mates codificacio criptografia_compressio

16
CODIFICACIÓ NIF El número d’identificació fiscal, NIF, consta de vuit dígits numèrics i una lletra. Aquesta última lletra és la redundància que s’afegeix a aquest número per a detectar errors en escriure el NIF. El càlcul de la lletra es fa de la següent forma: - Es fa la divisió sencera (sense decimals) del número del NIF entre 23 - La resta de la divisió serà un nombre comprès entre 0 i 22. Llavors s’associa una lletra a cada una d’aquestes 23 diferents possibilitats, seguint la taula. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 T R W A G M Y F P D X B N J Z S Q V H L C K E Exemple: Calculem quina és la lletra del NIF associada al nombre 35.059.123 Per això dividim aquest nombre entre 23 La resta és 16. Així que, seguint la taula, li correspon la lletra Q

Upload: paquita-ribas

Post on 09-Jul-2015

1.099 views

Category:

Education


2 download

DESCRIPTION

Resum i formules de l'assignatura de Mates II de la UOC

TRANSCRIPT

Page 1: Mates codificacio criptografia_compressio

CODIFICACIÓ

NIF

El número d’identificació fiscal, NIF, consta de vuit dígits numèrics i una lletra.

Aquesta última lletra és la redundància que s’afegeix a aquest número per a detectar

errors en escriure el NIF. El càlcul de la lletra es fa de la següent forma:

- Es fa la divisió sencera (sense decimals) del número del NIF entre 23 - La resta de la divisió serà un nombre comprès entre 0 i 22. Llavors s’associa una

lletra a cada una d’aquestes 23 diferents possibilitats, seguint la taula.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

T R W A G M Y F P D X B N J Z S Q V H L C K E

Exemple: Calculem quina és la lletra del NIF associada al nombre 35.059.123

Per això dividim aquest nombre entre 23

La resta és 16. Així que, seguint la taula, li correspon la lletra Q

Page 2: Mates codificacio criptografia_compressio

EAN-13 – CODI DE BARRES

- Les dues primeres xifres indiquen el país d’origen del producte

- Els cinc següents indiquen el productor

- Els cinc següents indiquen el nombre del producte assignat pel mateix

productor

- L’últim dígit és un dígit de control que conté prou redundància per a detectar

els error.

Per a calcular l’últim dígit:

Suposem que els tretze dígits són: ABCDEFGHIJKLM Fem l’operació següent: A + 3·B + C + 3·D + E + 3·F + G + 3·H + I + 3·J + K + 3·L El dígit de control M, serà el resultat de la diferència de 10 i el resultant de l’última xifra de l’operació anterior. En cas que el resultat d’aquesta operació sigui un múltiple de 10, el dígit de control serà un 0.

Exemple 1: Tenim el codi de barres següent: 2001234567893. Hem de comprovar si el

dígit és correcte:

2 + 3.0 + 0 + 3.1 + 2 + 3.3 + 4 + 3.5 + 6 + 3.7 + 8 + 3.9

2 + 0 + 0 + 3 + 2 + 9 + 4 + 15 + 6 +21 + 8 + 27 = 97

L’última xifra és 7 i 10-7=3. Per tant el dígit de control és 3.

Exemple 2: Tenim el codi de barres següent: 028947564562__. Hem de calcular el dígit:

0 + 3 · 2 + 8 + 3 · 9 + 4 + 3 · 7 + 5 + 3 · 6 + 4 + 3 · 5 + 6 + 3 · 2 = 120

El resultat obtingut és múltiple de 10, el dígit de control serà un 0.

Page 3: Mates codificacio criptografia_compressio

CODIS LINEALS

FÒRMULA PER A SABER ELS DÍGITS QUE NECESSITEM PER A CODIFICAR

UNA PARAULA

Exemple: Per a 256 tons de grisos necessitem log256 / log2 = 8

DISTÀNCIA DE HAMMING

És la distància entre dues paraules.

Exemple: entre 1101 i 0101, la distància de Hamming és 1 i entre 00110 i 11001 és 5.

DISTÀNCIA MÍNIMA

Es comparen les paraules i es cerquen les distàncies de Hamming. Desprès es

selecciona el més petit que no sigui 0. En el exemple, la distància mínima és 3.

