venecia.ppt [modo de compatibilidad]oa.upm.es/3866/2/inve_mem_2008_57546.pdf · total timeframe for...

25
VIRTUAL TESTING OF COMPOSITES LAMINATE COUPONS Sergio Sádaba Carlos González and Javier LLorca Sergio Sádaba, Carlos González and Javier LLorca Universidad Politécnica de Madrid & IMDEA-Materials E. T. S. de Ingenieros de Caminos. 28040 - Madrid, Spain Venice July 1 st 2008

Upload: others

Post on 03-Jul-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: VENECIA.ppt [Modo de compatibilidad]oa.upm.es/3866/2/INVE_MEM_2008_57546.pdf · Total timeframe for certification (2-3 years) laminate subcomponent component structure 7TH FRAMEWORK

VIRTUAL TESTING OF COMPOSITES LAMINATE COUPONS

Sergio Sádaba Carlos González and Javier LLorcaSergio Sádaba, Carlos González and Javier LLorcaUniversidad Politécnica de Madrid & IMDEA-Materials

E. T. S. de Ingenieros de Caminos. 28040 - Madrid, Spain

Venice July 1st 2008

Page 2: VENECIA.ppt [Modo de compatibilidad]oa.upm.es/3866/2/INVE_MEM_2008_57546.pdf · Total timeframe for certification (2-3 years) laminate subcomponent component structure 7TH FRAMEWORK

SUMMARY

1 MOTIVATION1. MOTIVATION

2. SIMULATION STRATEGYIntralaminar failure: Continuum Damage Mechanics- Intralaminar failure: Continuum Damage Mechanics

- Interlaminar failure: Cohesive Crack Approach

3 VIRTUAL TESTING OF LAMINATES EXAMPLES3. VIRTUAL TESTING OF LAMINATES: EXAMPLES- Low velocity impact- Unnotched plain tension- V-Notch shear test

4. VIRTUAL TESTING OF SINGLE LAMINAS- In plane shear/transversal compression failure

5 CONCLUSIONS AND FUTURE WORK5. CONCLUSIONS AND FUTURE WORK

Page 3: VENECIA.ppt [Modo de compatibilidad]oa.upm.es/3866/2/INVE_MEM_2008_57546.pdf · Total timeframe for certification (2-3 years) laminate subcomponent component structure 7TH FRAMEWORK

Motivation

Page 4: VENECIA.ppt [Modo de compatibilidad]oa.upm.es/3866/2/INVE_MEM_2008_57546.pdf · Total timeframe for certification (2-3 years) laminate subcomponent component structure 7TH FRAMEWORK

VIRTUAL FRACTURE TESTING OF COMPOSITESmotivation

Predicting the failure of materials is one of the oldest problems inengineering and one of the least perfectly solved. As a result, the burdenof testing is immense to prove safety in structures upon whose integrityhuman lives depend (certification of an airframe structures requires �104

tests of material specimens along with tests of components and structuresp g pup to entire tails, wing boxes, and fuselages).

Recent developments in simulation strategies increased computationalRecent developments in simulation strategies, increased computationalpower, and improvements in modeling tools are changing rapidly thisscenario

Nowadays it is possible to predict accurately the behavior until failure ofcomposite coupon specimens and simple components through the

li ti f b tt happlication of bottom-up approaches.

O Q f f S C S ( )On the Quest of Virtual Experiments for Structural Composites, Science, 314, 1102-1006 (2006)

Page 5: VENECIA.ppt [Modo de compatibilidad]oa.upm.es/3866/2/INVE_MEM_2008_57546.pdf · Total timeframe for certification (2-3 years) laminate subcomponent component structure 7TH FRAMEWORK

MULTISCALE SIMULATION STRATEGY motivation

matrix & fiber Why virtual testing?

