microcontrolador pic

20
Microcontrolador PIC Saltar a: navegación , búsqueda General Instrument PIC1650. Varios viejos (EPROM) microcontroladores PIC. Los PIC son una familia de microcontroladores tipo RISC fabricados por Microchip Technology Inc. y derivados del PIC1650, originalmente desarrollado por la división de microelectrónica de General Instrument . El nombre actual no es un acrónimo . En realidad, el nombre completo es PICmicro, aunque generalmente se utiliza como Peripheral Interface Controller (controlador de interfaz periférico). El PIC original se diseñó para ser usado con la nueva CPU de 16 bits CP16000. Siendo en general una buena CPU, ésta tenía malas prestaciones de entrada y salida , y el PIC de 8 bits se desarrolló en 1975 para mejorar el rendimiento del sistema quitando peso de E/S a la CPU. El PIC utilizaba microcódigo simple almacenado en ROM para realizar estas tareas; y aunque el término no se usaba por aquel entonces, se trata de un diseño RISC que ejecuta una instrucción cada 4 ciclos del oscilador .

Upload: yamil-sejas

Post on 30-Jul-2015

137 views

Category:

Documents


6 download

TRANSCRIPT

Page 1: Microcontrolador PIC

Microcontrolador PICSaltar a: navegación, búsqueda

General Instrument PIC1650.

Varios viejos (EPROM) microcontroladores PIC.

Los PIC son una familia de microcontroladores tipo RISC fabricados por Microchip Technology Inc. y derivados del PIC1650, originalmente desarrollado por la división de microelectrónica de General Instrument.

El nombre actual no es un acrónimo. En realidad, el nombre completo es PICmicro, aunque generalmente se utiliza como Peripheral Interface Controller (controlador de interfaz periférico).

El PIC original se diseñó para ser usado con la nueva CPU de 16 bits CP16000. Siendo en general una buena CPU, ésta tenía malas prestaciones de entrada y salida, y el PIC de 8 bits se desarrolló en 1975 para mejorar el rendimiento del sistema quitando peso de E/S a la CPU. El PIC utilizaba microcódigo simple almacenado en ROM para realizar estas tareas; y aunque el término no se usaba por aquel entonces, se trata de un diseño RISC que ejecuta una instrucción cada 4 ciclos del oscilador.

En 1985 la división de microelectrónica de General Instrument se separa como compañía independiente que es incorporada como filial (el 14 de diciembre de 1987 cambia el nombre a Microchip Technology y en 1989 es adquirida por un grupo de inversores) y el nuevo propietario canceló casi todos los desarrollos, que para esas fechas la mayoría estaban obsoletos. El PIC, sin embargo, se mejoró con EPROM para conseguir un controlador de canal programable. Hoy en día multitud de PICs vienen con varios periféricos incluidos (módulos de comunicación serie, UARTs, núcleos de control de motores, etc.) y con memoria de programa desde 512 a 32.000 palabras (una palabra

Page 2: Microcontrolador PIC

corresponde a una instrucción en lenguaje ensamblador, y puede ser de 12, 14, 16 ó 32 bits, dependiendo de la familia específica de PICmicro).

Juego de instrucciones y entorno de programación

El PIC usa un juego de instrucciones tipo RISC, cuyo número puede variar desde 35 para PICs de gama baja a 70 para los de gama alta. Las instrucciones se clasifican entre las que realizan operaciones entre el acumulador y una constante, entre el acumulador y una posición de memoria, instrucciones de condicionamiento y de salto/retorno, implementación de interrupciones y una para pasar a modo de bajo consumo llamada sleep.

Microchip proporciona un entorno de desarrollo freeware llamado MPLAB que incluye un simulador software y un ensamblador. Otras empresas desarrollan compiladores C y BASIC. Microchip también vende compiladores para los PICs de gama alta ("C18" para la serie F18 y "C30" para los dsPICs) y se puede descargar una edición para estudiantes del C18 que inhabilita algunas opciones después de un tiempo de evaluación.

Para el lenguaje de programación Pascal existe un compilador de código abierto, JAL, lo mismo que PicForth para el lenguaje Forth. GPUTILS es una colección de herramientas distribuidas bajo licencia GPL que incluye ensamblador y enlazador, y funciona en Linux, MacOS y Microsoft Windows. GPSIM es otra herramienta libre que permite simular diversos dispositivos hardware conectados al PIC.

