pcm comunicaciones eléctricas ing. verónica m. miró 2011

65
PCM Comunicaciones Eléctricas Ing. Verónica M. Miró 2011

Upload: edelmira-sedillo

Post on 21-Apr-2015

11 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: PCM Comunicaciones Eléctricas Ing. Verónica M. Miró 2011

PCM

Comunicaciones EléctricasIng. Verónica M. Miró

2011

Page 2: PCM Comunicaciones Eléctricas Ing. Verónica M. Miró 2011

Pulse Code Modulation - PCM Modulación por pulsos codificados

Forma básica de modulación digital de pulsos

Mensaje representado por una secuencia de pulsos codificados (representación de la señal mensaje en forma discreta en tiempo y amplitud)

Operaciones básicas: Muestreo (S) Cuantización (Q) Codificación (E)

Page 3: PCM Comunicaciones Eléctricas Ing. Verónica M. Miró 2011

Pulse Code Modulation - PCM

Cada muestra que entra al codificador se cuantifica en un determinado nivel de entre un conjunto finito de niveles de reconstrucción. Cada uno de estos niveles se hace corresponder con una secuencia de dígitos binarios, y esto es lo que se envía al receptor. Se pueden usar distintos criterios para llevar a cabo la cuantificación, siendo el más usado el de la cuantificación logarítmica.

Page 4: PCM Comunicaciones Eléctricas Ing. Verónica M. Miró 2011

Pulse Code Modulation - PCM

El filtro es para prevenir el aliasing la señal mensaje.

El Q (Quantizer) y el E (Encoder) forman el conversor A/D

Page 5: PCM Comunicaciones Eléctricas Ing. Verónica M. Miró 2011

Pulse Code Modulation - PCM En el receptor las operaciones básicas son la

regeneración de la señal dañada, decodificación y reconstrucción de un tren de muestras cuantizadas.

Se utiliza masivamente para comunicaciones telefónicas

Page 6: PCM Comunicaciones Eléctricas Ing. Verónica M. Miró 2011

Pulse Code Modulation - PCM

Page 7: PCM Comunicaciones Eléctricas Ing. Verónica M. Miró 2011

Muestreo (S) - PCM El filtro pasabajos limita la

frecuencia de la señal analógica de entrada.

El bloque muestreador, toma muestras, en forma periódica, de la señal analógica y la convierte en una señal PAM de varios niveles (sample and hold). Secuencia de pulsos con amplitudes variables acordes con el valor de la muestra

Page 8: PCM Comunicaciones Eléctricas Ing. Verónica M. Miró 2011

Cuantificación (Q) – PCM

La versión muestreada de una señal es luego cuantificada, nueva versión discreta en amplitud y tiempo.

En comunicaciones telefónicas se prefiere utilizar una separación variable entre los niveles de representación Ej.: El rango de voltaje de una señal de

voz están en el orden de 1000 a 1

Page 9: PCM Comunicaciones Eléctricas Ing. Verónica M. Miró 2011

Cuantificación (Q) – PCM

Cuantificador no uniforme: A medida que la señal I/O aumenta, aumenta también el salto/cuanto. Saltos grandes, excursiones de la

señal en rangos grandes de amplitud, ocurren en forma no frecuente.

Saltos pequeños, necesitan mayor cobertura a expensas de los saltos grandes

Page 10: PCM Comunicaciones Eléctricas Ing. Verónica M. Miró 2011

Cuantificación (Q) – PCM Cuantificador no uniforme es

equivalente a hacer pasar la señal por un compresor y luego aplicar la señal comprimida a un cuantificador uniforme.

Ley de compresión

m y v son voltajes normalizados de entrada y salida. es una ctte. >0

Page 11: PCM Comunicaciones Eléctricas Ing. Verónica M. Miró 2011

Cuantificación (Q) – PCM Para un dado valor de m, la

recíproca de la pendiente de la curva de compresión que define los saltos cuánticos, está dada por la derivada de ImI, respecto de IvI

Page 12: PCM Comunicaciones Eléctricas Ing. Verónica M. Miró 2011

Cuantificación (Q) – PCM La ley es aproximadamente logarítmica

para ImI>>1 En USA y Japón se utiliza

compresión/expansión de ley . Los primeros sistemas de transmisión digital

de Bell Systems utilizaban PCM de 7 bits con = 100, los más recientes utilizan PCM de 8 bits con = 255