Certification Costs!Reduce with virtual simulation tools

lamina

Reduce with virtual simulation toolsNew C/epoxy materials (3-4 M€)Total timeframe for certification (2-3 years)

laminate

subcomponentsubcomponent

componentp

structure

7TH FRAMEWORK PROGRAM MAAXIMUS(More Affordable Aircraft structure lifecycle th h Xt d d I t t d & M tthrough eXtended Integrated, & MaturenUmerical Sizing)) leaded by Airbus

Page 6: VENECIA.ppt [Modo de compatibilidad]oa.upm.es/3866/2/INVE_MEM_2008_57546.pdf · Total timeframe for certification (2-3 years) laminate subcomponent component structure 7TH FRAMEWORK

Simulation Strategy

Page 7: VENECIA.ppt [Modo de compatibilidad]oa.upm.es/3866/2/INVE_MEM_2008_57546.pdf · Total timeframe for certification (2-3 years) laminate subcomponent component structure 7TH FRAMEWORK

FAILURE MECHANISMS IN LAMINATESSimulation strategy

I t l i f il (fib f il t i ki i t f d h i )Wisnom et al., 2007

Intralaminar failure (fiber failure, matrix cracking, interface decohesion)

Totry et al 2008Totry et al., 2008

Interlaminar failure (delamination) Non linearity (geometry and material)

Page 8: VENECIA.ppt [Modo de compatibilidad]oa.upm.es/3866/2/INVE_MEM_2008_57546.pdf · Total timeframe for certification (2-3 years) laminate subcomponent component structure 7TH FRAMEWORK

INTRALAMINAR FAILURESimulation strategy

Intralaminar failure: Continuum Damage Approach

Continuum Damage Mechanics, Kachanov (1958), Chaboche (1981)Linear constitutive law between stresses and strainsThe influence of damage is addressed in terms of damage variables,The influence of damage is addressed in terms of damage variables,Evolution of damage variables is locally controlled by stress, strain, …Anisotropic materials by MLT (Matzenmiller, Lubliner and Taylor, 1995)

Page 9: VENECIA.ppt [Modo de compatibilidad]oa.upm.es/3866/2/INVE_MEM_2008_57546.pdf · Total timeframe for certification (2-3 years) laminate subcomponent component structure 7TH FRAMEWORK

INTRALAMINAR FAILURESimulation strategy

Intralaminar failure: Continuum Damage Approach

CDM applied to orthortropic linear elastic solid9 undamaged linear elastic constants (orthotropic material)9 undamaged linear elastic constants (orthotropic material)

Damage variables depend on damage mechanisms, stress, strain, …

Page 10: VENECIA.ppt [Modo de compatibilidad]oa.upm.es/3866/2/INVE_MEM_2008_57546.pdf · Total timeframe for certification (2-3 years) laminate subcomponent component structure 7TH FRAMEWORK

INTRALAMINAR FAILURESimulation strategy

Intralaminar failure: Continuum Damage Approach

Failure surface given by the intersection of varioussmooth surfaces in the stress or strain space, whicht d f th i f il d

g pp

stand for the various failure modes:- No damage - Fully damaged

The evolution of the failure surface given by theThe evolution of the failure surface given by theconsistency condition

The evolution of the damage variables is given by:

Implemented as a VUMAT in Abaqus/Explicit.• Hashin failure surfaces for fabrics• Larc03 failure criteria for unidirectional lamina

Page 11: VENECIA.ppt [Modo de compatibilidad]oa.upm.es/3866/2/INVE_MEM_2008_57546.pdf · Total timeframe for certification (2-3 years) laminate subcomponent component structure 7TH FRAMEWORK

INTERLAMINAR FAILURESimulation strategy

Intralaminar failure: Cohesive crack approach

Upper layer The interface properties are controlled byInterface strength (normal and shear )

Intralaminar failure: Cohesive crack approach

- Interface strength (normal and shear )- Interface fracture energy ( )

