memoria final de proyectos de innovaciÓn docente ... · universidad de jaén. ver anexo 1 2. se ha...

146
Vic Secretariado de MEMORIA FINAL CON DATOS DEL/DE LA SOLIC Nombre ANTONIO JO Apellidos MARCHAL I D.N.I. 26024590 K Centro Facultad Experimenta Departamento Químic Categoría Profesor Titu DATOS DEL PROYECTO Título “Hacia el bilin Operaciones Bá Línea de actuación P Titulación/Grado implica Departamento/s implica Asignatura/s implicada/ Curso/s implicado/s Nº aproximado de alumn UNIVERSIDAD DE JAÉN icerrectorado de Docencia y Profesorado de Innovación Docente y Formación del Profesor 1 L DE PROYECTOS DE INNOVACIÓN DOCE NVOCATORIA CURSO 2011/2013 CITANTE OSÉ INGRAIN K E-mail amarchal@uja de Ciencias ales Teléfono 953 ca Inorgánica y Orgánica ular de Universidad ngüismo en los grados. El caso de la ásicas de Laboratorio IIProyectos para Asignaturas ado/s Química ados 1.- Filología Inglesa 2.- Química Inorgánica y Orgáni /s Operaciones Básicas de Laborat Primero nos afectados 100 = 50 /curso rado ENTE aen.es 3212751 a Asignatura ica torio II

Upload: others

Post on 26-Sep-2019

2 views

Category:

Documents


0 download

TRANSCRIPT

Vicerrectorado de Docencia y ProfesoradoSecretariado de Innovación Docente y Formación del Profesorado

MEMORIA FINAL

CONVOCATORIA

DATOS DEL/DE LA SOLICITANTE

Nombre ANTONIO JOSÉ

Apellidos MARCHAL INGRAIN

D.N.I. 26024590 K

Centro Facultad de Ciencias

Experimentales

Departamento Química Inorgánica y Orgánica

Categoría Profesor Titular de Universidad

DATOS DEL PROYECTO

Título “Hacia el bilingüismo en los grados. El caso de la Asignatura

Operaciones Básicas de Laboratorio II

Línea de actuación Proyectos para Asignaturas

Titulación/Grado implicado

Departamento/s implicados

Asignatura/s implicada/s

Curso/s implicado/s

Nº aproximado de alumnos afectados

UUUUUUUUNNNNNNNNIIIIIIIIVVVVVVVVEEEEEEEERRRRRRRRSSSSSSSSIIIIIIIIDDDDDDDDAAAAAAAADDDDDDDD DDDDDDDDEEEEEEEE JJJJJJJJAAAAAAAAÉÉÉÉÉÉÉÉNNNNNNNN Vicerrectorado de Docencia y Profesorado

Secretariado de Innovación Docente y Formación del Profesorado

1

FINAL DE PROYECTOS DE INNOVACIÓN DOCENTE

CONVOCATORIA CURSO 2011/2013

DATOS DEL/DE LA SOLICITANTE

ANTONIO JOSÉ

MARCHAL INGRAIN

26024590 K E-mail [email protected]

Facultad de Ciencias

Experimentales

Teléfono 953212751

Química Inorgánica y Orgánica

Profesor Titular de Universidad

“Hacia el bilingüismo en los grados. El caso de la Asignatura

Operaciones Básicas de Laboratorio II”

Proyectos para Asignaturas

mplicado/s Química

Departamento/s implicados 1.- Filología Inglesa

2.- Química Inorgánica y Orgánica

Asignatura/s implicada/s Operaciones Básicas de Laboratorio II

Primero

Nº aproximado de alumnos afectados 100 = 50 /curso

Secretariado de Innovación Docente y Formación del Profesorado

DE PROYECTOS DE INNOVACIÓN DOCENTE

[email protected]

953212751

“Hacia el bilingüismo en los grados. El caso de la Asignatura

Química Inorgánica y Orgánica

Operaciones Básicas de Laboratorio II

Vicerrectorado de Docencia y ProfesoradoSecretariado de Innovación Docente y Formación del Profesorado

Ante la escasa oferta de materiales multilingües para la enseñanza y el aprendizaje de conceptos

científico-técnicos asociados al trabajo en un laboratorio químico, en el curso 2007 un grupo interdisciplinar de

profesores y profesoras de la Universidad de Jaén decidimos partici

Proyectos del Vicerrectorado de Innovación Docente y Formación del Profesorado con el proyecto titulado

“Material Multimedia Multilingüe de Introducción a un Laboratorio de Química” (PID7A).

La concesión del citado proy

inédito y en formato CD, que está sirviendo para que los estudiantes universitarios de disciplinas técnicas de la

Universidad de Jaén, hispanohablantes o no, aprendan, afiancen y recuerden múltiples conceptos cien

técnicos en el contexto propio de un laboratorio de química.

Desde la edición del material por el Servicio de Publicaciones de la Universidad de Jaén en el año 2009

se está incluyendo como bibliografía específica recomendada en las guías docentes

laboratorio de química de las titulaciones científico

utilizando en el aula para trabajar otras competencias, como las de “Conocimiento de una lengua extranjera”.

De la experiencia adquirida en el aula con

a trabajar un segundo idioma, hasta el punto de hacer bilingües las clases. A este respecto se ha empezado por

incluir algunos guiones de las prácticas de laboratorio en

vocabulario y la traducción. No obstante, queremos dar un paso más y conseguir que

laboratorio sabiendo expresarse oralmente en inglés para describir una técnica u operación senc

al mismo tiempo, competencias comunicativas fundamentales como la habilidad para hablar en público. Este

sido el objetivo principal del presente proyecto que, con la implicación de profesorado experimentado de dos

departamentos claves, Filología Inglesa y Química Inorgánica y Orgánica,

UUUUUUUUNNNNNNNNIIIIIIIIVVVVVVVVEEEEEEEERRRRRRRRSSSSSSSSIIIIIIIIDDDDDDDDAAAAAAAADDDDDDDD DDDDDDDDEEEEEEEE JJJJJJJJAAAAAAAAÉÉÉÉÉÉÉÉNNNNNNNN Vicerrectorado de Docencia y Profesorado

Secretariado de Innovación Docente y Formación del Profesorado

2

MEMORIA DEL PROYECTO

Justificación

de materiales multilingües para la enseñanza y el aprendizaje de conceptos

técnicos asociados al trabajo en un laboratorio químico, en el curso 2007 un grupo interdisciplinar de

profesores y profesoras de la Universidad de Jaén decidimos participar en la convocatoria 2007

Proyectos del Vicerrectorado de Innovación Docente y Formación del Profesorado con el proyecto titulado

“Material Multimedia Multilingüe de Introducción a un Laboratorio de Química” (PID7A).

La concesión del citado proyecto nos permitió elaborar un material audiovisual en cuatro idiomas,

inédito y en formato CD, que está sirviendo para que los estudiantes universitarios de disciplinas técnicas de la

Universidad de Jaén, hispanohablantes o no, aprendan, afiancen y recuerden múltiples conceptos cien

técnicos en el contexto propio de un laboratorio de química.

Desde la edición del material por el Servicio de Publicaciones de la Universidad de Jaén en el año 2009

se está incluyendo como bibliografía específica recomendada en las guías docentes

laboratorio de química de las titulaciones científico-técnicas que oferta la Universidad de Jaén y se está

utilizando en el aula para trabajar otras competencias, como las de “Conocimiento de una lengua extranjera”.

ia adquirida en el aula con el alumnado se deduce la necesidad de dedicarle más tiempo

a trabajar un segundo idioma, hasta el punto de hacer bilingües las clases. A este respecto se ha empezado por

incluir algunos guiones de las prácticas de laboratorio en inglés para que los estudiantes se familiaricen con el

vocabulario y la traducción. No obstante, queremos dar un paso más y conseguir que

laboratorio sabiendo expresarse oralmente en inglés para describir una técnica u operación senc

al mismo tiempo, competencias comunicativas fundamentales como la habilidad para hablar en público. Este

del presente proyecto que, con la implicación de profesorado experimentado de dos

, Filología Inglesa y Química Inorgánica y Orgánica, hemos perseguido

Secretariado de Innovación Docente y Formación del Profesorado

de materiales multilingües para la enseñanza y el aprendizaje de conceptos

técnicos asociados al trabajo en un laboratorio químico, en el curso 2007 un grupo interdisciplinar de

par en la convocatoria 2007-2009 de

Proyectos del Vicerrectorado de Innovación Docente y Formación del Profesorado con el proyecto titulado

“Material Multimedia Multilingüe de Introducción a un Laboratorio de Química” (PID7A).

un material audiovisual en cuatro idiomas,

inédito y en formato CD, que está sirviendo para que los estudiantes universitarios de disciplinas técnicas de la

Universidad de Jaén, hispanohablantes o no, aprendan, afiancen y recuerden múltiples conceptos científico-

Desde la edición del material por el Servicio de Publicaciones de la Universidad de Jaén en el año 2009

se está incluyendo como bibliografía específica recomendada en las guías docentes de las asignaturas con

técnicas que oferta la Universidad de Jaén y se está

utilizando en el aula para trabajar otras competencias, como las de “Conocimiento de una lengua extranjera”.

se deduce la necesidad de dedicarle más tiempo

a trabajar un segundo idioma, hasta el punto de hacer bilingües las clases. A este respecto se ha empezado por

inglés para que los estudiantes se familiaricen con el

vocabulario y la traducción. No obstante, queremos dar un paso más y conseguir que el alumnado salga del

laboratorio sabiendo expresarse oralmente en inglés para describir una técnica u operación sencilla y desarrolle,

al mismo tiempo, competencias comunicativas fundamentales como la habilidad para hablar en público. Este ha

del presente proyecto que, con la implicación de profesorado experimentado de dos

perseguido.

Vicerrectorado de Docencia y ProfesoradoSecretariado de Innovación Docente y Formación del Profesorado

1. Se han realizado una serie de encuestas que ponen claramente de manifiesto el bajo nivel de inglés

hablado y de comprensión auditiva de los estudiantes de

Universidad de Jaén. Ver Anexo 1

2. Se ha hecho ver a los 100 estudiantes de

2012-2013) la necesidad e importancia de leer, escribir, escuchar y hablar en inglés correctamente

vistas a mejorar su inserción laboral

3. Se ha creado en el alumnado del Grado en Química el hábito

inglés.

4. Se ha trabajado con los estudiantes las siguientes competencias básicas o trasversales de Grado en

Química establecidas en el RD 1393/2007: B1. Capacidad de análisis y síntesis, B2. Capacidad de

organización y planificación, B3. Comunicación oral y escrita en la lengua nativa y, especialmente B4.

Conocimiento de una lengua extranjera, inglés.

5. Se han elaborado ejercicios que han permitido evaluar tanto de forma continua como en el examen final

las competencias anteriormente citadas. Ver Anexo 3

6. Se ha traducido al inglés la Guía Docente de la asignatura del Grado en Química “Operaciones Básicas

de laboratorio II”. Ver Anexo 4

7. El alumnado del Grado en Química

asignatura “Operaciones Básicas de laboratorio II”. Ver Anexo 4.

8. Buena parte del alumnado del Grado en Química ha tenido la oportunidad de leer textos en inglés y

corregir su pronunciación con el apoyo del Profesorado del Departamento de Fil

Universidad participante en el proyecto.

9. Con los textos traducidos al inglés y los

material docente de apoyo al profesorado

asignaturas experimentales como es el caso de “Operaciones Básicas de Laboratorio II” del Grado en

Química. Ver Anexo 5.

UUUUUUUUNNNNNNNNIIIIIIIIVVVVVVVVEEEEEEEERRRRRRRRSSSSSSSSIIIIIIIIDDDDDDDDAAAAAAAADDDDDDDD DDDDDDDDEEEEEEEE JJJJJJJJAAAAAAAAÉÉÉÉÉÉÉÉNNNNNNNN Vicerrectorado de Docencia y Profesorado

Secretariado de Innovación Docente y Formación del Profesorado

3

Objetivos conseguidos

Se han realizado una serie de encuestas que ponen claramente de manifiesto el bajo nivel de inglés

hablado y de comprensión auditiva de los estudiantes de nuevo ingreso en el Grado en Qu

Universidad de Jaén. Ver Anexo 1

hecho ver a los 100 estudiantes de primer curso del Grado en Química (Cursos 2011

2013) la necesidad e importancia de leer, escribir, escuchar y hablar en inglés correctamente

vistas a mejorar su inserción laboral.

Se ha creado en el alumnado del Grado en Química el hábito de leer, escribir, escuchar y hablar en

Se ha trabajado con los estudiantes las siguientes competencias básicas o trasversales de Grado en

Química establecidas en el RD 1393/2007: B1. Capacidad de análisis y síntesis, B2. Capacidad de

y planificación, B3. Comunicación oral y escrita en la lengua nativa y, especialmente B4.

Conocimiento de una lengua extranjera, inglés.

Se han elaborado ejercicios que han permitido evaluar tanto de forma continua como en el examen final

anteriormente citadas. Ver Anexo 3

e ha traducido al inglés la Guía Docente de la asignatura del Grado en Química “Operaciones Básicas

de laboratorio II”. Ver Anexo 4

el Grado en Química ha traducido íntegramente al inglés el cuaderno de lab

asignatura “Operaciones Básicas de laboratorio II”. Ver Anexo 4.

Buena parte del alumnado del Grado en Química ha tenido la oportunidad de leer textos en inglés y

corregir su pronunciación con el apoyo del Profesorado del Departamento de Fil

Universidad participante en el proyecto.

al inglés y los mejores audios grabados se ha iniciado la elaboración de un

al profesorado para favorecer el movimiento hacia el bilingüismo e

asignaturas experimentales como es el caso de “Operaciones Básicas de Laboratorio II” del Grado en

Secretariado de Innovación Docente y Formación del Profesorado

Se han realizado una serie de encuestas que ponen claramente de manifiesto el bajo nivel de inglés

nuevo ingreso en el Grado en Química de la

primer curso del Grado en Química (Cursos 2011-2012 y

2013) la necesidad e importancia de leer, escribir, escuchar y hablar en inglés correctamente con

de leer, escribir, escuchar y hablar en

Se ha trabajado con los estudiantes las siguientes competencias básicas o trasversales de Grado en

Química establecidas en el RD 1393/2007: B1. Capacidad de análisis y síntesis, B2. Capacidad de

y planificación, B3. Comunicación oral y escrita en la lengua nativa y, especialmente B4.

Se han elaborado ejercicios que han permitido evaluar tanto de forma continua como en el examen final

e ha traducido al inglés la Guía Docente de la asignatura del Grado en Química “Operaciones Básicas

el cuaderno de laboratorio de la

Buena parte del alumnado del Grado en Química ha tenido la oportunidad de leer textos en inglés y

corregir su pronunciación con el apoyo del Profesorado del Departamento de Filología Inglesa de la

audios grabados se ha iniciado la elaboración de un

para favorecer el movimiento hacia el bilingüismo en

asignaturas experimentales como es el caso de “Operaciones Básicas de Laboratorio II” del Grado en

Vicerrectorado de Docencia y ProfesoradoSecretariado de Innovación Docente y Formación del Profesorado

La asignatura “Operaciones Básicas de Laboratorio II OBL

materia obligatoria que se imparte en el segundo cuatrimestre del primer curso del Grado en Química y que

completa la formación en operaciones bá

primer cuatrimestre “Operaciones Básicas de Laboratorio I (OBL

En la asignatura OBL-I el alumnado

operaciones básicas de trabajo como pesar, preparar y valorar disoluciones o separar los componentes de una

mezcla mediante extracción simple o múltiple.

En la asignatura OBL-II por otro lado, el estudiante aplica las habilidades experimentales básicas adquiridas en

la Asignatura OBL-I al estudio de casos más complejos como

químicas de compuestos inorgánicos o la purificación y caracterización de productos orgánicos obtenidos

mediante procedimientos sintéticos.

En el anexo 5 se detallan las 12 experiencias que el alumnado tiene que desarrollar en el trascurso de la

asignatura y que han sido traducidas al inglés por

proyecto.

(sesiones de trabajo, Una de las competencias que se trabaja en la asignatura Operaciones Básicas de Laboratorio II OBLII del Grado en Química según se indica en la Guía Docenteinglés”. Hasta el curso 2010-2011 esta competencia se había trabajado incluyendo en el guión de prácticas1.- Una experiencia escrita integramente en inglés, (Exp. 10: Acetylsalicylic Acid (Aspirin). 2.- Cuestiones en inglés que los estudiantes debían responder en inglés y/o en castellano (Ej.pictograms. All of them can be found on the labels of the reagents used in this experiment.

and Spanish." 3.- Cuestiones en castellano que los estudiantes debían responder en inglés. (Ej. vidrio que necesita para realizar la experiencia

Con el desarrollo del presente Proyecto de en la asignatura …

UUUUUUUUNNNNNNNNIIIIIIIIVVVVVVVVEEEEEEEERRRRRRRRSSSSSSSSIIIIIIIIDDDDDDDDAAAAAAAADDDDDDDD DDDDDDDDEEEEEEEE JJJJJJJJAAAAAAAAÉÉÉÉÉÉÉÉNNNNNNNN Vicerrectorado de Docencia y Profesorado

Secretariado de Innovación Docente y Formación del Profesorado

4

Contenidos desarrollados La asignatura “Operaciones Básicas de Laboratorio II OBL-II”, en la que se centra el presente proyecto, es una

materia obligatoria que se imparte en el segundo cuatrimestre del primer curso del Grado en Química y que

completa la formación en operaciones básicas de laboratorio adquirida por el alumnado

primer cuatrimestre “Operaciones Básicas de Laboratorio I (OBL-I)”.

alumnado aprende las normas de seguridad en un laboratorio de química y

de trabajo como pesar, preparar y valorar disoluciones o separar los componentes de una

mezcla mediante extracción simple o múltiple.

II por otro lado, el estudiante aplica las habilidades experimentales básicas adquiridas en

I al estudio de casos más complejos como, por ejemplo, el estudio

químicas de compuestos inorgánicos o la purificación y caracterización de productos orgánicos obtenidos

las 12 experiencias que el alumnado tiene que desarrollar en el trascurso de la

asignatura y que han sido traducidas al inglés por é mismo durante los dos cursos de ejecución del presente

Metodología empleada

(sesiones de trabajo, actividades, recursos didácticos, cronograma, etc)Una de las competencias que se trabaja en la asignatura Operaciones Básicas de Laboratorio II OBLII del Grado en Química según se indica en la Guía Docente [1] es la de “Conocimiento de una lengua

2011 esta competencia se había trabajado incluyendo en el guión de prácticasUna experiencia escrita integramente en inglés, (Exp. 10: Synthesis and Purification Through Recrystallization of

Cuestiones en inglés que los estudiantes debían responder en inglés y/o en castellano (Ej.All of them can be found on the labels of the reagents used in this experiment.

Cuestiones en castellano que los estudiantes debían responder en inglés. (Ej. Escriba en inglés todo el material de vidrio que necesita para realizar la experiencia).

royecto de Innovacion Docente hemos pretendido además que

Secretariado de Innovación Docente y Formación del Profesorado

II”, en la que se centra el presente proyecto, es una

materia obligatoria que se imparte en el segundo cuatrimestre del primer curso del Grado en Química y que

alumnado con la asignatura de

aprende las normas de seguridad en un laboratorio de química y

de trabajo como pesar, preparar y valorar disoluciones o separar los componentes de una

II por otro lado, el estudiante aplica las habilidades experimentales básicas adquiridas en

por ejemplo, el estudio de las propiedades físico-

químicas de compuestos inorgánicos o la purificación y caracterización de productos orgánicos obtenidos

las 12 experiencias que el alumnado tiene que desarrollar en el trascurso de la

mismo durante los dos cursos de ejecución del presente

actividades, recursos didácticos, cronograma, etc) Una de las competencias que se trabaja en la asignatura Operaciones Básicas de Laboratorio II OBLII del Grado en

Conocimiento de una lengua extranjera, preferentemente

2011 esta competencia se había trabajado incluyendo en el guión de prácticas: Synthesis and Purification Through Recrystallization of

Cuestiones en inglés que los estudiantes debían responder en inglés y/o en castellano (Ej."Take a look at the following All of them can be found on the labels of the reagents used in this experiment. Write their meaning in English

Escriba en inglés todo el material de

nnovacion Docente hemos pretendido además que, el alumnado matriculado

Vicerrectorado de Docencia y ProfesoradoSecretariado de Innovación Docente y Formación del Profesorado

1.- traduzca al inglés un texto sencillo.2.- lea correctamente el texto traducido.

Para conseguir ambos objetivos, durante el curso 2011Departamento de Filología Inglesa de la Universidad que han grabado las voces depronunciación en varias sesiones de tutorización durante el transcurso de la asignatura en el 2º cuatrimestre Antes de asignarle al alumnado un textoinicial de inglés hablado, escrito, de comprensión lectora y auditiva. Asimismo también se le preguntó sobre los años de inglés cursados en la escuela, en el instituto y en academias.Con los datos de nivel obtenidos a cada estudiante diferente material bibliográfico y “on lineUna vez que las traducciones contaron con el visto bueno de los profesores implicados en la asignatura después de varias sesiones de tutorización y seguimiento, los estudiantes pasaron a entrevistarse con los profesores del Departamento de Filología Inglesa para leer los textos, corregir su pronunciación y grabar los audios. La última sesión de la asignatura se dedicó a escuchar los audios y trabajarintentando contestar algunas cuestiones relacionadas con loFinalizado el curso 2011-2012, al alumnado practicando y mejorando su nivel de lectura con el apoyo de uno de los profesores del Departamento de Filología Inglesa durante el curso 2012-2013. Si bien buena parte del alumnado por incompatibilidades horarias con otras asignaturas del grado, Aun así y, con objeto de animar al alumnado específicas y transversales también incluidas en el Grado (RD 1393/2007) comoexperimentan los compuestos químicos en el medio ambiente y su incidencia en el mismo”, nuevas situaciones y toma de decisiones”, “razonamiento crítico”, “sensibilidad hacia temas medioambientale“compromiso ético”; a todos se les ha hecho entrega del texto de lectura graduada con CD “Chemical Secret” de Tim Vicary. En este texto se narra el dilema ético y moral al que se enfrenta un científico que trabaja en una fábrica de pinturas que genera vertidos contaminantes. Durante el curso 2012-2013 se ha repetido la experiencia con los estudiantes de nuevo ingreso en el Grado en Química (49) solo que no se ha podido realizar la grabación de los audiosconseguido la traducción integra de todas las experiencias de la asignatura grabados por los estudiantes (51) que ingresaron en el curso 2011ejercicios de gran interés (anexo 3) preferentemente inglés” incluida en la asignatura Operaciones Básicas de Laboratorio II de primer curso del grado en Quimica [1] http://goo.gl/PMDdp;

[2] Marchal, A et col. (2009) Introducción a un Laboratorio de Química. Guía Audivisual Multilíngüe enUniversidad de Jaén.;

[3] Pavia, D.L.; Lampman, G.M.; Kriz_Jr, G.S.; Engel, R.D. (2005) ed. Thonson Brooks/cole.;

[4] Woolins, J.D. (2003) Inorganic Experiments

[5] http://www.pobel.es; http://www.sigmaaldrich.com

UUUUUUUUNNNNNNNNIIIIIIIIVVVVVVVVEEEEEEEERRRRRRRRSSSSSSSSIIIIIIIIDDDDDDDDAAAAAAAADDDDDDDD DDDDDDDDEEEEEEEE JJJJJJJJAAAAAAAAÉÉÉÉÉÉÉÉNNNNNNNN Vicerrectorado de Docencia y Profesorado

Secretariado de Innovación Docente y Formación del Profesorado

5

traduzca al inglés un texto sencillo. ea correctamente el texto traducido.

Para conseguir ambos objetivos, durante el curso 2011-2012 contamos con la colaboración de tres profesores del Departamento de Filología Inglesa de la Universidad que han grabado las voces del alumnado

en varias sesiones de tutorización durante el transcurso de la asignatura en el 2º cuatrimestre

n texto, el primer día de clase se le pasó un breve cuestionario para conocer su nivel inicial de inglés hablado, escrito, de comprensión lectora y auditiva. Asimismo también se le preguntó sobre los años de

instituto y en academias. (Anexo 1) a cada estudiante se le asignó un texto de mayor o menoon line” para abordar la traducción. [2-5]

Una vez que las traducciones contaron con el visto bueno de los profesores implicados en la asignatura después de varias sesiones de tutorización y seguimiento, los estudiantes pasaron a entrevistarse con los profesores del Departamento de

esa para leer los textos, corregir su pronunciación y grabar los audios. La última sesión de la asignatura se dedicó a escuchar los audios y trabajar, con los estudiantesintentando contestar algunas cuestiones relacionadas con los audios.

l alumnado interesado, con mejor nivel, se le ofreció la oportunidad de seguir practicando y mejorando su nivel de lectura con el apoyo de uno de los profesores del Departamento de Filología Inglesa

buena parte del alumnado participante se mostró inicialmente por incompatibilidades horarias con otras asignaturas del grado, solo cinco han podido continuar con la experiencia

l alumnado a que trabaje, además de las competencias lingüísticas, otras competencias específicas y transversales también incluidas en el Grado (RD 1393/2007) como: “Conocer los tipos de reacción que experimentan los compuestos químicos en el medio ambiente y su incidencia en el mismo”, nuevas situaciones y toma de decisiones”, “razonamiento crítico”, “sensibilidad hacia temas medioambientale

a todos se les ha hecho entrega del texto de lectura graduada con CD “Chemical Secret” de Tim Vicary. En este texto se narra el dilema ético y moral al que se enfrenta un científico que trabaja en una fábrica de

vertidos contaminantes.

2013 se ha repetido la experiencia con los estudiantes de nuevo ingreso en el Grado en Química solo que no se ha podido realizar la grabación de los audios por incompatibilidades horarias

conseguido la traducción integra de todas las experiencias de la asignatura del español al inglés.que ingresaron en el curso 2011-2012 nos han permitido elaborar una amplia batería de

(anexo 3) para evaluar la competencia “Conocimiento de una lengua extranjerapreferentemente inglés” incluida en la asignatura Operaciones Básicas de Laboratorio II de primer curso del grado en

Introducción a un Laboratorio de Química. Guía Audivisual Multilíngüe en

Pavia, D.L.; Lampman, G.M.; Kriz_Jr, G.S.; Engel, R.D. (2005) Introduction to Organic Laboratory Techniques

Inorganic Experiments, Weinheim, Wiley-VCH.