Uno de los más modernos y completos compiladores para lenguaje C es [mikroC], que es un ambiente de desarrollo con editor de texto, bibliotecas con múltiples funciones para todos los módulos y herramientas incorporadas para facilitar enormemente el proceso de programación.

Arquitectura central

La arquitectura del PIC es sumamente minimalista. Esta caracterizada por las siguientes prestaciones:

Área de código y de datos separadas (Arquitectura Harvard). Un reducido número de instrucciones de longitud fija. La mayoría de las instrucciones se ejecutan en un solo ciclo de ejecución (4 ciclos de clock),

con ciclos de único retraso en las bifurcaciones y saltos. Un solo acumulador (W), cuyo uso (como operador de origen) es implícito (no está

especificado en la instrucción). Todas las posiciones de la RAM funcionan como registros de origen y/o de destino de

operaciones matemáticas y otras funciones.1

Una pila de hardware para almacenar instrucciones de regreso de funciones. Una relativamente pequeña cantidad de espacio de datos direccionable (típicamente, 256

bytes), extensible a través de manipulación de bancos de memoria. El espacio de datos está relacionado con el CPU, puertos, y los registros de los periféricos.

Page 3: Microcontrolador PIC

El contador de programa esta también relacionado dentro del espacio de datos, y es posible escribir en él (permitiendo saltos indirectos).

A diferencia de la mayoría de otros CPU, no hay distinción entre los espacios de memoria y los espacios de registros, ya que la RAM cumple ambas funciones, y esta es normalmente referida como "archivo de registros" o simplemente, registros.

Espacio de datos (RAM)

Los microcontroladores PIC tienen una serie de registros que funcionan como una RAM de propósito general. Los registros de propósito específico para los recursos de hardware disponibles dentro del propio chip también están direccionados en la RAM. La direccionabilidad de la memoria varía dependiendo la línea de dispositivos, y todos los dispositivos PIC tienen algún tipo de mecanismo de manipulación de bancos de memoria que pueden ser usados para acceder memoria externa o adicional. Las series más recientes de dispositivos disponen de funciones que pueden cubrir todo el espacio direccionable, independientemente del banco de memoria seleccionado. En los dispositivos anteriores, esto debía lograrse mediante el uso del acumulador.

Para implementar direccionamiento indirecto, se usa un registro de "selección de registro de archivo" (FSR) y uno de "registro indirecto" (INDF): Un número de registro es escrito en el FSR, haciendo que las lecturas o escrituras al INDF serán realmente hacia o desde el registro apuntado por el FSR. Los dispositivos más recientes extienden este concepto con post y preincrementos/decrementos para mayor eficiencia al acceder secuencialmente a la información almacenada. Esto permite que se pueda tratar al FSR como un puntero de pila.

La memoria de datos externa no es directamente direccionable excepto en algunos microcontroladores PIC 18 de gran cantidad de pines.

Tamaño de palabra

El tamaño de palabra de los microcontroladores PIC es fuente de muchas confusiones. Todos los PICs (excepto los dsPIC) manejan datos en trozos de 8 bits, con lo que se deberían llamar microcontroladores de 8 bits. Pero a diferencia de la mayoría de las CPU, el PIC usa arquitectura Harvard, por lo que el tamaño de las instrucciones puede ser distinto del de la palabra de datos. De hecho, las diferentes familias de PICs usan tamaños de instrucción distintos, lo que hace difícil comparar el tamaño del código del PIC con el de otros microcontroladores. Por ejemplo, un microcontrolador tiene 6144 bytes de memoria de programa: para un PIC de 12 bits esto significa 4096 palabras y para uno de 16 bits, 3072 palabras.