Page 13: PCM Comunicaciones Eléctricas Ing. Verónica M. Miró 2011

Cuantificación (Q) – PCM Otra ley de compresión

muy utilizada en la práctica es la llamada ley A definida por

Page 14: PCM Comunicaciones Eléctricas Ing. Verónica M. Miró 2011

Cuantificación (Q) – PCM El caso A = 1 corresponde a cuantificación

uniforme. La recíproca de la pendiente de la curva de

compresión está dada por la derivada de ImI respecto de IvI

Page 15: PCM Comunicaciones Eléctricas Ing. Verónica M. Miró 2011

Cuantificación (Q) – PCM En Europa el ITU ha establecido el uso del

compresor / expansor ley A para aproximar el proceso logarítmico.

El comportamiento es inferior a ley para señales pequeñas (ruido de canal inactivo).

La ley A es de uso en Europa, Sudamérica y en todas las rutas internacionales, debiendo los países que usan ley adaptarse para las mismas. (A = 87.6)

Page 16: PCM Comunicaciones Eléctricas Ing. Verónica M. Miró 2011

Cuantificación (Q) – PCM Para restaurar las muestras de la señal a su

nivel correcto, se deberá utilizar un dispositivo en el Rx con una característica complementaria al compresor; un expansor.

Idealmente las leyes de compresión / expansión son complementarias excepto por el efecto de la cuantificación, la salida del expansor deberá ser igual a la entrada del compresor: Ambos efectos COMPANSIÓN

Page 17: PCM Comunicaciones Eléctricas Ing. Verónica M. Miró 2011

Cuantificación (Q) – PCM Tanto para ley A / ley , el rango dinámico

del compansor mejora incrementando los valores de A / .

La SNR para bajas señales se incrementa a expensas de la SNR de las señales de gran amplitud.

Situación de compromiso para la elección de los valores de A / (valores típicos A = 87.6 y = 255)

Page 18: PCM Comunicaciones Eléctricas Ing. Verónica M. Miró 2011

Cuantificación (Q) – PCM

La circuitería actual provee una réplica aproximada por partes a la curva deseada.

Se utiliza una suficiente cantidad de segmentos lineales, la aproximación se acerca bastante a la curva real de compresión.

Page 19: PCM Comunicaciones Eléctricas Ing. Verónica M. Miró 2011

Codificación (E) – PCM Ventajas:

Señales más robustas al ruido, interferencia y otros daños que sufre por el canal.

Código: Sucesión ó arreglo particular de eventos discretos = SIMBOLO

Palabra código: Arreglo único de símbolos para representar un valor único. Código binario: 2 valores diferentes, 0 y 1 Código ternario: 3 valores diferentes para

representar

Page 20: PCM Comunicaciones Eléctricas Ing. Verónica M. Miró 2011

Codificación (E) – PCM Código binario

Soportan alto nivel de ruido Muy sencillo de regenerar Cada palabra consiste en R bits (R = número de

bits por muestra) Números diferentes: 2R

Representación ordinal del número, más sencillo, en correspondencia con el binario

Ej.: 15 23+22+21+20 1111

Page 21: PCM Comunicaciones Eléctricas Ing. Verónica M. Miró 2011

Códigos de línea Son utilizados para representar

eléctricamente una tira de datos binaria Los símbolos 1 y 0 son equiprobables La potencia promedio está normalizada a la

unidad La frecuencia está normalizada con respecto a la

tasa de bits Rb = 1/Tb

Page 22: PCM Comunicaciones Eléctricas Ing. Verónica M. Miró 2011

Códigos de línea

Unipolar no retorno a cero (NRZ)

Polar no retorno a cero (NRZ)

Unipolar retorno a cero (RZ)

Bipolar retorno a cero (RZ): AMI

Fase desplazada ó código Manchester

Page 23: PCM Comunicaciones Eléctricas Ing. Verónica M. Miró 2011

Códigos de líneaUnipolar NRZ

1: Transmite un pulso de amplitud A para la duración del símbolo

0: No hay transmisión Más conocido como ON – OFF Desperdicio de energía debido a

la transmisión de DC level El espectro de la señal

transmitida no es cero en f = 0

Page 24: PCM Comunicaciones Eléctricas Ing. Verónica M. Miró 2011

Códigos de líneaPolar NRZ

1: Transmite un pulso de amplitud A para la duración del símbolo

0 : Transmite un pulso de amplitud -A para la duración del símbolo

Fácil de generar El espectro de potencia de la

señal es grande cerca de f = 0

Page 25: PCM Comunicaciones Eléctricas Ing. Verónica M. Miró 2011

Códigos de líneaUnipolar RZ

1: Representado por un pulso rectangular de amplitud A y duración la mitad del símbolo