/www.sigmaaldrich.com

Secretariado de Innovación Docente y Formación del Profesorado

aboración de tres profesores del l alumnado y le han corregido la

en varias sesiones de tutorización durante el transcurso de la asignatura en el 2º cuatrimestre.

se le pasó un breve cuestionario para conocer su nivel inicial de inglés hablado, escrito, de comprensión lectora y auditiva. Asimismo también se le preguntó sobre los años de

texto de mayor o menor extensión y se le proporcionó

Una vez que las traducciones contaron con el visto bueno de los profesores implicados en la asignatura después de varias sesiones de tutorización y seguimiento, los estudiantes pasaron a entrevistarse con los profesores del Departamento de

on los estudiantes, su comprensión auditiva

interesado, con mejor nivel, se le ofreció la oportunidad de seguir practicando y mejorando su nivel de lectura con el apoyo de uno de los profesores del Departamento de Filología Inglesa

inicialmente interesado, finalmente, solo cinco han podido continuar con la experiencia.

a que trabaje, además de las competencias lingüísticas, otras competencias “Conocer los tipos de reacción que

experimentan los compuestos químicos en el medio ambiente y su incidencia en el mismo”, “capacidad de adaptarse a nuevas situaciones y toma de decisiones”, “razonamiento crítico”, “sensibilidad hacia temas medioambientales” o

a todos se les ha hecho entrega del texto de lectura graduada con CD “Chemical Secret” de Tim Vicary. En este texto se narra el dilema ético y moral al que se enfrenta un científico que trabaja en una fábrica de

2013 se ha repetido la experiencia con los estudiantes de nuevo ingreso en el Grado en Química por incompatibilidades horarias. Aun así, sí se ha

al inglés. Esto junto con los audios permitido elaborar una amplia batería de

Conocimiento de una lengua extranjera, preferentemente inglés” incluida en la asignatura Operaciones Básicas de Laboratorio II de primer curso del grado en

Introducción a un Laboratorio de Química. Guía Audivisual Multilíngüe en CD.

Introduction to Organic Laboratory Techniques, 2nd

Vicerrectorado de Docencia y ProfesoradoSecretariado de Innovación Docente y Formación del Profesorado

Resultados obtenidos

(los materiales o documentos que se hayan producido en la experiencia

Ver apartado Objetivos conseguidos y ANEXOS

(transferencia de los resultados

El impacto de la iniciativa en el alumnado

en inglés en sus institutos según manifiestan

cabo, de que un profesor o profesora les corrigiese la pronunciación.

Puesto que en el marco del EEES a todo

inglés para conseguir el título de grado

y la necesidad de hacer cursos que les permitan mejorarlo.

Por otro lado, la edición de un material audiovisual accesible que incorpore l

servirá para que promociones futuras se beneficien también de la experiencia mejorando indudablemente su

conocimiento de una lengua extranjera, el inglés en el caso que nos ocupa

profesionales de la Química.

Finalmente, puesto que en el marco del EEES, la formación de los graduados se mide en base a la adquisición

de competencias, el diseño de herramientas que permita evaluarlas objetivamente adquiere un papel

trascendental. A este respecto, el desarrollo

de ejercicios (anexo 3), de utilidad

examen final, la competencia “Conocimiento de una lengua extranjera

asignatura Operaciones Básicas de Laboratorio II de primer curso del

bien está incluida en las Guías Docentes de otras cinco asignaturas del Grado en Química de la Universidad de

Jaén, no se evalúa en ninguna de ellas

mismas.

UUUUUUUUNNNNNNNNIIIIIIIIVVVVVVVVEEEEEEEERRRRRRRRSSSSSSSSIIIIIIIIDDDDDDDDAAAAAAAADDDDDDDD DDDDDDDDEEEEEEEE JJJJJJJJAAAAAAAAÉÉÉÉÉÉÉÉNNNNNNNN Vicerrectorado de Docencia y Profesorado

Secretariado de Innovación Docente y Formación del Profesorado

6

se hayan producido en la experiencia deben presentarse en forma de anexo

Ver apartado Objetivos conseguidos y ANEXOS

Proyección e Impacto

(transferencia de los resultados y mejoras en el aprendizaje demostrables)

el alumnado ha sido muy importante al no haber hablado muchos de ellos

según manifiestan, y haber tenido la oportunidad, gracias a la experiencia llevada a

cabo, de que un profesor o profesora les corrigiese la pronunciación.

Puesto que en el marco del EEES a todo el alumnado se le va a exigir que acredite un determinado nivel de

onseguir el título de grado, la experiencia les ha servido para darse cuenta del bajo nivel que tienen

que les permitan mejorarlo.

la edición de un material audiovisual accesible que incorpore los mejores

servirá para que promociones futuras se beneficien también de la experiencia mejorando indudablemente su

conocimiento de una lengua extranjera, el inglés en el caso que nos ocupa, y que

Finalmente, puesto que en el marco del EEES, la formación de los graduados se mide en base a la adquisición

diseño de herramientas que permita evaluarlas objetivamente adquiere un papel

trascendental. A este respecto, el desarrollo del presente proyecto ha permitido elaborar una amplia

de utilidad para evaluar, tanto en un proceso de forma

Conocimiento de una lengua extranjera, preferentemente inglés” incluida en la

asignatura Operaciones Básicas de Laboratorio II de primer curso del Grado en Qu

bien está incluida en las Guías Docentes de otras cinco asignaturas del Grado en Química de la Universidad de

Jaén, no se evalúa en ninguna de ellas siendo por tanto el trabajo realizado un excelente referente para las

Secretariado de Innovación Docente y Formación del Profesorado

en presentarse en forma de anexo)

y mejoras en el aprendizaje demostrables)

ha sido muy importante al no haber hablado muchos de ellos, nunca,

y haber tenido la oportunidad, gracias a la experiencia llevada a

se le va a exigir que acredite un determinado nivel de

, la experiencia les ha servido para darse cuenta del bajo nivel que tienen

s mejores audios del alumnado

servirá para que promociones futuras se beneficien también de la experiencia mejorando indudablemente su

interesa mucho a los futuros

Finalmente, puesto que en el marco del EEES, la formación de los graduados se mide en base a la adquisición

diseño de herramientas que permita evaluarlas objetivamente adquiere un papel

ha permitido elaborar una amplia diversidad

formación continua como en un

preferentemente inglés” incluida en la

rado en Química. Esta competencia, si

bien está incluida en las Guías Docentes de otras cinco asignaturas del Grado en Química de la Universidad de

siendo por tanto el trabajo realizado un excelente referente para las

Vicerrectorado de Docencia y ProfesoradoSecretariado de Innovación Docente y Formación del Profesorado

Evaluación del proceso y Autoevaluación

(instrumentos y recursos empleados)

Las actividades planteadas y llevadas a cabo en el marco del Proyecto de Innovación Docente han sido muy

bien aceptadas por la mayor parte del alumnado de primer curso del Grado en Química

éste su bajo nivel en inglés y, asumir la

1.- Conseguir el título de grado.

2.- Tener opción a una beca de movilidad internacional.

3.- Ampliar el abanico de posibles salidas profesionales.

Si bien durante los dos cursos 2011-2012 y 2012

estudiantes que han demostrado especiales dificultades para resolver las actividades

ellos incluso han suspendido la prueba final escrita)

a sugerir la posibilidad de seguir contando con el apoyo del profesorado del Departamento de Filología

para seguir mejorando su pronunciación en cursos sucesivos.

estudiantes que participaron en el proyecto en el curso 2011

Este apoyo ha sido también fundamental para el profesorado del Departamento de Química Inorgánica y

Orgánica participante en el proyecto dado que, si bien

había que traducir estuvieran a tiempo para una primera corrección por su parte, la revisión definitiva, con los

comentarios oportunos a los errores cometidos

Filología Inglesa en su horario de tutorías

principio, ha permitido mejorar considerablemente la calidad de los textos consiguiéndose así un material muy

válido para ser difundido entre el alumnado en cursos futuros.

Finalmente queremos comentar que si bien el proyecto inicial incluía la grabación en video de las

intervenciones del alumnado ésta se ha desestimado a

su lengua no nativa, más aún si iban a ser grabados. Alternativamente se ha considerado más oportuno grabar

algunas escenas breves de los experimentos para incluirlas en el material bilingüe audiovisual que se está

elaborando.

UUUUUUUUNNNNNNNNIIIIIIIIVVVVVVVVEEEEEEEERRRRRRRRSSSSSSSSIIIIIIIIDDDDDDDDAAAAAAAADDDDDDDD DDDDDDDDEEEEEEEE JJJJJJJJAAAAAAAAÉÉÉÉÉÉÉÉNNNNNNNN Vicerrectorado de Docencia y Profesorado

Secretariado de Innovación Docente y Formación del Profesorado

7

Evaluación del proceso y Autoevaluación

(instrumentos y recursos empleados)

Las actividades planteadas y llevadas a cabo en el marco del Proyecto de Innovación Docente han sido muy

bien aceptadas por la mayor parte del alumnado de primer curso del Grado en Química

asumir la importancia de conocer una lengua extranjera para:

Tener opción a una beca de movilidad internacional.

Ampliar el abanico de posibles salidas profesionales.

2012 y 2012-2013, en los que se ha desarrollado el proyecto ha habido

que han demostrado especiales dificultades para resolver las actividades

pendido la prueba final escrita), la gran mayoría ha respondido con interés

a sugerir la posibilidad de seguir contando con el apoyo del profesorado del Departamento de Filología

para seguir mejorando su pronunciación en cursos sucesivos. Esta idea es la que ha permitido que cinco

ron en el proyecto en el curso 2011-2012 hayan continuado en el curso 2012

Este apoyo ha sido también fundamental para el profesorado del Departamento de Química Inorgánica y

Orgánica participante en el proyecto dado que, si bien éste era el responsable principal de que los textos

estuvieran a tiempo para una primera corrección por su parte, la revisión definitiva, con los

comentarios oportunos a los errores cometidos, ha corrido por cuenta del profesorado del Departa

en su horario de tutorías. Esta doble corrección que podría carecer de importancia en un

principio, ha permitido mejorar considerablemente la calidad de los textos consiguiéndose así un material muy

e el alumnado en cursos futuros.

comentar que si bien el proyecto inicial incluía la grabación en video de las

se ha desestimado al ver las dificultades que presentaba para comunicarse en

más aún si iban a ser grabados. Alternativamente se ha considerado más oportuno grabar

algunas escenas breves de los experimentos para incluirlas en el material bilingüe audiovisual que se está

Otras consideraciones

Secretariado de Innovación Docente y Formación del Profesorado

Las actividades planteadas y llevadas a cabo en el marco del Proyecto de Innovación Docente han sido muy

bien aceptadas por la mayor parte del alumnado de primer curso del Grado en Química (Anexo 2) al reconocer

importancia de conocer una lengua extranjera para:

se ha desarrollado el proyecto ha habido

que han demostrado especiales dificultades para resolver las actividades propuestas (algunos de

respondido con interés llegando incluso

a sugerir la posibilidad de seguir contando con el apoyo del profesorado del Departamento de Filología Inglesa

Esta idea es la que ha permitido que cinco

2012 hayan continuado en el curso 2012-2013.

Este apoyo ha sido también fundamental para el profesorado del Departamento de Química Inorgánica y

el responsable principal de que los textos que

estuvieran a tiempo para una primera corrección por su parte, la revisión definitiva, con los

ha corrido por cuenta del profesorado del Departamento de

. Esta doble corrección que podría carecer de importancia en un

principio, ha permitido mejorar considerablemente la calidad de los textos consiguiéndose así un material muy

comentar que si bien el proyecto inicial incluía la grabación en video de las

ver las dificultades que presentaba para comunicarse en

más aún si iban a ser grabados. Alternativamente se ha considerado más oportuno grabar

algunas escenas breves de los experimentos para incluirlas en el material bilingüe audiovisual que se está

Vicerrectorado de Docencia y ProfesoradoSecretariado de Innovación Docente y Formación del Profesorado

Gastos

Fungibles

Inventariables

Viajes/Actividades 350

Química

preliminares.

420

Research and Innovation ICERI2013. Sevilla

350 Education. ECRICE 2014. Jyväskylä (Finlandia)

Otros 275 €. Libros y CDs de lectura graduada para el alu

proyecto. Chemical Secret de Tim Vicary

comprensión de textos en lengua inglesa.

175 €. Grabadora de video y accesorios

material docente multimedia

Justificación

UUUUUUUUNNNNNNNNIIIIIIIIVVVVVVVVEEEEEEEERRRRRRRRSSSSSSSSIIIIIIIIDDDDDDDDAAAAAAAADDDDDDDD DDDDDDDDEEEEEEEE JJJJJJJJAAAAAAAAÉÉÉÉÉÉÉÉNNNNNNNN Vicerrectorado de Docencia y Profesorado

Secretariado de Innovación Docente y Formación del Profesorado

8

Gastos generados en el segundo año

350 €. Inscripción en las VIII Jornadas de Innovación Docente en

Química INDOQUIM 2013. Alcalá Henares

preliminares.

420 €. Inscripción en 6th International Conference of Education,

Research and Innovation ICERI2013. Sevilla

350 €. Inscripción en European Conference on Research in Chemical Education. ECRICE 2014. Jyväskylä (Finlandia)

€. Libros y CDs de lectura graduada para el alumnado participante en el

proyecto. Chemical Secret de Tim Vicary. Perfeccionamiento capacidad auditiva

comprensión de textos en lengua inglesa.

€. Grabadora de video y accesorios. Grabación de experimentos para

material docente multimedia

Secretariado de Innovación Docente y Formación del Profesorado

€. Inscripción en las VIII Jornadas de Innovación Docente en

. Alcalá Henares. Presentación resultados

6th International Conference of Education,

Research and Innovation ICERI2013. Sevilla

European Conference on Research in Chemical Education. ECRICE 2014. Jyväskylä (Finlandia)

mnado participante en el

. Perfeccionamiento capacidad auditiva y

. Grabación de experimentos para

Vicerrectorado de Docencia y ProfesoradoSecretariado de Innovación Docente y Formación del Profesorado

DATOS DE LOS MIEMBROS DEL GRUPO

Nombre JOSÉ MARÍA

Apellidos MESA VILLAR

D.N.I. 26014548-F

Centro Facultad de Humanidades y

Ciencias de la Educación

Departamento Filología Inglesa

Asignatura impartida

Curso 2º, Optatividad de 2º ciclo, Prácticum.

Categoría Profesor Sustituto Interino (tiempo completo, larga duración). Profesor en el Centro de Estudios Avanzados de Lenguas modernas CEALM

DATOS DE LOS MIEMBROS DEL GRUPO

Nombre CONCEPCIÓN

Apellidos SOTO PALOMO

D.N.I. 24136280-B

Centro Facultad de Humanidades y

Ciencias de la Educación

Departamento Filología Inglesa

Asignatura impartida

Curso Optatividad de 2º ciclo

Categoría Profesora Asociada III

UUUUUUUUNNNNNNNNIIIIIIIIVVVVVVVVEEEEEEEERRRRRRRRSSSSSSSSIIIIIIIIDDDDDDDDAAAAAAAADDDDDDDD DDDDDDDDEEEEEEEE JJJJJJJJAAAAAAAAÉÉÉÉÉÉÉÉNNNNNNNN Vicerrectorado de Docencia y Profesorado

Secretariado de Innovación Docente y Formación del Profesorado

9

DATOS DE LOS MIEMBROS DEL GRUPO

JOSÉ MARÍA

MESA VILLAR

F E-mail [email protected]

Facultad de Humanidades y

Ciencias de la Educación

Teléfono 953213375

Filología Inglesa Lexicología y lexicografía del Inglés (2ª ciclo de Filología Inglesa), Cultura de los Países de Habla Inglesa (2º curso de Estudios Ingleses), Estudio Selectivo de Literatura Inglesa: Drama (2ª ciclo de Filología Inglesa). Prácticum (Magisterio Lengua Extranjera).

2º, Optatividad de 2º ciclo, Prácticum. Profesor Sustituto Interino (tiempo completo, larga

en el Centro de Estudios Avanzados de Lenguas modernas

Firma

José María Mesa Villar

DATOS DE LOS MIEMBROS DEL GRUPO

CONCEPCIÓN

SOTO PALOMO

B E-mail [email protected]

Facultad de Humanidades y

Ciencias de la Educación

Teléfono 953211830

Filología Inglesa

Lingüística Contrastiva Inglés-Español

Optatividad de 2º ciclo

Profesora Asociada III Firma

Concepción Soto Palomo

Secretariado de Innovación Docente y Formación del Profesorado

[email protected]

953213375

lexicografía del Inglés (2ª ciclo de Filología Inglesa), Cultura de los Países de Habla Inglesa (2º curso de Estudios Ingleses), Estudio

Drama (2ª ciclo de Filología Inglesa). Prácticum

José María Mesa Villar

[email protected]

953211830

Concepción Soto Palomo

Vicerrectorado de Docencia y ProfesoradoSecretariado de Innovación Docente y Formación del Profesorado

DATOS DE LOS MIEMBROS DEL GRUPO

Nombre YOLANDA

Apellidos CABALLERO ACEITUNO

D.N.I. 26036456-L

Centro Facultad de Humanidades y

Ciencias de la Educación

Departamento Filología Inglesa

Asignatura impartida

Curso 4º y 1º

Categoría Profesora Ayudante

Doctora

DATOS DE LOS MIEMBROS DEL GRUPO

Nombre NURIA

Apellidos ILLAN CABEZA

D.N.I. 26.027.019

Centro Facultad de Ciencias

Experimentales

Departamento Química Inorgánica y

Asignatura impartida

Curso 11º

Categoría Profesora Titular de

Universidad

(Añadir tantas tablas como participantes en el Proyecto)

UUUUUUUUNNNNNNNNIIIIIIIIVVVVVVVVEEEEEEEERRRRRRRRSSSSSSSSIIIIIIIIDDDDDDDDAAAAAAAADDDDDDDD DDDDDDDDEEEEEEEE JJJJJJJJAAAAAAAAÉÉÉÉÉÉÉÉNNNNNNNN Vicerrectorado de Docencia y Profesorado

Secretariado de Innovación Docente y Formación del Profesorado

10

DATOS DE LOS MIEMBROS DEL GRUPO

CABALLERO ACEITUNO

L E-mail [email protected]

Facultad de Humanidades y

Ciencias de la Educación

Teléfono 953212608

Filología Inglesa

Textos Literarios en Lengua Inglesa (Licenciatura en

Filología Inglesa y Diplomatura en Turismo);

Literatura Inglesa hasta 1660 (Grado en Estudios

Ingleses)

Profesora Ayudante Firma

Yolanda Caballero Aceituno

DATOS DE LOS MIEMBROS DEL GRUPO

ILLAN CABEZA

26.027.019-N E-mail [email protected]

Facultad de Ciencias

Experimentales

Teléfono 953212949

Química Inorgánica y orgánica

Operaciones Básicas de Laboratorio II

a Titular de

Universidad

Firma

Nuria Illán Cabeza(Añadir tantas tablas como participantes en el Proyecto)

Secretariado de Innovación Docente y Formación del Profesorado

[email protected]

953212608

Textos Literarios en Lengua Inglesa (Licenciatura en

Filología Inglesa y Diplomatura en Turismo);

Literatura Inglesa hasta 1660 (Grado en Estudios

Yolanda Caballero

[email protected]

953212949

Nuria Illán Cabeza

Vicerrectorado de Docencia y ProfesoradoSecretariado de Innovación Docente y Formación del Profesorado

VICERRECTOR DE

UUUUUUUUNNNNNNNNIIIIIIIIVVVVVVVVEEEEEEEERRRRRRRRSSSSSSSSIIIIIIIIDDDDDDDDAAAAAAAADDDDDDDD DDDDDDDDEEEEEEEE JJJJJJJJAAAAAAAAÉÉÉÉÉÉÉÉNNNNNNNN Vicerrectorado de Docencia y Profesorado

Secretariado de Innovación Docente y Formación del Profesorado

11

VºBº de Coordinador/a

Fdo.: Antonio Marchal Ingrain

Jaén, a 19 de julio de 2013

VICERRECTOR DE DOCENCIA Y PROFESORADO DE LA UNIVERSIDAD DE JAÉN

Secretariado de Innovación Docente y Formación del Profesorado

de Coordinador/a

Antonio Marchal Ingrain

DE LA UNIVERSIDAD DE JAÉN

Vicerrectorado de Docencia y ProfesoradoSecretariado de Innovación Docente y Formación del Profesorado

ANEXOS

ANEXO 1

ENCUESTAS EVALUACIÓN INICIAL NIVEL DE INGLÉS

ANEXO 2

ENCUESTAS OPINIÓN ESTUDIANTES SOBRE EL PROYECTO

ANEXO 3

EJERCICIOS DE LISTENING

ANEXO 4

CUARDERNO DE LABORATORIO EN INGLÉS

ANEXO 5

MATERIAL MULTIMEDIA

UUUUUUUUNNNNNNNNIIIIIIIIVVVVVVVVEEEEEEEERRRRRRRRSSSSSSSSIIIIIIIIDDDDDDDDAAAAAAAADDDDDDDD DDDDDDDDEEEEEEEE JJJJJJJJAAAAAAAAÉÉÉÉÉÉÉÉNNNNNNNN Vicerrectorado de Docencia y Profesorado

Secretariado de Innovación Docente y Formación del Profesorado

12

ANEXOS

ENCUESTAS EVALUACIÓN INICIAL NIVEL DE INGLÉS

ENCUESTAS OPINIÓN ESTUDIANTES SOBRE EL PROYECTO

LISTENING

CUARDERNO DE LABORATORIO EN INGLÉS

MATERIAL MULTIMEDIA

Secretariado de Innovación Docente y Formación del Profesorado

ENCUESTAS OPINIÓN ESTUDIANTES SOBRE EL PROYECTO

Estimados/as estudiantes,

Como sabréis, si habéis leído la guía Docente de la asignatura OBL 2, una de las competencias a trabajar en la misma es la de Conocimiento de una lengua extranjera, preferentemente inglés.

A este respecto vais a …

1.- realizar y contestar las cuestiones de una experiencia escrita íntegramente en inglés, (Exp. 10)

2.- contestar en inglés o castellano cuestiones escritas en inglés distribuidas en el resto de las experiencias.

3.- nombrar en inglés el material de trabajo básico de laboratorio.

4.- escuchar y comprender varios textos sencillos relacionados con las experiencias que vais a realizar.

5.- traducir al inglés un texto en castellano sencillo relacionado con las experiencias que vais a realizar.

En relación con este último punto y con objeto de poder asignaros un texto acorde con vuestros conocimientos de partida necesitaríamos que rellenarais y nos entregaseis el siguiente cuestionario. THANK YOU SO MUCH.

NAME:

1. Años cursados de inglés en el colegio:

2. Años cursados de inglés en el Instituto:

3. Años cursados de inglés en una Academia:

4. Estancias en el extranjero y duración de las mismas:

5. Nivel acreditado: A1, A2, B1, B2, C1, C2, OTRO:

6. Valórese del 1 al 4 los niveles que cree que tiene de los siguientes aspectos: • Nivel de comprensión auditiva: • Nivel de comprensión lectora: • Nivel de inglés escrito: • Nivel de inglés hablado:

7. Traduzca al inglés y luego al castellano las siguientes frases:

El agua hierve a 100 grados centígrados

Write in Spanish and English the words that represe nt the following pictures that you can find on the labels of the bottles used, as well as their corresponding me aning.

RESULTADOS EVALUACIÓN NIVEL INICIAL DE INGLÉS

Curso 2012-2013

Estudiantes encuestados: 49

1. Años cursados de inglés en colegio: 4

2. Años cursados de inglés en Instituto: 6

3. Estudiantes que han cursado inglés en academia para aprobar o para mejorar: 24

4. Estudiantes que han realizado estancias por estudios en el extranjero: 24

5. Nivel acreditado: A1(1), A2(9), B1(8), B2 (3), C1, C2, OTRO (2), NINGUNO (26):

6. Nivel que dicen los estudiantes que tienen de…:

• Nivel de comprensión lectora (4 máx.): 2.5

• Nivel de comprensión auditiva (4 máx.): 1.5

• Nivel de inglés escrito (4 máx.): 2.4

• Nivel de inglés hablado (4 máx.): 1.9

7. Traduce las siguientes frases: Errores más comun es

El agua hierve a 100 grados centígrados

No conocen el ver bo “ hervir ” (8) Opciones. Is boiling; pass gas, Buill, up burn, boi ld, bois, hierving No conocen la palabra “grados” Watter (2) Wather (2)

Write in Spanish and English the words that represe nt the following pictures that you can find on the labels of the bottles used, as well as their corresponding me aning. Todos tra ducen bien

RESULTADOS EVALUACIÓN NIVEL INICIAL DE INGLÉS

Curso 2011-2012

Estudiantes encuestados: 51

1. Años cursados de inglés en colegio: 4

2. Años cursados de inglés en Instituto: 6

3. Estudiantes que han cursado inglés en academia para aprobar o para mejorar: 15

4. Estudiantes que han realizado estancias por estudios en el extranjero: 7

5. Nivel acreditado: A1(1), A2(2), B1(4), OTRO (3), NINGUNO (41):

6. Nivel que dicen los estudiantes que tienen de…:

• Nivel de comprensión lectora (4 máx.): 2

• Nivel de comprensión auditiva (4 máx.): 2

• Nivel de inglés escrito (4 máx.): 3

• Nivel de inglés hablado (4 máx.): 1.5

7. Traduce las siguientes frases: Errores más comunes

El agua hierve a 100 grados centígrados

No conocen el ver bo “ hervir ” (19) Opciones. burn, boild No conocen la palabra “grados” (23)

Write in Spanish and English the words that represe nt the following pictures that you can find on the labels of the bottles used, as well as their corresponding me aning. No contestan 7

Estimados/as estudiantes: Como habéis podido comprobar durante el desarrollo de la asignatura una de las competencias que hemos intentado que trabajéis ha sido la de Conocimiento de una lengua extranjera, concretamente inglés. Esta competencia se ha trabajado incluyendo en el guión de prácticas: 1.- una experiencia escrita íntegramente en inglés, (Exp. 10: Synthesis of aspirin) 2.- cuestiones en inglés que debían contestarse en castellano o en inglés. 3.- cuestiones en castellano que debían contestarse en inglés (material de laboratorio). Con esto, además habéis traducido al inglés un texto sencillo, se os ha corregido y se os ha grabado una vez trabajada la pronunciación, ritmo y entonación del texto. Puesto que no suele ser habitual trabajar esta competencia en las aulas nos gustaría que, contestando a las siguientes preguntas, nos dieseis vuestra opinión sobre la experiencia llevada a cabo, aspectos positivos, a mejorar y sugerencias. Las cuestiones serán puntuadas, con una X, de 1 a 4 según vuestro grado de acuerdo, siendo 1 la expresión de grado menor y 4 la de grado mayor. ¡¡ GRACIAS !! ITEMS 1 2 3 4

Me ha resultado fácil entender las preguntas formuladas en inglés en el guión de prácticas.