000000 101010 010110 101101

000000 0

101010 3 0

010110 3 4 0

101101 4 3 5 0

SABER QUANS D’ERRORS ES PODEN DETECTAR

Aplicarem la fórmula D-1.

En l’exemple anterior és 3-1 = 2. Això significa que podem detectar 2 errors.

PER A SABER QUANS D’ERRORS ES PODEN CORREGIR

Aplicarem la fórmula

En l’exemple anterior tindríem que 3-1/2=1. Per tant, podríem corregir 1 error.

Page 4: Mates codificacio criptografia_compressio

SUMA I PRODUCTE DE NOMBRES DE TIPUS Z2

Suma dels nombres de tipus Z2: Multiplicació dels nombres de tipus Z2:

Suma: + 0 1 Producte: . 0 1

0 0 1 0 0 0

1 1 0 1 0 1

SUMA DE MATRIUS

Per ha poder sumar matrius, han de tenir el mateix nombre de files i els mateix nombre de columnes. El resultat serà una altra matriu, que s’obtindrà sumant element a element.

MULTIPLICACIÓ DE MATRIUS

La matriu de l’esquerra ha de tenir tantes columnes com files la matriu de la dreta. Obtindrem una matriu amb tantes files com la matriu de l’esquerra i tantes columnes com la matriu de la dreta.

Page 5: Mates codificacio criptografia_compressio

MATRIU GENERADORA DE CODI

Serveix per a codificar paraules.

Per exemple: Si volem codificar una paraula de 7 lletres necessitarem un codi de 3

números (log7/log2=2,80).

1- La nostra matriu generadora haurà de tenir 3 files i 7 columnes

2- No pot haver cap fila repetida ni ninguna fila que s’obtingui amb la suma de dos

o més files.

3- Multiplicarem el codi per la matriu generadora per a obtenir el codi lineal.

Si tenim la matriu generadora

i la paraula (0 1 0) obtindríem el codi lineal (0 1 0 1 1 0 1)

Page 6: Mates codificacio criptografia_compressio

MATRIU DE COMPROVACIÓ DE PARITAT

Serveix tant per a detectar com per a corregir errors.

Per a saber si una paraula pertany al codi haurem de multiplicar-la per la matriu H. Si

dóna tot 0 és que la paraula pertany al codi.

Exemple: Si el receptor llegeix la paraula (0 1 0 1 1 0 1) i tenim la matriu H següent:

Si no dóna 0 és que hi ha un error en el codi. Cercarem la columna de la matriu de

paritat que coincideixi amb el resultat.

En aquest exemple coincideix amb la tercera columna. Per tant, l’error s’ha produït en

el tercer dígit. Així, el tercer dígit era 1 i ha de ser 0.

Page 7: Mates codificacio criptografia_compressio

CRIPTOGRAFIA DE CLAU PRIVADA

La Criptografia pot ser:

- Criptologia – Transmissió de missatges de forma indesxifrable per a tothom aliè

a la comunicació.

- Criptoanàlisi – Intenta desencriptar els missatges encriptats.

La clau privada es caracteritza per l’ús d’una clau secreta acordada entre emissor i

receptor. Són també de clau simètrica perquè s’utilitza el mateix procés per encriptar

que per desencriptar.

ENCRIPTACIÓ DE CÈSAR

Tenim les 27 lletres de l’abecedari.

Si, per exemple, k = 2, el caràcter H és el caràcter J, i el caràcter O és el caràcter Q. Per

encriptar amb la clau secreta k = 2, HOLA = JQNC

A B C D E F G H I J K L

M N Ñ O P Q R S T U V W

X Y Z

Per a desencriptar el missatge només caldria restar k al missatge encriptat. En el

exemple hauríem de restar -2.

ENCRIPTACIÓ DE VIGENÈRE

Modificació del mètode Cèsar per evitar l’atac estadístic. Es fa de la següent manera:

- Es divideix el missatge en blocs amb la mateixa longitud prèviament acordada

- La clau privada està formada per la longitud del bloc i per les claus acordades

- Per exemple, si dividim el missatge en blocs de 4 caràcters, necessitarem

quatre claus privades.

