.

Beutel, R.G., 1995. Phylogenetic analysis of Elateriformia (Coleoptera: Polyphaga)

based on larval characters. J. Zool. Syst. Evolut. Res. 33, 145-171.

Beutel, R.G., 1999. Morphology and evolution of the larval head structures of

Hydrophiloidea and Histeroidea (Coeloptera: Staphylinidae). Tijdschr.

Entomol. 142, 9-30.

Beutel, R.G., Baum, E., 2008. A longstanding entomological problem finally

solved? Head morphology of Nannochorista (Mecoptera, Insecta) and

possible phylogenetic implications. J. Zool. Syst. Evol. Res. 46, 346-367

Beutel, R.G., Friedrich, F., 2008. Comparative study of larval head structures of

Megaloptera (Hexapoda). Eur. J. Entomol. 105, 917-938.

Beutel, R.G., Friedrich, F., Aspöck, U., in press. The larval head of Nevrorthidae

and the phylogeny of Neuroptera (Insecta). Zool. J. Linn. Soc., online early,

doi: 10.1111/j.1096-3642.2009.00560.x

Beutel, R.G., Friedrich, F., Whiting, M.F., 2008a. Head morphology of Caurinus

(Boreidae, Mecoptera) and its phylogenetic implications. Arthr. Str. Dev. 37,

418-433.

Page 92: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

Beutel, R.G., Ge, S.-Q., 2008. The larval head of Raphidia (Raphidioptera, Insecta)

and its phylogenetic significance. Zool. 11, 89-113.

Beutel, R.G., Ge, S.-Q., Hörnschemeyer, T., 2007. On the head morphology

Tetraphalerus, the phylogeny of Archostemata and the basal branching

events in Coleoptera. Cladistics 23, 1-29.

Beutel, R.G., Gorb, S., 2001. Ultrastructure of attachment specializations of

hexapods (Arthropoda): evolutionary patterns inferred from a revised ordinal

phylogeny. J. Zool. Syst. Evol. Res. 39, 177-207.

Beutel, R.G., Gorb, S., 2006. A revised interpretation of the evolution of attachment

structures in Hexapoda (Arthropoda), with special emphasis on

Mantophasmatodea. Arthr. Syst. Phyl. 64, 3-25.

Beutel, R.G., Haas, A., 1998. Larval head morphology of Hydroscapha natans

LeConte, 1874 (Coleoptera, Myxophaga, Hydroscaphidae) with special

reference to miniaturization. Zoomorph. 18, 103-116.

Beutel, R.G., Haas, F., 2000. Phylogenetic relationships of the suborders of

Coleoptera (Insecta). Cladistics 16, 103-141.

Beutel, R.G., Hörnschemeyer, T. 2002a. Larval morphology and phylogenetic

position of Micromalthus debilis LeConte (Coleoptera: Micromalthidae). Syst.

Entomol. 27, 169-190.

Beutel, R.G., Hörnschemeyer, T. 2002b. Description of the larva of Rhipsideigma

raffrayi (Coleoptera: Archostemata), with phylogenetic and functional

implications. Europ. J. Entomol. 99, 53-66.

Beutel, R.G., Komarek, A., 2004. Comparative study of thoracic structures of adults of Hydrophiloidea and Histeroidea with phylogenetic implications (Coleoptera, Polyphaga). Org. Div. Evol. 4, 1-34.

Beutel, R.G., Kristensen, N.P., Pohl, H., 2009. Resolving insect phylogeny: The

significance of cephalic structures of the Nannomecoptera in understanding

endopterygote relationships. Arthr. Str. Dev. 38, 427-460.

Page 93: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

Beutel, R.G., Krogmann, L., Vilhelmsen, L.T., 2008b. The larval head morphology

of Xyela sp. (Xyelidae, Hymenoptera) and its phylogenetic implications. J.

Zool. Syst. Evol. Res. 46, 118-132.

Beutel, R.G., Leschen, R.A.B., 2005. Phylogenetic analysis of Staphyliniformia

(Coleoptera) based on characters of larvae and adults. Syst. Entomol. 30,

510-548.

Beutel, R.G., Molenda, R., 1997. Comparative morphological study of larvae of

Staphylinoidea (Coleoptera, Polyphaga) with phylogenetic implications. Zool.

Anz. 236, 37-67.

Beutel, R.G., Pohl, H., 2005. Head structures of males of Strepsiptera (Hexapoda)

with emphasis on basal splitting events within the Order. J. Morph. 244, 1-14.

Beutel, R.G., Pohl, H., 2006. Endopterygote systematics - where do we stand and

what is the goal (Hexapoda, Arthropoda). Syst. Entomol. 31, 202-219.

Beutel, R.G., Vilhelmsen, L.B., 2007. Head anatomy of Xyelidae (Hexapoda:

Hymenoptera) and phylogenetic implications. ODE 7, 207-230.

Beutel, R.G., Weide, D., 2005. Cephalic anatomy of Zorotypus hubbardi

(Hexapoda: Zoraptera): New evidence for a relationship with Acercaria.

Zoomorph. 124, 121-136.

Bierbrodt, E., 1942. Der Larvenkopf von Panorpa communis L. und seine

Verwandlung, mit besonderer Berücksichtigung des Gehirns und der Augen.

Zool. Jb. Anat. 68, 49-136.

Biliński, S.M., Büning, J., Simiczyjew, B., 1998. The ovaries of Mecoptera: basic

similarities and one exception to the rule. Fol. Histochem. Cytobiol. 36, 189-

195.

Bils, W., 1976. Das Abdomende weiblicher, terrestrisch lebender Adephaga

(Coleoptera) und

seine Bedeutung für die Phylogenie. Zoomorph. 84, 113–193.

Page 94: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

Bininda-Emonds, O.R.P., Bryant, H.N., Russell, A.P., 1998. Supraspecific taxa as

terminals in cladistic analysis: implicit assumptions of monophyly and a

comparison of methods. Biol. J. Linn. Soc. 64, 101-133.

Blank, S.M., 2002. Biosystematics of the extant Xyelidae with particular emphasis

on the old world taxa (Insecta: Hymenoptera). Unpublished Ph.D.-thesis,

Freie Universität Berlin, 200pp + 19 plates.

Bonhag, P.F., 1949. The thoracic mechanism of the adult horsefly. Mem. Corn.

Univ. Agric. Exp. Stat. 285, 1-39.