Debería haber más preguntas escritas en inglés para conocer expresiones y vocabulario

específico de química en el guión de prácticas

Me ha resultado fácil seguir la experiencia escrita íntegramente en inglés.

Debería haber más experiencias escritas íntegramente en inglés para conocer vocabulario y

nuevas estructuras gramaticales en el guión de prácticas.

Me ha resultado fácil contestar en inglés algunas preguntas.

Deberíamos contestar más cuestiones en inglés para mejorar nuestro vocabulario y

expresiones gramaticales.

Me ha resultado fácil seguir los videos sobre técnicas de laboratorio en inglés.

Deberíamos ver más videos sobre técnicas de laboratorio en inglés.

El texto que se me ha asignado para traducir ha sido fácil.

Valoro positivamente que un profesor/a de inglés corrija mi pronunciación.

Hubiese sido necesario dedicarle más tiempo a corregir mi pronunciación con el profesor/a de

inglés.

Escuchar las grabaciones es bueno para mejorar mi pronunciación.

Al menos una sesión de laboratorio debería ser en inglés para mejorar mi conocimiento de

inglés.

Creo que sería capaz de seguir una sesión de laboratorio íntegramente en inglés.

Al menos una sesión de laboratorio debería ser bilingüe para mejorar mi conocimiento de

inglés.

Creo que sería capaz de seguir una sesión de laboratorio bilingüe.

En su conjunto las actividades realizadas me han ayudado a mejorar mi conocimiento de

inglés.

Sugerencias o mejoras adicionales que introducirías:

RESULTADOS DE … Encuesta de evaluación del proyecto PID17_201113 re alizada los días 7 de junio y 8 de junio por los alumnos/as de la asignatura “Operaciones Bá sicas de Laboratorio II” participantes en el mismo. Alumnos participantes en el proyecto: 55 (A: 15; B: 14; C: 12; D: 14) Alumnos encuestados: 38 (69%) (A: 13 (87%); B: 5(36 %); C: 11(92%); D: 9 (64%)

ITEM

FORMULADOS

CUESTIONES

1 Me ha resultado fácil entender las preguntas formuladas en inglés en el guión de

prácticas.

2 Debería haber más preguntas escritas en inglés para conocer expresiones y vocabulario

específico de química en el guión de prácticas

3 Me ha resultado fácil seguir la experiencia escrita íntegramente en inglés.

4 Debería haber más experiencias escritas íntegramente en inglés para conocer vocabulario

y nuevas estructuras gramaticales en el guión de prácticas.

5 Me ha resultado fácil contestar en inglés algunas preguntas.

6 Deberíamos contestar más cuestiones en inglés para mejorar nuestro vocabulario y

expresiones gramaticales.

7 Me ha resultado fácil seguir los videos sobre técnicas de laboratorio en inglés.

8 Deberíamos ver más videos sobre técnicas de laboratorio en inglés.

9 El texto que se me ha asignado para traducir ha sido fácil.

10 Valoro positivamente que un profesor/a de inglés corrija mi pronunciación.

11 Hubiese sido necesario dedicarle más tiempo a corregir mi pronunciación con el

profesor/a de inglés.

12 Escuchar las grabaciones es bueno para mejorar mi pronunciación.

13 Al menos una sesión de laboratorio debería ser en inglés para mejorar mi conocimiento

de inglés.

14 Creo que sería capaz de seguir una sesión de laboratorio íntegramente en inglés.

15 Al menos una sesión de laboratorio debería ser bilingüe para mejorar mi conocimiento de

inglés.

16 Creo que sería capaz de seguir una sesión de laboratorio bilingüe.

17 En su conjunto las actividades realizadas me han ayudado a mejorar mi conocimiento de

inglés.

IMPORTANCIA QUE LOS ESTUDIANTES DAN A CADA ITEM

GRUPO A y B 18

GRUPO C y D 20

TOTAL 38

¿? 1 2 3 4 NC 72 máx

1 2 3 4 NC 80máx

1 2 3 4 NC 152máx

10 0 0 7 11 0 65 0 1 8 11 0 70 135 (8.8)

12 0 0 10 8 0 62 1 2 9 8 0 64 126 (8.3)

8 0 2 8 8 0 60 1 3 6 10 0 65 125 (8.2)

9 0 1 9 8 0 61 1 4 9 6 0 60 121 (7.9)

17 0 1 9 7 1 57 1 0 9 9 1 64 121 (7.9)

1 0 5 6 7 0 56 0 4 9 7 0 63 119 (7.8)

15 0 3 7 8 0 59 0 5 12 3 0 58 117 (7.7)

3 0 2 9 7 0 59 0 2 10 6 0 58 117 (7.7)

16 1 3 6 7 1 53 0 5 10 5 0 60 113 (7.4)

13 0 5 5 8 0 57 0 9 7 4 0 55 112 (7.3)

5 0 5 9 4 0 53 1 4 13 2 0 56 109 (7.1)

6 0 4 8 6 0 56 1 10 4 5 0 53 109 (7.1)

7 2 3 8 5 0 52 2 5 9 4 0 55 107 (7.0)

2 0 5 9 4 0 53 2 6 9 3 0 53 106 (7.0)

4 1 6 6 5 0 51 2 7 7 4 0 53 104 (6.8)

11 4 9 1 4 0 41 3 7 6 4 0 56 97 (6.3)

14 2 5 8 3 0 48 2 12 5 1 0 45 93 (6.1)

GRUPO A y B 18

GRUPO C y D 20

TOTAL 38

¿? 1 2 3 4 NC 72 máx

1 2 3 4 NC 80máx

1 2 3 4 NC 152máx

1 0 5 6 7 0 56 0 4 9 7 0 63 119 2 0 5 9 4 0 53 2 6 9 3 0 53 106 3 0 2 9 7 0 59 0 2 10 6 0 58 117 4 1 6 6 5 0 51 2 7 7 4 0 53 104 5 0 5 9 4 0 53 1 4 13 2 0 56 109 6 0 4 8 6 0 56 1 10 4 5 0 53 109 7 2 3 8 5 0 52 2 5 9 4 0 55 107 8 0 2 8 8 0 60 1 3 6 10 0 65 125 9 0 1 9 8 0 61 1 4 9 6 0 60 121 10 0 0 7 11 0 65 0 1 8 11 0 70 135 11 4 9 1 4 0 41 3 7 6 4 0 56 97 12 0 0 10 8 0 62 1 2 9 8 0 64 126 13 0 5 5 8 0 57 0 9 7 4 0 55 112 14 2 5 8 3 0 48 2 12 5 1 0 45 93 15 0 3 7 8 0 59 0 5 12 3 0 58 117 16 1 3 6 7 1 53 0 5 10 5 0 60 113 17 0 1 9 7 1 57 1 0 9 9 1 64 121

Student´s name: ________________________________________ Listen the record number 1 and try to complete the gaps.

Put a pinch of manganese dioxide into a clean, dry glass test

tube, and use an ______________(1) to measure its total mass.

The margin of error must be less than 0.01g. Add about 1 gram of

dry _________ (2) chlorate, then weigh again and shake softly to

homogenize the mixture. Clamp the ________ (3) to a stand so as

to keep it at a constant 45 degree angle. Heat it lightly using a

__________(4), making sure you avoid a loss of solids or any

crackling issues. Once the solid melts, raise the heat as much as

possible for a few (5). Allow some time for the test

tube to cool down and _______ (6) again. Put another pinch

of____________(7) into a clean, dry glass test tube, and use an

analytical balance to ___________(8) its total mass. Again, the

margin of error must be less than 0.01g. The teacher will then

provide a (9) of potassium chlorate and potassium

chloride in unknown proportions: put about (10) into the

already weighed test tube that contains the manganese dioxide.

Once added, weigh again and _______ (11) the tube to mix its

contents. Follow the same process explained above to heat the test

tube once more. Finally, allow it to cool down and repeat the

weighing step –this time with the final ________ (12).

Student´s name:________________________________________ Listen the record number 2 and try to complete the gaps

Choose one of the two cola drinks A or B that the teacher will

provide us and find out if they have caffeine or not. For this, pour

about ______ (1) mL of cola drink in a ______ (2), add 2 g of

potassium carbonate and shake it with a ______ (3) to eliminate the

maximum amount of ___________ (4). Next, pour the mixture into a

____________ (5) and add 15 ml of dichloromethane. Shake it to

prevent the _______ (6) to pop out by the effect of pressure and to

avoid emulsions. Organic phase is separated and aqueous phase is

extracted twice, using 20 ml of _____________ (7). Then, organic

phases are put together and treated with anhydrous sodium

__________ (8). The dry organic extract is filtered in a previously

weighed ___________ (9) and then, the solvent is removed in

the____________ (10). If the cola drink has ________ (11); it must

appear on the walls of the flask as a ____________ (12). Finally, the

flask is weighed again and the yield of caffeine extracted is

calculated.

Student´s name:________________________________________ Listen the record number 3 and try to complete the gaps

In a 250 mL round bottom flask resting on a ______ (1), 100

mL of a water-acetone ______ (2) is added. As it was done above, a

_________ (3) is added and then the flask is holded with a

_______(4) to a metallic support. Place the flask on a ________ (5)

and, greasing the standard-taper joints with silicone, attach a

vigreux ______ (6) and then, a _______________ (7) with a

___________ (8). After that, joint the condenser holding it with a

clamp, the bend adapter and a graduated beaker. Heat bath water

and wait to collect the first drop of distillate to record the

_____________ (9). Then, when the distillation is regular, the

distillation temperature is recorded and the collecting beaker is

replaced by a ____________ (10) to measure how much distillate is

obtained. When the temperature starts to drop, the distillation flask

is removed from the ___________ (11), then the graduated cylinder

is removed and finally, all the apparatus is disassembled piece by

piece in reverse.

Student´s name:________________________________________ Listen the record number 4 and try to complete the gaps

Filtration is a technique used to _________ (1) a solid from the

solution where it is initially. If we want the solution, filtration must be

done under gravity through a highly ______________ (2) in a glass

conical funnel. If we want the solid, filtration is most efficiently done

under suction through a flat filter in a porcelain ___________ (3).

Both kinds of filtrations are used in a procedure for purification of

solid substances called ___________ (4). This one consists of:

- Solving the impure solid in the minimum amount of a

___________ (5),

- ________ (6) by gravity the hot solution to remove any

insoluble ________ (7),

- ________ (8),the solution to ambient temperature

- ________ (9), the crystals by ________ (10) filtration.

1

Student´s name: ___________________________________ _____ Listen the record number 5 and try to complete the gaps.

Weigh 2.0 g of __________ (1) and transfer them to a 100 mL ______________(2).

Add 4.0 mL of acetic anhydride and then add 5 drops of concentrated________ (3).

Shake the flask gently until the salicycilic acid dissolves.

Let the flask cool down to room temperature till the acetylsalicylic acid begins to

crystallize. If it does not, scratch the walls of the flask with a _________ (4) and let

the mixture cool down in an __________ (5) until crystallization takes place.

Once crystal formation is completed, add 50 mL of water and shake the flask gently

in order to liberate the crystals.

By means of __________ (6), collect the product on a ___________ (7). Add a

small amount of cold water to assist the transfer of crystals to the funnel. Rinse the

crystals several times with small portions of ________(8). Keep on with the suction

on the Büchner funnel for some minutes, drawing air through the crystals till they are

free of solvent.

Sometimes the crude product may contain some unreacted salicyclic acid residues,

so purification by ______________ (9) may be necessary.

In order to select the most adequate solvent, transfer a bit of solid to _________

(10) and add to each of them 1 ml of cool water, _________ (11) and ethyl acetate

respectively.

Pay attention to that solvent in which the solid is not dissolved at room temperature

and then, heat the tubes in a ____________ (12).

Student´s name: ___________________________________ _____ Listen the record number 6 and try to complete the gaps. In this ___________ (1), caffeine will be isolated from tea bags and separated from

other accompanying ___________ (2) thanks to their different acid-basic

__________ (3) and their different __________ (4) in both water and organic

_______ (5).

Weigh 1 g of potassium _________ (6), transfer it to a beaker and dissolve it in 100

mL of water. Add a _________ (7), heat the solution on a __________ (8) and when

it is about to boil turn the hotplate off and place ______ (9) tea bags into the hot

solution so that they lie flat on the bottom of the ______ (10) and are fully covered

by water. After 10 minutes, remove the tea bags by gently pushing them against the

walls of the flask with the help of a glass rod or a _____ (11), avoiding breaking it.

Clean the bags with water and finally dispose of them in a solid waste _______ (12).

Cool the brown solution at room temperature and transfer it to a ___________ (13)

through a bed of cotton.

Student´s name: ___________________________________ _____ Listen the record number 7 and try to complete the gaps.

Solvent Extraction is a ____________(1) technique used to ______ (2) a compound

from an _______ (3) solution by shaking with an _______(4) solvent, the extractor

solvent.

To get a most efficient extraction, the extractor solvent must:

- be _________ (5) with the aqueous solution where the required compound is

initially,

- dissolve the required compound ________ (6) than water,

- not ________ (7) with the required compound,

- be easily ________ (8),

- not to be _________ (9) or _______ (10).

Student´s name: ___________________________________ _____ Listen the record number 8 and try to complete the gaps.

Chromatography is a ________ (1) which can _________ (2) the components

of a ________ (3) due to their different interactions with a _______ (4) phase (solid

or liquid) when they are pulled along by a _______ (5) phase (gaseous or liquid).

Chromatography can be either ______ (6) or in _______ (7) according to the

layout of the stationary phase.

Thin layer chromatography, usually called ______ (8), is the most used type of

plane chromatography.

Here, a solid stationary phase is attached to a _______ (9) and a liquid, which

is called ______ (10), and which rises up by ________ (11) sweeping and

separating the components of the mixture.

This type of chromatography is useful for:

1. ________ (12) the purity of a compound

2. ________ (13) the components of quite complex mixtures

3. ________ (14) and ________ (15) the components of a mixture

4. ________(16) the progress of a reaction

Student´s name: ___________________________________ _____ Academic course: __________________________________ ____

BACHELOR IN CHEMISTRY

FACULTY: EXPERIMENTAL SCIENCES

ACADEMIC COURSE: 1

COURSE GUIDE

1. BASIC DATA OF THE SUBJECT NAME: BASIC LABORATORY OPERATIONS II CODE: 10311004 CHARACTER: BASIC ECTS credits: 6 course: 1º semester: 2º 2. BASIC DATA FROM INSTRUCTORS NAME (coordinator): DEPARMENT: Inorganic and Organic Chemistry PLACE: B3 AREA Nº OFFICE: TLF: PREREQUIREMENTS: None CONTEXT IN THE DEGREE: Compulsory subject which is imparted in the 2nd semester of the 1st course. This subject will develop and expand on the practical skills which students acquired in Basic Laboratory Operations I (1st semester) RECOMMENDATIONS AND CURRICULAR ADAPTATIONS : Possessing a medium level in English and having passed the subject Basic Laboratory Operations I 4. COMPETENCES AND LEARNING OUTCOMES

CODE SKILLS B4 Knowledge of a foreign language (preferably English). B11 Sensibility towards environmental issues Q3 Skills in the evaluation, interpretation and synthesis of chemical

information and data. P1 Skills in the safe handling of chemical materials, taking into account

their physical and chemical properties, including any specific hazards associated with their use.

P2 Skills required for the participation in and development of the standard laboratory procedures required and use of instrumentation in synthetic and analytical work, in relation to both organic and inorganic systems.

P3 Skills in the monitoring, through observation and measurement, of chemical properties, events or changes, and in the systematic and reliable recording and documentation thereof.

C1 Knowledge of the main aspects of chemical terminology, nomenclature, conventions and units

LEARNING OUTCOMES

Result 1 S/he knows basic vocabulary in English related to security, reagents and basic laboratory operations.

Result 2 S/he is able to minimize the generation of residues and manage them

Result 3 S/he has knowledge and skills in the safe handling of chemical materials, taking into account their hazards and the possible risks associated with their use

Result 4 S/he is able to apply the basic practical skills acquired in the subject Basic Laboratory Operation I to complex situations.

Result 5 S/he knows the experimental techniques used in the purification of a chemical compound.

Result 6 S/he knows the procedures to be followed in the chemical characterization of a chemical compound.

Result 7 S/he is able to interpret and communicate in an adequate way the results of the experiments using a proper scientific terminology.

5. CONTENTS Part I: Basic Operations applied to the study of ph ysicochemical properties of inorganic compounds 1.- Determining the atomic mass of magnesium (Mg) 2.- Determining the molecular mass of CO2 3.- Establishing the formula of KClO3 4.- Obtention and acid-base properties of HCl and NH3 5.- Obtention and study of redox properties of H2O2 6.- Obtention and physical properties of [Cu(NH3)4]SO4·H2O Part II: Isolation of compounds from reaction media, natural and commercial sources . 7.- Separation and purification of the components of a mixture through distillation 8.- Isolation of essential oils from aromatic plants through steam distillation 9.- Isolation of caffeine from a cola drink and tea leaves. 10.- Isolation and identification of the components of an Analgesic Tablet 11.- Synthesis and purification through recrystallization of acetylsalicylic acid (Aspirin) 12.- Monitoring the progress of a reaction by means of thin layer chromatography and isolation of products.

6. METHODS AND ACTIVITIES

ACTIVITIES CLASSROOM HOURS

AUTONOMOUS LEARNING

HOURS

TOTAL HOURS

ECTS CREDITS

COMPETENCES (Codes)

Introductory seminar 8.0 8 16 0.80 B4, B11, C1

Tutorials 2.0 2 4 0.20 Q3

Practice 1 3.5 6 9.5 0.35

B4, P1, P2, P3, Q3, C1

Practice 2 3.5 6 9.5 0.35

Practice 3 4.0 7 11 0.40

Practice 4 4.0 7 11 0.40

Practice 5 4.0 7 11 0.40

Practice 6 4.0 7 11 0.40

Practice 7 3.5 6 9.5 0.35 Practice 8 4.0 7 11 0.40

Practice 9 3.5 6 9.5 0.35

Practice 10 4.0 7 11 0.35

Practice 11 4.0 7 11 0.40

Practice 12 4.0 7 11 0.40

Theorical -practical exam 4 4 0.40

B4, P1, P2, P3, Q3, C1

TOTAL: 60 90 150 6 7. ASSESSMENT METHODS 1. Monitoring the work done by the student in the lab 2. Laboratory reports 3. Theoretical-practical examination

ASPECT ASSESMENT INSTRUMENT WEIGHT (a) Attendance and participation

- Punctuality -Active participation in seminars and tutorials

Teacher notes and observation of the students.

25 %

Laboratory reports

-Well-written reports: · Grammar and neat presentation · Quality in the use of references · Quality of the texts translated into English. · Originality

Weekly revision

15 %

Conceptual understanding

-Knowledge and mastery of the theoretical and practical issues of the subject. -Mastery of the basic English terminology needed to work in a laboratory

Theorical-practical examination

60 %

(a) The percentages above will exclusively be applied if, and only if, the students get, at least, 3 out of 10 points in the theoretical-practical exam. Once this requirement has been met, the students will be awarded a passing mark if the final qualification in the subject is of 5 out of 10 points, in accordance with the evaluative system regulated by the RD 1125/2003 (September 5) which, following the European Credit System, specifies the evaluative procedure to be applied in official university degrees.

8. REFERENCES SPECIFIC OR BASIC :

1. GARCÉS, A. “Experimentación en Química Inorgánica”, Ed. Dykinson 2009. Experiences 1-6 2. RAMOS, M. M. y VARGAS, C. “LABORATORIO DE QUIMICA ORGANICA”, EDITORIAL

UNIVERSITARIA RAMON ARECES, MADRID: 2006. Experiences 7, 8 y 9 3. MARTINEZ M.A., CSÁKY A.G.“Técnicas Experimentales en Síntesis Orgánica” Ed. Síntesis S.A;

1998. Experiences 1-12 4. MARCHAL, A et col. “Introduction to Laboratory of Chemistry. Multilingual Audivisual Guide” CD.

Universidad de Jaén, 2009 Experiences 7-12 5. PAVÍA D.L., LAMPMAN G.M., KRIZ-Jr G.S, Engel, R.D. "Introduction to Organic Laboratory

Techniques", 2nd ed., Thonson Brooks/cole, 2005 Experiences 7-12. 6. Webs

www.chemspider.com http://www.ub.edu/oblq/ http://www.liceoagb.es/quimiorg/indice.html

GENERAL AND COMPLEMENTARY: 1. WOOLLINS J.D. (ed.); "Inorganic Experiments", VCH; 2003. 2. HORTA A., ESTEBAN S., NAVARRO R., CORNAGO P., BARTHELEMY C; “Técnicas

experimentales de Química”, UNED, 2001. 3. CONTRERAS A., CASELLES, M. J., MOLERO, M ; “Introducción a la Química Experimental. (I)El

laboratorio de Química. Instalaciones y Material. (II) Productos o Sustancias Químicas. (III) Técnicas Básicas de Laboratorio”.3 videos y 2 teaching guides. UNED 1992

9. SCHEDULE (second semester)

WEEK

Sem

inar

Tut

oria

l

Exp

erim

enta

l w

ork

Act

ivity

n

Aut

onom

ous

lear

ning

Exa

m

Observations

Semester 2nd 1st : 2nd: 3nd 4th : 5th : 6th :

7th : 8th : 9th : 10th : 11th : 12th : 13th : 14th : 15th :

Total hours :

1

Lab Safety Rules

http://nobel.scas.bcit.ca/debeck_pt/science/safety.htm#gg

GENERAL GUIDELINES

1. Conduct yourself in a responsible manner at all times in the laboratory.

2. Follow all written and verbal instructions carefully. If you do not understand a direction or part of a procedure, ASK YOUR TEACHER BEFORE PROCEEDING WITH THE ACTIVITY.

3. Never work alone in the laboratory. No student may work in the science classroom without the presence of the teacher.

4. When first entering a science room, do not touch any equipment, chemicals, or other materials in the laboratory area until you are instructed to do so.

5. Perform only those experiments authorized by your teacher. Carefully follow all instructions, both written and oral. Unauthorized experiments are not allowed.

6. Do not eat food, drink beverages, or chew gum in the laboratory. Do not use laboratory glassware as containers for food or beverages.

2

7. Be prepared for your work in the laboratory.procedures thoroughly before entering the laboratory.fool around in the laboratory. Horseplay, practical jokes, and pranks are dangerous and prohibited.

8. Always work in a well-ventilated area.

9. Observe good housekeeping practices. Work areas should be kept clean and tidy at all times.

10. Be alert and proceed with caution at all times in the laboratory. Notify the teacher immediately of any unsafe conditions you observe.

11. Dispose of all chemical waste properly.chemicals in sink drains. Sinks are to be used only for water. Check with your teacher for disposal of chemicals and solutions.

12. Labels and equipment instructions must be read carefully before use. Set up and use the equipment as directed by your teacher.

13. Keep hands away from face, eyes, mouth, and body while using chemicals or lab equipment. Wash your hands with soap and water after performing all experiments.

14. Experiments must be personally monitored at all times.not wander around the room, distract other students, startle other students or interfere with the laboratory experiments of others.

15. Know the locations and operating procedures of all safety equipment including: first aid kit(s), and fire extinguisher.where the fire alarm and the exits are located.

16. Know what to do if there is a fire drill during a laboratory period; containers must be closed, and any electrical equipment turned off.

7. Be prepared for your work in the laboratory. Read all procedures thoroughly before entering the laboratory. Never

Horseplay, practical jokes, and

Work areas should

10. Be alert and proceed with caution at all times in the Notify the teacher immediately of any unsafe

pose of all chemical waste properly. Never mix Sinks are to be used only for water.

Check with your teacher for disposal of chemicals and

12. Labels and equipment instructions must be read carefully up and use the equipment as directed by your

13. Keep hands away from face, eyes, mouth, and body while Wash your hands with soap

y monitored at all times. Do not wander around the room, distract other students, startle other students or interfere with the laboratory experiments of

15. Know the locations and operating procedures of all safety it(s), and fire extinguisher. Know

where the fire alarm and the exits are located.

16. Know what to do if there is a fire drill during a laboratory period; containers must be closed, and any electrical equipment

3

CLOTHING

17. Any time chemicals, heat, or glassware are used, students will wear safety goggles. NO EXCEPTIONS TO THIS RULE!

18. Contact lenses may be not be worn in the laboratory.

19. Dress properly during a laboratory activity. Long hair, dangling jewelry, and loose or baggy clothing are a hazard in the laboratory. Long hair must be tied back, and dangling jewelry and baggy clothing must be secured. Shoes must completely cover the foot. No sandals allowed on lab days.

20. A lab coat or smock should be worn during laboratory experiments.

ACCIDENTS AND INJURIES

21. Report any accident (spill, breakage, etc.) or injury (cut, burn, etc.) to the teacher immediately, no matter how trivial it seems. Do not panic.

22. If you or your lab partner is hurt, immediately (and loudly) yell out the teacher's name to get the teacher's attention. Do not panic.

23. If a chemical should splash in your eye(s) or on your skin, immediately flush with running water for at least 20 minutes. Immediately (and loudly) yell out the teacher's name to get the teacher's attention.