Si volem encriptar la paraula MULTIMEDIA amb el mètode de Vigenère, longitud 3 i

claus k1=1, k2=5 i k3=3

Paraula M U L T I M E D I A

Substitució 12 21 11 20 8 12 4 3 8 0

Clau=k 1 5 3 1 5 3 1 5 3 1

Substitució 13 26 14 21 13 15 5 8 11 1

Encriptada N Z Ñ U N 0 F I L B

Per a desencriptar, simplement cal fer els mateixos càlculs, però en lloc de sumar la

clau, s’ha de restar.

Page 8: Mates codificacio criptografia_compressio

ENCRIPTACIÓ DE VERNAM

Cada caràcter del missatge es codifica segons la taula de caràcters ASCII per una

cadena de 8 bits. Es fa de la següent manera:

1. Es codifica la lletra segons la taula ASCII

2. Es suma la clau privada que ha de ser tan llarga en bits com la longitud del

missatge en bits

3. El codi resultant es substitueix segons la taula ASCII

Exemple: Missatge= HOLA

Clau= 01001010000110101010110101101011

Missatge H O L A

ASCII 01001000 01001111 01001100 01000001

Clau 01001010 00011010 10101101 01101011

Encriptat 00000010 01010101 11100001 00101010

Per a desencriptar el missatge simplement cal restar la clau secreta al missatge

encriptat.

ATAC ESTADÍSTIC

Per a desencriptar un Cèsar només cal anar provant les possibles claus fins que el

missatge tingui sentit.

Els criptosistemes per substitució no és tant fàcil trencar-los. Amb aquest mètode,

cada lletra se substitueix per un altre símbol. Però es pot trencar amb l’atac estadístic.

Es basa en el fet que el símbol encriptat que més es repeteix correspondrà segurament

a la lletra més freqüent en la llengua original. Es pot fer amb el Word:

1. Calcular les freqüències que surten les lletres en el text sense encriptar

(Inici/cerca/cercar lletra per lletra)

2. Calcular les freqüències dels símbols del text encriptat

3. Entre el text encriptat i el text sense encriptar es previsible que no es

produeixin gaires desviacions de freqüències.

4. Quan ja tinguem paraules mitges completes podem conèixer els símbols que

ens queden.

Page 9: Mates codificacio criptografia_compressio

Taula de caràcters ASCII

Decimal ASCII Binari Decimal ASCII Binari

32 blanc 00100000 90 Z 01011010

33 ! 00100001 91 [ 01011011

34 " 00100010 92 / 01011100

35 # 00100011 93 ] 01011101

36 $ 00100100 94 ^ 01011110

37 % 00100101 95 _ 01011111

38 & 00100110 96 ' 01100000

40 ( 00101000 97 a 01100001

41 ) 00101001 98 b 01100010

42 * 00101010 99 c 01100011

44 , 00101100 100 d 01100100

45 - 00101101 101 e 01100101

46 . 00101110 102 f 01100110

65 A 01000001 103 g 01100111

66 B 01000010 104 h 01101000

67 C 01000011 105 i 01101001

68 D 01000100 106 j 01101010

69 E 01000101 107 k 01101011

70 F 01000110 108 l 01101100

71 G 01000111 109 m 01101101

72 II 01001000 110 n 01101110

73 I 01001001 111 o 01101111

74 J 01001010 112 p 01110000

75 K 01001011 113 q 01110001

76 L 01001100 114 r 01110010

77 M 01001101 115 s 01110011

78 N 01001110 116 t 01110100

79 O 01001111 117 u 01110101

80 P 01010000 118 v 01110110

81 Q 01010001 119 w 01110111

82 R 01010010 120 x 01111000

83 S 01010011 121 y 01111001

84 T 01010100 122 z 01111010

85 U 01010101 123 { 01111011

86 V 01010110 124 | 01111100

87 W 01010111 125 } 01111101

88 X 01011000 126 ~ 01111110

89 Y 01011001

Page 10: Mates codificacio criptografia_compressio

COMPRESSIÓ

MÈTODE DE HUFFMAN

Mètode de compressió sense pèrdua d’informació

Si tenim, per exemple, una cadena de caràcters, s’ha de contar la freqüència amb la

que apareix el caràcter i la seva probabilitat.