Boudreaux, H.B., 1980. Proventricular acanthae and their phylogenetic

implications. Ann. Entomol. Soc. Amer. 73, 189-196.

Breland, O.P., Gassner, G., Riess, R.W., Biesele, J.J., 1966. Certain aspects of the

centriole adjuct, spermiogenesis, and the mature sperm of insects. Can. J.

Gen. Cyt. 8, 759-773.

Brelje, R.v.d., 1924. Die Anhangsorgane des weiblichen Geschlechtsganges der

Stechmücken (Culicidae). Zool. Anz. 61, 63-80.

Brock J. P., 1971. A contribution towards an understanding of the morphology and

phylogeny of the ditrysian Lepidoptera. J. Nat. Hist. 5, 29-102.

Büning, J., 2005. The telotrophic ovary known from Neuropterioda extists also in

the myxophagan beetle Hydroscapha natans. Dev. Genes Evol. 215, 597-

607.

Byers, G.W., 1987. Order Mecoptera. In: Stehr F.W. (Ed.), Immature Insects, Vol. I.

Kendall/Hunt Publishing Company, Dubuque, Iowa, pp. 246-252.

Byers, G.W., 1991. Mecoptera (Scorpion-flies, hanging flies). In: CSIRO (Ed.), The

Insects of Australia, Vol. 2. Melbourne University Press, Carlton, Victoria, pp.

696-704.

Chadwick L. E., 1959a. Spinasternal musculature in certain insect orders. Smiths.

Misc. Coll. 137, 117-156.

Page 95: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

Chadwick L. E., 1959b. The furcopleural muscles of Lepidoptera. Ann. Entomol.

Soc. Am. 52, 665-668.

Christophers, S.R., 1960. The imago. In: (Eds.), Aëdes aegypti (L.) The Yellow

Fever Mosquito. Its Life History, Bionomics and Structure. Cambridge

University Press, Cambridge, pp. 397-625.

Chiswell, J.R., 1955. On the last instar larva of Tipula livida Van der Wulp (Diptera,

Tipulidae) with notes on the fronto-clypeal region of larval Tipulinae and

caterpillars. Proc. R. entomol. Soc. London, Ser. A 30, 127-136.

Constantineanu, M.I., 1930. Der Aufbau der Sehorgane bei den im Süßwasser

lebenden Dipterenlarven und bei Puppen und Imagines von Culex. Zool. Jb.

Anat. 52, 253-346.

Cook, E.F., 1944a. The morphology of the larval heads of certain Culicidae.

Microentomol., Palo Alto, 9, 36-68.

Cook, E.F., 1944b. On the morphology of the larval head of Chironomus (Diptera:

Chironomidae). Microentomol., Palo Alto 9, 69-77.

Cook, E.F., 1949. The evolution of the head in the larvae of Diptera. Microentomol.,

Palo Alto, 14, 1-57.

Colless, D.H., McAlpine, D.K., 1991. Diptera. In: CSIRO (ed.). The insects of

Australia pp. 717-786, Victoria, Melbourne University Press.

Cope, O.B., 1940. The morphology of Psocopus confraternus Banks (Psocoptera:

Psocidae). Microentomol. 5, 91-115.

Crampton, G.C., 1919. A phylogenetic study of the mesothoracic terga and wing

bases in Hymenoptera, Neuroptera, Mecoptera, Diptera, Trichoptera and

Lepidoptera. Psyche 26, 58-64.

Crampton, G.C., 1920. Some anatomical details of the remarkable winged

Zorapteron, Zorotypus hubbardis Caudell, with notes on its interrelationships.

Proc. Entomol. Soc. Wash. 22, 98-106.

Page 96: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

Crampton, G.C., 1921. The sclerites of the head and the mouthparts of certain

immature and adult insects. Ann. Entomol. Soc. Amer. 14, 65-103 + pls.

Crampton, G.C., 1925. A phylogenetic study of the thoracic sclerites of the non-

tipuloid nematocerous Diptera. Ann. Entomol. Soc. Am. 18, 49-69.

Crampton, G.C., 1926a. Comparison of the neck and the prothoracic sclerites

throughout the orders of insects from the standpoint of phylogeny. Trans. Am.

Entomol. Soc. 52, 199-248.

Crampton, G.C., 1926b. A phylogenetic study of the thoracic sclerites of the

psychodoid Diptera, with remarks on the interrelationships of the Nematocera.

Entomol. News. 37, 33-39 & 65-71.

Crampton, G.C., 1942. The external morphology of the Diptera. Bull. Conneticut

State Geol. Nat. Hist. Survey. 64, 10-165.

Currie, G.A., 1932. Some notes on the biology and morphology of the immature

stages of hapobittacus tillyardi (Order Mecoptera). Proc. Linn. Soc. New

South Wales 57, 116-122.

Czihak, G., 1953. Beiträge zur Anatomie des Thorax von Sialis flavilatera L. Österr.

Zool. Z. 4, 421-448.

Czihak, G., 1957. Beiträge zur Anatomie des Thorax von Ascalaphus macaronicus

Scop., Myrmeleon europaeus McLach und Palpares libelluides Dalm Zool. Jb.

Anat. 75, 401-432.

Das, G.M., 1937. The musculature of the mouth-parts of insect larvae. Quart. J.

Microsc. Sci. 80, 39-80.

Davis, D.R., 1987. Suborder Zeugloptera, Micropterigidae (Micropterigoidea).

Suborder Dacnonypha, Eriocraniidae (Eriocranioidea). In: Stehr, F. (Ed.)

Immature Insects Vol. 1. Kendall/Hunt Publishing Co., Dubuque, Iowa, pp.

341-346.

Page 97: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

Dhillon, S.S., 1966. Morphology and biology of Athalia proxima Klug

(Tenthredinidæ, Hymenoptera). Indian Insect Types 7. Aligarh Muslim Univ.

Publ., 1-170.

Dorsey, C.K., 1943. The musculature of the labrum, labium and pharyngeal region

of adult and immature Coleoptera. Smiths. Misc. Coll. 103, 1-42, 24 pls.

Dressler, C., 2007. Die Kopfmorphologie von Trachypachus und ihre Bedeutung

für die Phylogenie der Adephaga (Coleoptera, Hexapoda). Unpubl. Diploma

thesis, FSU Jena.

Eriksson, T., 2003. AutoDecay version 5.0.

http://www.bergianska.se/index_forskning_soft.html.

Ferris, G.F., 1940a. The morphology of Plega signata (Hagen) (Neuroptera:

Mantispidae). Microentomol. 5, 35-56.