HANDLING CHEMICALS

HANDLING GLASSWARE AND EQUIPMENT

HEATING SUBSTANCES

4

24. All chemicals in the laboratory are to be considered dangerous. Avoid handling chemicals with fingers. Always use a tweezer. When making an observation, keep at least 1 foot away from the specimen. Do not taste, or smell any chemicals.

25. Check the label on all chemical bottles twice before removing any of the contents. Take only as much chemical as you need.

26. Never return unused chemicals to their original container.

27. Never remove chemicals or other materials from the laboratory area.

28. Never handle broken glass with your bare hands.brush and dustpan to clean up broken glass.glass in the designated glass disposal container.

29. Examine glassware before each use. Never use chipped, cracked, or dirty glassware.

30. If you do not understand how to use a piece of equipment,ASK THE TEACHER FOR HELP!

31. Do not immerse hot glassware in cold water.may shatter.

32. Do not operate a hot plate by yourself. Take care that hair, clothing, and hands are a safe distance from the hot plate at all times. Use of hot plate is only allowed in the presence of the teacher.

33. Heated glassware remain very hot for a long time.should be set aside in a designated place to cool, and picked up with caution. Use tongs or heat protective gloves if necessary.

34. Never look into a container that is being heated.

35. Do not place hot apparatus directly on the laboratory desk.Always use an insulated pad. Allow plenty of time for hot apparatus to cool before touching it.

24. All chemicals in the laboratory are to be considered dangerous. Avoid handling chemicals with fingers. Always use a

. When making an observation, keep at least 1 foot Do not taste, or smell any chemicals.

25. Check the label on all chemical bottles twice before Take only as much chemical as

return unused chemicals to their original container.

remove chemicals or other materials from the

handle broken glass with your bare hands. Use a brush and dustpan to clean up broken glass. Place broken glass in the designated glass disposal container.

Never use chipped,

do not understand how to use a piece of equipment,

31. Do not immerse hot glassware in cold water. The glassware

Take care that hair, hands are a safe distance from the hot plate at all

Use of hot plate is only allowed in the presence of the

33. Heated glassware remain very hot for a long time. They should be set aside in a designated place to cool, and picked up

Use tongs or heat protective gloves if necessary.

look into a container that is being heated.

35. Do not place hot apparatus directly on the laboratory desk. Allow plenty of time for hot

5

6

R & S phrases

Indication of Particular Risks

R1: Explosive when dry

2: Risk of explosion by shock, friction, fire or other sources of ignition

3: Extreme risk of explosion by shock, friction, fire or other sources of ignition

4: Forms very sensitive explosive metallic compounds

5: Heating may cause an explosion

6: Explosive with or without contact with air

7: May cause fire

8: Contact with combustible material may cause fire

9: Explosive when mixed with combustible material

10: Flammable

11: Highly Flammable

12: Extremely Flammable

14: Reacts violently with water

15: Contact with water liberates extremely flammable gases

16: Explosive when mixed with oxidizing substances

17: Spontaneously flammable in air

18: In use may form flammable/explosive vapor-air mixture

19: May form explosive peroxides

20: Harmful by inhalation

21: Harmful in contact with skin

22: Harmful if swallowed

23: Toxic by inhalation

24: Toxic in contact with skin

25: Toxic if swallowed

26: Very Toxic by inhalation

27: Very Toxic in contact with skin

28: Very Toxic if swallowed

29: Contact with water liberates toxic gas

30: Can become highly flammable in use

31: Contact with acids liberates toxic gas

32: Contact with acids liberates very toxic gas

33: Danger of cumulative effects

34: Causes burns

35: Causes severe burns

36: Irritating to the eyes

37: Irritating to the respiratory system

38: Irritating to the skin

39: Danger of very serious irreversible effects

40: Limited evidence of a carcinogenic effect

41: Risk of serious damage to eyes

42: May cause sensitization by inhalation

43: May cause sensitization by skin contact

44: Risk of explosion if heated under confinement

45: May cause cancer

46: May cause heritable genetic damage

48: Danger of serious damage to health by prolonged exposure

49: May cause cancer by inhalation

50: Very Toxic to aquatic organisms

51: Toxic to aquatic organisms

52: Harmful to aquatic organisms

53: May cause long-term adverse effects in the aquatic environment

54: Toxic to flora

55: Toxic to fauna

56: Toxic to soil organisms

57: Toxic to bees

58: May cause long-term adverse effects in the environment

59: Dangerous for the ozone layer

60: May impair fertility

61: May cause harm to the unborn child

62: Possible risk of impaired fertility

63: Possible risk of harm to the unborn child

64: May cause harm to breast-fed babies

65: Harmful: May cause lung damage if swallowed

66: Repeated exposure may cause skin dryness or cracking

67: Vapors may cause drowsiness and dizziness

68: Possible risk of irreversible effects

7

Combination of Risks

14/15: Reacts violently with water, liberating extremely flammable gases

15/29: Contact with water liberates toxic, extremely flammable gas

20/21: Harmful by inhalation and in contact with skin

20/21/22: Harmful by inhalation, in contact with skin and if swallowed

20/22: Harmful by inhalation and if swallowed

21/22: Harmful in contact with skin and if swallowed

23/24: Toxic by inhalation and in contact with skin

23/24/25: Toxic by inhalation, in contact with skin and if swallowed

23/25: Toxic by inhalation and if swallowed

24/25: Toxic in contact with skin and if swallowed

26/27: Very Toxic by inhalation and in contact with skin

26/27/28: Very Toxic by inhalation, in contact with skin and if swallowed

26/28: Very Toxic by inhalation and if swallowed

27/28: Very Toxic in contact with skin and if swallowed

36/37: Irritating to eyes and respiratory system

36/37/38: Irritating to eyes, respiratory system and skin

36/38: Irritating to eyes and skin

37/38: Irritating to respiratory system and skin

39/23: Toxic: danger of very serious irreversible effects through inhalation

39/23/24: Toxic: danger of very serious irreversible effects through inhalation in contact with skin

39/23/24/25: Toxic: danger of very serious irreversible effects through inhalation, in contact with skin and if swallowed

39/23/25: Toxic: danger of very serious irreversible effects through inhalation and if swallowed

39/24: Toxic: danger of very serious irreversible effects in contact with skin

39/24/25: Toxic: danger of very serious irreversible effects in contact with skin and if swallowed

39/25: Toxic: danger of very serious irreversible effects if swallowed

39/26: Very Toxic: danger of very serious irreversible effects through inhalation

39/26/27: Very Toxic: danger of very serious irreversible effects through inhalation and in contact with skin

39/26/27/28: Very Toxic: danger of very serious irreversible effects through inhalation, in contact with skin and if swallowed

39/26/28: Very Toxic: danger of very serious irreversible effects through inhalation and if swallowed

39/27: Very Toxic: danger of very serious irreversible effects in contact with skin

39/27/28: Very Toxic: danger of very serious irreversible effects in contact with skin and if swallowed

39/28: Very Toxic: danger of very serious irreversible effects if swallowed

42/43: May cause sensitization by inhalation and skin contact

48/20: Harmful: danger of serious damage to health by prolonged exposure through inhalation

48/20/21: Harmful: danger of serious damage to health by prolonged exposure through inhalation and in contact with skin

48/20/21/22: Harmful: danger of serious damage to health by prolonged exposure through inhalation, and in contact with skin and if swallowed

48/20/22: Harmful: danger of serious damage to health by prolonged exposure through inhalation and if swallowed

48/21: Harmful: danger of serious damage to health by prolonged exposure in contact with skin

48/21/22: Harmful: danger of serious damage to health by prolonged exposure in contact with skin and if swallowed

48/22: Harmful: danger of serious damage to health by prolonged exposure if swallowed

48/23: Toxic: danger of serious damage to health by prolonged exposure through inhalation

48/23/24: Toxic: danger of serious damage to health by prolonged exposure through inhalation and in contact with skin

48/23/24/25: Toxic: danger of serious damage to health by prolonged exposure through inhalation, in contact with skin and if swallowed

48/23/25: Toxic: danger of serious damage to health by prolonged exposure through inhalation and if swallowed

48/24: Toxic: danger of serious damage to health by prolonged exposure in contact with skin

48/24/25: Toxic: danger of serious damage to health by prolonged exposure in contact with skin and if swallowed

48/25: Toxic: danger of serious damage to health by prolonged exposure if swallowed

50/53: Very Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment

51/53: Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment

52/53: Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment

68/20: Harmful: possible risk of irreversible effects through inhalation

68/20/21: Harmful: possible risk of irreversible effects through inhalation and in contact with skin

68/20/21/22: Harmful: possible risk of irreversible effects through inhalation, in contact with skin and if swallowed

68/20/22: Harmful: possible risk of irreversible effects through inhalation and if swallowed

68/22: Harmful: possible risk of irreversible effects if swallowed

68/21: Harmful: possible risk of irreversible effects in contact with skin

68/21/22: Harmful: possible risk of irreversible effects in contact with skin and if swallowed

68/22: Harmful: possible risk of irreversible effects if swallowed

8

Indication of Safety Precautions

S1: Keep locked up

2: Keep out of the reach of children

3: Keep in a cool place

4: Keep away from living quarters

5: Keep contents under ... (appropriate liquid to be specified by the manufacturer)

6: Keep under ... (inert gas to be specified by the manufacturer)

7: Keep container tightly closed

8: Keep container dry

9: Keep container in a well-ventilated place

12: Do not keep the container sealed

13: Keep away from food, drink and animal feeding stuffs

14: Keep away from ... (incompatible materials to be indicated by the manufacturer)

15: Keep away from heat

16: Keep away from sources of ignition - No smoking

17: Keep away from combustible material

18: Handle and open container with care

20: When using, do not eat or drink

21: When using, do not smoke

22: Do not breathe dust

23: Do not breathe gas/fumes/vapor/spray (appropriate wording to be specified by the manufacturer)

24: Avoid contact with skin

25: Avoid contact with eyes

26: In case of contact with eyes, rinse immediately with plenty of water and seek medical advice

27: Take off immediately all contaminated clothing

28: After contact with skin, wash immediately with plenty of ... (to be specified by the manufacturer)

29: Do not empty into drains

30: Never add water to this product

33: Take precautionary measures against static discharges

35: This material and its container must be disposed of in a safe way

36: Wear suitable protective clothing

37: Wear suitable gloves

38: In case of insufficient ventilation, wear suitable respiratory equipment

39: Wear eye/face protection

40: To clean the floor and all objects contaminated by this material use ... (to be specified by the manufacturer)

41: In case of fire and/or explosion do not breathe fumes

42: During fumigation/spraying wear suitable respiratory equipment (appropriate wording to be specified)

43: In case of fire, use ... (indicate in the space the precise type of fire-fighting equipment. If water increases the risk add - Never use water)

45: In case of accident or if you feel unwell, seek medical advice immediately (show label where possible)

46: If swallowed, seek medical advice immediately and show this container or label

47: Keep at temperature not exceeding ... E C (to be specified by the manufacturer)

48: Keep wetted with ... (appropriate material to be specified by the manufacturer)

49: Keep only in the original container

50: Do not mix with ... (to be specified by the manufacturer)

51: Use only in well-ventilated areas

52: Not recommended for interior use on large surface areas

53: Avoid exposure - obtain special instruction before use

56: Dispose of this material and its container to hazardous or special waste collection point

57: Use appropriate container to avoid environmental contamination

59: Refer to manufacturer/supplier for information on recovery/recycling

60: This material and/or its container must be disposed of as hazardous waste

61: Avoid release to the environment. Refer to special instructions safety data sheet

62: If swallowed, do not induce vomiting: seek medical advice immediately and show this container or label

63: In case of accident by inhalation, remove casualty to fresh air and keep at rest

64: If swallowed, rinse mouth with water (only if the person is conscious)

Code Hazard statements Hazard class CategorySignal word

Pictogram P-Codes

H200 Unstable Explosive Explosives Unstable Explosive DangerP201, P202, P281, P372, P373, P380,

P401, P501

H201 Explosive; mass explosion hazard Explosives Div 1.1 DangerP210, P230, P240, P250, P280,

P370+P380, P372, P373, P401, P501

H202 Explosive; severe projection hazard Explosives Div 1.2 DangerP210, P230, P240, P250, P280,

P370+P380, P372, P373, P401, P501

H203 Explosive; fire, blast or projection hazard Explosives Div 1.3 DangerP210, P230, P240, P250, P280,

P370+P380, P372, P373, P401, P501

H204 Fire or projection hazard Explosives Div 1.4 WarningP210, P240, P250, P280, P370+P380,

P372, P373, P374, P401, P501

H205 May mass explode in fire Explosives Div 1.5 DangerP210, P230, P240, P250, P280,

P370+P380, P372, P373, P401, P501

Div 1.6

H220 Extremely flammable gas Flammable gases Category 1 Danger P210, P377, P381, P403

H221 Flammable gas Flammable gases Category 2 Warning P210, P377, P381, P403

H222 Extremely flammable aerosol Flammable aerosols Category 1 Danger P210, P211, P251, P410+P412

H223 Flammable aerosol Flammable aerosols Category 2 Warning P210, P211, P251, P410+P412

H224 Extremely flammable liquid and vapour Flammable liquids Category 1 Danger

H225 Highly Flammable liquid and vapour Flammable liquids Category 2 Danger

H226 Flammable liquid and vapour Flammable liquids Category 3 Warning

H227 Combustible liquid Flammable liquids Category 4 WarningP210, P280, P370+P378, P403+P235,

P501

H228 Flammable solid Flammable solids Category 1 Danger

H228 Flammable solid Flammable solids Category 2 Warning

H240 Heating may cause an explosionSelf-reactive substances and mixtures; and Organic

peroxidesType A Danger

P210, P220, P234, P280, P370+ P378, P370+ P380+P375, P403+P235, P411, P420, P501

H241 Heating may cause a fire or explosionSelf-reactive substances and mixtures; and

Organic peroxidesType B Danger

P210, P220, P234, P280, P370+P378, P370+ P380+P375, P403+P235, P411, P420, P501

H242 Heating may cause a fire Self-reactive substances and mixtures; and

Organic peroxidesType C, D, Danger P210, P220, P234, P280, P370+P378,

P403+P235, P411, P420, P501

H242 Heating may cause a fire Self-reactive substances and mixtures; and

Organic peroxidesType E, F Warning P210, P220, P234, P280, P370+P378,

P403+P235, P411, P420, P501Type G

H250 Catches fire spontaneously if exposed to air Pyrophoric liquids; Pyrorophoric solids Category 1 Danger P210, P222, P280, P302+P334, P370+P378, P422

H251 Self-heating; may catch fire Self-heating substances and mixtures Category 1 Danger

H252 Self-heating in large quantities; may catch fire Self-heating substances and mixtures Category 2 Warning

H260In contact with water releases flammable gases which may

ignite spontaneouslySubstances And Mixtures Which, In Contact With Water,

Emit Flammable GasesCategory 1 Danger

H261 In contact with water releases flammable gas Substances And Mixtures Which, In Contact With Water,

Emit Flammable GasesCategory 2 Danger

H261 In contact with water releases flammable gas Substances And Mixtures Which, In Contact With Water,

Emit Flammable GasesCategory 3 Warning P231+P232, P280, P370+P378,

P402+P404, P501

H270 May cause or intensify fire; oxidizer Oxidising gases Category 1 DangerP220, P244, P370+P376, P403

H271 May cause fire or explosion; strong oxidiser Oxidising liquids;Oxidising solids Category 1 DangerP210, P220, P221, P280, P283, P306+P360, P371+P380+P375, P370+P378, P501

H272 May intensify fire; oxidizer Oxidising liquids;Oxidising solids Category 2 Danger

H272 May intensify fire; oxidizer Oxidising liquids;Oxidising solids Category 3 Warning

H280 Contains gas under pressure; may explode if heated Gases under pressureCompressed gas

Liquefied gas Dissolved gas

WarningP410+P403

H281 Contains refrigerated gas; may cause cryogenic burns or injury Gases under pressureRefrigerated liquefied

gasWarning

P282, P336, P315, P403

H290 May be corrosive to metals Corrosive to Metals Category 1 WarningP234, P390, P404

H300 Fatal if swallowed Acute toxicity,oral Category 1, 2 Danger P264, P270, P301+P310, P321, P330, P405, P501

H301 Toxic if swalloed Acute toxicity,oral Category 3 Danger P264, P270, P301+P310, P321, P330, P405, P501

H302 Harmful if swallowed Acute toxicity,oral Category 4 WarningP264, P270, P301+P312, P330, P501

H303 May be harmfulif swallowed Acute toxicity,oral Category 5 P312

H304 May be fatal if swallowed and enters airways Aspiration hazard Category 1 Danger

H305 May be fatal if swallowed and enters airways Aspiration hazard Category 2 Warning

H310 Fatal in contact with skin Acute toxicity,dermal Category 1, 2 DangerP262, P264, P270, P280, P302+P350, P310, P322, P361, P363, P405, P501

H311 Toxic in contact with skin Acute toxicity,dermal Category 3 Danger P280, P302+P352, P312, P322, P361, P363, P405, P501

H312 Harmful in contact with skin Acute toxicity,dermal Category 4 Warning P280,P302+P352, P312, P322, P363, P501

H313 May be harmful in contact with skin Acute toxicity,dermal Category 5 P312

H314 Causes severe skin burns and eye damage Skin corrosion/irritation Category 1A, B, C Danger

P260,P264, P280, P301+P330+ P331, P303+P361+P353, P363, P304+P340, P310, P321, P305+ P351+P338, P405, P501

H315 Causes skin irritation Skin corrosion/irritation Category 2 Warning P264, P280, P302+P352, P321, P332+P313, P362

H316 Causes mild skin irritation Skin corrosion/irritation Category 3 WarningP332+P313

H317 May cause an allergic skin reaction Sensitisation, Skin Category 1 Warning P261, P272, P280, P302+P352, P333+P313, P321, P363, P501

P210, P220, P221P280, P370+P378, P501

P301+P310, P331, P405, P501

P210,P233, P240, P241, P242, P243, P280, P303+ P361+P353, P370+P378,

P403+P235, P501

P223, P231+P232, P280, P335+ P334, P370+P378, P402+P404, P501

P210, P240,P241, P280, P370+P378

P235+P410, P280, P407, P413, P420

Page 1 / 2

H318 Causes serious eye damage Serious eye damage/eye irritation Category 1 DangerP280, P305+P351+P338, P310

H319 Causes serious eye irritation Serious eye damage/eye irritation Category 2A Warning P264, P280, P305+P351+P338, P337+P313P

H320 Causes eye irritation Serious eye damage/eye irritation Category 2B WarningP264, P305+P351+P338, P337+P313

H330 Fatal if inhaled Acute toxicity,inhalation Category 1, 2 DangerP260, P271, P284, P304+P340, P310,

P320, P403+P233, P405, P501

H331 Toxic if inhaled Acute toxicity,inhalation Category 3 Danger P261, P271, P304+P340, P311, P321, P403+P233, P405, P501

H332 Harmful if inhaled Acute toxicity,inhalation Category 4 WarningP261, P271, P304+P340, P312

H333 May be harmful if inhaled Acute toxicity,inhalation Category 5 P304+P312

H334May cause allergy or asthma symptoms or breathing

difficulties if inhaledSensitisation, respiratory Category 1 Danger P261, P285, P304+P341, P342+P311,

P501

H335 May cause respiratory irritationSpecific target organ toxicity, single exposure;

Respiratory tract irritationCategory 3 Warning

H336 May cause drowsiness or dizzinessSpecific target organ toxicity,single exposure; Narcotic

effectsCategory 3 Warning

H340 May cause genetic defects Germ cell mutagenicity Category 1A, 1B Danger

H341 Suspected of causing genetic defects Germ cell mutagenicity Category 2 Warning

H350 May cause cancer Carcinogenicity Category 1A, 1B Danger

H351 Suspected of causing cancer Carcinogenicity Category 2 Warning

H360 May damage fertility or the unborn child Reproductive toxicity Category 1A, 1B Danger

H361 Suspected of damaging fertility or the unborn child Reproductive toxicity Category 2 Warning

H362 May cause harm to breast-fed children Reproductive toxicity, effects on or via lactation Additional categoryP201, P260, P263, P264, P270, P308+P313

H370 Causes damage to organs Specific target organ toxicity, single exposure Category 1 DangerP260, P264, P270, P307+P311, P321,

P405, P501

H371 May cause damage to organs Specific target organ toxicity, single exposure Category 2 WarningP260, P264, P270, P309+P311, P405,

P501

H372Causes damage to organs through prolonged or

repeated exposureSpecific target organ toxicity, repeated exposure Category 1 Danger P260, P264, P270, P314, P501

H373Causes damage to organs through prolonged or

repeated exposureSpecific target organ toxicity, repeated exposure Category 2 Warning P260, P314, P501

H400 Very toxic to aquatic lifeHazardous to the aquatic environment, acute

hazardCategory 1 Warning P273, P391, P501

H401 Toxic to aquatic lifeHazardous to the aquatic environment, acute

hazardCategory 2

H402 Harmful to aquatic lifeHazardous to the aquatic environment, acute

hazardCategory 3

H410 Very toxic to aquatic life with long lasting effectsHazardous to the aquatic environment, long-term

hazardCategory 1 Warning

H411 Toxic to aquatic life with long lasting effectsHazardous to the aquatic environment, long-term

hazardCategory 2

H412 Harmful to aquatic life with long lasting effectsHazardous to the aquatic environment, long-term

hazardCategory 3

H413 May cause long lasting harmful effects to aquatic lifeHazardous to the aquatic environment, long-term

hazardCategory 4

H420Harms public health and the environment by destroying

ozone in the upper atmosphereHazardous to the ozone layer Category 1 Warning P502

EUH001 Explosive when dryEUH006 Explosive with or without contact with airEUH014 Reacts violently with waterEUH018 In use may form flammable/explosive vapour-air mixtureEUH019 May form explosive peroxidesEUH029 Contact with water liberates toxic gasEUH031 Contact with acids liberates toxic gasEUH032 Contact with acids liberates very toxic gasEUH044 Risk of explosion if heated under confinementEUH059 Hazardous to the ozone layerEUH066 Repeated exposure may cause skin dryness or crackingEUH070 Toxic by eye contact

Additional Hazard statements - EU Left-overs

P273, P501

P273, P391, P501

P273, P501

P201, P202, P281, P308+P313, P405, P501

P201,P202, P281, P308+P313, P405, P501

P201, P202, P281, P308+P313, P405, P501

P261, P271, P304+P340, P312, P403+P233, P405, P501

Page 2 / 2

Precautionary statements - General

P101 If medical advice is needed,have product container or label at hand.P102 Keep out of reach of children.P103 Read label before use

Precautionary statements — Prevention

P201 Obtain special instructions before use.P202 Do not handle until all safety precautions have been read and understood.P210 Keep away from heat/sparks/open flames/hot surfaces. — No smoking.P211 Do not spray on an open flame or other ignition source.P220 Keep/Store away from clothing/…/combustible materials.P221 Take any precaution to avoid mixing with combustibles/…P222 Do not allow contact with air.P223 Keep away from any possible contact with water, because of violent reaction and possible flash fire.P230 Keep wetted with …P231 Handle under inert gas.P232 Protect from moisture.P233 Keep container tightly closed.P234 Keep only in original container.P235 Keep cool. P240 Ground/bond container and receiving equipment.P241 Use explosion-proof electrical/ventilating/lighting/…/equipment.P242 Use only non-sparking tools.P243 Take precautionary measures against static discharge.P244 Keep reduction valves free from grease and oil.P250 Do not subject to grinding/shock/…/friction.P251 Pressurized container: Do not pierce or burn, even after use.P260 Do not breathe dust/fume/gas/mist/vapours/spray.P261 Avoid breathing dust/fume/gas/mist/vapours/spray.P262 Do not get in eyes, on skin, or on clothing.P263 Avoid contact during pregnancy/while nursing.P264 Wash hands thoroughly after handling.P264 Wash skin thouroughly after handling. P270 Do not eat, drink or smoke when using this product.P271 Use only outdoors or in a well-ventilated area.P272 Contaminated work clothing should not be allowed out of the workplace.P273 Avoid release to the environment.P280 Wear protective gloves/protective clothing/eye protection/face protection.P281 Use personal protective equipment as required.P282 Wear cold insulating gloves/face shield/eye protection.P283 Wear fire/flame resistant/retardant clothing.P284 Wear respiratory protection.P285 In case of inadequate ventilation wear respiratory protection.P231 + P232 Handle under inert gas. Protect from moisture.P235 + P410 Keep cool. Protect from sunlight.

Precautionary statements — Response

P301 IF SWALLOWED:P304 IF INHALED:P305 IF IN EYES:P306 IF ON CLOTHING:P307 IF exposed:P308 IF exposed or concerned:P309 IF exposed or if you feel unwell:P310 Immediately call a POISON CENTER or doctor/physician.P311 Call a POISON CENTER or doctor/physician.P312 Call a POISON CENTER or doctor/physician if you feel unwell.P313 Get medical advice/attention.P314 Get medical advice/attention if you feel unwell.P315 Get immediate medical advice/attention.