Cohesive element thicknessCOH Abaqus Element and VUMAT coded by UdG*

Lower layer

COH Abaqus Element and VUMAT coded by UdG

Damage initiation( d ti i t ti )(quadratic interaction)

D l ti �� 1 2�Damage evolution ���1-2�

*Gonzalez E.V., Maimi P., Turon A., Camanho P.P

Page 12: VENECIA.ppt [Modo de compatibilidad]oa.upm.es/3866/2/INVE_MEM_2008_57546.pdf · Total timeframe for certification (2-3 years) laminate subcomponent component structure 7TH FRAMEWORK

Virtual testing of laminates: examples

Page 13: VENECIA.ppt [Modo de compatibilidad]oa.upm.es/3866/2/INVE_MEM_2008_57546.pdf · Total timeframe for certification (2-3 years) laminate subcomponent component structure 7TH FRAMEWORK

UNNOTCHED PLAIN TENSIONVirtual testing: examples

Unnotched plain tensionPlain tension of unnotched specimens for any arbitrary lay-up configurationEvaluation of the failure mechanisms competition: intralaminar vs. intralaminarEvaluation of the failure mechanisms competition: intralaminar vs. intralaminarPreliminary study of the behavior of the composite material without edge effects

Matrix Crack-Induced Microcrackingg

X-Radiograph image obtained at increasing load levels showing microcrack propagation in a [603/-603/0]s laminate

Johnson and Chang, Jounal of Composite Materials,35, 2009

Page 14: VENECIA.ppt [Modo de compatibilidad]oa.upm.es/3866/2/INVE_MEM_2008_57546.pdf · Total timeframe for certification (2-3 years) laminate subcomponent component structure 7TH FRAMEWORK
Page 15: VENECIA.ppt [Modo de compatibilidad]oa.upm.es/3866/2/INVE_MEM_2008_57546.pdf · Total timeframe for certification (2-3 years) laminate subcomponent component structure 7TH FRAMEWORK

V-NOTCH SHEAR TESTVirtual testing: examples

Introducing Shear Non-linearity (Pinho et. al.)

Effect of Fiber Rotation

Page 16: VENECIA.ppt [Modo de compatibilidad]oa.upm.es/3866/2/INVE_MEM_2008_57546.pdf · Total timeframe for certification (2-3 years) laminate subcomponent component structure 7TH FRAMEWORK

V-NOTCH SHEAR TESTVirtual testing: examples

P li i R lt i l di h li it d fib t tiPreliminary Results including shear non-linearity and fiber rotation

[0/90]2s MTM57/glass ACGd6 Shear Damage Variable Interface Damage Variable6 g g

1

Sh li it

0 6

0.8)

Shear non-linearity fiber rotation

0.4

0.6

Load

(kN

)

Shear non-linearity

0.2

00 0.1 0.2 0.3 0.4 0.5

Shear Displacement (mm)

Page 17: VENECIA.ppt [Modo de compatibilidad]oa.upm.es/3866/2/INVE_MEM_2008_57546.pdf · Total timeframe for certification (2-3 years) laminate subcomponent component structure 7TH FRAMEWORK

V-NOTCH SHEAR TESTVirtual testing: examples

0.8

1

Shear non-linearity fiber rotation

0.6

0.8

d (k

N)

0 2

0.4Load

Shear non-linearity

0

0.2

0 0.1 0.2 0.3 0.4 0.5

Shear Displacement (mm)

Page 18: VENECIA.ppt [Modo de compatibilidad]oa.upm.es/3866/2/INVE_MEM_2008_57546.pdf · Total timeframe for certification (2-3 years) laminate subcomponent component structure 7TH FRAMEWORK

Example 1. At the lamina level

Page 19: VENECIA.ppt [Modo de compatibilidad]oa.upm.es/3866/2/INVE_MEM_2008_57546.pdf · Total timeframe for certification (2-3 years) laminate subcomponent component structure 7TH FRAMEWORK