Ferris, G.F., 1940b. The myth of the thoracic sternites of insects. Microentomol. 5,

87-90.

Ferris, G.F., Pennebaker, P., 1939. The morphology of Agulla adnixa (Hagen)

(Neuroptera: Raphidiidae). Microentomol. 4, 121-142.

Ferris G.F., Rees B.E., 1939. The morphology of Panorpa nuptialis Gerstaecker

(Mecoptera, Panorpidae). Microentomol. 4, 79-108.

Feuerstein, V., 2008. Musculature of the female terminalia of Osmylus

fulvicephalus

(Scopoli, 1763) – a contribution to the understanding of the female genitalia

of

Neuropterida (Insecta: Holometabola). Poster, presented at Systematics

2008,

Göttingen, April 09-12, 2008.

Foote, B.A., 1991. Tanyderidae (Tanyderoidea) - Chironomidae (Chironomoidea).

In: Stehr, F.W. (Ed.), Immature Insects, Vol. 2. Kendall/Hunt Publishing

Company, Dubuque, Iowa, pp. 730-762.

Page 98: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

Fotius-Jaboulet, M.-C., 1961. Squelette et musculature céphaliques de la larve de

Drusus trifidus Mac Lachlan (Trichoptera-Limnophilidae). Trav. Lab. Zool.

Stat. Aquic. Grimaldi Fac. Sci. Dijon 31, 1-17.

Frantsevich, L., 2004. Structure of the coxa and homeosis of legs in Nematocera

(Insecta: Diptera). Acta Zool. 85, 131-148.

Friedrich, F., Beutel, R.G., 2006. The pterothoracic skeletomuscular system of

Scirtoidea (Coleoptera: Polyphaga) and its implications for the high-level

phylogeny of beetles. J. Zool. Syst. Evol. Res. 44, 290-315.

Friedrich, F., Beutel, R.G., 2008. The thorax of Zorotypus (Hexapoda, Zoraptera)

and a new nomenclature for the musculature of Neoptera. Arthr. Str. Dev. 37,

29-54.

Friedrich, F., Beutel, R.G., 2010. The thoracic morphology of Nannochorista

(Nannochoristidae) and its implications for the phylogeny of Mecoptera and

Antliophora. J. Zool. Syst. Evol. Res., 48, 50-74.

Friedrich, F., Beutel R.G., acc. for publ. Good bye Halteria? The thoracic

morphology of Endopterygota (Insecta) and its phylogenetic implications.

Cladistics.

Friedrich, F., Farell, B.D., Beutel, R.G., 2009. The thoracic morphology of

Archostemata and the relationships of the extant suborders of Coleoptera

(Hexapoda). Cladistics, 24, 1-37.

Friedrich, F., Pohl, H., Hünefeld, F., Beckmann, F., Herzen, J., Beutel, R.G., 2008.

SRμCT-based study of external and internal structures of adults and larvae of

Holometabola (Hexapoda). Hasylab Ann Rep 2007, Hamburg, pp. 1527-1528.

Frommer, S.I., 1963. Gross Morphological Studies of the Reproductive System in

Representative North American Crane Flies (Diptera: Tipulidae). Univ. Kansas

Sc. Bull. 44, 535-626.

Füller, H., 1954. Das Thorakalskelett von Boreus westwoodi Hag. Zool. Jb. Anat.

73, 425-449.

Page 99: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

Füller, H., 1955. Die Muskulatur des Thorax von Boreus westwoodi Hag. Zool. Jb.

Anat. 74, 189-210.

Gassner, G., Breland, O.P., Biesel, J.J., 1972. The spermatozoa of the scorpion fly

Panorpa nuptialis: a transmission electronic study. Ann. Entomol. Soc. Amer.

65, 1302-1309.

Gaumont, J. 1976. L'appareil digestif des larves de planipennes, Ann. Sci. Nat.

Zool. Biol. Anim, 12, 145-250

Gibson, G.A.P., 1993. Groundplan structure and homology of the pleuron in

Hymenoptera based on a comparison of the skeletomusculature of Xyelidae

(Hymenoptera) and Raphidiidae (Neuroptera). Mem. Entomol. Soc. Canada

165, 165-187.

Goloboff, P., 1995. NONA Version 1.5. Tucuman: Fundacion e Instituto Miguel

Lillo.

Grabarek, V., 2008. Die Kopfmorphologie von Neodiprion sertifer (Geoffroy, 1785)

(Diprionidae) und ihre phylogenetische Bedeutung. Unpubl. Diploma thesis,

FSU Jena.

Grebennikov, V.V., 2004. Grub-like larvae of Neuroptera (Insecta): a morphological

review of the families Ithonidae and Polystoechotidae and a description of

Oliarces clara. Eur. J. Entomol. 101, 409-417.

Grell, K.G., 1938. Der Darmtractus von Panorpa communis L. und seine Anhänge

bei Larve und Imago. Zool. Jb. Anat. 6, 1-86.

Grimaldi, D., Engel, M.S., 2005. Evolution of the Insects. Cambridge University

Press, Cambridge, UK, 755 pp.

Günther, K.K., 2005. 18. Ordnung Zoraptera, Bodenläuse. In: Dathe, H.H. (Ed.)

Lehrbuch der Speziellen Zoologie, Band I: Wirbellose Tiere, 5. Teil: Insecta.

Spektrum Akademischer Verlag, Heidelberg, Berlin, pp. 291-295.

Hannemann, H.J., 1957. Die Kopfmuskulatur von Micropteryx calthella (L.) (Lep.).

Zool. Jb. Anat. 75, 177-206.

Hasenfuss, I., Kristensen, N.P., 2003. Skeleton and muscles: immatures. In:

Kristensen. N.P. (Ed.) Lepidoptera, Moths and Butterflies. Vol. 2: Morphology,

Page 100: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

Physiology, and Development. Handbook of Zoology. Vol. IV Arthropoda:

Insecta. Part 36. Walter de Gruyter, Berlin, New York, pp. 133-164.

Hasken, W., 1939. Der Thorax von Panorpa communis L. Zool. Jb. Anat. 65, 295-

338.

Heddergott, H., 1938. Kopf und Vorderdarm von Panorpa communis L. Zool. Jb.

Anat. 65, 229-294.

Hennig, W., 1953. Kritische Bemerkungen zum phylogenetischen System der

Insekten. Beitr. Entomol. 3, 1-85.