Page 1 / 3

P320 Specific treatment is urgent (see … on this label).P321 Specific treatment (see … on this label).P322 Specific measures (see …on this label).P330 Rinse mouth.P331 Do NOT induce vomiting.P332 IF SKIN irritation occurs: P333 If skin irritation or rash occurs:P334 Immerse in cool water/wrap n wet bandages.P335 Brush off loose particles from skin.P336 Thaw frosted parts with lukewarm water. Do not rub affected area.P337 If eye irritation persists: P338 Remove contact lenses, if present and easy to do. Continue rinsing.P340 Remove victim to fresh air and keep at rest in a position comfortable for breathing.P341 If breathing is difficult, remove victim to fresh air and keep at rest in a position comfortable for breathing.P342 If experiencing respiratory symptoms:P350 Gently wash with plenty of soap and water.P351 Rinse cautiously with water for several minutes.P352 Wash with plenty of soap and water.P353 Rinse skin with water/shower.P360 Rinse immediately contaminated clothing and skin with plenty of water before removing clothes.P361 Remove/Take off immediately all contaminated clothing.P362 Take off contaminated clothing and wash before reuse.P363 Wash contaminated clothing before reuse.P370 In case of fire:P371 In case of major fire and large quantities:P372 Explosion risk in case of fire.P373 DO NOT fight fire when fire reaches explosives.P374 Fight fire with normal precautions from a reasonable distance.P376 Stop leak if safe to do so. Oxidising gases (section 2.4) 1P377 Leaking gas fire: Do not extinguish, unless leak can be stopped safely.P378 Use … for extinction.P380 Evacuate area.P381 Eliminate all ignition sources if safe to do so.P390 Absorb spillage to prevent material damage.P391 Collect spillage. Hazardous to the aquatic environmentP301 + P310 IF SWALLOWED: Immediately call a POISON CENTER or doctor/physician.P301 + P312 IF SWALLOWED: call a POISON CENTER or doctor/physician IF you feel unwell.P301 + P330 + P331 IF SWALLOWED: Rinse mouth. Do NOT induce vomiting.P302 + P334 IF ON SKIN: Immerse in cool water/wrap in wet bandages.P302 + P350 IF ON SKIN: Gently wash with plenty of soap and water.P302 + P352 IF ON SKIN: wash with plenty of soap and water.P303 + P361 + P353 IF ON SKIN (or hair): Remove/Take off Immediately all contaminated clothing. Rinse SKIN with water/shower.P304 + P312 IF INHALED: Call a POISON CENTER or doctor/physician if you feel unwell.P304 + P340 IF INHALED: Remove victim to fresh air and Keep at rest in a position comfortable for breathing.P304 + P341 IF INHALED: If breathing is difficult, remove victim to fresh air and keep at rest in a position comfortable for breathing.P305 + P351 + P338

P306 + P360 IF ON CLOTHING: Rinse Immediately contaminated CLOTHING and SKIN with plenty of water before removing clothes.P307 + P311 IF exposed: call a POISON CENTER or doctor/physician.P308 + P313 IF exposed or concerned: Get medical advice/attention.P309 + P311 IF exposed or if you feel unwell: call a POISON CENTER or doctor/physician.P332 + P313 IF SKIN irritation occurs: Get medical advice/attention.P333 + P313 IF SKIN irritation or rash occurs: Get medical advice/attention.P335 + P334 Brush off loose particles from skin. Immerse in cool water/wrap in wet bandages.P337 + P313 IF eye irritation persists: Get medical advice/attention.P342 + P311 IF experiencing respiratory symptoms: call a POISON CENTER or doctor/physician.P370 + P376 in case of fire: Stop leak if safe to Do so.P370 + P378 In case of fire: Use … for extinction.P370 + P380 in case of fire: Evacuate area.P370 + P380 + P375 in case of fire: Evacuate area. Fight fire remotely due to the risk of explosion.P371 + P380 + P375 in case of major fire and large quantities: Evacuate area. Fight fire remotely due to the risk of explosion.

Precautionary statements — Storage

P401 Store …P402 Store in a dry place.P403 Store in a well-ventilated place.P404 Store in a closed container.

IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.

Page 2 / 3

IA9000 SERIES

Digital Melting Point

Apparatus

Operating and Safety Instructions

10

Upon receipt of the instrument proceed consecutively as follows:- 4.2.1 Power Supply.

The power supply supplied with your new IA 9100 supports all A.C. Mains supply voltages within the range of 100V to 240V inclusive at 50-60Hz. Do not use the power supply with a D.C. supply voltage or in conjunction with any type of voltage regulation equipment. Do not use with a mains supply supplying power at a different frequency other than that stated.

4.2.2 Set-Up

N.B. DO NOT ATTEMPT TO MOVE ADJUSTMENT ARM BEFORE RELEASING CLAMP SCREWS. (See Figure 2). After releasing the clamp screws, adjust the angle and extension of the arm, and rotate the oven head if required in order to establish the most comfortable viewing position; re-tighten screws. Do not over tighten.

11

4.2.3 Connections.

a) Insert the jack connection Plug from the Power Supply Unit into the instrument supply socket.

b) Connect the Power Supply mains cable to the Power Supply

Unit.

c) Plug the Mains power supply cable into the supply outlet.

4.2.4 Start up. Switch the power on. Observe all indicator lights flash momentarily and then the display rolls from 9999 to 0000 and settles at the oven ambient temperature. NOTE: In order to attain maximum accuracy from the unit it is important to allow all components to stabilise at their working temperature. It is recommended therefore that the unit is switched on for 30 minutes before use. Alternatively the unit may be switched on overnight at ambient temperature. The bulb will supply sufficient heat to maintain stability. The insulation material of the oven may absorb small amounts of moisture if left un-powered for any length of time (dependant upon ambient conditions). It is suggested the oven is heated up to a temperature of 400"C before use as described in sections 4.2.6 and 4.2.7, with the removed, and then allowed to cool, switching the oven off as in section 4.12.13 before replacing the lens.

12

4.2.5 Prepare a Sample Up to three samples may be accommodated in the tube guide. To prepare a sample proceed as follows: Break a new capillary tube in half and insert the powdered sample in the tube. The quantity should be such that the height dose no exceed 1mm. Locate the sample in the tube guide. It is recommended that three tubes are inserted even if each tube dose not contain a sample.

4.2.6 Enter the ‘set Point’ (This should be 2 to 5"C below the expected melt point). Proceed as follows (a figure of 107"C is given as an example):- Press arrow UP key eleven times (value 10"C per keystroke) to set a temperature of 110"C. Press the arrow DOWN key three times (value –1"C per key stroke) to reduce the ‘set-point’ to 107"C. If an error is made, press the CLEAR key and recommence entering the set point.

4.2.7 GOTO ‘Set Point’ Press GOTO key. The four bar L.E.D’s will illuminate consecutively as the temperature rises. To review the ‘Set Point’ Press the UP arrow key and the ‘Set Point’ will be displayed for approximately 1 second. When the ‘Set Point’ temperature is reached the left hand L.E.D. on the GOTO key will illuminate and three audible bleeps will sound to indicate the temperature has stabilised.

4.2.8 Initiate Ramp. Press GOTO to initiate the temperature ramp of 1.0"C per minute. The four bar L.E.D’s and the left hand L.D.D on the GOTO will go out. The right-hand L.E.D will illuminate. After a brief delay the oven temperature will commence to rise at 1.0"C per minute.

4.2.8a Fast Ramp Selection – See Appendix B (Page 27).

13

4.2.9 Analysis and Storage of Melt points. The four basic stages of melting should be anticipated as described in Principals of Operation on Page 6. Proceed as follows: Adjust the object lens by rotation until a sharp focus on the sample is obtained. When the desired stage of melt is observed press the GOTO key to store that temperature in the memory. Up to four values can be stored. An additional L.E.D. above the GOTO key will illuminate as each value is stored. After the fourth value is stored the oven temperature will return to the ‘Set Point’. N.B. If less than four melt points are to be stored, press the CLEAR key once only after the last temperature has been stored, the oven temperature will return to ‘Set Point’.

4.2.10 Recall of Information. To review the melt points: The display will show the temperature of each successive melt point held in the memory with each subsequent depression of the GOTO key. An L.E.D. above the GOTO will indicate which of the stored temperatures is being displayed. If less than four temperatures have been recorded then unused memory will be displayed by 0000. N.B. Temperatures must be recorded on paper at this point.

4.2.11 a) b)

To Carry out further melt Press CLEAR only once. The current ‘Set Point’ will be displayed. If this is the value desired, press GOTO keys as in section 4.2.7. If a new ‘Set Point’ is desired press the UP/DOWN keys as in section 4.2.6. Press GOTO key as in section 4.2.7. Do not insert new samples until temperature has stabilised at the new ‘Set Point’ (as indicated in section 4.2.7). After insertion allow 2 minutes for tubes and samples to stabilise at the ‘Set Point’ before initiating ramp as in section 4.2.8. N.B. Faster cooling where required can be achieved by the insertion of a Cold Finger (Accessory AZ9001).

14

4.2.12 1. 2. 2a. 3. 4.

CLEAR Key. The CLEAR key may be operated at any time and will, depending upon the current stage, function as follows: If as section 4.2.6 operation of the CLEAR key will reset display to 0000 If at section 4.2.7 by pressing CLEAR key the display will show oven temperature and heater will control to ’Set point’. Press CLEAR again and display shows 0000. Enter new ‘Set Point’ as described in section 4.2.6 If at section 4.2.8, pressing CLEAR once will prevent further entry into the memory of the melt points, and the oven will revert to ‘Set Point’. Pressing CLEAR again will display current ‘Set Point’ – proceed at section 4.2.6

4.2.13 Oven off Pressing CLEAR key three times during any stage will turn off the heating to the oven.

Basic Laboratory Operations II

1

EXPERIMENT 1 Determining the atomic mass of magnesium (Mg)

Name: Date: 1.- Introduction The reaction of magnesium with an acid solution (HCl in this experiment) produces hydrogen gas. The atomic mass of magnesium –expressed in grams– can be calculated by measuring the volume of hydrogen gas produced when hydrochloric acid is added to a given quantity of magnesium whose weight is known. 2.- Main aims of the experiment and learning outcom es

1. Calculating the atomic mass of a metal by measuring the amount of hydrogen produced.

2. Building an appropriate apparatus for the reaction between a metal and an acid solution.

3. Learning the general properties of metals and hydrogen. 3.- Pre-laboratory work

1. Learn the English terms and phrases used to refer to the labware tools and equipment required for this experiment.

2. Focus on and enumerate the physical properties of hydrogen H2, copper Cu and magnesium Mg.

3. Look for a table that shows the relationship between H2 vapor and temperature. 4. Consider the standard potentials of reduction for Eº(Cu2+/Cu) and Eº(Mg2+/Mg). 5. Calculate how to prepare 1 L of HCl solution (6M) from another solution of HCl (37%)

with a density of 1.19 g/mL. 6. Be aware of the risks embedded in the experiment and adopte all the security

measures needed when deal with reagents such as the ones used in this experiment. 7. References

Basic Laboratory Operations II

3

4.- Laboratory work: Material

Laboratory stand with clamps One graduated test tube with a cork 500 mL graduated beaker

Products

A 6 M solution of HCl. Magnesium ribbon. A spiral of copper wire

Procedure Weigh a piece of magnesium ribbon between 2 and 3 centimeters long with a precision of +/- 0.001g. Wind the magnesium ribbon onto a thick copper wire spiral attached to a cork stopper. You may need to drill a small hole in the cork yourself –so that it fits snugly. Separately, add 6 mL of a 6-8 M HCl solution into a test tube graduated in terms of volume (± 1 mL). Then add enough distilled water to fill it up: this must be done with extreme care, so as to avoid (as much as possible) mixing water with the acid added previously. As you carefully drop the liquid into the test tube, make sure to sweep away any remains of acid left in the mouth of the vial, which must be clean before going on with the experiment. Should any bubbles stick to its inner walls after the filling process, tap the test tube gently with your fingers until they come off. Once the previous step is complete, plug the cork into the test tube, making sure it fits perfectly. The copper wire spiral plus the piece of magnesium ribbon will be submerged in the water. Remember that, after plugging the cork, no air bubbles must remain inside the vial. The possible mixture of the water with the HCl solution must be avoided, too. Using your finger to cover the hole of the cork stopper, turn the test tube invert the test tube. Without bringing it back to the original position, put it inside a 500 mL graduated beaker and clamp it onto the stand –so that it is held in vertical position (check figure 1). The acid, denser than water, will diffuse at that point and react with the magnesium wound onto the spiral. At this point, tap the test tube lightly for a few minutes so as to remove any bubbles from its (inner) sides. Subsequently, read the volume of hydrogen inside the tube. This experiment must be carried out twice. The average of both results will be taken as the final atomic mass value obtained in this experiment.

Basic Laboratory Operations II

4

Figure 1 5.- Post-laboratory work Note down the following data. They will be needed during the calculation process:

a) Results and calculations Gas Temperature: ............................................................................................. ºC Atmospheric pressure: ............................................................................................. atm Water steam pressure: ............................................................................................. atm

Exper

T

(ºC)

P

(atm)

Pv (H2O)

(atm)

m(Mg)

(g)

V(H2) (mL)

Mat(Mg)

(g)

Error (%)

Operaciones Básicas de Laboratorio II

6

b) Discussion and justification of results

1. Write down the reaction between magnesium and chlorhydric acid. 2. Why is it important to prevent water and HCl from mixing before inverting the test tube?

3. Why does HCl react with magnesium but not with copper?

4. In your opinion, how may the presence of inert impurities in the magnesium ribbon

affect the experimental value of the atomic mass obtained in the experiment? Would the results be higher or lower than normal?

5. Hydrogen is soluble in water: at 25ºC, 0.0193 L of hydrogen will dissolve in 1 L of

water. How do you think this will affect the value of the atomic mass obtained in the experiment? Would the results be higher or lower than normal?

Basic Laboratory Operations II

1

EXPERIMENT 2 Determining the molecular mass of CO2

Name: Date: 1. Introduction

A well-known fact is that the mole of a substance such as CO2 (carbon dioxide) is the mass, expressed in grams, of 6,022.1023 of its molecules (Avogadro`s number). This coincides numerically with its molecular mass –that is, the mass of one of its molecules, usually expressed in atomic mass units.

One mole of any ideal gas, held at the standard conditions of 1 atm pressure and 0ºC, occupies a volume of 22.4 L. This is the so-called ‘molar volume’ of an ideal gas. It is used as a reference to determine the amount of gas in a given volume. The just mentioned conditions are used whenever comparing the volume of different ideal gases. This explains why they are known as Standard Temperature and Pressure (often abbreviated STP).

Therefore, if one measures the mass of a given volume of laboratory-obtained gas (CO2 in our current experiment), a simple rule of proportion may be accordingly applied to calculate the mass of 22.4 L under standard conditions –plus its molecular mass in amu (atomic mass units).

The gas whose molecular weight we aim to calculate here can be produced through the reaction between chlorhydric acid and calcium carbonate. The latter is usually found in great abundance in commercial marble. 2.- Main aims of the experiment and learning outcomes

1. Becoming familiar with the tools and equipment needed to generate and collect a gas under standard temperature and pressure conditions.

2. Calculating the molecular mass of a substance (CO2) in gaseous state at room temperature and pressure.

3. Measuring temperature and atmospheric pressure. 3.- Pre-laboratory work

1. Consider the English words used to refer to the different labware tools and items required in this experiment.

2. Enumerate the physical properties of CaCO3 (calcium carbonate), CaCl2 (calcium chloride), CO2 (carbon dioxide) and HCl (hydrochloric acid).

3. Be aware of the risks associated with the reagents used in the experiment and highlight the corresponding security measures that need to be applied.

4. References

Basic Laboratory Operations II

3

4.- Laboratory work Material

- Laboratory stand and clamps. - Dropping funnel - U-shaped tube (with openings near both ends) - 250 mL two-neck balloon flask - 250 mL one-neck balloon flask - Cork ring

Products

- Commercial marble - Concentrated hydrochloric acid HCl - Calcium chloride

Procedure

Put 20 g of commercial marble into flask A (see figure 1) and add a measured amount

of water –just enough to cover it. Make sure flask B, into which carbon dioxide is to be

collected later, is clean and dry (it is advisable to keep it in a drying chamber for as long as

necessary, prior to the experiment). Insert an L-shaped tube into flask B: the end inside must

remain one centimeter far from its bottom.

Before the experiment starts, flask B (filled with air at room pressure and temperature)

needs to be weighed at an accuracy of 0.01 g. From thence onwards, with a view to avoid

any errors when determining the mass of the gas, the flask must not be touched unless

necessary –and, in such a case it may be held only by the neck. During this process, a cork

ring will keep the flask upright –this support must be weighed together with the flask.

Subsequently, a U-shaped drying tube containing a hygroscopic substance (CaCl2) will

be attached to the flask using a rubber septum. Once assembled, the whole apparatus will

look as shown in the following figure.

Basic Laboratory Operations II

4

Figure 1

After completing all these preparations, use a dropping funnel to pour concentrated

hydrochloric acid HCl onto the marble chips in flask A. The reaction between hydrochloric

acid HCl and calcium carbonate CaCO3 will start right at that point: carbon dioxide will come

out in the form of bubbles. Keep the gas flow for 20 minutes –enough for flask B to get filled

with dry carbon dioxide. Disconnect the tube attached to flask B (remember to hold the flask

by the neck) and repeat the weighing process. Subsequently, fill up the flask with (bubble-

less) tap water to the brim –then pour this amount of water into a graduated test tube to

measure its volume. Note that it must be equivalent to that of the obtained carbon dioxide

and to the initial amount (volume) of air in the flask. Finally, note down the room temperature

and the atmospheric pressure.

Basic Laboratory Operations II

5

5.- Post-laboratory work

a) Results and calculations

Mass of the flask filled with air .......................................................................... g

Mass of the flask filled with CO2 ....................................................................... g

Volume of the flask ............................................................................................ mL

CO2 temperature ............................................................................................... ºC

Atmospheric pressure ....................................................................................... atm

Empty flask mass (without air) ........................................................................... g

Mass of collected CO2 ....................................................................................... g

Volume of CO2 collected in standard conditions (STP). ..................................... mL

Molecular mass of CO2 obtained in the course of the experiment ...................... g/mol

Molecular mass of CO2 deduced from the formula ............................................ g/mol

Absolute error .................................................................................................... g

Relative error ..................................................................................................... %

(*) The density of air at 25ºC is 1.29 g/L

Basic Laboratory Operations II

6

b) Discussion and justification of results

1. Write down the reaction between HCl and CaCO3, from which the stream of CO2 is

obtained. Indicate what type of reaction it is.

2. Why is CO2 passed through CaCl2 before being collected in flask B?

3. How does humidity affect the calculation of the molecular mass of CO2? Would it affect

the experiment in a significant way?

4. Which other sources of experimental error can be reasonably addressed and avoided

in the context of this experiment?

5. Given the conditions of the current experiment, would it be correct to write down the temperature of CO2 as if it were the same as room temperature? Why / why not?

Basic Laboratory Operations II

7

6. Describe and explain the apparatus employed in this experiment.

EXPERIMENT 2 Additional notes and comments

Basic Laboratory Operations II

1

EXPERIMENT 3 Establishing the formula of KClO3

Name: Date: 1. Introduction The term stoichiometry refers to the relations between mass and weight in chemical formulae and reactions. In this experiment, students are asked to investigate the stoichiometry of potassium chlorate and to use the results obtained in the analysis of a sample of potassium chlorate and potassium chloride. The former compound is a mixture of potassium, chlorine and oxygen. If heated intensely, it decomposes and loses all its oxygen, leaving a residue of chlorine and potassium (KCl). When potassium chloride and potassium chlorate are heated together, the mass lost corresponds to that of the oxygen generated from the decomposition of potassium chlorate. This allows us to calculate the quantity of chlorate contained in the initial mixture. This experiment uses manganese dioxide, whose mass remains constant, as a catalyst to speed up the decomposition process described above. 2.- Main aims of the experiment and learning outcomes

1. Finding out the molecular formula of an inorganic salt (potassium chlorate).

2. Determining the composition of a mixture of inorganic salts. 3.- Pre-laboratory work

1. Focus on the English terms used to refer to the labware tools and equipment required for this experiment.

2. Enumerate the physical properties of MnO2 (dioxide of manganese), KClO3

(potassium chlorate), KCl (potassium chloride) and O2 (oxygen). 3. Be aware of the risks embedded in this experiment and adopte all the security

measures needed when deal with reagents. 4. References

Basic Laboratory Operations II

3

4.- Laboratory work Material Glass test tubes Wooden clamps Products Manganese dioxide Pure potassium chlorate Mixture of potassium chloride and potassium chlorate Procedure 1) Put a pinch of manganese dioxide into a clean, dry glass test tube, and use an analytical

balance to measure its total mass. The margin of error must be less than 0.01g. Add approximately 1 g of dry potassium chlorate, then weigh again and shake softly to homogenize the mixture. Clamp the test tube to a stand so as to keep it at a constant 45º angle. Heat it lightly using a Bunsen heater, making sure you avoid a loss of solids or any crackling issues. Once the solid melts, raise the heat (of the burner) as much as possible for a few minutes. Allow some time for the test tube to cool down and weigh again.

2) Put a pinch of manganese dioxide into a clean, dry glass test tube, and use an analytical

balance to measure its total mass. Again, the margin of error must be less than 0.01g. The teacher will then provide a mixture of potassium chlorate and potassium chloride in unknown proportions: put about 1 g of this mixture into the already weighed test tube that contains the manganese dioxide. Once added, weigh again and shake the tube to mix its contents. Follow the same process explained above to heat the test tube once more. Finally, allow it to cool down and repeat the weighing step –this time with the final product.

Basic Laboratory Operations II

5

5.- Post-laboratory work

a) Results 1.-

Mass of the test tube containing the catalyst ........................................................... g

Mass of the test tube containing the catalyst and potassium chlorate ...................... g

Mass of the test tube containing the catalyst and the residue .................................. g

Mass of oxygen lost................................................................................................. g

Mass of potassium chloride ..................................................................................... g

Grams atoms of oxygen released ........................................................................ at-g

Number of moles of potassium chloride........................................................... moles

Gram atoms of potassium in the initial sample .................................................... at-g

Gram atoms of chloride in the initial sample ........................................................ at-g

Gram atoms of oxygen in the initial sample ......................................................... at-g

Empirical formula of potassium chlorate ....................................................................

2.-

Mass of the test tube containing the catalyst .......................................................... g

Mass of the test tube containing the catalyst plus the mixture of potassium chloride and

potassium chlorate ............................................................................................... g

Mass of the test tube containing the catalyst and the residue ................................. g

Mass of the test sample mixture ............................................................................. g

Mass of oxygen lost ............................................................................................... g

Gram atoms of oxygen lost................................................................................. at-g

Decomposed moles of potassium chlorate ..................................................... moles

Mass of potassium chlorate in the initial sample ..................................................... g

Mass of KCl ........................................................................................................... g

% in weight of potassium chloride in the test sample mixture ................................ %

Basic Laboratory Operations II

6

b) Calculations

Basic Laboratory Operations II

7

c) Discussion and justification of results

1. What is a catalyst?

2. Why are the products under study kept in a drying chamber? 3. When heated in the correct conditions, barium oxide (BaO) absorbs more oxygen than usual. If 1.15 grams of oxide transform into 1.27 grams of the new product, what would be the empirical formula of the latter?

4. If heated, sodium nitrate releases oxygen, and so decomposes into sodium nitrite. A mixture of both –with a mass of 0.74 grams– loses 0.064 gram in the heating process. Use these data to calculate the amount (%) of sodium nitrate in the original mixture.

Basic Laboratory Operations II

8

5. A common source of error in this experiment stems from not waiting for the decomposition of potassium chlorate to complete. Imagine this happened during the first step in this experiment: how would it affect the molecular formula of potassium chlorate? 6. How would the results obtained in the first stage be affected if the sample of potassium chlorate were contaminated with moisture? Consider this on the assumption that the sample should decompose completely.

Basic Laboratory Operations II

1

EXPERIMENT 4 Obtention and acid-base properties of HCl and NH3

Name: Date: n dula del KCIO3 1.- Introduction Hydrides are binary compounds containing hydrogen plus another element. Water and hydrogen peroxide are examples of this. Whenever combined with hydrogen, a non-metallic element stands out as the constituent with the highest level of electronegativity in the resulting compound. While essentially ‘covalent’ (a term used to label this sort of hydrides), the bond will also bear a certain polar character. In a polar solvent (such as water), and providing that the A-H bond is highly polar, a compound of this kind will dissociate into protons, therefore acting as a Brönsted acid (HCl, for instance). If the A-H bond is not highly polar, the hydride will not be acid. Being an element in the p-block (with free pairs of electrons in its valence layer), A will nonetheless remain a potential proton acceptor –that is, a potential Brönsted base (as in the case of NH3).

2.- Main aims of the experiment and learning outcomes

1. Obtaining HCl and NH3 (covalent hydrides) and describing them according to their behaviour as acid bases.

2. Knowing how to use acid-base indicators.

3.- Pre-laboratory work

1. Focus on the English terms used to refer to the labware tools and equipment required for this experiment.

2. Enumerate the physical properties of HCl, NaCl, CuO, NH3, AgNO3, NH4Cl, methyl

orange and phenolphthalein.

3. Be aware of the risks embedded in this experiment and adopting all the security measures needed when dealing with reagents.

4. References

Basic Laboratory Operations II

3

A) Obtention and properties of HCl Material

Wooden clamps Pyrex test tube (with a stopper) Four extra test tubes Hollow glass rod, bent in U-shape Solid glass rod An acid base indicator strip Hot plate

Products

Aqueous solution of methyl orange (0.01%) Solid sodium chloride NaCl Concentrated sulfuric acid H2SO4 Solid copper (II) oxide CuO Concentrated solution of ammonia NH3 Aqueous solution of silver nitrate AgNO3

Procedure Put a little solid sodium chloride into a test tube and soak it with a concentrated solution of sulfuric acid. Heat the sample tube gently over a Bunsen burner. Then, moisten a string of acid-base indicator paper and bring it to the mouth of the test tube (question 2). Next, dip the end of a glass rod into an aqueous solution of ammonia and bring it to the mouth of the test tube, as well (question 3). After all this, use a stopper (with a delivery tube) to seal the test tube. Place the other end of the delivery tube into another test tube filled with two thirds of water, as shown in the image. Heat the generating tube gently for a few minutes and let it cool. Some of the HCl generated will dissolve in the water.

Basic Laboratory Operations II

4

Divide the solution obtained here into three different test tubes. Add the following: * Tube 1: some drops of methyl orange (question 4). * Tube 2: some drops of aqueous AgNO3 (question 5). * Tube 3: a pinch of solid CuO. Heat this tube gently (question 6).

5.- Post-laboratory work Questions

1. Consider the reaction of obtention of HCl. Write it down and indicate what type it is.

2. How does the indicator paper change when brought to the mouth of the test tube? What does that mean?

3. What do you notice after bringing the glass rod (previously dipped into an aqueous

solution of ammonia) to the mouth of the test tube? Explain what type of reaction it is and write it down.