Programación del PIC

Para transferir el código de un ordenador al PIC normalmente se usa un dispositivo llamado programador. La mayoría de PICs que Microchip distribuye hoy en día incorporan ICSP (In Circuit Serial Programming, programación serie incorporada) o LVP (Low Voltage

Page 4: Microcontrolador PIC

Programming, programación a bajo voltaje), lo que permite programar el PIC directamente en el circuito destino. Para la ICSP se usan los pines RB6 y RB7 (En algunos modelos pueden usarse otros pines como el GP0 y GP1 o el RA0 y RA1) como reloj y datos y el MCLR para activar el modo programación aplicando un voltaje de 13 voltios. Existen muchos programadores de PICs, desde los más simples que dejan al software los detalles de comunicaciones, a los más complejos, que pueden verificar el dispositivo a diversas tensiones de alimentación e implementan en hardware casi todas las funcionalidades. Muchos de estos programadores complejos incluyen ellos mismos PICs preprogramados como interfaz para enviar las órdenes al PIC que se desea programar. Uno de los programadores más simples es el TE20, que utiliza la línea TX del puerto RS232 como alimentación y las líneas DTR y CTS para mandar o recibir datos cuando el microcontrolador está en modo programación. El software de programación puede ser el ICprog, muy común entre la gente que utiliza este tipo de microcontroladores. Entornos de programación basados en intérpretes BASIC ponen al alcance de cualquiera proyectos que parecieran ser ambiciosos.

Se pueden obtener directamente de Microchip muchos programadores/depuradores (octubre de 2005):

Un buena recopilación de herramientas de desarrollo para PICs puede encontrarse Aquí. (Mayo de 2009).

Programadores

PICStart Plus (puerto serie y USB) Promate II (puerto serie) MPLAB PM3 (puerto serie y USB) ICD2 (puerto serie y USB) ICD3 (USB) PICKit 1 (USB) IC-Prog 1.06B PICAT 1.25 (puerto USB2.0 para PICs y Atmel) WinPic 800 (puerto paralelo, serie y USB) PICKit 2 (USB) PICKit 3 (USB) Terusb1.0 Eclipse (PICs y AVRs. USB.) MasterProg (USB)

Además es posible hacer un programador de manera casera, en http://microspics.blogspot.com hay una lista con los más utilizados.

Depuradores integrados

ICD (Serie) ICD2 (Serie ó full speed USB - 2M bits/s)

Page 5: Microcontrolador PIC

ICD3 (High speed USB - 480M bits/s)

Emuladores

Proteus - ISIS ICE2000 (puerto paralelo, convertidor a USB disponible) ICE4000 (USB) PIC EMU PIC CDlite

Características

Los PICs actuales vienen con una amplia gama de mejoras hardware incorporadas:

Núcleos de CPU de 8/16 bits con Arquitectura Harvard modificada Memoria Flash y ROM disponible desde 256 bytes a 256 kilobytes Puertos de E/S (típicamente 0 a 5,5 voltios) Temporizadores de 8/16 bits Tecnología Nanowatt para modos de control de energía Periféricos serie síncronos y asíncronos: USART, AUSART, EUSART Conversores analógico/digital de 8-10-12 bits Comparadores de tensión Módulos de captura y comparación PWM Controladores LCD Periférico MSSP para comunicaciones I²C, SPI, y I²S Memoria EEPROM interna con duración de hasta un millón de ciclos de lectura/escritura Periféricos de control de motores Soporte de interfaz USB Soporte de controlador Ethernet Soporte de controlador CAN Soporte de controlador LIN Soporte de controlador Irda

Variaciones del PIC

PICs modernos

Los viejos PICs con memoria PROM o EPROM se están renovando gradualmente por chips con memoria Flash. Así mismo, el juego de instrucciones original de 12 bits del PIC1650 y sus descendientes directos ha sido suplantado por juegos de instrucciones de 14 y 16 bits. Microchip todavía vende versiones PROM y EPROM de la mayoría de los PICs para soporte de aplicaciones antiguas o grandes pedidos.

Se pueden considerar tres grandes gamas de MCUs PIC en la actualidad: Los básicos (Linebase), los de medio rango (Mid Range) y los de alto desempeño (high performance). Los PIC18 son considerandos de alto desempeño y tienen entre sus miembros a PICs con módulos de comunicación y protocolos avanzados (USB, Ethernet, Zigbee por ejemplo).

Page 6: Microcontrolador PIC

Clones del PIC

Por todos lados surgen compañías que ofrecen versiones del PIC más baratas o mejoradas. La mayoría suelen desaparecer rápidamente. Una de ellas que va perdurando es Ubicom (antiguamente Scenix) que vende clones del PIC que funcionan mucho más rápido que el original. OpenCores tiene un núcleo del PIC16F84 escrito en Verilog.