Hennig, W., 1973. Diptera (Zweiflügler). Handbuch der Zoologie IV, Insecta.

Lieferung 20. Walter de Gruyter, Berlin, pp. 1-337.

Hepburn, H.R., 1969. The skeleto-muscular system of Mecoptera: the head. Univ.

Kansas Sci. Bull. 48, 721-765.

Hepburn, H. R. 1970. The skeleto-muscular system of Mecoptera: The thorax.

Univ. Kansas Sci. Bull. 48, 801-844.

Hinton, H.E., 1958. The phylogeny of the Panorpoid Orders. Ann. Rev. Ent. 3, 181-

206.

Hlavac, T.F., 1972. The prothorax of Coleoptera: origin, major features of variation.

Psyche 79, 123-149.

Hoke, G., 1924. The anatomy of the head and mouth-parts of Plecoptera. J.

Morph. 38, 347-385.

Hörnschemeyer, T., 1998. Morphologie und Evolution des Flügelgelenks der

Coleoptera und Neuropteridae. Bonner Zool. Monogr. 43, 1-127.

Hörnschemeyer, T., 2002. Phylogenetic significance of the wing-base of the

Holometabola (Insecta). Zool. Scr. 31, 17-29.

Hörnschemeyer, T., 2005. Archostemata Kolbe, 1908. In: Kristensen, N.P., Beutel,

R.G. (Eds.), Beutel, R.G., Leschen, R.A.B. (Vol. Eds.), Coleoptera, Vol. I.

Morphology and Systematics (Archostemata, Adephaga, Myxophaga,

Page 101: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

Polyphaga partim). Handbook of Zoology Vol. IV, Arthropoda: Insecta. De

Gruyter, Berlin, New York, pp. 157-182.

Hörnschemeyer, T., Beutel, R.G, Pasop, F., 2002. Head structures of Priacma

serrata LeConte (Coleoptera, Archostemata) inferred from x-ray tomography.

J. Morph. 252, 298-314.

Hörnschemeyer, T., Goebbels, J., Weidemann, G., Faber, C., Haase, A., 2006.

The head of Ascioplaga mimeta (Coleoptera: Archostemata) and the

phylogeny of Archostemata. Eur. J. Entomol. 103, 409-423.

Hörnschemeyer, T., Willkommen, J., 2007. The contribution of flight system

characters to the reconstruction of the phylogeny of the Pterygota. Arthr. Syst.

Phyl. 65, 15-23.

Hünefeld, F., 2007. The genital morphology of Zorotypus hubbardi Caudell, 1918

(Insecta:

Zoraptera: Zorotypidae). Zoomorph. 126, 135-151.

Hünefeld, F., Beutel, R.G., 2005. The sperm pumps of Strepsiptera and

Antliophora (Hexapoda). J. Zool. Syst. Evolut. Res. 43, 297-306.

Hünefeld, F., Beutel, R.G., in press. The female postabdomen of the enigmatic

Nannochoristidae (Insecta: Mecopterida) and its phylogenetic significance.

Acta

Zool.

Hünefeld, F., Kristensen, N.P., in press. The female postabdomen and internal

genitalia of

the basal moth genus Agathiphaga (Insecta: Lepidoptera: Agathiphagidae):

morphology and phylogenetic implications. Zool. J. Linn. Soc.

Ivanov, V.D., Kozlov, M.V., 1987. Comparative analysis of pterothoracic

musculature of caddis-flies (Insecta, Trichoptera). Zool. Zh. 66, 1484-1497.

Page 102: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

Jaglarz, M.K., 1998. The number that counts. Phylogenetic implications of the

number of nurse cells in ovarian follicles of Coleoptera-Adephaga. Fol.

Histochem. Cytobiol. 36, 167-178.

Jamieson, B.G.M., 1987. The ultrastructure and phylogeny of insect spermatozoa.

Cambridge Univ. Press, Cambridge, England, pp. 1-320.

Johnson, N.F., 1988. Midcoxal articulations and the phylogeny of the order

Hymenoptera. Ann. Entomol. Soc. Am. 81, 870-881.

Kaltenbach, A., 1978. Mecoptera (Schnabelhafte, Schnabelfliegen). Handbuch der

Zoologie IV. Insecta. Inst. 25. Walter de Gruyter, Berlin, pp. 1-111.

Kelsey, L.P., 1954. The skeleto-motor mechanism of the dobson fly, Corydalus

cornutus. Part I. Head and prothorax. Cornell Univ. Mem. 334, 1-51.

Kelsey, L.P., 1957. The skeleto-motor mechanism of the dobson fly, Corydalus

cornutus. Part II. Pterothorax. Cornell Univ. Mem. 346, 1-42.

Khattar, N., 1964. Cephalic musculature of Schizodactylus (Saltatoria). J. Morph.

115, 121-134.

Kinzelbach, R., 1971. Strepsiptera (Fächerflügler). Handbuch der Zoologie. Berlin,

pp. 1–68.

Klass, K.-D., 2008. The female abdomen of ovipositor-bearing Odonata (Insecta:

Pterygota). Arthr. Syst. Phyl., 66, 45-142.

Klemm, N., 1966. Die Morphologie des Kopfes von Rhyacophila Pict. (Trichoptera).

Darmtraktus von Panorpa communis L. und seine Anhänge bei Larve und

Imago. Zool. Jb. (Anat.) 83, 1-53.

Kluge, N.J., 1994. Pterothorax structure of mayflies (Ephemeroptera) and its use in

systematics. Bull. Soc. Entomol. France 99, 41-61.

Koeth, M., 2007. Die Morphologie des Thorax von Mengenilla sp. (Strepsiptera,

Insecta). Unpubl. diploma thesis. Friedrich-Schiller-University, Jena.

Page 103: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

Kozlov, M.V., 1986. Pterothoracal muscles of the primitive moths (Lepidoptera,

Micropterigidae - Tischeriidae). Vestn. zool. 60-71.

Kramer, S., 1944. The external morphology of the oblong-winged katydid,

Amblycorypha oblongifolia (DeGeer) (Orthoptera, Tettigoniidae). Ann.

Entomol. Soc. Am. 37, 167-192.

Kramer, S., 1954. The musculature of the head of the phantom crane fly larva

Bittacomorpha (Liriopeidae). J. Morph. (Philadelphia) 94, 409-437.

Kramer, S., 1955. The musculature of the head of the Corydalus larva (Neuroptera,

Sialidae). J. Morph. (Philadelphia) 96, 1-30.