Basic Laboratory Operations II

5

4. What happens after adding methyl orange to the HCl solution? Explain it.

5. What happens when AgNO3 is added? Write down the reaction, too.

6. What happens after adding CuO to the third portion? Write the reaction.

7. Additional notes and comments.

Basic Laboratory Operations II

7

B) Obtention and properties of NH3 Material

Wooden clamps Pyrex test tube (with a stopper) Four extra test tubes Hollow glass rod, bent in U-shape Solid glass rod An acid base indicator strip

Products

Solid NH4Cl Solid NaOH Concentrated HCl Hydroethanolic solution of phenolphthalein CuSO4 solution

Procedure

The reaction of ammonium salt with a strong base produces ammonia gas (NH3), which exhales a peculiar smell. When this gas dissolves in water, it gets partially transformed, according to NH3 + H2O→NH4

+ + OH-. Therefore, aqueous ammonia solutions can be easily recognized thanks to the particular reactions underwent by NH3 or by ammonium cation.

Take a test tube with a cork. In it, prepare a 3 mL concentrated solution of NH4Cl. Add two or three pellets of NaOH. Heat the tube gently and then remove it from the flame. Identify the liberated compound in that odor. Bring an acid/base indicator strip to the mouth of the test tube (question 8); then bring a glass rod (previously dipped into a solution of concentrated HCl) to the mouth of the test tube (question 9). Use a stopper with a delivery tube to seal the test tube containing NH3. Heat it in the same way as with the one containing HCl, so as to obtain an aqueous solution. The resulting product is divided into two test tubes. Add a few drops of phenolphthalein to one; then, drop by drop, add a solution of CuSO4 to the other one, until obtaining a light blue solid (Cu(OH)2), or an intense blue coloration (question 12).

Laboratorio de aislamiento y caracterización de sus tancias químicas

8

5.- Post-laboratory work Questions 7. Focus on the reaction of obtention of NH3. Write it down. 8. What happens after bringing the acid/base indicator strip to the mouth of the test tube? Explain it. 9. Write down the reaction that takes place when a glass rod dipped in a solution of concentrated HCl is brought to the mouth of the test tube. 10. Observe and note down the reaction between NH3 and H2O that occurs when the aqueous solution of NH3 is formed.

Laboratorio de aislamiento y caracterización de sus tancias químicas

9

11. What happens when adding phenolphthalein to the NH3 solution? Why? 12. What happens when adding CuSO4 to the NH3 solution? Write the reaction and explain

the process.

EXPERIMENT 4 Additional comments and notes

Basic Laboratory Operations II

1

EXPERIMENT 5 Obtention and redox properties of H2O2

Name: Date: 1.- Introduction

Hydrogen peroxide provides the basis for peroxides, peroxy acids and peroxy salts. These are usually labeled as ‘substitution compounds’ on the basis that one or two hydrogen atoms can be replaced with metals (peroxides) or more complex radicals (peroxy acids). Therefore, the –O-O- group (peroxide) is common to them all.

Hence, hydrogen peroxide may be obtained using any peroxide, peroxy acid or peroxy

salt as raw material. The current experiment will use barium peroxide as a starting reagent for obtaining hydrogen peroxide.

2.- Main aims of the experiment and learning outcomes

1. Highlighting the oxidizing and reducing properties of hydrogen peroxide. 2. Knowing the differences between hydrogen peroxide and “agua oxigenada”. 3. Using KMnO4 (in redox titration) as an indicator to measure the concentration of

hydrogen peroxide. 3.- Prelaboratory work

1. List the terms used in English to mention the labware tools and items required in this experiment.

2. Enumerate the physical properties of barium peroxide BaO2, hydrogen peroxide H2O2, phosphoric acid H3PO4, potassium permanganate KMnO4 and potassium iodide KI.

3. Find out the standard reduction potentials for O2/H2O2, H2O2/H2O, MnO4-/Mn2+, I2/I

- 4. Determine how to prepare 1 L of KMnO4 0.04 M solution. 5. Be aware of the risks embedded in the experiment and adopting all the security

measures needed when dealing with reagents such as the ones used in this experiment.

6. References

Basic Laboratory Operations II

3

4.- Laboratory work A) Obtaining hydrogen peroxide Materials

Erlenmeyer flask Test tube

Glass funnel

Support ring

Laboratory stand with bosses and clamps

Products

Barium peroxide, BaO2 Phosphoric acid, H3PO4

Procedure

Mix one gram of barium peroxide and 100 mL of water in an Erlenmeyer flask. Stir well. While stirring, add 7 mL of phosphoric acid with a concentration of 85%. Then, measure the total volume of the solution obtained. Save the solution for later. Focus on stages B and C. 5.- Post-laboratory work

- Discussion and justification of results

1. Write the reaction of obtaining hydrogen peroxide.

Basic Laboratory Operations II

4

2. What is the difference between "agua oxigenada" and "hydrogen peroxide"?

3. What is the difference between a peroxide and a dioxide?

4. What does ’10 volume hydrogen peroxide’ mean?

Basic Laboratory Operations II

5

B) Hydrogen peroxide titration Introduction

Hydrogen peroxide may be used as an oxidizer in an acid solution or as a reducing agent in the presence of another, more concentrated, oxidizer. Due to this, one may find out the concentration of a solution of hydrogen peroxide by allowing it to react with a reducing agent or an oxidizer. Potassium permanganate (KMnO4) will be used here to determine the concentration of hydrogen peroxide (H2O2).

Material

Laboratory stand with bosses and clamps Beaker 25 mL pipette Burette Erlenmeyer flask

Products

0.04M solution of KMnO4 Procedure

Use a pipette to transfer 25 mL of the solution obtained in stage A into an Erlenmeyer

flask. Add H2O2 until reaching a total volume of 100 mL. Then slowly titrate by adding 0,04 M

KMnO4 , drop by drop with a burette. Do not forget to shake well right after every drop is

added. Keep doing this until the solution produces a strong violet color (due to KMnO4). Note

down the volume of KMnO4 used in the titration.

Basic Laboratory Operations II

6

5.- Post-laboratory work a) Discussion and justification of results

1. How does H2O2 act when mixed with KMnO4? Is it an oxidant or a reducing agent?

Express the reaction that takes place between them. 2. Write the reaction equation between KMnO4 and H2O2. Balance this by the ion-

electron method.

3. What substance has been used as an indicator in the titration process?

Basic Laboratory Operations II

7

b) Calculations

Taking as a reference the volume of permanganate used in the titration process, calculate:

1. The percentage by weight of the hydrogen peroxide solution prepared in this experiment. 2. Reaction yield of the hydrogen peroxide obtained.

Basic Laboratory Operations II

9

C) Assessing the oxidizing properties of hydrogen peroxide

Transfer the solution of hydrogen peroxide obtained in stage A into one 5 mL test tube. Add a few drops of KI solution and comment what happens. Write the reaction equation between KI and H2O2. Balance these by the ion-electron method.

EXPERIMENT 5 Additional comments and notes

Basic Laboratory Operations II

1

EXPERIMENT 6 Obtaining [Cu(NH 3)4] SO4·H2O

and enumerating its physical properties Name: Date: 1.- Introduction

Coordination compounds (i.e. metal complexes) consist of a central metallic ion (generally a transition metal) to which a set of ligands are attached via covalent bond. In basic terms, the latter are neutral molecules or negative ions (simple or complex) with pairs of free electrons in some of their atoms, which are attached to the aforementioned core ion by means of a dative covalent bond. This process results in a compound which may either be electrically neutral (left figure) or non-neutral (right figure). In the second case, a counterion will be needed to neutralize the charge of the complex.

[Mn(SO4)(fen)(H2O)3] [Mn(fen)(H2O)4]SO4·2H2O

Coordination compounds may have different geometrical structures: their shape

depends on the number and type of ligands. This applies to any metal ion. A two-ligand complex (coordination number 2) will have a linear structure; if it had four, it would have a tetrahedral (square planar) structure. A six-ligand complex would have an octahedral one.

Whenever a coordination compound is formed, the energy of the five degenerate d

orbitals in the external layer of the metal is split in a more or less complex manner, according to the number of electrons they have and the position of ligands. This process is responsible for the color of these compounds, since the electronic transitions between these split orbitals correspond to the visible part of the electromagnetic spectrum.

Basic Laboratory Operations II

2

The splitting of the d orbitals in a Cu(II) ion coordinated to four ligands in a square

planar arrangement (as in the case of the [Cu(NH3)4]2+ ion) is relatively simple. The diagram

below displays the different types of splitting that d orbitals are likely to undergo, depending on the position of ligands around the core Cu2+ ion. Tetraamminecopper(II) ions bear an intense blue color due to the transition of one d electron from orbital dxy to orbital dx2-y2. The remaining transitions belong to the infrared region of the electromagnetic spectrum and, therefore, have no influence in the resulting color.

Certain coordination compounds play an important role in our lives. Two examples of

this are found in hemoglobin and chlorophyll: the former (basically an iron complex with a biomolecule) is essential to the transport of oxygen in vertebrates; the latter (a magnesium complex) is utterly necessary for vegetable life. 2.- Main aims of the experiment and learning outcom es

1. Obtaining a coordination compound. 2. Determining the absorption spectrum of a compound (in its visible region). 3. Calculating the splitting energy of the obtained square planar complex. 4. Testing the solubility of the obtained compound in H2O and EtOH.

�sp

�t �o

xy, xz, yz

xy, xz, yz

x2-y2, z2

x2-y2, z2

x2-y2

z2

xy

xz, yz

T O PC

∆t ∆o

∆sp

Basic Laboratory Operations II

3

3.- Pre-laboratory work

1. Focus on the English terms used to refer to the labware tools and equipment required for this experiment.

2. Enumerate the physical properties of the CuSO4·5H2O, ethanol, ethyl eter and NH3. 3. Cite three examples of coordination compounds found in biologic processes. 4. Become aware of the risks embedded in the experiment. Adopting all the security

measures needed when dealing with reagents such as the ones used in this experiment.

5. References

Basic Laboratory Operations II

4

4.- Laboratory work Material

- 250 mL beaker - Cylinder - Solid glass rod - Kitasato flask - Büchner funnel - Vacuum pump - Cooling bath vessel

Products

- Solid CuSO4·5H2O - Concentrated aqueous solution of ammonia - Ethyl alcohol - Diethyl ether

Instruments

- Ultraviolet-visible spectrophotometer Procedure A) Obtaining [Cu(NH 3)4]SO4·H2O In a beaker, dissolve one gram of [Cu(NH3)]SO4·H2O in about 7 mL of distilled water by stirring with a glass rod. Observe the color. Once the solution is ready, slowly add 3 mL of concentrated NH3 while stirring. At this precise point, you will notice the formation of a light blue hued solid –i.e. copper hydroxide(II). However, as you keep adding NH3, Cu(OH)2 re-dissolves to turn into [Cu(NH3)4]

2+. Pay attention to how the color has changed.

Basic Laboratory Operations II

5

Subsequently, without stopping stirring, add 10 mL of

ethyl alcohol to this transparent solution. You will then

see a dark blue precipitate –that is, solid

[Cu(NH3)]SO4·H2O.

Before filtering under vacuum, place the beaker in

a cooling bath for 15 minutes (see diagram).

After filtering, wash the resulting (filtered) solid with

two 5 mL portions of ethanol –and then with ethyl ether,

to improve the drying process. Once it has been

thoroughly air-dried, weigh the solid.

B) Solubility tests

Put about 0.1 grams of the dry product just obtained in a test tube. Do the same with another test tube. Then:

· Fill the former with water to the half and then heat it gently. · Add ethyl alcohol to the latter test tube.

C) Obtaining UV-VIS absorption spectrum Using as a sample the aqueous solution of [Cu(NH3)]SO4·H2O from step B, obtain the absorption spectrum of the compound in its visible region.

Basic Laboratory Operations II

6

5.- Post-laboratory work

a) Calculations

Initial moles of CuSO4 .......................................................................................

Mass of [Cu(NH3)4]SO4·H2O obtained ................................................................

Moles of [Cu(NH3)4]SO4·H2O obtained ...............................................................

Reaction yield (%): ............................................................................................

Basic Laboratory Operations II

7

b) Results of the experiment

Taking as a reference the aforementioned absorption spectrum, calculate: · The wavelength corresponding to the maximum in the absorption spectrum (nm). · The frequency of transition between levels dxy and dx2-y2 (s

-1). · Splitting Energy (∆sp) in joules and at cm-1

c) Discussion and justification of results

1. Formulate the reactions taking place since the dissolution of CuSO4·5H2O (after adding

concentrated ammonia) until the step in which tetraamminecopper(II) sulfate is

obtained. Explain and justify the color changes that you perceive.

Basic Laboratory Operations II

8

2. What would you add regarding the solubility tests of [Cu(NH3)4]SO4·H2O in water and

ethanol? Justify your answer(s).

3. Why is ethanol necessary to precipitate the solid complex? 4. Why is the complex washed with ethanol and ether instead of water?

5. What is the blue color of the complex due to?

EXPERIMENT 6 Additional comments and notes

Basic Laboratory Operations II

1

EXPERIMENT 7 Separation and purification of the components of a mixture

through distillation Name: Date: 1.- Introduction

Distillation is the most important and frequent method of separation of liquid substances

due to their different boiling points. There are several types of distillation. In all them, we can distinguish three fundamental

steps

1.- Heating and evaporation of substances

2.- Cooling and condensation of the vapor produced.

3.- Separation and collection of substances in a separate container.

We must know that when a liquid substance is put inside a container and this is closed, a

number of molecules in the surface of the liquid pass to the vapor state. At the same time, a

number of molecules on the surface pass from vapor state to the liquid state. When the

condensation rate and the evaporation rate are the same, the equilibrium is achieved.]

To understand the basis of a distillation, we should know that, when at a certain

temperature a liquid is introduced into a vacuum container -and this is closed-, some of the liquid

evaporates exerting molecules -in vapor state- a pressure on the liquid surface. In turn, some

molecules -in a vapor state- condense until balanced. That means that the evaporation rate equals

the rate of condensation.

The pressure that the molecules exert on the surface of the liquid, in the equilibrium state, is

called vapor pressure. This magnitude is constant and depends on the composition of each

compound and temperature such that when the temperature increases, the vapor pressure also

increases regularly. If warmed in an open container at the time when the vapor pressure increases

and to equalize the atmospheric or external pressure, the liquid begins to boil. The temperature at

which this occurs is called the temperature or the boiling point, and depends, apart from the

external pressure, on the molecular mass of the molecules and the intensity of the attractive forces

between them.

Basic Laboratory Operations II

2

Thus, in a series of organic compounds, which share the same functional group and which

differ only in the nature of the hydrocarbon chain (that is, a homologous series of compounds), the

boiling points of each compound increase regularly with the molecular weight. When the number

of atoms in the molecules increases, the van der Waals forces increase between them, too. Polar

liquids, on the other hand, tend to boil at higher temperatures than non polar ones –with the same

molecular mass- , and polar compounds, which are associated with each other via hydrogen

bonding, boil at higher temperatures than those that cannot be associated.

When, instead of a pure compound, we have a mixture, the interactions established

between its molecules determine that either are thoroughly mixed resulting in a homogeneous

solution (eg water-ethanol) or are mixed partly or not mixed at all (eg. water-oil) separating into

two layers.

When a homogenous mixture of liquids is heated (see Figure 1) it happens that:

1. The mixture boiling point depends on the boiling points of its components and their

relative proportions.

2. Its boiling point will be between the boiling points of the pure compounds.

3. When the mixture starts to boil, the vapor –B- will be richer in the volatile components of

the mixture than the liquid in equilibrium –A-

Figure 1. Liquid-vapor diagram for a two component mixture.

Basic Laboratory Operations II

3

According to the above we obtain a pure compound by distillation if:

• The difference in boiling points of the components of a mixture is very large, greater

than 80 ° C, (eg, water and salt).

• The amount of impurities contaminating a liquid substance is below 10%

• Vapors are condensed and redistilled a number of times.

The simplest apparatus that is used to perform a distillation is depicted in the following figure

Figure 2. Simple distillation apparatus

As you can see, the apparatus comprises a spherical flask or distillation flask, a distillation

head equipped with a thermometer, a straight condenser with water circulating through an outer

jacket, a bent adapter and a collecting flask. To heat the flask homogenously, an oil bath or an

electric heating mantle, as that displayed in the figure, is usually employed. In addition, a steam

water bath can be also used when heating over 100 ºC is not necessary.

The distillation mixture is put in a flask and it is heated. When the boiling point is reached, a

great amount of vapor is produced. Firstly the vapor condenses on the wall of the flask, then on

the thermometer and finally is collected on a beaker due to the flow of cool water which circulate

through the outer jacket of the refrigerant

Basic Laboratory Operations II

4

Fractional Distillation

The distillation apparatus displayed in Figure 2 can be adapted to achieve the separation of

mixtures of substances whose boiling points differ by 30-80 ºC.

When we have a mixture of this type, a simple distillation offers a distillate enriched in the

more volatile component.

If this distillate is reloaded in the distillation flask and heated again, we will get a new distillate.

We should repeat this operation a number of times to get the most volatile component in pure

form. To avoid this, between the distillation flask and the distillation head, a fractional distillation

column is placed. This one, through the multiple surfaces that fill inside, enables, in the same

distillation equipment, a continuous series of numerous partial evaporations and condensations,

providing a vapor becoming richer in the most volatile component.

Vigreux column are the type of fractionating columns most frequently used in the laboratory.

The separation power of a column of this type is greatest when this is adiabatic, that is, when

no heat is exchanged with the outside; and this only takes place between the ascending vapor -the

vapor goes up through the column-, and the descending liquid -the liquid goes down.

Fractional distillation plays a fundamental role in petrochemical industry to be an early stage to

which the petrol is subjected to perform the separation of its main components.

Figure 3

Fractional distillation apparatus

Figure 4 Different fractions obtained from the process of petroleum distillation

Basic Laboratory Operations II

5

Reduced-pressure distillation

Many substances cannot be purified by means of distillation at normal pressure either

because they get decomposed below their respective boiling points or because they have such

high boiling points that the energy expenditure required does not compensate for its purification by

means of distillation. However, these liquids can be distilled by means of reduced-pressure

distillation, i.e., by means of a pressure lower than the atmospheric.

As it has already been mentioned, a liquid starts to boil at the temperature at which its

vapor pressure becomes equal to the external pressure.

If, someway, we manage to reduce the external pressure we will also be able to reduce the

boiling point of the liquid, since the value of its vapor pressure will be closer to the new external

pressure.

In order to achieve this reduction of pressure, the simple or fractional distillation equipment

must be connected to a special device, a vacuum pump capable of reducing atmospheric pressure

up to pressures of approximately 10 mm of mercury.

In subsequent experiences, we will carry out distillation under reduced pressure to

concentrate solutions or remove large amounts of volatile solvents from solutions composed of

that solvent and any other little volatile compound that we might want to isolate.

To this end, instead of using the above mentioned simple or fractional distillation

equipments, we will use the rotary evaporator, which is a device which incorporates one engine

that allows rotation of the distillation flask and, therefore, favours the continuous distillation of its

contents.

Figure 5. Rotary evaporator used to concentrate solutions from volatile solvents under reduced pressure.

Basic Laboratory Operations II

7

2.- Main aims of the experiment and learning outcomes

1. Knowing the main characteristics of simple, fractional and vacuum distillation and the

factors influencing them.

2. Knowing how to choose the most suitable distillation, depending on the nature of the liquids

to be separated.

3. Obtaining acetone from a mixture of solvents by means of fractional distillation.

4. Representing simple organic compounds and identifying organic functional groups.

5. Knowing the name, both in Spanish and English, of the material needed to carry out every

type of distillation.

3.- Pre-Laboratory work Analyze the following issues, answer the questions and comment them with your teacher –in tutorials- before the next laboratory session.

1.- Draw the following compounds and justify the increase of the boiling point observed in each series:

a) Methanol (65ºC); Ethanol (78ºC); Propyl alcohol (97ºC); Butyl alcohol (118ºC) b) Butane (-0,5ºC); Ethyl methyl ether (7,6ºC); Acetone (56ºC); Propyl alcohol (97ºC) c) Pentane (36ºC); 2,2- Dimethyl-propane(9,5ºC); 2-Methylbutane (27,5ºC); 2,3-Dimetyl-butane (58ºC)

2.- Search for the boiling points of the compounds below and indicate what type of distillation will be the most suitable to separate them.

a) Water and Ethanol b) Water and Acetone c) Water and Sodium chloride d) Acetonitrile and Methanol e) Toluene and Dichloromethane f) Diethyl ether and benzaldehyde

3.- What an azeotrope is? Find out whether any of the pairs of compounds of the previous exercise could form an azeotrope and indicate its boiling point and composition. 4.- Why is it advisable to add a piece of boiling or anti-bumping stone into the distillation flask?

Basic Laboratory Operations II

8

5.- What is the main function of the Liebig’s condenser? Explain what the direction of flow of cooling water in the Liebig’s condenser should be. Justify your answer. 6.- In the experiment, a steam bath is used to heat the distillation flask and distillate acetone. Could we have used a steam bath as a heating source to distillate toluene? Justify the answer. 7.- Identify the risks and the security measures (R/S sentences) to be taken with acetone obtained after distillation. 8.- What DNFH or Brady´s reagent is?. Find out what reaction takes place between Brady’s reagent and acetone. 9.- Will acetaldehyde react with Brady’s reagent? And ethanol?

5.- Write in English the name of all the material you will need in order to carry out the experiment. 6.- References

Basic Laboratory Operations II

9

4.- Laboratory work

a) Experimental Procedure

With the help of a graduated cylinder, measure 100 mL of the water-acetone mixture to be

distilled; and, by using a conical funnel, transfer it to a 250 mL round bottom flask resting on a cork

ring. Then add a boiling stone and hold the flask to a metallic support with a clamp. Place the flask

on a steam bath and, greasing the standard-taper joints with silicone, attach it to a fractionating

column and to a distillation head with a thermometer. Now, connect to the condenser a water input

hose at the furthest end from the heated flask and a water outflow hose near the heated flask.

Check both that the condenser is not broken and the refrigeration is efficient. After that, hold

the condenser with a clamp and joint it to the distillation head. Finally, after having greased the

standard-taper joints with silicone, attach to the condenser a bend adapter and, at the end of it,

place a 100 ml beaker or Erlenmeyer flask.

When the distillation equipment is ready, put on the steam bath and wait to collect the first drop

of distillate. Then, once the distillation temperature becomes regular, record its value and replace

the collecting beaker by a graduated cylinder. When the temperature starts to drop, put the

heating source off and again replace the graduated cylinder by a beaker. Annotate the volume of

the distillate obtained.

Once the heating source has cooled down, disassemble the equipment piece by piece in

reverse. Finally, wash all parts with water and acetone and let them be dried in a hot air oven.

Acetone, a solvent widely used as nail polish remover for example, can be distinguished from

water by its boiling point, its smell and, furthermore, by the formation of an orange solid when it

reacts with Brady´s reagent. To check this, transfer a few drops of acetone to a test tube and add

two drops of Brady´s reagent. What happens? To contrast the results, repeat the same test with a

few drops of water instead of acetone.

Basic Laboratory Operations II

10

b) Results

• Initial volume of mixture:

• Laboratory pressure:

• Temperature at which distillate is collected:

• Temperature at which distillate is expected to be collected:

• Volume of distillate collected:

• Concentration of the acetone solution in the mixture expressed through a percentage

volume/volume:

C) Discussion

1. Was coincident the theoretical boiling point of acetone with the distillation temperature? If

no, explain the reason.

2. Comment the result of the Brady´s test

Basic Operations Laboratory II

1

EXPERIMENT 8 Isolation of essential oils from aromatic plants th rough steam

distillation

Name: Date:

1.- Introduction

Steam distillation is a valuable technique for the separation of thermally labile, high-boiling and

water immiscible (water) substances from miscible and relatively nonvolatile materials.

Steam distillation is preferable to ordinary distillation because the volatile components distill at

temperatures below their normal boiling points, reducing or preventing decomposition due to overheating.

To understand how steam distillation works we have to take into account that, in a mixture with two

immiscible liquids, A (water) and B (oil), every liquid has a characteristic vapour pressure, independently

of the other. That means that the vapour pressure of the mixture is the addition of the vapour pressures of

every individual liquid

PT = PA + PB (PA and PB are the individual vapour pressures of A and B)

The melting point of a mixture with compounds A and B is the temperature achieved when the total

pressure PT and the external or atmospheric pressure are the same. So, if PA or PB are not zero, the

temperarure of the mixture will be lower than A or B boiling points separately.

Taking this into account and the fact that the temperature during a steam distillation is never above

100 ºC, this kind of distillation is especially useful to separate thermo labile substances with high boiling

points. These substances are co-distilled with water, and then isolated from the mixture collected. Some

examples of these substances are a lot organic compounds of high boiling points which are part of the

essential oils in aromatic plants.

In this experiment steam distillation will be used to extract the essential oils e.g. the volatile

components that exhibit the odor and other characteristics of plants such as cinnamon, glove, spearmint,

peppermint, etc…

Basic Operations Laboratory II

2

2.- Main aims of the experiment and learning outcom es

1. Applying the steam distillation technique to the isolation of thermally labile and immiscible

water compounds obtained from a natural source.

2. Applying the liquid-liquid extraction technique to the isolation of an organic compound

knowing its solubility properties.

3. Learning to handle a rotary evaporator to remove, at low pressure, volatile solvents

4. Identifying organic functional groups through colorimetric tests.

5. Analyzing and justifying the experimental results obtained.

3.- Pre-laboratory work: Analyze the following issues, answer the questions and comment them with your teacher –in tutorials- before the next laboratory session.

1. What is a functional group?

2. Investigate the substances found in the essential o il of the plant under study and complete the following table

Compound

(name)

Molecular

Formula

Structural Formula Boiling/Melting

Point ºC

Functional

groups

Name of the

Plant:

A

B

C

Basic Operations Laboratory II

3

3. Indicate which functional groups can be identified by the following colorimetric tests.

In which tests would the three main components, of the essential oil extracted, give positive?

Test

Functional groups

Result s (+)

A B C

Lucas test

Brady test

Tollens test

Iodoform test

Hidroxamic acid test

Nitroso acid test

Iron III test

Baeyer test

Friedel-Crafts test

4. Mark with a circle and name the functional groups t hat you can find in the followings molecules a, b and c. Then, indicate what colorimetric tests can be carried out to distinguish them. Include, in the table, the result of the test: positive or negative.

a

O CH3 O H

OH

b c

OH

O OH

Test

+ or - test

Basic Operations Laboratory II

4

5. Look at the apparatus in Figure 1 and explain what is the role of the straight glass rod

introduced into the Erlenmeyer flask.