PICs wireless

El microcontrolador rfPIC integra todas las prestaciones del PICmicro de Microchip con la capacidad de comunicación wireless UHF para aplicaciones RF de baja potencia. Estos dispositivos ofrecen un diseño muy comprimido para ajustarse a los cada vez más demandados requerimientos de miniaturización en aparatos electrónicos. Aun así, no parecen tener mucha salida en el mercado.

PICs para procesado de señal (dsPICs)

Los dsPICs son el penúltimo lanzamiento de Microchip, comenzando a producirlos a gran escala a finales de 2004. Son los primeros PICs con bus de datos inherente de 16 bits. Incorporan todas las posibilidades de los anteriores PICs y añaden varias operaciones de DSP implementadas en hardware, como multiplicación con suma de acumulador (multiply-accumulate, o MAC), barrel shifting, bit reversion o multiplicación 16x16 bits.

PICs de 32 bits (PIC32)

Microchip Technology lanzó en noviembre de 2007 los nuevos microcontroladores de 32 bits con una velocidad de procesamiento de 1.5 DMIPS/MHz con capacidad HOST USB. Estos MCUs permiten un elevado procesamiento de información, con un núcleo de procesador de tipo M4K.

PICs más comúnmente usados

PIC12C508/509 (encapsulamiento reducido de 8 pines, oscilador interno, popular en pequeños diseños como el iPod remote).

PIC12F629/675 PIC16F84 (Considerado obsoleto, pero imposible de descartar y muy popular) PIC16F84A (Buena actualización del anterior, algunas versiones funcionan a 20 MHz,

compatible 1:1) PIC16F628A (Es la opción típica para iniciar una migración o actualización de diseños

antiguos hechos con el PIC16F84A. Posee puerto serial, módulos de comparación análoga, PWM, módulo CCP, rango de operación de voltaje aumentado, entre otras )

PIC16F88 (Nuevo sustituto del PIC16F84A con más memoria, oscilador interno, PWM, etc que podría convertirse en popular como su hermana).

La subfamilia PIC16F87X y PIC16F87XA (los hermanos mayores del PIC16F84 y PIC16F84A, con cantidad de mejoras incluidas en hardware. Bastante común en proyectos de aficionados).

Page 7: Microcontrolador PIC

PIC16F886/887 (Nuevo sustituto del 16F876A y 16F877A con la diferencia que el nuevo ya se incluye oscilador interno).

PIC16F193x (Nueva gama media de PIC optimizado y con mucha RAM, ahora con 49 instrucciones por primera vez frente a las 35 de toda la vida).

PIC18F2455 y similares con puerto USB 2.0 PIC18F2550 manejo de puertos USB 2.0 y muy versatil. PIC18F452 PIC18F4550 dsPIC30F2010 dsPIC30F3014 dsPIC30F3011 (Ideales para control electrónico de motores eléctricos de inducción,

control sobre audio, etc). PIC32 (Nueva gama de PIC de 32 bits, los más modernos ya compatible con USB 2.0).

PIC en Internet

Se puede encontrar mucha información y documentación sobre PICs en Internet, principalmente por dos motivos:[cita requerida] el primero, porque han sido muy usados para romper los sistemas de seguridad de varios productos de consumo masivo (televisión paga, PlayStation, etc), lo que atrae la atención de los crackers; y segundo, porque el PIC16C84 fue uno de los primeros microcontroladores fácilmente reprogramables para aficionados. Hay muchos foros y listas de correo dedicados al PIC, en los que un usuario puede proponer sus dudas y recibir respuestas.

Pero también se puede enfocar el tema en relación a Internet por la posibilidad que se tiene de desarrollar con los microcontroladores sistemas SCADA vía Web, debido a que pueden adquirir y enviar datos al puerto serial de un computador utilizando transmisión UART y el protocolo RS232, también se tiene la posibilidad de implementar el protocolo TCP/IP directamente.

Enlaces externos

En español

Tutorial de programación de PICs en Ensamblador en la Asociación de Robótica y Domótica de España.

TodoPIC, todo en microcontroladores PIC MicroPIC, todo en microcontroladores PIC en español Página de robótica chilena Robots Sitio de robótica con artículos de contenido técnico y didáctico Tutorial de programación PIC18F2550 y módulo USB con Visual C# Página de programación de Microcontroladores PIC

En inglés

www.locxtronic.com - Tutorial for PIC Programming In BASIC (en inglés).