0 : Ausencia de pulso Presencia de funciones en f=0;

±1/Tb en el espectro de la señal transmitida que puede ser usada para recuperación de clock en el receptor

Requiere 3dB adicionales de potencia que el bipolar RZ para tener la misma Pe de símbolo

Page 26: PCM Comunicaciones Eléctricas Ing. Verónica M. Miró 2011

Códigos de líneaBipolar RZ

1: Representado por dos niveles de amplitud, (-A, A), donde cada uno utiliza la mitad del ancho de bit.

0 : Ausencia de pulso El espectro de potencia no tiene

componente de DC y tiene componentes de baja frecuencia de muy bajo bajor, cuando los símbolos 1 y 0 tienen igual probabilidad

AMI (Alternate Mark Inversion)

Page 27: PCM Comunicaciones Eléctricas Ing. Verónica M. Miró 2011

Códigos de línea – HDB3

Supera la desventaja del código AMI: una larga cadena de ceros = pérdida de sincronización.

Reemplaza cadenas de 4 ceros con secuencias que contienen 1 ó 2 pulsosPolaridad del pulso

predecesorB00V

B: Relleno – V: Violación

000- +00+

000+ -00-

Page 28: PCM Comunicaciones Eléctricas Ing. Verónica M. Miró 2011

Códigos de línea – HDB3

B: RellenoV: Violación

CÓDIGO HDB3

CÓDIGO AMI

Page 29: PCM Comunicaciones Eléctricas Ing. Verónica M. Miró 2011

Códigos de líneaFase Desplazada - Manchester

1: Representado un pulso positivo (+A) y un pulso negativo (-A), donde uno utiliza la mitad del ancho de bit.

0 : Representado un pulso negativo (-A) y un pulso positivo (+A).

El espectro de potencia no tiene componente de DC y tiene insignificantes componentes de baja frecuencia.

Page 30: PCM Comunicaciones Eléctricas Ing. Verónica M. Miró 2011

CODIFICACIÓN DIFERENCIAL Método de codificación por trancisiones de la señal

0 : Transcisión 1 : No trancisión

Page 31: PCM Comunicaciones Eléctricas Ing. Verónica M. Miró 2011

SEÑAL PCM

Page 32: PCM Comunicaciones Eléctricas Ing. Verónica M. Miró 2011

REGENERACIÓNSistema PCM: tiene facilidad de controlar los efectos de

la distorsión y el ruido producidos durante la transmisión de la señal PCM por el canal.

Repetidores: Reconstrucción de señal: Facilidad de reconstrucción de la señal PCM

Repetidores regenerativos

Page 33: PCM Comunicaciones Eléctricas Ing. Verónica M. Miró 2011

REGENERACIÓN Ecualizador: Compensa los efectos de la

distorsión de fase y amplitud del pulso recibido producido por las características no ideales del canal

Clock: Provee un tren de pulsos periódicos derivado de los pulsos recibidos, para muestrear los pulsos ecualizados en los instantes de tiempo donde SNR es máxima.

Dispositivo de Decisión: Cada muestra extraída es comparada con un umbral. En cada intervalo de bit se toma una decisión por un 1 ó por un 0 dependiendo si el umbral es excedido ó no.

Page 34: PCM Comunicaciones Eléctricas Ing. Verónica M. Miró 2011

REGENERACIÓN Resultados:

La acumulación de distorsión y ruido es completamente removida, si ambos efectos no son demasiado importantes como para causar un error en el proceso de decisión.

Idealmente, excepto por el retardo, la señal regenerada es exactamente la misma que la señal originalmente transmitida.

Errores en la regeneración: Insalvable presencia de ruido en el canal y la

interferencia, causan decisiones erradas. Desviación del espaciamiento entre los pulsos

recibidos, se produce jitter en la posición de los pulsos regenerados. (Jitter: falta de uniformidad en la velocidad de muestreo, aleatorio)

Page 35: PCM Comunicaciones Eléctricas Ing. Verónica M. Miró 2011

DECODIFICACIÓN Antes de ingresar al decodificador, la señal

que sale del canal debe ser regenerada. Los pulsos limpios son reagrupados en

palabras código y decodificados en una serie de pulsos PAM cuantificados.