6. After distillation, essential oils are separated from water through liquid-liquid extraction. Look for information about this separation technique and answer the following questions:

a. How do you know what the organic phase and the aqueous phase are? List four

methods to distinguish them

b. The aqueous solution is treated three times with 15 mL of solvent extractor. Do you think you would you have obtained the same result by treating the solution once with 45 mL? Why?

c. After shaking the separatory funnel, it is always advisable to open the key? why?

d. After the extraction, why anhydrous sodium sulfate is added to the organic extract?

e. List the risks and safety measures (R / S sentences) you must observe, when you work with dichloromethane.

Basic Operations Laboratory II

5

7. Complete the gaps indicating the action students ar e doing

She is ____________ a __________ from a Erlenmeyer flask to a ________________

He´s ______________ a separatory funnel

She is ________ the ___________________

She´s _____________________ a solid

She is ________ a ___________________

He´s ______________ a reaction mixture and _________ temperature

8. References

Basic Operations Laboratory II

6

4.- Laboratory work

a) Experimental procedure

Add a piece of boiling stone, together with 500mL of water, to a 1000mL Erlenmeyer flask with a

29/32 ground-glass joint. Hold the flask to a supporting stand with a metallic clamp and place it on a

hotplate, avoiding direct contact with it. Now, attach to it a side-arm adapter and a leaky cork. Introduce

through it a straight hollow glass rod, which will act as a safety valve.

On the other hand, weigh 25 g of plant in a 250mL beaker and transfer it through a powder funnel to a

1000mL round-bottom flask with a 29/32 ground-glass joint resting on a cork ring. Then, add a piece of

boiling stone and 250 mL of water. Next, hold the flask to a supporting stand with the help of a metallic

clamp and attach it to the Erlenmeyer flask through a bent hollow glass rod. Finally, attach a condenser to

the round-bottom flask through a leaky cork with a bent hollow glass rod and a collecting flask.

Figure 1

Once the equipment has been assembled (see Figure 1), turn on the heat and refrigeration source

and wait to collect approximately 200 mL of the oil-water immiscible mixture in a 250 mL beaker by paying

attention to the possible overpressures that might take place. Once collected the aforementioned 200mL of

distillate, turn the hot plate off, replace the collecting beaker by an empty one and transfer the distillate to a

graduated cylinder to measure the volume. Next, pour the mixture into a separatory funnel and add 15 ml of

dichloromethane. Shake it smoothly to prevent the stopper from popping out due to pressure and to avoid

forming emulsions. Collect the organic phase into an Erlenmeyer flask and work on the aqueous phase

twice by using 20 ml of dichloromethane. Then, put both phases together and treat them with anhydrous

sodium sulfate. Filter the dry organic extract in a previously weighed spherical flask and then, remove the

solvent with the help of a rotary evaporator.

After a few minutes, an odorous, oily residue should appear on the wall of the flask. Weigh the flask

again and calculate the yield of the oil extracted. Finally, carry out a test with the oil extracted to identify

functional groups.

Basic Operations Laboratory II

7

b) Results

• Plant analyzed:

• Weight of plant analyzed:

• Volume of distillate collected: (b):

• Weight of round-bottom flask (empty) (c):

• Weight of round-bottom flask (with oil) (d):

• Amount of essential oil extracted (e):

• Extraction efficiency (e)/(a) x 100:

• Result of colorimetric test: (+/-):

c) Discussion

• How did the distillate obtained look like? And the resulting oil?

• What is your opinion about the amount of oil extracted?

• Indicate same way to increase the amount of oil extractedAccording with the colorimetric test carried out, what functional groups are present in the final extract? Is the result consistent with what expected?

• During steam distillation, take two test tubes labeled as 1, 2 and 3 containing a sample of unknown compounds a, b or c. Perform two colorimetric tests, write the results herein and discover in which test tube is every compound.

Test Tube 1 Tube 2 Tube 3

Result

+ or -

Molecule (a, b, c)

Basic Operations Laboratory II

1

EXPERIMENT 9 Isolation of caffeine from commercial sources

NAME: DATE: 1.- Introduction A) Isolation of caffeine from tea bags

Tea and coffee drinks have been popular drinks for centuries, mainly because they contain caffeine, a

chemical stimulant which active the central nervous system and speeds up breathing and heartbeat.

Caffeine is also diuretic, causes nervousness and insomnia and, as many drugs may cause addiction. This

compound is also found in cocoa and added to cola beverages.

A cup of coffee contains 60 to 100 mg of caffeine, a cup of tea contains 30 to 50 mg, a chocolate

bar contains 10 mg, and a can of cola 43 mg.

Caffeine belongs to a kind of compounds called alkaloids. These are compounds present regularly

in plants. They are composed by atoms of carbon and nitrogen and therefore, infusions have a bitter taste

and basic and physiological properties.

N

N N

N

O

O

CH3

H3C

CH3

Caffeine HO

OHO

O

OHOH

OH

O

R =

ORO

RO

OR

OR

OR

Tannins

O

O

Flavone

Figure 1. Main components of tea leaves

The main component of tea leaves is cellulose, which is the principal structural material of all plant

cells. Cellulose is a polymer of glucose. Because cellulose is virtually insoluble in water, it presents no

problems in the isolation procedure. Caffeine is mixed with other compounds in tea leaves. Some of these

compounds are called tannins and have acid properties (see figure). In addition there are also pigments as

chlorophylls or flavones. Typical brown color of infusions (tea solutions) is due to (flavonoid pigments)

flavones and their respective oxidation products.

Different solubility of caffeine in water and organic solvents is key to get an efficient separation from

the other compounds.

Chlorophylls are insoluble in water; however, caffeine, tannins and flavone derivatives are soluble

enough in hot water. So, a first separation can be achieved heating tea leaves in hot water and filtering.

Next, the aqueous solution is done alkaline. In this way, solubility in water of tannins and flavones is

increased due to its acid properties, and caffeine can be easily extracted with an organic solvent,

methylene chloride, for example.

Basic Operations Laboratory II

2

B) Isolation of caffeine from cola drinks

Caffeine can be easily isolated from a cola drink through a liquid-liquid extraction since all the

ingredients are more soluble in water than in organic solvents.

Concentration of caffeine in cola drink is 0.1 mg/mL, e.g. six times lower than coffee.

Cola is a drink composed by an aqueous extract of cola nuts. This extract can be got as a syrup. If

this syrup is combined with phosphoric acid, caramel, water, carbon dioxide and some unknown ingredient,

the very famous coca-cola drink is obtained

Caffeine limit in cola drinks, established by the Food and Drugs Administration in U.S., is 17 mg per

100 mL. To regulate its level, firstly caffeine is completely extracted from syrup by producers and then the

legally allowed amount is added.

Basic Operations Laboratory II

3

2.- Main aims of the experiment and learning outcomes

1. Applying the liquid-liquid extraction technique to the isolation of an organic compound from a natural

or commercial source, given its acid-base and solubility properties.

2. Learning how to handle a rotary evaporator to remove volatile solvents at low pressure.

3. Checking the identity of a compound through tlc.

4. Analyzing and justifying the experimental results obtained.

3.- Pre-laboratory work Before starting the next laboratory practice, read the introduction to this experience and answer the following questions. 1. What substances do you ingest when you drink tea? Draw the structural formula of caffeine and indicate: its molecular formula, molecular weight, melting point and toxicity characteristics 2. What substances do we take when we drink a cola drink? Read the label and write their names.

3. During the extraction of caffeine, emulsions can be formed. Answer: a) What an emulsion is?; How can emulsions be avoided?, c) If any emulsion is formed, what can we do to break it? 4. Make a complete list, both in English and Spanish, of the glassware and appliances needed in this experience.

Basic Operations Laboratory II

4

5. Read the experimental procedure and fill the gaps in the following schematic overview:

6. References

Basic Operations Laboratory II

5

4.- Laboratory work

a) Isolation of caffeine from tea bags. Experimental procedure Weigh 1 g of potassium carbonate, transfer it to a beaker and dissolve it in 100 mL of water. Add a

boiling stone, heat the solution on a hotplate and when it is about to boil turn the hotplate off and place five

tea bags into the hot solution so that they lie flat on the bottom of the beaker and are fully covered by water.

After 10 minutes, remove the tea bags by gently pushing them against the walls of the flask with the

help of a glass rod or a test tube, avoiding breaking it. Clean the bags with water and finally dispose of

them in a solid waste container.

Cool the brown solution at room temperature and transfer it to a separatory funnel through a bed of

cotton. Add 15 ml of dichloromethane and shake the funnel smoothly to prevent the stopper from popping

out due to pressure and to avoid forming emulsions. Separate the organic phase and collect it into an

Erlenmeyer flask. Work on the aqueous phase twice by using 20 ml of dichloromethane. Then, put the

organic phases together and treat them with anhydrous sodium sulfate. Filter the dry organic extract in a

previously weighed spherical flask and then, remove the solvent with the help of a rotary evaporator. Once

the solvent is removed; caffeine will appear as a white solid on the walls of the flask. Finally, weigh the flask

and calculate the yield of the caffeine extracted. The purity of the caffeine obtained can be known by its

color, its melting point and through thin layer chromatography –tlc-, comparing it with commercial caffeine.

To learn how perform a TLC see part c).

b) Isolation of caffeine from cola drinks. Experimental procedure

Weigh 2 g of potassium carbonate and transfer them into a beaker. Now, pour slowly about 200 mL of

cola drink into the beaker and shake them with a glass rod to eliminate the maximum amount of carbon

dioxide possible. Next, pour the mixture into a separatory funnel and add 15 ml of dichloromethane. Shake

it smoothly to prevent the stopper from popping out due to pressure and to avoid forming emulsions. Collect

the organic phase into an Erlenmeyer flask and work on the aqueous phase twice by using 20 ml of

dichloromethane. Then, put the organic phases together and treat them with anhydrous sodium sulfate.

Filter the dry organic extract in a previously weighed spherical flask and then, remove the solvent with the

help of a rotary evaporator. If the cola drink contains caffeine it will appear as a white solid on the walls of

the flask. Finally, weigh the flask again and calculate the yield of the caffeine extracted.

The purity of the caffeine obtained can be known by its color, its melting point or through thin layer

chromatography –tlc-, comparing it with commercial caffeine. To learn how perform a TLC see part c).

Basic Operations Laboratory II

6

c) Identification of compounds by thin layer chromatography TLC

1. Add 5 mL of eluent in an elution tank or development chamber. Close it well and wait for the

saturation of the vapor inside before the introduction of the chromatographic plate. In order to

know when saturation is achieved, insert a rectangular piece of filter paper and wait until it

soaks.

2. Now, cut or ask the teacher for a 2.5 x 6 cm chromatographic plate and draw with a blunt pencil

a horizontal line at 1 cm from the short side of the plate.

3. On the horizontal line, draw crosses with the pencil, according to the number of samples to

analyze and identify the crosses. For example, the test sample can be identified with a letter M,

and the reference we use to compare with a letter R.

4. Dissolve a small amount of the reference sample into a volatile solvent (acetone or

dichromethane) and, using a thin glass capillary tube, deposit a small amount repeatedly tapping

on the corresponding signals carried on the plate. Repeat the same operation with a small

amount of the test sample.

5. Place the plate inside the elution tank, close it and wait until the eluent rise by capillarity. When

the elution front is about 0.5 cm from the end of the plate, take it out and mark the front with a

horizontal line.

6. Reveal the plate to know where the products are. Draw a circle on the signals that appear.

7. Calculate the Rf of each displayed signal, i.e the ratio of the distance covered by the signal and

the distance covered by the eluent.

Basic Operations Laboratory II

7

a) Results

• Caffeine source: ( ) Tea, Brand:______ ( ) Cola drink, Brand:________

• Amount of tea or cola drink studied:

• Weight of the round-bottom flask (empty):

• Weight of the round-bottom flask with extract:

• Amount of extract obtained:

b) Comments to results

• What does the final residue obtained look like, after distillation in the rotary evaporator?

• According to the thin layer chromatography –tlc- performed to the final extract, was there caffeine in it?, was the extract pure? Draw here the result and calculate the Rf of the products visualized.

• What system has been used to visualize the signals?

• If a tea bag contains about 30-50 mg of caffeine, what can you say about the efficiency of

the extraction?

• If a can of coke of 330 ml contains about 43 mg of caffeine, what can you say about the

efficiency of the extraction?

Basic Operations Laboratory II

1

EXPERIMENT 10 Isolation and identification of the Components of an Analgesic

Tablet Name: Date: 1.- Introduction

Aspirin or acetylsalicylic acid is a derivative of salicylic acid that is used as a mild and non-narcotic

analgesic useful in the relief of headache and muscle and joint aches. Nowadays, aspirin is the most

popular and sold painkiller in the world. The history of aspirin starts when Hippocrates, the father of modern

medicine, who lived between 460 B.C and 377 B.C., describes the use of a powder made from the bark

and leaves of the willow tree to help heal headaches, pains and fevers. Several centuries later, in 1828,

Johann Buchner, professor of pharmacy at the University of Munich, isolated the active ingredient in willow

bark; a tiny amount of bitter tasting yellow, needle-like crystals, which he called salicin. Ten years later, an

Italian chemist named Raffaele Piria split salicin into a sugar and salicylaldehyde and then converted the

latter, by hydrolysis and oxidation, to an acid of crystallised colourless needles, which he named salicylic

acid. The use of salicylic acid as a painkiller was soon limited by its acidic properties, as it produced

irritation of the mucous membranes of the mouth, esophagus and stomach. The problem was solved when

a French chemist named Charles Frederic Gerhardt, in 1853, neutralized salicylic acid by buffering it with

sodium (sodium salicylate) and acetyl chloride, creating acetylsalicylic acid. Gerhardt's product worked very

well but he had no desire to market it and abandoned his discovery. In 1899, a German chemist named

Felix Hoffmann, who worked for a German company called Bayer rediscovered Gerhardt's formula and

convinced Bayer to market the new wonder drug. Aspirin was patented on February 27, 1900. The

commercial name of aspirin comes from: the 'A" in acetyl, the "spir" in spiraea ulmaria (the plant the

salicylic acid comes from) and the 'in' was then a familiar name ending for medicines.

In this experiment, you will carry out the isolation and identification of the components of an

Analgesic Tablet. Analgesic tablets may contain a mixture of aspirin, acetominophen and caffeine along

with a binder. The binder, a neutral substance usually made of silica gel, starch or microcrystalline cellulose

is used to hold the tablet together after packaging, shipping and while it is being swallowed. The binder is

not soluble in water or common organic solvents so it can be easily separated by suspension and filtration.

On the other hand, the solubilities of the three components are different in different solvents. For

example, aspirin and caffeine are soluble in dichloromethane while acetaminophen is not. Hence we can

separate acetaminophen (and the binder) from aspirin and caffeine by dissolving the tablet in

dichloromethane followed by filtration. Acetominophen is found to be soluble in ethanol. Therefore,

acetominophen can be separated from the binder with the same technique. Inspection of the structures of

aspirin and caffeine reveals that they are an organic acid and an organic base, respectively. The

Basic Operations Laboratory II

2

corresponding conjugated base and conjugated acid are soluble in water but not in dichloromethane.

Furthermore, water and dichloromethane are immiscible. Therefore, the aspirin and caffeine in the filtrate

can be separated by extraction either with acid, which remove the caffeine as a water-soluble salt, or by

extraction with base, which will remove the aspirin as a water-soluble salt. The latter procedure will be used

in this experiment. The products obtained are then identified by melting-point determination and thin-layer

chromatography tlc.

2.- Main aims of the experiment and learning outcomes

1. Applying the technique of liquid-liquid extraction to the isolation and separation of several organic

compounds contained in a commercial tablet in accordance with their physical and chemical

properties

2. Analyzing and justifying the experimental results obtained.

Basic Operations Laboratory II

3

3.- Pre-laboratory work Read the introduction to this experience and answer the following questions before the next laboratory practice.

1. Analgesic tablets may contain a mixture of aspirin, acetominophen and caffeine along with a binder. Read the experimental procedure and, with the following solubility data, complete the gaps in the flowchart.

Basic Operations Laboratory II

4

2.- Taking into account that both acetylsalicylic acid and caffeine are better soluble in dichloromethane than in water, how can you manage to separate them? 3.- If instead of dichloromethane in the initial extraction stage, diethyl ether has been used, how could the compounds have been separated? Draw a flowchart similar to this one on page three. 4.- In general, analgesic tablets contain only one active component along with a binder. According with the solubility data displayed on page 3, how could we separate them? 5.- Draw the structural formula of acetaminophen, acetyl salicylic acid and caffeine. Furthermore, write out the molecular formula, the molecular weight, melting point and toxicological properties of everyone.

6.- Write in Spanish and English the words that represent the following pictograms that you can find on the labels of the reagents used, as well as their corresponding meaning,

Basic Operations Laboratory II

5

4.- Laboratory work

a) Experimental procedure

Select an analgesic to analyze A, B or C and, in a mortar, grind four pills/tablets to very fine powder.

Place this powder in a conical flask previously weighed, and take note of the amount of powder transferred.

Next, add about 50 mL of dichloromethane and stir the mixture with a magnetic stirrer for about ten

minutes. The solid in suspension in the dichloromethane mixture is filtered by gravity into a separatory

funnel. Then, the solid and the filter paper are put into a beaker labelled ‘S1’. All this is stored, for later use,

inside a hot air oven.

Now, check by tlc (adsorbent: Silica gel; eluent: Ethyl acetate) the filtrate L1 and, if the tlc plate reveals

that caffeine or acetylsalicylic acid are not present, collect the filtrate in a pre weighed round bottom flask

and remove the solvent on vacuum to obtain one of the components. On the other hand, if both caffeine

and acetylsalicylic acid are present, add 50 mL of 1 M sodium bicarbonate solution and shake the mixture

thoroughly. Collect the aqueous layer into a 250 mL beaker and extract the organic solution again with 50

mL of 1 M sodium bicarbonate solution. Collect the aqueous layer and combine it with the previously

collected aqueous extract. Store this solution in the fridge. Finally, wash the organic phase with 50 mL of

water and collect it in a 100 mL conical flask labelled “L2”.

Add anhydrous Na2SO4 powder into the dichloromethane extract until the drying agent no longer

clumps together. Swirl the mixture for about 30 minutes to complete the drying process and filter the

mixture by gravity into a pre weighed round bottom flask labelled “S2”. Remove the solvent from the

solution completely by rotary vacuum distillation and finally, weigh the solid obtained. Compare the result

with the expected amount and confirm the identity and purity of the solid determining the melting point.

Take the aqueous alkaline extract from the fridge and add 10 mL of 1 M hydrochloric acid drop by drop

and test the acidity of the extract with pH paper from time to time until the pH of the extract is ca 3. If

necessary, add more acid solution. When a suspension is formed, cool the mixture with an ice-bath, filter it

and wash the solid with iced water. Then dry the solid completely to the air. Weigh the solid obtained,

compare the result with the expected amount and confirm its identity and purity determining the melting

point.

Finally, transfer the solid (S1) previously kept in a hot air oven into a conical flask, add 15 mL of ethanol

and heat the mixture until boiling. Filter the solid particles in suspension and collect the filtrate into a

previously weighed spherical flask labelled ‘S3’. Remove completely the solvent from the solution by rotary

vacuum distillation and finally, weigh the solid obtained. Compare the result with the expected amount and

confirm the identity and purity of the solid determining the melting point.

Basic Operations Laboratory II

6

b) Experimental results • Analgesic tablet analyzed (A, B or C): Weight of one pill:

• Amount of analgesic tablet analyzed:

• According to the tlc performed to the filtrated –L1-, what compounds were present?

• Draw herein the chromatography plates made to L1 and calculate the Rf of the products that you

get to visualize.

• Amount of caffeine extracted (a1)

• Experimental melting point:___________ Theoretical melting poin

• Amount of acetylsalicylic isolated (b1)

• Experimental melting point: ________________ Theoretical melting point: __________

• According to the tlc performed to the filtrated –L3-, what compounds were expected to be

isolated?

• Draw herein the chromatography plates made to L3 and calculate the Rf of the products that you

get to visualize.

• Amount of acetaminophen isolated (c1)

• Experimental melting point: ________________ Theoretical melting point: __________

Basic Operations Laboratory II

7

Once the experiment has concluded, ask the teacher for the labels of the tablets analyzed and indicate

which of them they belong to. Read on the label the amount of active ingredients contained in every tablet

and calculate the yield required to extract each of them. Comment the result.

Caffeine

According to the label, how much caffeine should contain the sample? (a2) _______ g Extraction Yield/efficiency (a1/a2 x100): _________ % Acetylsalicilic acid / aspirin According to the label, how much of acetylsalicylic should contain the sample? (b2): ________ g Extraction Yield/Efficiency (b1/b2 x100): _________ % Acetaminophen According to the label, what amount of acetaminophen should contain the sample? (c2): _______g Extraction yield(c1/c2 x100): _________ %

c) Discussion of results

Considering the tests performed (melting point and thin layer chromatography), what can you say about the identity and purity of the products obtained

What is your opinion about the extraction efficiency?

Basic Laboratory Operations II

1

EXPERIMENT 11 Synthesis and Purification Through Recrystallizatio n of

Acetylsalicylic Acid (Aspirin)

Name: Date: _________ 1.- Introduction In this experiment you will carry out the synthesis of one of the most famous medicaments

synthesized by human beings: the aspirin. Acetylsalicylic Acid (Aspirin) can be easily prepared by means of

the reaction between salicylic acid and acetic anhydride through a reaction catalyzed by an acid called

esterification.

2.- Main aims of the experiment and learning outcom es

1. Reading and understanding an experimental procedure written in the English language.

2. Learning vocabulary related to a chemistry laboratory in English.

3. Learning how to separate a solid from a reaction mixture using the technique known as vacuum

filtration

4. Knowing the usefulness of crystallization techniques to purify solid compounds and the glassware

and appliances necessary to make it.

5. Analyzing and justifying the experimental results.

3.- Pre-laboratory work Answer the following questions and comment them with your teacher before the next laboratory practice 1.- Translate the experimental procedure into Spani sh.

Basic Laboratory Operations II

2

2.- Have a look at the following images of labware used in this experience: write their name, and explain for what purpose they are used:

It is a/an ________________________________________ and it is used for ______________________ a reaction mixture

It is a/an _________________________ and it is used for ______________ the solid in a suction filtration

It is a/an _________________________ and it is used for __________ the liquid in a suction filtration

It is a/an _________________________ and It is used to _________ liquids from one container into another

It is a/an _________________________ and it is used for ______________ a conical or separatoy funnel

It is a/an _________________________ and it is used to _______________ a melting point

Basic Laboratory Operations II

3

3.- Draw the reaction scheme including the structur al formula of reagents and products.

4.- Why is concentrated sulfuric acid used in the s ynthesis of aspirin?

5.- Complete the following data table in English.

Compound Risk and Security Molecular

Formula

Molecular

Weight

Boiling/Melting

Point ºC

6.- Why are 50 mL of water added into the flask con taining the first mass of aspirin crystals? 7.- Why is it advisable to wash crystals several ti mes, instead of just once, with small portions of

water but with so much solvent?

Basic Laboratory Operations II

4

8.- What test can you apply to determine whether th ere is any salicylic acid remaining in the aspirin? Explain it 9.- Read about recrystallization as a purification technique for solid compounds and answer the following questions in Spanish:

a) Why must active carbon be added in the recrystallization process?

b) What physical and chemical properties must a liquid have so as to be used as a solvent in the recrystallization process?

c) Why are not ethyl acetate or ethanol suitable solvents for the crystallization of aspirin? 10.- References

Basic Laboratory Operations II

5

4.- Laboratory work

a) Experimental procedure

Weigh 2.0 g of salicylic acid and transfer them to a 100 mL Erlenmeyer flask. Add 4.0 mL of acetic

anhydride and then add 5 drops of concentrated sulfuric acid. Shake the flask gently until the salicycilic acid

dissolves. Let the flask cool down to room temperature till the acetylsalicylic acid begins to crystallize. If it

does not, scratch the walls of the flask with a glass rod and let the mixture cool down in an ice bath until

crystallization takes place. Once crystal formation is completed, add 50 mL of water and shake the flask

gently in order to liberate the crystals. By means of vacuum filtration, collect the product on a Büchner

funnel. Add a small amount of cold water to assist the transfer of crystals to the funnel. Rinse the crystals

several times with small portions of cold water. Keep on with the suction on the Büchner funnel for some

minutes, drawing air through the crystals till they are free of solvent.

Sometimes the crude product may contain some unreacted salicyclic acid residues, so purification by

recrystallization may be necessary. In order to select the most adequate solvent, transfer a bit of solid to

three test tubes and add to each of them 1 ml of cool water, ethanol and ethyl acetate respectively. Pay

attention to that solvent in which the solid is not dissolved at room temperature and then, heat the tubes in

a steam bath. Select the solvent that dissolves the solid in the hot and not on the cold solvent.

Weigh and transfer the wet solid to a 100 mL Erlenmeyer flask. Then, add a few grains of activated

carbon. Besides, in another flask boil a small amount of the chosen solvent and pour it in small fractions

into the flask until the solid dissolves. Then, filter the hot solution by gravity into an Erlenmeyer flask

through a folded filter paper. Let the filtered solution cool down at room temperature until crystals appear. If

crystallization does not take place, scratch the walls of the flask with a glass rod and slightly cool down the

mixture in an ice bath until crystallization takes place. Collect the product through vacuum filtration using a

Büchner funnel and remove the crystals for air drying. Check contamination with salicyclic acid by means of

the ferric chloride test. Finally, weigh the crude product, calculate the percentage yield and measure its

melting point.

Basic Laboratory Operations II

6

b) Stoichiometric calculations and yield

Limitant reagent (mol)

Expected wei ght of Aspirin –a-

Experimental weight of Aspirin –c- (wet)

Experimental weight of Aspirin –d- (dry)

Yield %

d/a x 100

Recrystallization efficiency

d/c x 100

Experimental melting point (ºC)

c) Results: Discussion and Justification

What can you say about the purity of the product obtained according to the tests performed? And about the yield?