Page 8: Microcontrolador PIC

http://www.microchip.com La página oficial del fabricante PICs y otros componentes electrónicos semiconductores

Página con enlaces a los documentos originales del PIC1650 YaPIDE Entorno de desarrollo y simulador para el PIC16F628 liberado bajo licencia GPL-2 PicForth Grupo de discusión sobre el PIC SDCC Small Device C Compiler, an Open Source compiler for microcontrollers, PIC 16x and

18x support is a WIP. Belle Research Guía para de programación del PIC para principiantes PIC Portal with huge Project database (en inglés).

Como grabar un PIC16Fxx con el JDM con un portátil

Publicado el agosto 14, 2011 por soloelectronicos Como grabar un PIC16Fxx con el JDM con un   portátil El programador JDM es una solución de bajo coste para la introducción de un

programa en la memoria flash interna del PIC. Además de los planes originales de Jens Dyekjær Madsen, también hay muchos esquemas modificados en la web, entre elllos el TE20, el TE20x o el grabador_smt1.De destacar R1 y el voltaje de D5 son modificaciones adicionales que son necesarias para todos los PICs recientes que vienen con una capacidad de programación de bajo voltaje (que, de hecho, el programador JDM no utiliza y debe ser deshabilitada con la resistencia pulldown en el pin RB3) y un valor ligeramente incrementado para el diodo Z para cumplir las especificaciones de programación del PIC16F87x y PIC18F452.

Web oficial: http://www.jdm.homepage.dk/newpics.htm Este programador es alimentado por el puerto RS232 del PC y funciona con niveles

RS232 <±8.6V. Dispositivos que soporta JDM

24CXX, EEPROMPIC12C5XXPIC12C67XPIC16C55XPIC16C61PIC16C62XPIC16C71PIC16C71XPIC16C8XPIC16F8XTarjetas ISO con ASF

Page 9: Microcontrolador PIC

4 diodos 1N4148

1 diodo Zener de 8.2v1 diodo Zener de 5.1v1 capacitor electrolítico de 100uF x 40v1 capacitor electrolítico de 22uF x 16v2 transistores BC547B1 resistencia de 10k, ¼ de watt1 resistencia de 1.5k, ¼ de watt.1 zócalo de 18 pinesEs un circuito muy simple, pero que tiene varias ventajas que lo hacen muy interesante:

>Se conecta al puerto serie, que generalmente en cualquier PC esta disponible.>Existe software gratis para utilizarlo, incluso bajo DOS, LINUX y por supuesto Windows (incluido WinXP)>Sirve para programar varios modelos de PICS (PIC12C5XX, 12C67X, 24CXX, 16C55X, 16C61, 16C62X, 16C71, 16C71X, 16C8X, 16F8X entre otros ) y también para leer/escribir varios chips de memoria (24Cxx ). Otros microcontroladores también pueden ser programados mediante un adaptador.>Dispone del conector ICSP (In-Circuit Serial Programming) para la programación de microcontroladores sin necesidad de desmontarlos de su placa de circuito impreso.>No necesitamos de una fuente de alimentación externa, ya que se alimenta directamente del puerto de la PC.>Su costo es muy bajo, los componentes necesarios difícilmente nos cuesten mas de 3 o 4 u$s y son muy fáciles de conseguir.

Una aclaración importante antes de seguir adelante: el hecho de que el programador se conecte a un puerto serie RS-232 de la PC no significa que el protocolo utilizado para comunicar la PC y la placa del programador sea este, de hecho se puede adaptar este circuito para conectarlo al puerto paralelo e incluso USB. Como dijimos antes, los tiempos, y las señales necesarias para programar los PICs dependen de un protocolo especifico desarrollado por Microchip, por lo que utilizamos el puerto como vehiculo para llevar los bits al PIC y para obtener las tensiones necesarias para la programación, pero utilizando un programa y un protocolo especifico para esta tarea

DESCRIPCION DEL CIRCUITO. La tensión de la entrada de reloj está limitada mediante D3 y D4 sin que sea

necesaria ninguna resistencia limitadora.