Decodificación: Suma lineal de todos los pulsos de la palabra código, pesados de acuerdo a la posición que ocupa en el símbolo, con R:bits por muestra.

Page 36: PCM Comunicaciones Eléctricas Ing. Verónica M. Miró 2011

FILTRADO FILTRO PASABAJOS: Recupera la señal

mensaje pasando la salida del decodificador por el filtro de reconstrucción, con frecuencia de corte igual al ancho de banda del mensaje W.

Suponiendo que no hay ruido durante la transmisión, la señal recuperada es no ruidosa con excepción de la distorsión lineal introducida por el proceso de la cuantificación.

Page 37: PCM Comunicaciones Eléctricas Ing. Verónica M. Miró 2011

CONSIDERACIONES DE RUIDO – SISTEMA PCM La performance de un sistema PCM está

influenciado por dos fuentes de ruido: Ruido del canal, introducido en cualquier lugar entre

la salida del Tx y la entrada del Rx. El ruido está siempre presente, aunque el equipo esté apagado.

Ruido de cuantificación: Introducido en el Tx y se transporta todo el tiempo a través del Rx. Es un ruido dependiente de la señal, no existe cuando no está presente la misma.

Ambos aparecen simultáneamente en un sistema PCM pero los consideramos en forma separada, para ver sus efectos.

Page 38: PCM Comunicaciones Eléctricas Ing. Verónica M. Miró 2011

CONSIDERACIONES DE RUIDO – SISTEMA PCM La fidelidad en la transmisión de información de un

sistema PCM puede ser medida en términos de la probabilidad promedio de error de símbolo (probabilidad de que el símbolo reconstruido a la salida del receptor difiera del símbolo binario transmitido, en promedio) BER (Bit Error Rate).

Cuando es importante reconstruir la forma analógica de la señal mensaje, distintos errores de símbolo deberán ser considerados ó pesados en forma diferente. Ej.: un error en el bit más significativo de una palabra código es más influyente que un error en el bit menos significativo

Page 39: PCM Comunicaciones Eléctricas Ing. Verónica M. Miró 2011

CONSIDERACIONES DE RUIDO – SISTEMA PCM Disminuir la Pe es el objetivo más importante Consideremos un canal ruidoso aditivo, blanco y

gaussiano. El efecto del canal ruidoso puede ser prácticamente

ininteligible asegurando una adecuada relación señal de energía del mensaje respecto de la densidad de ruido. De esta manera el ruido queda limitado al de cuantificación y (bajo el control del diseñador) actúa solo. Utilizando un adecuado número de niveles de representación en el cuantificador y selección de estrategia de compansión adecuada al mensaje a transmitir, el ruido puede mantenerse suficientemente pequeño.

Page 40: PCM Comunicaciones Eléctricas Ing. Verónica M. Miró 2011

UMBRAL DE ERROR – SISTEMA PCM La probabilidad de error de símbolo en

un sistema PCM binario, debido al ruido blanco, aditivo y gaussiano depende únicamente de la relación Eb/No, con Eb: Energía del bit transmitido y No: Densidad espectral de ruido.

Esta relación es adimensional aunque Eb y No, tiene significados físicos diferentes.

Page 41: PCM Comunicaciones Eléctricas Ing. Verónica M. Miró 2011

UMBRAL DE ERROR – SISTEMA PCM

Page 42: PCM Comunicaciones Eléctricas Ing. Verónica M. Miró 2011

UMBRAL DE ERROR – SISTEMA PCM

De esta tabla queda claro que hay un umbral en 11 dB aproximadamente.

Para Eb/No por debajo del umbral de error, la performance del Rx involucra una cantidad significativa de errores y el efecto del ruido del canal queda enmascarado

Proveyendo una Eb/No por encima del umbral , el ruido del canal no tiene influencia en la performance del Rx (mayor ventaja de PCM)

Page 43: PCM Comunicaciones Eléctricas Ing. Verónica M. Miró 2011

Multiplexación TDM

TDM: Utilización conjunta de un canal de comunicaciones común por una pluralidad de fuentes de mensaje independientes, sin interferencia mutua entre ellas.