Krenn, H.W., Plant, J.D., Szucsich, N.U., 2005. Mouthparts of flower-visiting

insects, Arthr. Str. Dev., 34, 1-40.

Kristensen, N.P., 1968. The anatomy of the head and the alimentary canal of adult

Eriocraniidae (Lep., Dacnonypha). Entomol. Medd. 35, 239-315.

Kristensen, N.P., 1975. The phylogeny of hexapod ―orders‖. A critical review of

recent accounts. Z. zool. Syst. Evol.-forsch. 13, 1-44.

Kristensen, N.P., 1984. The larval head of Agathiphaga (Lepidoptera,

Agathiphagidae) and the lepidopteran groundplan. Syst. Entomol. 9, 63-81.

Kristensen, N.P., 1999. Phylogeny of endopterygote insects, the most successful

lineage of living organisms. Europ. J. Entomol. 96, 237-253.

Kristensen, N.P., 2003. 4. Skeleton and muscles: adults. 16. Reproductive organs.

In: Kristensen N. P. (Ed.), Lepidoptera, Moths and Butterflies. Vol. 2:

Morphology, Physiology and Development. Handbook of Zoology. Vol. IV

Arthropoda: Insecta. Part 36. Walter de Gruyter, Berlin, New York, pp. 39-131,

427-448.

Kristensen, N.P., Nielsen, E.S., 1979. A new subfamily of micropterigid moths from

South America. A contribution to the morphology and phylogeny of the

Page 104: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

Micropterigidae, with a generic catalogue of the family (Lepidoptera:

Zeugloptera). Steenstrupia. 5, 69-147.

Kristensen, N.P., Skalsi, A.W., 1999. Phylogeny and paleontology. In: Kristensen

N. P. (Ed.), Lepidoptera, Moths and Butterflies. Vol. 1: Evolution, Sytematics

and Biogeography. Handbook of Zoology. Vol. IV Arthropoda: Insecta. Part 35.

Walter de Gruyter, Berlin, New York, pp. 7-25.

Kristensen, N.P., Simonson, T.J., 2003. Hairs and scales. In: Kristensen N. P. (Ed.),

Lepidoptera, Moths and Butterflies. Vol. 2: Morphology, Physiology and

Development. Handbook of Zoology. Vol. IV Arthropoda: Insecta. Part 36.

Walter de Gruyter, Berlin, New York, pp. 9-22.

Kristensen, N.P., Scoble, M.J., Karsholt, O., 2007. Lepidoptera phylogeny and

systematics: the state of inventorying moth and butterfly diversity. Zootaxa

1668, 699-747.

Kubrakiewicz, J., Jędrzejowska, I., Biliński, S.M., 1998. Neuropteroidea - different

ovary structure in related groups. Fol. Histochem. Cytobiol. 36, 179-187.

Kukalová-Peck, J., Lawrence, J.F., 1993. Evolution of the hind wing in Coleoptera.

Can. Entomol. 125, 181-258.

Kukalová-Peck, J., Lawrence, J.F., 2004. Use of hind wing characters in assess-

ing relationships among Coleopteran Suborders and major endoneopteran

lineages. Eur. J. Entomol. 101, 95-144.

Larsén, O., 1945a. Das Meron der Insekten. Kungl. Fysiogr. Sällsk. Lund Förhandl.

15, 96-104.

Larsén, O., 1945b. Die hintere Region der Insektenhüfte. Kungl. Fysiogr. Sällsk.

Lund Förhandl. 15, 105-116.

Larsén, O., 1948. Die dorsoventralen Muskeln im Pterothorax der neuropteroiden

Insekten. Opusc. Entomol. Lund. 13, 27-35.

Page 105: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

Larsén, O., 1966. On the morphology and function of locomotor organs of the

Gyrinidae and other Coleoptera. Opusc. Entomol. (Suppl.) 30, 1-241.

Lawrence, J.F., 1982. Coleoptera. In: Parker, S. (Ed.), Synopsis and Classification

of Living Organisms. McGraw-Hill, New York, pp. 482-553.

Lawrence, J.F., 1991. Ommatidae (Archostemata) (=Ommadidae, including

Tetraphaleridae). Cupedidae (Archostemata) (=Cupesidae). Micromalthidae

(Archostemata). In: Stehr, F. W. (ed.), Immature Insects, Vol. 2. Kendall/Hunt

Publishing Company, Dubuque, Iowa, pp. 298-302.

Lawrence, J.F., 1999. The Australian Ommatidae (Coleoptera: Archostemata): new

species, larva and discussion of relationships. Invertebr. Tax. 13, 369-390.

Lewis, R.E., 1961. The thoracic musculature of the Indian rat flea Xenopsylla

cheopis (Siphonaptera). Ann. Entomol. Soc. Am. 54, 387-397.

MacFarlane, J., Eaton J.L., 1973. Skeleton and musculature of the head and

thorax of Trichoplusia ni (Hübner), (Lepidoptera: Noctuidae). J. Morph. 139,

185-210.

MacLeod, E.G., 1964. A comparative morphological study of the head capsule and

cervix of larval Neuroptera (Insecta). Unpubl. PhD thesis, Harvard Univ.,

Cambridge, Mass.

Maki, T., 1936. Studies on the skeletal structure, musculature and nervous system

of the Alder Fly Chauliodes formosanus Petersen. Mem. Fac. Sci. Agric.

Taihoku Imp. Univ. 16, 117-243 + errata, 10 pls.

Maki, T., 1938. Studies on the thoracic musculature of insects. Mem. Fac. Sci.

Agric. Taihoku Imp. Univ. 24, 1-343.

Malicky, H., 1973. Trichoptera (Köcherfliegen). Handbuch der Zoologie IV, Insecta.

Inst. 29. Walter de Gruyter, Berlin, pp. 1-114.

Matsuda, R., 1956. Musculature of the head of Agulla adnixa (Hagen) (Neuroptera,

Raphidiidae). J. Kansas Entomol. Soc. 29, 146-155.

Page 106: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

Matsuda, R., 1970. Morphology and evolution of the insect thorax. Mem. entmol.

Soc. Can. 76, 1-431.

Melzer, R.R., Paulus, H.F., Kristensen, N.P., 1994. The larval eye of

nannochoristid scorpionflies (Insecta, Mecoptera). Acta Zool. 75, 201-208.

Michelsen, V., 1996/97. A revised interpretation of the mouthparts in adult fleas

(Insecta, Siphonaptera). Zool. Anz. 235, 217-223.