Per exemple, la paraula FISICAS. Tenim 7 lletres, la I apareix dues vegades, per tant, la

probabilitat és de 2/7. Començaríem a reomplir el quadre:

Caràcter F I S C A

Freqüència 1 2 2 1 1

Probabilitat 1/7 2/7 2/7 1/7 1/7

Ordenem les lletres segons la probabilitat i comencem a construir l’arbre de Huffman.

En el peu hi posarem les que tenen menys probabilitat. Si l’arbre dóna 1, serà

correcte.

A cada branca li donem un número. Les branques dretes l’1 i les esquerres el 0.

Caràcter F I S C A

Freqüència 1 2 2 1 1

Probabilitat 1/7 2/7 2/7 1/7 1/7

Codificació 111 00 10 110 01

Si codifiquéssim FISICAS necessitaríem 3 bits per caràcter (log7/log2=2,80)

Per tant, FISICAS sense comprimir, necessitaria 7x3 = 21 bits

Comprimint la paraula amb el mètode de Huffman, la codificació seria:

111 00 10 00 110 01 10

Per tant, hem necessitat 17 bits.

Page 11: Mates codificacio criptografia_compressio

TAXA DE COMPRESSIÓ

ES fa de la següent manera:

Bits sense comprimir – bits comprimits = bits que ens hem estalviat

Bits que ens hem estalviat / bits sense comprimir · 100 = taxa de compressió

En l’exemple anterior:

21(bits sense comprimir) – 17 (bits comprimits) = 4 (bits que ens hem estalviat)

4/21•100 = 19% és la taxa de compressió.

Page 12: Mates codificacio criptografia_compressio

ESTADÍSTICA

L’altura d’un nen és una variable mentre que les quantitats 95 cm, 83 cm, 88 cm, són

dades sobre aquesta variable.

Sovint es representa la variable amb una lletra majúscula, mentre que les dades de la

variable en lletres minúscules. Per exemple, X = altura d’un nen; x1 = 95, x2 = 83, x3 =

88.

Classificació

- Variables qualitatives – Es refereixen als atributs dels individus. Es tracta

d’una variable classificatòria. Exemple: Nivell d’estudis o lloc de naixement.

- Variables quantitatives – Impliquen el concepte de magnitud. Poden ser:

- Contínues – Quan entre dos valors de la variable hi pot haver infinits

valors (Decimals). Exemple: pes, talla, etc.

- Discretes – Entre dos valors successius de la variable ni hi ha cap valor.

No tenen decimals, encara que la mitjana si pugui tenir-los. Exemple:

nombre de fills.

GRÀFIC DE TIJA I FULLES

Són molt útils quan no tenim un gran nombre de dades individuals.

1-S’ordenen les dades de més petites a més grans, classificant-les en ordre

ascendent.

2-Després, hem de triar quina part dels valors és la tija i quina la fulla.

Normalment, les unitats senceres coma tiges i els decimals com a fulles.

Exemple:

Amb el 112, es posa l’11 en la tija i el 2 en la fulla. Amb el 87, per exemple, es posa el 8 en la tija i el 7 en la fulla. Es pot identificar un valor que més o menys és el centre de la distribució. En aquest cas són les dades de 60 alumnes. El valor de la meitat és 30. Si contem 30 en la part de les fulles, ens trobarem que 100 és el valor mitjà.

Page 13: Mates codificacio criptografia_compressio

HISTOGRAMES

Estan formats per classes o intervals de la mateixa mida.

L’histograma no és simètric. La part llarga i baixa de la distribució asimètrica es

denomina cua. Es diu que l’histograma és obliquo cap a la dreta si la cua està a la dreta

i cap a l’esquerra si la cua està a l’esquerra.

GRÀFIC DE CAIXES

Són una representació gràfica compacta de tota la distribució de la variable.

Page 14: Mates codificacio criptografia_compressio

MEDIANA

La mediana és el valor que divideix una distribució per la meitat.