Page 44: PCM Comunicaciones Eléctricas Ing. Verónica M. Miró 2011

Multiplexación TDM

La función del conmutador es doble: Tomar una muestra angosta de cada uno de

los N mensajes de entrada a una frecuencia fs que es un poco mayor que 2W (W: frecuencia de corte del filtro antitraslape)

Intercalar en forma secuencial las N muestras dentro del intervalo de muestreo Ts.

Luego se aplica a un modulador por pulsos.

Page 45: PCM Comunicaciones Eléctricas Ing. Verónica M. Miró 2011

Multiplexación TDM Se produce una expansión del ancho de

banda N. El esquema ajusta N muestras de N

fuentes de mensaje independientes. Las muestras angostas se distribuyen en

filtros de reconstrucción adecuados Conmutador y deconmutador en

sincronismo, esencial para la operación satisfactoria del sistema.

Page 46: PCM Comunicaciones Eléctricas Ing. Verónica M. Miró 2011

Multiplexación TDM

TDM es sumamente sensible a la dispersión del canal común es necesaria la ecualización exacta de la respuesta, en amplitud y fase

TDM es inmune a las no linealidades en el canal como la diafonía. Esto se debe a que las señales de mensaje diferentes no se aplican simultáneamente en el canal.

Page 47: PCM Comunicaciones Eléctricas Ing. Verónica M. Miró 2011
Page 48: PCM Comunicaciones Eléctricas Ing. Verónica M. Miró 2011
Page 49: PCM Comunicaciones Eléctricas Ing. Verónica M. Miró 2011
Page 50: PCM Comunicaciones Eléctricas Ing. Verónica M. Miró 2011

Sincronización Si aumenta la cantidad de fuentes de mensajes,

el intervalo de tiempo que es posible asignar a cada fuente tiene que reducirse, ya que la totalidad de las mismas debe ajustarse a un intervalo de tiempo igual al recíproco de la frecuencia de muestreo (se reduce la duración permisible de la palabra código que representa a una muestra).

Pulsos cortos, difíciles de generar y transmitir . El deterioro de los pulsos interfiere con la operación

apropiada del sistemaRESTRICCIÓN DEL NÚMERO DE FUENTES EN UN

GRUPO TDM

Page 51: PCM Comunicaciones Eléctricas Ing. Verónica M. Miró 2011

Sincronización Deslizamientos: Diferencias entre las

velocidades de escritura de los flujos digitales en los buffers de entrada de los equipos sincrónicos y las velocidades de lectura de los bits en esas memorias antes de ser procesados.

Desbordamiento ó vaciado de la memoria del buffer produciendo pérdidas ó duplicaciones de fragmentos de información

Page 52: PCM Comunicaciones Eléctricas Ing. Verónica M. Miró 2011

Sincronización

Fallas en la sincronización: Voz: Comunicación entrecortada con

posible percepción de clicks audibles Video: Congelamiento temporal de la

imagen Datos: Aumento de la tasa de

retransmisión de paquetes (deterioro de la performance del sistema para la transferencia de datos)

Page 53: PCM Comunicaciones Eléctricas Ing. Verónica M. Miró 2011

Sincronización Los equipos de transmisión sincrónicos deben

tener la misma frecuencia y una diferencia de fase limitada: Se deben referenciar los relojes con un mismo patrón. Diferencia de frecuencias de los relojes Tx y

Rx: no son idénticas y varían con el tiempo Fluctuación rápida de fase (Jitter): en los

regeneradores, debidas al proceso. Fluctuación lenta de fase (Wander): variación

del tiempo de propagación de la señal a través del medio de transmisión (cambios climáticos)

Page 54: PCM Comunicaciones Eléctricas Ing. Verónica M. Miró 2011

Sincronización

Temporización Tx – Rx Reloj local en el Rx Pulso de código al final de cada trama

(patrón de ceros y unos alternados a la mitad de la tasa de la trama para establecer la sincronización)

Recuperación de la sincronización cuando se interrumpe la transmisión

Page 55: PCM Comunicaciones Eléctricas Ing. Verónica M. Miró 2011

Sincronización

Fijar un procedimiento ordenado para detectar el pulso de sincronismo Observar los elementos de código de a

uno por vez hasta que se detecta el pulso de sincronismo.

Se requiere un cierto tiempo para restablecimiento dependiendo del momento de restablecimiento

Page 56: PCM Comunicaciones Eléctricas Ing. Verónica M. Miró 2011

Señal PCM: Aplicaciones

Cuando se inició la aplicación comercial de los codificadores PCM, se pensaba en una red mixta de transmisión digital y centros de conmutación analógicos. Esto requería de conversores A/D y D/A en cada sección de transmisión.