Basic Operations Laboratory II

1

EXPERIMENT 12 Monitoring the progress of a reaction by means of t hin layer

chromatography NAME: DATE: 1.- Introduction

Chromatography is a technique which can separate the components of a mixture due to their

different interactions with a stationary phase (solid or liquid) when they are pulled along by a mobile phase

(gaseous or liquid).

Chromatography can be either plane or in column according to the layout of the stationary phase.

Thin layer chromatography, usually called TLC, is the most used type of plane chromatography.

Here, a solid stationary phase is attached to a flat plate and a liquid, which is called eluant, and which rises

up by capillarity sweeping and separating the components of the mixture. This type of chromatography is

useful for:

1. Testing the purity of a compound.

2. Identifying the components of quite complex mixtures.

3. Separating and purifying the components of a mixture.

4. Monitoring the progress of a reaction.

In this experiment we are going to control the progress of an oxidation reaction through tlc.

2.- Main aims of the experiment and learning outcom es

1. Learning the equipment you need to heat refluxing a mixture.

2. Monitoring the progress of a reaction through tlc.

3. Applying the liquid-liquid extraction technique to the isolation of an organic compound from a

reaction mixture knowing its solubility properties.

4. Analyzing and justifying the experimental results obtained.

Basic Operations Laboratory II

2

3.- Pre-laboratory work Answer the following questions and comment them with your teacher before the next laboratory practice.

1. Complete the following data table in English.

Compound

(name)

Risk and Security Molecular

Formula

Molecular

Weight

Boiling/Melting

Point ºC

2. Why are sodium hypochlorite, acetic acid and ace tone used in this reaction?

3. Draw the reaction scheme that takes place betwee n 9-fluorenol and sodium hypochlorite, including the structural formula of reagents and pr oducts.

4. The Rf of a compound is 0.6 when a mixture hexan e:acetone 7:3 v/v is used as eluent. if a

mixture hexane:acetone 5:5 v/v is used as eluent, h ow will the new value of Rf be, greater or

lower?

5. Sort by order of increasing polarity the followi ng mixtures of eluents. Justify your answer

a) n-Butanol, Acetic acid 4:1 v/v.

b) n-Butanol, Acetic acid, Ethanol 3:1:1 v/v/v.

c) n-Butanol, Acetic acid, Water 3:1:1 v/v/v.

d) n-Butanol, Ethanol, Water 3:1:1 v/v/v.

6. When a mixture is refluxed, a tube filled with c alcium chloride (drying tube) is placed on the

condenser. However, in the experiment to be carried out this tube won’t be necessary. Why?

7. Why were 5 mL of NaHCO 3 (1 M) added to the reaction mixture once the react ion had

finished?.

Basic Operations Laboratory II

3

4.- Laboratory work

a) Experimental procedure

Weigh 50 mg of 9-hidroxifluorene and transfer them to a dry 50 mL round bottom flask holding to a

supporting stand with the help of a metallic clamp and place it on a stirrer plate. Then, add 3.0 mL of

acetone, 1.0 mL of sodium hypochlorite, 0.2 mL of acetic acid and finally a magnetic stirrer. Now, attach a

condenser to the round-bottom flask and start stirring at room temperature.

After ten minutes, check the reaction media through tlc (Adsorbent: Silica gel; Eluent A: hexane:acetone

7:3 v/v; Eluent B: hexane:acetone 5:5, v/v). The reaction is concluded if starting material is not visualized.

Besides, if starting material is even present in the reaction media we can:

a) Way for ten minute more and check again by tlc.

b) Add 1.0 mL of sodium hypochlorite and after 15 minutes, check again by tlc.

c) Reflux the mixture and after 15 minutes, check again by tlc.

Follow stirring and slowly, add 20 mL of NaHCO3 (1M) on the mixture. Next, pour the mixture into a

separatory funnel and add 20 ml of diethyl ether. Shake it smoothly to prevent the stopper from popping out

due to pressure. Remove the aqueous phase and wash the organic phase twice by using 10 ml of water.

Then, treat organic extract with anhydrous sodium sulfate. Filter the dry organic extract in a previously

weighed petri dish and then, remove the solvent with the help of a vent.

After a few minutes, a yellow residue should appear. Weigh the petri dish again and calculate the yield

of the compound obtained, 9-fluorenone. Finally, carry out Brady´s test to verify that carbonyl group is

present in the residue.

Basic Operations Laboratory II

4

b) Results: Discussion and Justification

1. When an extra amount of sodium hypochlorite was added on the reaction medium, what

happened? And what happened when the reaction was refluxed?.

2. When do you think that addition of an extra amount of sodium hypochlorite or an increase in

temperature can have a negative effect on reaction?

3. Draw the results of all the thin layer chromatography performed using as eluents both 5.5 v/v as

7.3 v/v hexane:acetone mixtures and calculate the Rf of the products visualized with Ultraviolet

lamp.

4. After evaporation, what does the final residue obtained look like?

5. What test can you make to know the purity of the final product?

6. What information have you obtained by applying Brady´s test?

Basic Operations Laboratory II

5

c) Stoichiometric calculations and yield

Limitant reagent (mol)

Expected weight of product

Experimental weight of product

Yield %

EXPERIMENT 12 Additional notes and comments

15/07/2013

1

Guía Audiovisual de Operaciones Básicas de Laboratorio II

Audiovisual Guide of Basic Laboratory Operations II

UNIVERSIDAD DE JAÉN UNIVERSIDAD DE JAÉN UNIVERSIDAD DE JAÉN UNIVERSIDAD DE JAÉN

UNIVERSITY OF JAENUNIVERSITY OF JAENUNIVERSITY OF JAENUNIVERSITY OF JAEN

ELIJA IDIOMACHOOSE LANGUAGE

Yolanda Caballero AceitunoJose Maria Mesa Villar

Concepción Soto PalomoDepartamento de Filología Inglesa-UJA

Nuria Illán CabezaAntonio Marchal Ingrain (coord.)

Departamento de Química Inorgánica y Orgánica-UJA

Guía Audiovisual de Operaciones Básicas de Laboratorio II

1. Presentación

2. Introducción a la Asignatura Operaciones Básicas de Laboratorio II OBL-II

3. Competencias y Resultados de Aprendizaje

4. Recursos Bibliográficos y on-line

5. Evaluación

6. Bloques temáticos

– Normas de Seguridad en el Laboratorio

– Experiencias con Operaciones Básicas aplicadas al estudio de las propiedades físico-química de compuestos inorgánicos

– Experiencias con Operaciones Básicas aplicadas a la separación y purificación de los componentes de una mezcla de naturaleza orgánica

7. Ejercicios

15/07/2013

2

1. Presentación

La presente Guía Bilingüe de la asignatura “Operaciones Básicas de Laboratorio II

<OBL-II>”, del Grado en Química surge en primer lugar con el ánimo de facilitar al alumnado

no hispano-hablante matriculado en la asignatura, el acceso a los contenidos de la misma

en inglés y en segundo lugar para que todo el alumnado se familiarice con la terminología

científico-técnica propia de un laboratorio de química en castellano y en inglés. Para

conseguirlo, los diferentes contenidos se presentan mediante documentos descargables,

audios activos y videos de las experiencias que se realizan durante el desarrollo de la

asignatura.

Agradecimientos:

Este material se ha elaborado gracias a la concesión del proyecto PID17-201113 porparte del Vicerrectorado de Profesorado e Innovación Docente de la Universidad deJaén en la Convocatoria 2011-2013 y a la participación de los estudiantes del Grado enQuímica matriculados en la asignatura en los cursos 2011-2012 y 2012-2013.

2. Introducción a la Asignatura Operaciones Básicas de Laboratorio II

La asignatura “Operaciones Básicas de Laboratorio II OBL-II”, se imparte en elsegundo cuatrimestre del primer curso del Grado en Química y completa la formaciónen operaciones básicas de laboratorio adquirida por el alumnado con la asignatura deprimer cuatrimestre “Operaciones Básicas de Laboratorio I (OBL-I)”.

En la asignatura OBL-I el alumnado aprende las normas de seguridad en unlaboratorio de química y operaciones básicas de trabajo como pesar, preparar yvalorar disoluciones o separar los componentes de una mezcla mediante extracciónsimple o múltiple.

En la asignatura OBL-II por otro lado, el alumnado aplica las habilidadesexperimentales básicas adquiridas en la Asignatura OBL-I al estudio de casos máscomplejos como por ejemplo, el estudio de las propiedades físico-químicas decompuestos inorgánicos o la purificación y caracterización de productos orgánicosobtenidos mediante procedimientos sintéticos.

15/07/2013

3

3. Competencias y Recursos de Aprendizaje

Al finalizar el estudio de la asignatura, el alumnado…:

•Conoce vocabulario básico en inglés relacionado con la seguridad, reactivos y operaciones básicas de

laboratorio.

•Conoce la necesidad de minimizar la generación de residuos y su gestión.

•Dispone de conocimientos y habilidades suficientes para utilizar correctamente y con seguridad los

productos y el material más habitual en un laboratorio químico siendo consciente de sus características

más importantes incluyendo peligrosidad y posibles riesgos.

•Aplica las habilidades experimentales básicas adquiridas en la Asignatura OBL-I al estudio de casos más

complejos.

•Conoce las técnicas más sencillas para la purificación de un compuesto químico.

•Conoce procedimientos sencillos para caracterizar un producto químico.

•Interpreta y comunica adecuadamente los resultados de un experimento utilizando la terminología

científico-técnica propia de la química de forma correcta.

4. Recursos Bibliográficos y on line

• CONTRERAS, A., CASELLES, M. J., MOLERO, M ; “Introducción a la Química Experimental. (I)El laboratorio de Química. Instalaciones y Material. (II) Productos o Sustancias Químicas. (III) Técnicas Básicas de Laboratorio”.3 vídeos y 2 guías didácticas. UNED 1992.

• GARCÉS, A. “Experimentación en Química Inorgánica”, Ed. Dykinson 2009.

• HORTA A., ESTEBAN S., NAVARRO R., CORNAGO P., BARTHELEMY C; “Técnicas experimentales de Química”, UNED, 2001.

• MARCHAL, A et col. “Introducción a un Laboratorio de Química. Guía Audivisual Multilíngüe” CD. Universidad de Jaén, 2009

• MARTINEZ M.A., CSÁKY A.G.“Técnicas Experimentales en Síntesis Orgánica” Ed. Síntesis S.A; 1998.

• PAVÍA D.L., LAMPMAN G.M., KRIZ-Jr G.S, Engel, R.D. "Introduction to Organic Laboratory Techniques", 2nd ed., Thomson Brooks/cole, 2005

• RAMOS, M. M. y VARGAS, C. “LABORATORIO DE QUIMICA ORGANICA”, EDITORIAL UNIVERSITARIA RAMON ARECES, MADRID: 2006.

• WOOLLINS J.D. (ed.); "Inorganic Experiments", VCH; 2003.

– www.panreac.es

– www.pobel.es

– www.sigmaaldrich.com/labware.html

– www.ub.edu/oblq/

– www.ugr.es/~quiored/

– www.chemspider.com

– www.liceoagb.es/quimiorg/indice.html

15/07/2013

4

5. EvaluaciónAl tratarse de una asignatura experimental, se ha establecido un sistema de evaluación

que valora en gran medida la asistencia y participación del alumnado en las actividadespropuestas tanto en el laboratorio como en tutorías. Así la calificación final vendrá dada por:

EXAMEN TEÓRICO-PRÁCTICO (60% NOTA FINAL) en el que el alumnado deberá demostrar sudominio de los conocimientos teóricos y operativos desarrollados en la asignatura y de laterminología básica de laboratorio, en castellano e inglés.

REVISIÓN SEMANAL DEL CUADERNO DE LABORATORIO (15 % NOTA FINAL) en el que sevalorará:- Ortografía y presentación.- Calidad de las fuentes de consulta utilizadas.- Calidad de la traducción de textos en inglés.- Capacidad de observación y extracción de conclusiones.- Resolución de cuestiones.

TRABAJO DE LABORATORIO (25 % NOTA FINAL) en el que se valorará:-Orden, limpieza y aplicación adecuada de las normas de seguridad y manejo de sustanciasquímicas.-Finalización de cada experiencia en el tiempo adecuado.-Destreza en la realización de las operaciones propias de cada experiencia .-Capacidad de resolución de imprevistos.

6. Bloques Temáticos

A. Normas de Seguridad en el Laboratorio.

B. Experiencias con Operaciones Básicas aplicadas alestudio de las propiedades físico-química decompuestos inorgánicos. 1-6

C. Experiencias con Operaciones Básicas aplicadas a laseparación y purificación de los componentes deuna mezcla de naturaleza orgánica. 7-12

15/07/2013

5

A. Normas de seguridad

1.- Trabaje seguro en el laboratorio

2.- Normas de seguridad en los laboratorios de la UJA

3.- Frases de riesgo y seguridad

4.- Material de laboratorio

5.- Instrucciones de uso del Medidor Punto de Fusión

Trabaje seguro en el laboratorioTrabaje seguro en el laboratorio

Antes de iniciar una Antes de iniciar una experiencia lea la experiencia lea la

etiqueta de los reactivosetiqueta de los reactivos

TóxicoTóxico InflamableInflamable

Peligroso para el Peligroso para el medio ambientemedio ambiente

CorrosivoCorrosivo

ExplosivoExplosivo Nocivo e Nocivo e IrritanteIrritante

OxidanteOxidante

Peligroso para Peligroso para las personaslas personas

PPIICCTTOOGGRRAAMMAASS

15/07/2013

6

Lleve bata de mangas largasLleve bata de mangas largasNo use sandalias. Los zapatos No use sandalias. Los zapatos

deben cubrir el pie enterodeben cubrir el pie entero El pelo debe recogerse o cubrirseEl pelo debe recogerse o cubrirse

No use lentes de contacto. Use gafas de No use lentes de contacto. Use gafas de seguridad cerradasseguridad cerradas

Elija los guantes adecuados pare el manejo Elija los guantes adecuados pare el manejo seguro de sustancias peligrosasseguro de sustancias peligrosas

Trabaje seguro en el laboratorioTrabaje seguro en el laboratorio

El trabajo con reactivos tóxicos debe El trabajo con reactivos tóxicos debe realizarse en la CAMPANA realizarse en la CAMPANA

EXTRACTORAEXTRACTORA

Use la DUCHA DE SEGURIDAD Use la DUCHA DE SEGURIDAD en caso de incendioen caso de incendio

Compruebe el BOTIQUÍN regularmente

Use el LAVAOJOS con abundante agua cuando algún reactivo le salpique a la cara

Trabaje seguro en el laboratorioTrabaje seguro en el laboratorio

15/07/2013

7

ExtintorExtintor

Manta ignífugaManta ignífuga

Salida de Salida de EmergenciaEmergencia

AlarmaAlarma

MangueraManguera

Trabaje seguro en el laboratorioTrabaje seguro en el laboratorio

B. Experiencias 1-3

1.- Determinación de la masa atómica del magnesio

Procedimiento experimental

2.- Determinación de la masa molecular del CO2

Procedimiento experimental

3.- Determinación de la fórmula del KClO3

Procedimiento experimental

15/07/2013

8

B. Experiencias 4-6

4.- Obtención y propiedades ácido-base del HCl y del NH3

Procedimiento experimental

5.- Obtención y estudio de las propiedades rédox del H2O2

Procedimiento experimental

6.- Obtención y propiedades físicas del [Cu(NH3)4]SO4·H2O

Procedimiento experimental

B. Experiencias 7-9

7.- Separación de los componentes de una mezcla mediante

destilación. Procedimiento experimental.

8.- Aislamiento de aceites esenciales de plantas aromáticas

mediante Arrastre de vapor. Procedimiento experimental.

9.- Aislamiento de cafeína de hojas te y refresco de cola.

Procedimiento experimental.

15/07/2013

9

B. Experiencias 10-12

10.- Aislamiento e identificación de los componentes de un

Analgésico. Procedimiento experimental.

11.- Síntesis y purificación mediante recristalización de

ácido acetilsalicílico. Procedimiento experimental.

12.- Seguimiento del progreso de una reacción mediante

cromatografía en capa fina ccf.

Procedimiento experimental

Ejercicios de inglés

Audio # 1. Ejercicio 1

Audio # 2. Ejercicio 2

Audio # 3. Ejercicio 3

Audio # 4. Ejercicio 4

Escuche los siguientes audios en inglés relacionados con los procedimientos

experimentales e intente contestar a las cuestiones incluidas en los

documentos pdf rellenables.

Audio # 5. Ejercicio 5

Audio # 6. Ejercicio 6

Audio # 7. Ejercicio 7

Audio # 8. Ejercicio 8

15/07/2013

10

Audiovisual Guide of Basic Laboratory Operations II

Guía Audiovisual de Operaciones Básicas de Laboratorio II

UNIVERSITY OF JAENUNIVERSITY OF JAENUNIVERSITY OF JAENUNIVERSITY OF JAEN

UNIVERSIDAD DE JAÉN UNIVERSIDAD DE JAÉN UNIVERSIDAD DE JAÉN UNIVERSIDAD DE JAÉN

ELIJA IDIOMACHOOSE LANGUAGE

Yolanda Caballero AceitunoJose Maria Mesa Villar

Concepción Soto PalomoDepartamento de Filología Inglesa-UJA

Nuria Illán CabezaAntonio Marchal Ingrain (coord.)

Departamento de Química Inorgánica y Orgánica-UJA

Audiovisual Guide of Basic LaboratoryOperations II

1. Presentation of this Guide

2. Introduction to the subject “Basic Laboratory Operations II BLO-II”

3. Competences and Learning Outcomes

4. Literature and internet sources

5. Assessment methods

6. Contents

– Lab Safety rules

– Basic Laboratory Operations applied to the study of physical and chemical properties of inorganic compounds

– Basic Laboratory Operations applied to the isolation of compounds fromreaction media, natural or commercial sources

7. Listening exercises

15/07/2013

11

1. Presentation

This Bilingual Guide of the subject “Basic Laboratory Operations II” has been

designed by a group of professors at the University of Jaén (Spain) aiming to firstly,

facilitate to foreign students the contents of the subject in English and then, to get

Spanish students are familiar with the typical scientific-technical vocabulary used in a

laboratory of chemistry both in English as in Spanish language. Contents are presented

as downloadable documents, audios and video about all the experiments performed

during the course.

AcknowledgementsAcknowledgements

Authors are grateful to students enrolled in the subject “Basic Laboratory Operations II” (Bachelor in

Chemistry) in the 2011-2012 and 2012-2013 courses for your participation and to the Vicerrectorado de

Profesorado e Innovación Docente of the University of Jaén for supporting this initiative through the

project PID17-201113

2. Introduction to the subjectBasic Laboratory Operations II

The subject “Basic Laboratory Operations II” is taught in the second semester of the

first year of Bachelor in Chemistry and complete the learning acquired by the students in the

subject “Basic Laboratory Operations I” coursed in the first semester.

In the subject “Basic Laboratory Operations I BLO-I”, security rules in a laboratory and

basic operations such as weighing, preparing a solution or separating the components of a

mixture through simple or multiple extraction are learned.

On the other hand, in the subject “Basic Laboratory Operations II BLO-II”, the

experimental skills acquired in BLO-I by students are applied to more complex situations, e.g.

studying the physical and chemical properties of inorganic compounds or the purification and

characterization of organic compounds isolated both from natural as artificial sources.

15/07/2013

12

3. Competences and Learningoutcomes

Upon completetion of the study of this subject, students acquire ... :

• Knowledge of the main aspects of chemical terminology, nomenclature, conventions and units.

• Knowledge of a foreign language (preferably English).

• Sensibility towards environmental topics.

• Skills in the evaluation, interpretation and synthesis of chemical information and data.

• Skills in the safe handling of chemical materials, taking into account their physical and chemical

properties, including any specific hazards associated with their use.

• Skills required for the conduct of standard laboratory procedures involved and use of

instrumentation in synthetic and analytical work, in relation to both organic and inorganic systems.

• Skills in the monitoring, by observation and measurement, of chemical properties, events or

changes, and the systematic and reliable recording and documentation thereof.

4. Literature and internet sources

• CONTRERAS, A., CASELLES, M. J., MOLERO, M ; “Introducción a la Química Experimental. (I)El laboratorio de Química. Instalaciones y Material. (II) Productos o Sustancias Químicas. (III) Técnicas Básicas de Laboratorio”.3 vídeos y 2 guías didácticas. UNED 1992.

• GARCÉS, A. “Experimentación en Química Inorgánica”, Ed. Dykinson 2009.

• HORTA A., ESTEBAN S., NAVARRO R., CORNAGO P., BARTHELEMY C; “Técnicas experimentales de Química”, UNED, 2001.

• MARCHAL, A et col. “Introduction to a Laboratory of Chemistry. Multilingual audiovisual guide” CD. Universidad de Jaén, 2009

• MARTINEZ M.A., CSÁKY A.G.“Técnicas Experimentales en Síntesis Orgánica” Ed. Síntesis S.A; 1998.

• PAVÍA D.L., LAMPMAN G.M., KRIZ-Jr G.S, Engel, R.D. "Introduction to Organic Laboratory Techniques", 2nd ed., Thomson Brooks/cole, 2005

• RAMOS, M. M. y VARGAS, C. “LABORATORIO DE QUIMICA ORGANICA”, EDITORIAL UNIVERSITARIA RAMON ARECES, MADRID: 2006.

• WOOLLINS J.D. (ed.); "Inorganic Experiments", VCH; 2003.

– www.panreac.es

– www.pobel.es

– www.sigmaaldrich.com/labware.html

– www.ub.edu/oblq/

– www.ugr.es/~quiored/

– www.chemspider.com

– www.liceoagb.es/quimiorg/indice.html

15/07/2013

13

5. Assessment methodsBasic Laboratory Operations II BLO-II, is an experimental subject therefore,

to evaluate the learning outcomes, a special attention will be payed in theattendance and the active participation in seminars and tutorials. So, the finalqualification will be given by:

TheoricalTheorical--practicalpractical examinationexamination (60% FINAL QUALIFICATION). Students have to demonstrate …- Knowledge and mastery of the theoretical and practical issues of the subject.- Mastery of the basic English terminology needed to work in a laboratory.

WeeklyWeekly revisionrevision ofof LaboratoryLaboratory reportsreports (15 % FINAL QUALIFICATION). Special attention will bepayed in… :

- Well-written reports.- Grammar and neat presentation.- Quality in the use of references. - Quality of the texts translated into English.- Originality.

AttendanceAttendance andand activeactive participationparticipation inin seminarsseminars andand tutorialstutorials (25 % FINAL QUALIFICATION).Special attention will be payed in.. . :

- Tidy work, cleaning and proper application of the safety rules and handling of chemicals.- Completion of each experience at the right time.- Skill in the implementation of operations of each experience .- Ability to solve unforeseen.

6. Contents

A. Lab Safety Rules.

B. Laboratory Operations applied to the study ofphysical and chemical properties of inorganiccompounds.

C. Basic Laboratory Operations applied to the isolationof compounds from reaction media, natural orcommercial sources.

15/07/2013

14

A. Lab Safety Rules

1.- Work safety in the lab!!

2.- Precautionary and Hazards statements

3.- Glassware

4.- Digital Melting Point Apparatus. Operating and Safety Instructions

ToxicToxic FlammableFlammable

DangerousDangerous forfor thetheenvironmentenvironment

CorrosiveCorrosive

ExplosiveExplosive HarmfulHarmfuloror IrritantIrritant

OxidisingOxidising

BeforeBefore startingstarting ananexperimentexperiment readread thethe

reagentsreagents labellabel

DangerousDangerous forforpeoplepeople

Work safety in the lab!!Work safety in the lab!!

PPIICCTTOOGGRRAAMMSS

15/07/2013

15

Work safety in the lab!!Work safety in the lab!!

Wear fullWear full--length lab coatlength lab coatNo No sandalssandals. . ShoesShoes shouldshould

covercover entireentire footfootLooseLoose hairhair shouldshould bebe

coveredcovered oror tiedtied

No No contactcontact lenseslenses..

Use Use safety safety closeclose--fittingfitting googlesgooglesChooseChoose adequateadequate glovesgloves forfor thethe safesafe

handlinghandling of of hazardoushazardous substancessubstances

Work safety in the lab!!Work safety in the lab!!

Work with toxic chemicals should be Work with toxic chemicals should be carried out in a FUME HOODcarried out in a FUME HOOD

CheckCheck FIRSTFIRST--AIDAID-- KIT KIT regularlyregularly

Use SAFETY SHOWER Use SAFETY SHOWER in in case of case of firefire

Use EYEWASH with water enoughwhen a reagent splash on you face

15/07/2013

16

Work safety in the lab!!Work safety in the lab!!

FireFire extinguisherextinguisher

FireFire blanketblanket

Emergency exitEmergency exit

FireFire alarmalarm

HosepipeHosepipe

B. Experiments 1-3

1.- Determining the atomic mass of magnesium.

Experimental Procedure.

2.- Determining the molecular mass of carbon dioxide.

Experimental Procedure.

3.- Establishing the formula of KClO3

Experimental Procedure.

15/07/2013

17

B. Experiments 4-6

4.- Obtention and acid-base properties of HCl and NH3

Experimental Procedure.

5.- Obtention and study of redox properties of H2O2

Experimental Procedure.

6.- Isolation and and study of physical properties of

[Cu(NH3)4]SO4·H2O

Experimental Procedure.

B. Experiments 7-9

7.- Separation and purification of the components

of a mixture through distillation. Experimental Procedure.

8.- Isolation of essential oils from aromatic plants through

steam distillation. Experimental Procedure.

9.- Isolation of caffeine from a cola drink and tea bags.

Experimental Procedures.

Part A (tea bags)

Part B (cola drink)

15/07/2013

18

B. Experiments 10-12

10.- Isolation and identification of the components

of an Analgesic Tablet. Experimental Procedure.

11.- Synthesis and purification through recrystallization of

acetylsalicylic acid (Aspirin). Experimental Procedure.

12.- Monitoring the progress of a reaction by means of

thin layer chromatography and isolation of products.

Experimental Procedure.

Listening Exercises

Record # 1. Exercise 1

Record # 2. Exercise 2

Record # 3. Exercise 3

Record # 4. Exercise 4

Listen the followings records related to the experimental procedures and try

to answer the guestions included in the pdf documents.

Record # 5. Exercise 5

Record # 6. Exercise 6

Record # 7. Exercise 7

Record # 8. Exercise 8