Page 10: Microcontrolador PIC

Los diodos a Vdd internos del PIC protegen también las entradas. Los dispositivos 24CXX no tienen ningún diodo a Vdd, y D4 es absolutamente necesario.

DISPOSITIVOS LÓGICOS MICROPROGRAMABLES Programador PIC y EEPROM JDM 13.5

Q2 aumenta el voltaje de salida a niveles RS232. Entonces funciona como base común. R2 es una resistencia pull-up que no resulta fundamental debido a la corriente limitada del puerto RS232. Q2 también limita la tensión de la entrada al PIC cuando DTR es de nivel alto. Entonces funciona como un seguidor de emisor y se reduce la tensión de la entrada a Vdd-0.7V.

Cuando DTR se pone a nibel bajo, Q2 trabaja invertido y la ganancia sólo es aproximadamente 5. La resistencia equivalente es aproximadamente 10K/5 = 2K. Esto reduce la corriente de entrada de datos al PIC junto con la resistencia R2. Cuando DTR cambia de nivel bajo a nivel alto, Q2 cambia de modo invertido saturado a seguidor de emisor activo. Esta causa un pico sobre los datos, pero el pico está extinguido cuando cambia el reloj. Esto garantiza que las eeprom no pasen al modo de prueba.

Q1 trabaja en cierto modo como seguidor de emisor también, pero se satura cuando es activo. En ese caso su tensión CE es muy baja. El transistor activa o desactiva la tensión para MCLR.

TXD alimenta a C2 para que alcance 13V a través de la unión base-colector de Q1. El tensión en C2 está limitado por el zener D6 y es aproximadamente 5.1V+8.2V = 13.3V. Cuando TXD está a nivel alto la tensión en MCLR no excede esta tensión. La base sube a una tensión mas alta, pero Q1 se satura y la salida no excederá la tensión de colector.

C2 proporciona la Vpp y la Vdd a través del diodo zener D6. Pero Vdd sólo aparece si el voltaje en C2 es aproximadamente de 13V. Si tiene 8V, entonces será posible controlar la alimentación mediante RTS y DTR. La alimentación C2 se reduce aproximadamente a 8V por medio de TXD, DTR y RTS mantenidas a nivel alto durante aproximadamente 0.5s.

El diodo extra, D5, limita la tensión sobre TXD. En principio se utiliza para alimentar la eeprom cuando DTR y RTS están a nivel alto. También garantiza que MCLR es mayor de -0.2V cuando TXD está a nivel bajo. El diodo D7 pone MCLR a nivel bajo cuando TXD está a nivel bajo.

El PIC también es alimentado por RTS mediante D3. La corriente de entrada “on data” también alimenta el PIC a Vss. Ambas señales necesitan ser negativas para alimentar al dispositivo con la máxima corriente posible. C2 alimenta al PIC si las señales son positivas. RTS y DTR no son criticas al programar el 24CXX, porque el diodo D5 pone Vss a nivel bajo.

Al programar un PIC sólo D3 puede utilizarse. RTS y DTR necesitan ser de nivel bajo para alimentarlo, y no deben estar a nivel alto durante demasiado tiempo. La corriente es excepcionalmente alta al leer ceros del PIC, y el tiempo de lectura activo con DTR a nivel alto debe ser corto. Para compensar el corriente utilizada, un nivel bajo de be aplicarse a RTS durante un tiempo extra.

Si reemplaza D5 y D7 por un BC557B,es importante que sepa que la base-emisor se comporta como un un diodo zener. Sólo D7 pueden actuar como un zener, y MCLR necesita ser conectada al emisor, mientras el colector del BC557B se conecta a Vss.

Page 11: Microcontrolador PIC

El transitor trabaja en cierto modo como seguidor de emisor, y proporciona a MCLR una corriente alta extra.

Esta corriente alta no es necesaria, y puede incluso dañar al BC557B si el programador se conecta con alimentación externa. Conectar el programador a una fuente de alimentación externa siempre puede causar problemas, y no se permite para el uso normal.