1-El primer pas és col·locar totes les dades de menor a major.

2-S’aplica la següent fórmula que ens diu la posició de la mediana, on n és el

número de dades que tenim:

3-Si el total de dades és impar ens donarà un número que es troba en la meitat

de les dades.

4-Si el total de dades és par, la posició de la mediana cau entre dos números.

Per exemple, tenim aquestes dades.

1 2 3 3 4 5 7 8 8 9

10+1/2= 5,5 la mediana cau entre el 4 i el 5, per tant, és 4,5

1 2 3 4 5 7 8 8 9

9+1/2=5 la mediana cau en la 5a posició, per tant és 5

QUARTILS

El 1er quartil és el punt intermedi entre el valor mínim i la mediana.

El 2on quartil el forma la mediana.

El 3er quartil és el punt entre la mediana i el valor màxim.

Exemples

1 2 3 3 4 5 7 8 8 9 1er quartil = 3 2on quartil = 4,5 3er quartil = 8

1 2 3 4 5 7 8 8 9 1er quartil = Un número entre el 2 i el 3 = 2,5 2on quartil = 5 3er quartil = 8

EL RANG

El rang d’una variable consisteix a restar el valor màxim del mínim.

LA MITJANA ARITMÈTICA

Per a calcular la mitjana o el terme mitja, es sumaran totes les dades entre sí i es

divideixen entre el número de dades.

Page 15: Mates codificacio criptografia_compressio

LA VARIÀNCIA

1- Calcular la mitjana dels valors

2- Restar la mitjana a cada valor.

3- Algunes de les desviacions sempre seran positives i algunes sempre

seran negatives. La seva suma ha de ser 0.

4- Elevarem al quadrat cada desviació. Les desviacions quadrades sempre

són positives.

6- Sumarem totes les desviacions quadrades i les dividirem pel nombre de

desviacions – 1.

7- El número que obtenim és la variància, i se simbolitza per S2.

Exemple: tenim les dades 2 8 9 9

1. Calcularem la mitjana dels valor 2+8+9+9=28/4=7

2. La restarem a cada valor. La suma ha de donar 0.

2-7=-5

8-7=1

9-7=2

9-7=2

-5+1+2+2=0

3. Elevarem al quadrat cada desviació

5^2=25

1^2=1

2^2=4

2^2=4

4. Sumarem les desviacions quadrades i aplicarem la fórmula

25+1+4+4=34

34/4-1=11,33=variància

DESVIACIÓ TÍPICA O DESVIACIÓ ESTÀNDARD

És l’arrel quadrada de la variància i se simbolitza per S.

En l’exemple anterior, la desviació típica és √11,33=3,36

Page 16: Mates codificacio criptografia_compressio

QUADRE DE FREQÜÈNCIES

Tenim les següents dades:

1 1 3 3 3 4 5 6 6

Calcularem la mitjana

1+1+3+3+3+4+5+6+6=32/9=3,555

Dades Freqüències absolutes

Freqüències relatives

Freqü.Absol. Acumulades

Freqü. Relat. Acumulades

(data-mitjana)2

·Freqüència absoluta

1 2 2/9=0,222 2 0,222 (1-3,555)2·2=13,056

3 3 3/9=0,333 5 0,555 (3-3,555)2·3=0,924

4 1 1/9=0,111 6 0,666 (4-3,555)2·1=0,198

5 1 1/9=0,111 7 0,777 (5-3,555)2·1=2,088

6 2 2/9=0,222 9 1 (6-3,555)2·2=11,956

9 1 28,222

Freqüències absolutes – És la freqüència en què apareix una dada. La seva suma ha de

donar el total de les dades.

Freqüències relatives – És la freqüència absoluta partida per el nombre de dades. Ha

de donar 1.

Freqüències absolutes acumulades – Ha de donar el mateix que la suma de les

freqüències absolutes.

Freqüències relatives acumulades – Ha de donar 1

Per a calcular la variància bastarà en dividir la suma de la última columna entre el total

de dades menys 1.

Variància = 28,222/9-1 = 3,527

La desviació estàndard és l’arrel quadrada de la variància. √3,527=1,878