Mickoleit, G., 1962. Die Thoraxmuskulatur von Tipula vernalis Meigen. Ein Beitrag

zur vergleichenden Anatomie des Dipterenthorax. Zool. Jb. Anat. 80, 213-

244.

Mickoleit, G., 1966. Zur Kenntnis einer neuen Spezialhomologie (Synapomorphie)

der Panorpoidea. Zool. Jb. Anat. 83, 483-496.

Mickoleit, G., 1967. Das Thorakalskelet von Merope tuber Newman

(Protomecoptera). Zool. Jb. Anat. 84, 313-342.

Mickoleit, G., 1968. Die Thoraxmuskulatur der Bittacidae. Zool. Jb. Anat. 85, 386-

410.

Mickoleit, G., 1969. Vergleichend anatomische Untersuchungen an der

pterothorakalen Pleurotergalmuskulatur der Neuropteria und Mecopteria

(Insecta, Holometabola). Z. Morph. Tiere, 64, 151-178.

Mickoleit, G., 1971. Das Exoskelet von Notiothauma reedi MacLachlan, ein Beitrag

zur Morphologie und Phylogenie der Mecoptera (Insecta). Z. Morph. Tiere. 69,

318-362.

Mickoleit, G., 1973. Über den Ovipositor der Neuropteroidea und Coleoptera und

seine phylogenetische Bedeutung (Insecta, Holometabola). Z. Morph. Tiere

74, 37–64.

Mickoleit, G., 1975. Die Genital- und Postgenitalsegmente der Mecoptera-

Weibchen

(Insecta, Holometabola). I. das Exoskelet. Z. Morph. Tiere 80, 97 – 135.

Page 107: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

Mickoleit, G., 1976. Die Genital- und Postgenitalsegmente der Mecoptera-

Weibchen (Insecta,

Holometabola). II. das Dach der Genitalkammer. Zoomorph. 85, 133-156.

Mickoleit, G., 2009. Die Sperma-Auspreßvorrichtung der Nannochoristidae

(Insecta: Mecoptera). Entomol. Gen. 31/2, 193–226.

Mikó, I., Vilhelmsen, L., Johnson, N.F., Masner, L., Pénzes, Z., 2007.

Skeletomusculature of Scelionidae (Hymenoptera: Platygastroidea): head and

mesosoma. Zootaxa. 1571, 1-78.

Miller, F.W., 1933. Musculature of the lacewing (Chrysopa plorabunda)

Neuroptera. J. Morph. 55, 29-52.

Miyan, J.A., Ewing, A.W., 1985. How Diptera move their wings: A re-examination of

the wing base articulation and muscle systems concerned with flight. Philos.

Trans. Roy. Soc. London, B. 311, 271-302.

Mockford, E.L., 1987. Order Psocoptera. In: Stehr, F. (Ed.), Immature Insects Vol.

2. Kendall/Hunt Publishing Co., Dubuque, Iowa, pp. 196-214.

Morse, M., 1931. The external morphology of Chrysopa perla L. (Neuroptera:

Chrysopidae). J. N.Y. entomol. Soc. 34, 1-44.

Nielsen, A., 1980. A comparative study of the genital segments and the genital

chamber in

female Trichoptera. Biol. Skr. 23, 1-200.

Nelson, C.H., Hanson, J.F., 1968. The external anatomy of Pteronarcys

(Allonarcys) proteus Newman and Pteronarcys (Allonarcys) biloba Newman

(Plecoptera: Pteronarcidae). Trans. Am. Entomol. Soc. 94, 429-472.

Nelson, C.H., Hanson, J.F., 1971. Contribution to the anatomy and phylogeny of

the family Pteronarcidae (Plecoptera). Trans. Am. Entomol. Soc. 97, 123-200.

Page 108: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

Neugart, C., Schneeberg, K., Beutel, R.G., 2009. The morphology of the larval

head of Tipulidae (Diptera, Insecta) – The dipteran groundplan and

evolutionary trends. Zool. Anz. 248, 213-235.

Neunzig, H.H., Baker, J.R., 1991. Order Megaloptera. In: Stehr F W. (Ed.)

Immature Insects, Vol. II. Kendall/Hunt Publishing Company, Dubuque, Iowa,

pp. 112-122.

New, T.R., 1989. Handbuch der Zoologie. Vol. IV, Arthropoda: Insecta; Planipennia

(Lacewings). De Gruyter, Berlin, New York.

New, T.R., 1991. Neuroptera (Lacewings). In: CSIRO (Ed.), The Insects of

Australia, Vol. 1. Cornell University Press, Ithaca, New York, pp. 525-542.

New, T.R., Theischinger, G., 1993. Megaloptera (Alderflies, Dobsonflies). In:

Handbuch der Zoologie, 4 (33), Walter de Gruyter, Berlin.

Nielsen, A., 1980. A comparative study of the genital segments and the genital

chamber in

female Trichoptera. Biol. Skr. 23, 1-200.

Nilsson, A., (ed) 1997. Aquatic Insects of North Europe. A Taxonomic Handbook.

Volume 2, Odonata, Diptera. Apollo Books, Stenstrup.

Oosterbroek, P., Theowald, B., 1991. Phylogeny of the Tipuloidea based on

characters of larvae and pupae (Diptera, Nematocera). Tijdschr. Entomol.

134, 211-267.

Owen, W.B., 1977. Morphology of the thoracic skeleton and muscles of the

mosquito, Culiseta inornata (Williston), (Diptera: Culicidae). J. Morph. 153,

427-460.

Parker, H.L., 1935. Note on the anatomy of tenthredinid larvae with special

reference to the head. Boll. Lab. Zool. Gen. Agr. Reale Scu. Sup. Agric. 28,

159-191.

Page 109: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

Paulus, H.F., 1986. Comparative morphology of the larval eyes of Neuropterida. In:

Gepp J, Aspöck H, Hölzel H. (Eds.), Recent Research in Neuropterology.

Proceedings of the 2nd International Symposium on Neuropterology,

Hamburg, pp. 157-164.

Penny, N.D., 1975 Evolution of the extant Mecoptera. J. Kansas Entomol. Soc. 48,

331-350.

Pilgrim, R.L.C., 1972. The aquatic larva and the pupa of Choristella philpotti

Tillyard, 1917 (Mecoptera: Nannochoristidae). Pacif. Ins. 14, 151-168.