El peligro de conectar una fuente de alimenmtación externa está en que el diodo zener interior reduce el voltaje a 5.1V. Puede ser perjudicial que se aplique una tensión demasiado alta. Las conexiones externas pueden causar problemas también debido a tensiones negativas. Vdd se conecta a la masa del PC y pueden provocarse cortocircuitos si un circuito externo se conecta con la masa del ordenador, por ejemplo a traves de la toma de tierra. Una fuente de alimentación externa también puede dar problemas de seguridad si los PIC u otros dispositivos no se insertan adecuadamente

Generalmente este diseño funciona muy bien sobre puertos serie “estandard” ( de pc de sobremesa) pero ultimamente en los pc’s modernos o portatiles no termina de funcionar a traves de adaptadores usb a rs232 ( ya que en la mayoria de lso portatiles se ha eliminado este util puerto)

IC-Prog por Bonny Gijzen parece ser el software de grabación más flexible, ya que

no solo soporta el JDM, sino muchos otros programadores. Se puede descargar aquí: http://www.ic-prog.com. Antes de empezar a programar cualquier chip, por favor, revisa tu circuito de programación en el menú Hardware Check .( Es Importante que no midas los voltajes con un osciloscopio o instrumentos similares que estén conectados a tierra como tu PC, ya que esto falsificaría los resultados de la medicon pues el JDM usa la conexión de tierra para Vdd).

Otros programadores que soportan el JDm y sus variantes: WINPIC800, WINPICPGM

Por tanto para probar el TE20 ,usaremos el IC-PROG y un multímetro con batería .Sigue estas instrucciones:

Ve a Settings->Hardware menu, ponlo en “JDM Programmer”, selecciona el Puerto (COM1, COM2, …?), Selecciona Interface Direct I/O (bueno para Windows 9x) o API (Windows ME/NT/2000/XP). Comienza con I/O Delay 0, No inviertas ninguna señal:

Ahora selecciona el dispositivo correcto:: Settings->Device->Microchip PIC->PIC16F84)

Start Settings->Options, ve al sub-menú “Programming”

Page 12: Microcontrolador PIC

Habilita “Verfiy after programming” y “Verify during programming”. La última opción asegura que se te notifiquen inmediatamente los errores de programación. La primera opción es especialmente necesaria para los derivados de PIC16F87xA, ya que IC-Prog no verifica estos chips durante la programación.

Ve al submenú “Misc”, habilita “Vcc control for JDM” y selecciona “Realtime” en Process Priority

Ve a Settings->menú Hardware Check Prepara tu multímetro y revisa los voltajes de tu programador. Notas: Cuando se deshabilita una señal, el voltaje cae hasta 0V muy, muy despacio, ya que

los capacitadores no se descargan con una carga. Así que no estés pendiente de los valores de señales desactivadas, solo revisa las señales habilitadas.

Los voltajes cambiarán a los valores correctos y especificados cuando haya un PIC en el socket. El propósito de la revisión de hardware no es ver los voltajes correctos, sino asegurarse de que las señales puedan ser controladas (switched on/off) por tu PC. Si te quieres asegurar de que el voltaje no sea demasiado alto en la carga para verificar que el circuito esté correctamente cableado, conecta temporalmente una resistencia de 1k entre Vss y el “pin en pruebas”.

¡¡¡Asegúrate de que no haya PIC en el socket de programación!!! Pulsa sobre “Enable Data Out“: La caja de Data In debe ser automáticamente

seleccionada para soporte de hardware (Data Out->Data In). Desconecta “Data out” de nuevo. No te preocupes si Data In se acciona en los siguientes tests, este es el comportamiento normal.

Pulsa sobre “Enable MCLR“, mide el voltaje entre Vss (Pin 12/31) y MCLR# (Pin 1) : ca. 14 V

Deshabilita todas las señales Pulsa sobre “Enable Vcc“, mide el voltaje entre Vss (Pin 12/31) y Vdd (Pin 11/32):

ca. 5 VSi esta prueba falla, asegúrate de que la opción “Vcc control for JDM” esté activada en el submenú “Misc”(Settings->Options)Deshabilita todas las señales y p

Pulsa sobre “Enable clock“, mide el voltaje entre Vss (Pin 12/31) y RB6 (Pin 39): ca. 5 V +/- 1 V, despues deshabilita todas las señalesPulsa sobre “Enable Data Out“, mide el voltaje entre Vss (Pin 12/31) y RB7 (Pin 40): ca 5 V +/- 0.5 VAhroa enchufa el PIC en el socket de programación.Start Command->Read All

Durante la lectura:Mide el voltaje entreVss (Pin 12/31) y MCLR# (Pin 1) : ca. 13.7 VMide el voltaje entre Vss (Pin 12/31) y Vdd (Pin 11/32): ca. 5.1 V

No tiene sentido medir los voltajes de los otros pines, ya que se accionan muy rápido.