Example 2. At the laminate level

Page 20: VENECIA.ppt [Modo de compatibilidad]oa.upm.es/3866/2/INVE_MEM_2008_57546.pdf · Total timeframe for certification (2-3 years) laminate subcomponent component structure 7TH FRAMEWORK

MATERIALSlaminate

Manufacturer: Airbus Spain under Project BAITA.Composition: RTM6 epoxy resin matrix reinforced with G0926 5HS carbonp p y

fabric preforms.Processing: RTM technique followed by curing at 180 C during 2 hoursLaminate thickness and fiber architecture:Laminate thickness and fiber architecture:

4.4 mm [(45/0)3]S 5.9 mm [(45/0)4]S 7.4 mm [(45/0)5]S

120 �m3 mm

Page 21: VENECIA.ppt [Modo de compatibilidad]oa.upm.es/3866/2/INVE_MEM_2008_57546.pdf · Total timeframe for certification (2-3 years) laminate subcomponent component structure 7TH FRAMEWORK

LOW VELOCITY IMPACT

Drop weight tower

laminate

Drop weight towerMaximum speed: 4 m/s ( )Maximum energy: 350 JgyHemispherical impactor of 1/2 inch radiusAccelerometer at the impactor tip

Page 22: VENECIA.ppt [Modo de compatibilidad]oa.upm.es/3866/2/INVE_MEM_2008_57546.pdf · Total timeframe for certification (2-3 years) laminate subcomponent component structure 7TH FRAMEWORK

Specimen geometry

LOW VELOCITY IMPACTlaminate

Specimen geometry

Simply supported square plates of 145 x 145 mmPlate thicknesses: 4.4 mm, 5.9 mm, 7.4 mm, ,Four impact tests for each thickness (2 without

penetration and 2 with penetration)

Page 23: VENECIA.ppt [Modo de compatibilidad]oa.upm.es/3866/2/INVE_MEM_2008_57546.pdf · Total timeframe for certification (2-3 years) laminate subcomponent component structure 7TH FRAMEWORK

LOW VELOCITY IMPACTlaminate

Thickness 4.4 mm, [(45/0)3]Sincident energy 94 J

8 80

6

7

60

70Penetration

4

5

40

50

oad

(kN

) Energy (

2

3

20

30Lo

(J)

0

1

0

10

0 5 10 15 200 5 10 15 20Penetration (mm)

Page 24: VENECIA.ppt [Modo de compatibilidad]oa.upm.es/3866/2/INVE_MEM_2008_57546.pdf · Total timeframe for certification (2-3 years) laminate subcomponent component structure 7TH FRAMEWORK

LOW VELOCITY IMPACTlaminate

Thickness 4.4 mm, [(45/0)3]Sincident energy 34 J

7

8 50

6

7

40

4

5

20

30

Load

(kN

) Energy (J

2

3

10

20L J)

0

1

00 2 4 6 80 2 4 6 8

Penetration (mm)

Page 25: VENECIA.ppt [Modo de compatibilidad]oa.upm.es/3866/2/INVE_MEM_2008_57546.pdf · Total timeframe for certification (2-3 years) laminate subcomponent component structure 7TH FRAMEWORK

ConclusionsCONCLUSIONS

Virtual mechanical testing of composite structures until failure can be carriedout owing to the recent developments in multiscale modelling strategiesout owing to the recent developments in multiscale modelling strategies.

Bottom to Top strategy:- Intralaminar failure criteria and damage evolution through computationalg g pmicromechanics. (2D and 3D solid and cohesive elements)- Coupon testing using cohesive elements (interlaminar fracture) and damagecontinuum mechanics (intralaminar failure). (3D solid and cohesive elements)( ) ( )- Component testing through structural analysis using micromechanical modelsfor the homogenized laminate behavior. (3D continuum shell and cohesiveelements)

These virtual experiments open revolutionary opportunities to reduce thenumber of costly tests to certify safety, to develop new materials configurationsand to improve the accuracy of failure criteria.