Pohl, H., 2000. Die Primärlarven der Fächerflügler – evolutive Trends (Insecta,

Strepsiptera). Kaupia 10, 1-144.

Potter, E., 1938. The internal anatomy of the larvae of Panorpa and Boreus

(Mecoptera). Proc. Roy. Ent. Soc. London (A) 13, 117-130.

Rees, B.E., Ferris, G.F., 1939. The morphology of Tipula reesi Alexander (Diptera:

Tipulidae). Microentomol. 4, 143-176.

Riegel, G.T., 1987. Order Zoraptera. In: Stehr F.W., (Ed.) Immature Insects, Vol. I.

Kendall/Hunt Publishing Company, Dubuque, Iowa, pp. 184-185.

Röber, H., 1942. Morphologie des Kopfes und des Vorderdarmes der Larve und

Imago von Sialis flavilatera. Zool. Jb. Anat. 67, 61-118.

Ronquist, F., Huelsenbeck, J. P., 2003. MRBAYES 3: Bayesian phylogenetic

inference under mixed models. Bioinformatics 19, 1572-1574.

Rousset, A., 1966. Morphologie céphalique des larves de Planipennes (Insectes

Névroptéroides). Mem. Mus. Natn. Hist. Nat. Paris A 42, 1-199.

Russell, L.K., 1979. A study of the armoured boreid Caurinus dectes (Mecoptera).

Unpubl. PhD thesis, Oregon State University.

Russell, L.K., 1982. The life history of Caurinus dectes Russell, with a description

of the immature stages (Mecoptera: Boreidae). Entomol. Scand. 13, 225-235.

Sato, S., 1951. Development of the compound eye of Culex pipiens. Sci. Rep.,

Tôhoku Univ., Sendai 19, 23-28.

Page 110: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

Schiemenz, H., 1957. Vergleichende funktionelle anatomische Untersuchungen

der Kopfmuskulatur von Theobaldia und Eristalis (Dipt. Culicidae u.

Syrphidae). - Dt. Ent. Z., NF 5, 268-331.

Schlein, Y., 1980. Morphological similarities between the skeletal structures of

Siphonaptera and Mecoptera. In: Traub R., Starcke H. (Eds.), Proceedings of

the International Conference on Fleas. A.A. Balkerma, Rotterdam, pp. 359-

367.

Schneeberg, K., Beutel, R.G., in press. The adult head structures of Tipulomorpha

(Diptera, Insecta) and their phylogenetic implications. Acta Zool.

Setty, L.R., 1939. The life history of Bittacus strigosus with a description of the

larvae. J. Kansas entomol. Soc. 12, 126-128.

Sharif, M., 1937. On the internal anatomy of the larva of the rat-flea Nosopsyllus

fasciatus (Bosc). Phil. Trans. R. Soc. London B 227, 465-538.

Sharplin, J., 1964. Wing base structure in Lepidoptera. III. Taxonomic characters.

Can. Entomol. 96, 943-949.

Simiczyjew, B., 2002. Structure of the ovariy in Nannochorista neotropica Navás

(Insecta: Mecoptera: Nannochoristidae) with remarks on mecopteran

phylogeny. Acta Zool. 83, 61-66.

Smart, J., 1959. Notes on the mesothoracic musculature of Diptera. Smiths. Misc.

Coll.137, 331-365.

Smith, D.R., Middlekauff, W.W., 1987. Suborder Symphyta. In: Stehr F. W. (Ed.),

Immature Insects, Vol. I. Kendall/Hunt Publishing Company, Dubuque, Iowa,

pp. 618-648.

Snodgrass, R.E., 1929. The thoracic mechanism of a grasshopper and its

antecedents. Smiths. Misc. Coll. 82, 1-111.

Snodgrass, R.E., 1935. Principles of Insect Morphology. McGraw-Hill, NewYork,

London, ix + 667 pp.

Page 111: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

Snodgrass, R.E., 1946. The skeletal anatomy of fleas (Siphonaptera). Smiths.

Misc. Coll. 104, 1-89.

Snodgrass, R.E., 1959. The anatomical life of the mosquito. Smiths. Misc. Coll.

139, 1-87.

Stehr, F., (Ed.) 1987. Immature Insects Vol. 1. Kendall/Hunt Publishing Co.,

Dubuque, Iowa, 754 pp.

Stekolnikov, A.A., 1967. Functional morphology of the copulative organ in archaic

moths

and the general directions of the evolution of genitalia in Lepidoptera.

Entomol.

Rev. 3, 400-409. [Translation of Entomologicheskoe Obozrenie 3, 670-688].

Storch, R.H., Chadwick, L.E., 1968. Thoracic structure of the adult mecopteron,

Bittacus strigosus Hagen (Mecoptera: Bittacidae). J. Morph. 126, 199-210.

Swofford, DL., 2001. PAUP*: Phylogenetic analysis using parsimony and other

methods, version 4.0b10. Computer program distributed by Sinauer

Associates Inc., Sunderland, MA, USA.

Tait, N.N., 1962. The anatomy of the sawfly Perga affinis affinis Kirby

(Hymenoptera, Pergidae). Austr. J. Zool. 10, 652-684.

Tauber, C.A., 1991. Order Raphidioptera. Order Neuroptera. In: Stehr, F.W. (Ed.),

Immature Insects, Vol. 2. Kendall/Hunt Publishing Company, Dubuque, Iowa,

pp. 123-143.

Taylor, E., 1931. The morphology of Tenthredinid heads. Proc. Roy. Phys. Soc.

Edinburgh 22, 41-70.

Teskey, H.J., 1991. Order Diptera. Introduction. In: Stehr, F.W. (Ed.), Immature

Insects, Vol. 2. Kendall/Hunt Publishing Company, Dubuque, Iowa, pp. 690-

706.

Page 112: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

Tindall, A.R., 1965. The functional morphology of the thorax of Limnophilus

marmoratus Curtis (Trichoptera: Limnephilidae). Trans. R. Entomol. Soc.,

London 117, 127-166.

Togashi, I., 1970. The comparative morphology of the internal reproductive organs

of the Symphyta (Hymenoptera). Mushi 43 (suppl.), 1-114.

Vilhelmsen, L., 1996. The preoral cavity of lower Hymenoptera (Insecta):

comparative morphology and phylogenetic significance. Zool. Scr. 25, 143-

170.

Vilhelmsen, L., 2000a. Cervical and prothoracic skeleto-musculature in the basal

Hymenoptera (Insecta): Comparative anatomy and phylogenetic implications.