Nota: El programador JDM no funcionará cuando pruebes estos pines con un osciloscopio (GND->Earth problem)Si no mides 13.7V entre Vss y MCLR cuando el PIC esté enchufado, puedes incrementar/decrecer el voltaje con el I/O Delay en el menú Hardware. Retrasos más bajos incrementan el voltaje, retrasos más altos decrecerán el

Page 13: Microcontrolador PIC

voltaje! Me di cuenta de que no se pueden alcanzar 13.7V cuando se accede al JDM a través de las funciones API de Windows

Start File->Open File: carga el firmware (archivo .hex ) en IC-Prog Start Command->Program All Ahora pasarán unos 3 min. hasta que el PIC esté programado. Si la escritura no

funciona, IC-Prog lo notificará como “Verify failed” cuando esten marcadas “Verfiy after programming” y “Verify during programming” en Settings->Options->submenú Programming

Nota:Parece que con algunos PCs, el proceso de programación solo pasa cuando el pin 5 (GND) del enchufe SubD-Plug está conectado con el chásis de metal(tierra) del conector.Después de que la programación esté hecha, tu PIC estará preparado

Solución de problemasCompara tu circuito con el esquema y la base PCB una y otra vez- Revisa especialmente la polaridad de los diodos, capacitadores y transistores. Asegúrate de que las soldaduras estén bien (sin falsos contactos)IC-Prog a veces se olvida alguna opción bajo circonstancias desconocidas (por ej. el retraso I/O y el número de puerto COM ). Así que si falla el proceso de quemado, asegúrate de tu configuración no se ha cambiado.

Prueba diferentes valores de retraso I/O Usa la función de verificación de IC-Prog para asegurar que el firmware se haya

quemado correctamente si ves que el PIC no funciona. Si el voltaje MCLR# no fuera suficientemente alto (este problema se ha visto en

portátiles, pero también en PCs con un puerto COM débil), puedes proporcionar este voltaje desde el exterior de 15-20v en los extremos de C1(de 100mf).Usa o dos baterías de 9V o un PSU que entrega al menos 15V. No hace falta ningún regulador ya que los diodos zener limitan el voltaje. No olvides la resistencia de 220 Ohm – que limita la corriente y protege el circuito JDM.

Si esta solucion no es suficiente para alcanzar la tension necesaria de

programacion ,se puede probar con un amplificador RS2323 con alimentacion externa, tal vez sea un solucion drastica pero muchos usarios qeu lo han probado han tenido exito.

Si usted mira esta página, usted probablemente parece hice cuando traté de controlar a un programador autoimpulsado PIC con mi ordenador portátil. Sí, el puerto serie era el tipo ” el poder extremo bajo ” y wouldn ` la t proporciona bastante corriente para impulsar al programador. El problema era claro y la solución también . Yo podría haber modificado al programador para conseguir el poder de en otra parte,

Page 14: Microcontrolador PIC

pero en el futuro yo me estrellaría con la misma pared. Necesité algo al interfaz el puerto serie de poder bajo al programador hambriento. No encontré nada en el web, entonces decidí diseñarlo solo. Otra vez, la MÁXIMA debía allí ayudar con uno de su ICS simpático tramado, el MAX205El MAX205 es algo similar a MAX232 popular pero estos son las buenas noticias:Ello hast 5 receptores y 5 conductores en vez de sólo 2 + 2. ¡¡Esto no necesita condensadores de bomba de precio externos!! Si usted une(conecta) las salidas TTL de los receptores RS-232 (al TTL) las entradas de los conductores RS-232, usted con eficacia consigue las señales originales con mucha corriente para cualquier dispositivo impulsado por serie con un circuito sumamente simple:

No olvide de conectar los conectores DB9 a tierra del circuito. Como se puede

observar en el esquema las entradas del RS-232 no necesitan ser amplificadas , por lo que todo lo que tiene que hacer usted es alimentar el Max205 con 5v.(por ejemplo puede usar cualquier fuente en desuso y añadirle un simple 7805 de regulador).