USA se resolvió colocar un máximo de 4 Codec en línea a lo largo de un trayecto.

CCITT en 1968 determinó un Circuito de Referencia de 7 Codec en línea. Para mantener una relación señal a ruido de cuantificación S/Nq acotada a valores inaudibles luego de 7 pasos es necesario llevar el valor de S/Nq para cada Codec individual a 33 dB.

Page 57: PCM Comunicaciones Eléctricas Ing. Verónica M. Miró 2011

Señal PCM: Aplicaciones

Se resolvió utilizar 8 bits de codificación para cada muestra.

En el caso de la ley μ en particular, cada 6 muestras se transmite una de ellas con solo 7 bits, el octavo y menos significativo de los bits se lo utiliza para señalización. El resultado es la velocidad de 64 kb/s, teniendo en cuenta la frecuencia de muestreo de 8 kHz y la codificación en 8 bit por muestra.

En una red totalmente digital (actual) que solo requiere un conversor en cada extremo telefónico, el valor de S/Nq= 33 dB es excesivo; bastaría con menos bits para obtener una prestación similar.

Page 58: PCM Comunicaciones Eléctricas Ing. Verónica M. Miró 2011

Señal PCM: Aplicaciones En aplicaciones satelitales y celulares, donde el

costo del ancho de banda es mucho mayor que en enlaces terrestres, se aplican métodos para el aprovechamiento de los 64 kb/s mediante varios canales de velocidad inferior.

Aparece entonces la codificación Diferencial PCM Adaptativa (ADPCM) que permite codificar canales telefónicos con velocidades de 16, 24 y 32 kb/s; aplicado para enlaces satelitales.

También se dispone de varios tipos de codificación predictiva lineal LPC para telefonía celular.

Page 59: PCM Comunicaciones Eléctricas Ing. Verónica M. Miró 2011

Señal PCM: T1 y E1

T1: 24 canales con señalización distribuída. Ver ejemplo Haykin, pág. 212

E1: 30 canales con señalización y sincronización agrupada en dos canales suplementarios.

Page 60: PCM Comunicaciones Eléctricas Ing. Verónica M. Miró 2011
Page 61: PCM Comunicaciones Eléctricas Ing. Verónica M. Miró 2011
Page 62: PCM Comunicaciones Eléctricas Ing. Verónica M. Miró 2011

Formatos de codificación PCM (Pulse Code Modulation). Codifica la forma de

onda con una precisión de N bits por muestra. La ley A de distribución cuántica de códigos permite mejorar la relación señal-a-ruido con 8 bit/muestra. Se trata de la codificación básica de la telefonía pública a 64 kb/s.

DPCM (Diferencial PCM). Se fundamenta en la predicción de muestras mediante la memorización en el tiempo. Se realiza la codificación de la diferencia entre la muestra y la predicción. La predicción es un algoritmo autoadaptativo dependiente de la actividad de la señal vocal. Se utiliza en conexiones internacionales a 16/24/32 kb/s dependiendo de la carga de tráfico.

Page 63: PCM Comunicaciones Eléctricas Ing. Verónica M. Miró 2011

Formatos de codificación Delta Se trata de una forma especial de

codificación DPCM. No tiene aplicaciones extendidas. La velocidad de muestreo es 64 kb/s y la codificación es 1 bit por muestra.

LPC (Linear Predictive Codec) Se basa en una estimación lineal de la fuente. Se codifican un grupo de muestras; por ejemplo 160 muestras en 20 mseg. Se aplican en sistemas celulares para alta compresión de la información vocal (menos de 10 kb/s).

Page 64: PCM Comunicaciones Eléctricas Ing. Verónica M. Miró 2011

Formatos de codificación ATC (Adaptative Transform Coding). Este

tipo de codificador trabaja en el dominio de la frecuencia. Recurre a la transformada discreta coseno DCT de exitosa aplicación en señales de vídeo.

AC-3 Se utiliza como canal de sonido en la televisión digital DTV. Se trata de 6 canales de audio a una velocidad total de 384 kb/s.

Page 65: PCM Comunicaciones Eléctricas Ing. Verónica M. Miró 2011

BIBLIOGRAFÍA Communication Systems, Simon Haykin, 4ta.

Ed. Communication Systems, Simon Haykin, 3ra.

Ed. Electronic Communication, Sam

Shanmugham