Zool. Anz. 239, 105-138.

Vilhelmsen, L., 2000b. Before the wasp-waist: Comparative anatomy and

phylogenetic implications of the skeleto-musculature of the thoraco-abdominal

boundary region in basal Hymenoptera (Insecta). Zoomorph. 119, 185-221.

Vilhelmsen, L., 2000c. The ovipositor apparatus of basal Hymenoptera (Insecta):

phylogenetic implications and functional morphology. Zool. Scr. 29, 319-345.

Vilhelmsen, L., 2001. Phylogeny and classification of the extant basal lineages of

the Hymenoptera (Insecta). Zool. J. Linn. Soc. 131, 393-442.

Vilhelmsen, L., Miko, I., Krogmann, L., in press. Beyond the wasp-waist: Structural

diversity and phylogenetic significance of the mesosoma in apocritan wasps

(Insecta: Hymenoptera). Zool. J. Linn. Soc.

Wada, Sh., 1965. Analyse der Kopf-Hals-Region von Tachycines (Saltatoria) in

morphogenetische Einheiten. I. Mitteilung: Anatomische Befunde im

schlüpfreifen und im imaginalen Zustand. Zool. Jb. Anat. 83, 185-234.

Weber, H., 1927. Die Gliederung der Sternalregion des Tenthredinidenthorax. Z.

wiss. Insekt.-biol. 22, 161-198.

Page 113: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

Weber, H., 1928. Die Gliederung der Sternopleuralregion des Lepidopterenthorax.

Eine vergleichend morphologische Studie zur Subcoxaltheorie. Z. wiss. Zool.

131, 181-254.

Weber, H., 1933. Lehrbuch der Entomologie. Gustav Fischer, Jena.

Weber, H., 1974. Grundriß der Insektenkunde. 3. Aufl. Gustav Fischer, Jena.

Wenk, P., 1953. Der Kopf von Ctenocephalis curtis. Zool. Jb. Anat. 73, 103-164.

Wenk, P., 1962. Anatomie des Kopfes von Wilhelmia equina L. ♀ (Simuliidae syn. Melusinidae, Diptera). Zool. Jb. Anat. 80, 81-134.

Widhalm-Finke, S., 1974. Funktionsanatomie des Larvenkopfes von Ctenocephalis

felis felis B. Zool. Jb. Anat. 92, 497-518.

Wiegmann, B.M., Trautwein, M.D., Kim, J., Bertone, M., Winterton, S.L., Cassel,

B.K., Yeates, D.K., 2009. Single-copy nuclear genes resolve the phylogeny

of the holometabolous insect orders. BMC Biol. 7, 34.

Wiggins, G.B., 1987. Order Trichoptera. In: Stehr F.W. (Ed.), Immature Insects,

Vol. I. Kendall/Hunt Publishing Company, Dubuque, Iowa, pp. 253-287.

Willkommen, J., 2008. The morphology of the pterothorax of Ephemeroptera,

Odonata and Plecoptera (Insecta) and the homology of wing base sclerites

and flight muscles. Stuttg. Beitr. Naturk. A, N.S. 1, 203-300.

Willkommen, J., Hörnschemeyer, T., 2007. The homology of wing base sclerites

and flight muscles in Ephemeroptera and Neoptera and the morphology of the

pterothorax of Habroleptoides confusa (Insecta: Ephemeroptera:

Leptophlebiidae). Arthr. Str. Dev. 36, 253-269.

Willmann, R., 1981. Das Exoskelett der männlichen Genitalien der Mecoptera

(Insecta) I. Morphologie. II. Die phylogenetischen Beziehungen der

Schnabelfliegen-Familien. Z. zool. Syst. Evolut.-forsch. 19, 96-150, 153-174.

Willmann, R. 1987. The phylogenetic system of the Mecoptera. Syst. Entomol. 12,

519-524.

Willmann, R., 1989. Evolution und phylogenetisches System der Mecoptera. Abh.

Senckenberg. naturforsch. Ges. 544, 1-153.

Willmann, R., 2005. Phylogenese und System der Insecta. 35. Ordnung

Mecoptera, Schnabelfliegen. Dathe, HH (ed.), Lehrbuch der Speziellen

Page 114: INTRODUCCIONtux.uis.edu.co/labsist/docencia/informes/20070-2010/lab-i/2030179.p… · Primer informe de Sistemática y Biogeografía (20070) Buscando el grupo hermano de Strepsiptera

Zoologie, Band I, 5. Teil: Insecta, 2nd ed. Spektrum Akademischer Verlag,

Heidelberg, Berlin, pp. 1-65, 746-755.

Winkler, D., 1959. Die Muskulatur der Larve von Limnophilus flavicornis Fabr.

Dtsch. Entomol. Z. (N.F.) 6, 112-128.

Wittig, G., 1955. Untersuchungen am Thorax von Perla abdominalis Burm. (Larve

und Imago). Zool. Jb. Anat. 74, 491-570.

Wong, H.R., 1963. The external morphology of the adults and ultimate larval instar

of the Larch Sawfly Pristiphora erichsonii (Htg.) (Hymenoptera:

Tenthredinidae). Can. Entomol. 95, 897-921.

Wood, D.M., Borkent, A., 1989. Phylogeny and classification of the Nematocera.

In: McAlpine, J.F., Wood, D.M. (Eds), Manual of Nearctic Diptera, Vol. 3.

Agriculture Canada, Ottawa, pp. 1333-1370.

Wood, D.M., Weismann, L., Orszagh, I., Pont, A.C., 1991. Homology and

phylogenetic implications of male genitalia in Diptera. The ground plan. Proc.

2nd Int. Congr. Dipterol. (Bratislava, Czechoslovakia, August 27 - September

1, 1990), pp. 255-271.

Wundt, H., 1961. Der Kopf der Larve von Osmylus chrysops L. (Neuroptera,

Planipennia). Zool. Jb. Anat. 79, 557-662.

Yoshizawa, K., Saigusa, T., 2001. Phylogenetic analysis of paraneopteran orders

(Insecta: Neoptera) based on forewing base structure, with comments on

monophyly of Auchenorrhyncha (Hemiptera). Syst. Entomol. 26, 1-13.

Zwick, P., 1967. Beschreibung der aquatischen Larve von von Neurorthus fallax

(Rambur) und Errichtung der neuen Planipennierfamilie Neurorthidae fam.

nov. Gew. Abw. 44/45, 65-86.