lineas 1

18
Ondas Electromagnéticas Guiada Brito Rodríguez Rolando

Upload: checo-rock

Post on 15-May-2015

1.321 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: Lineas 1

Ondas

Electromagnéticas

Guiada

Brito Rodríguez Rolando

Page 2: Lineas 1

Sergio Isai Palomino

Sergio Becerra

Grupo 4cm9

Equipo 1

Page 3: Lineas 1

1.0 Líneas de transmisión

1.1 Modos de Propagación en las líneas de Transmisión

1.2 Línea de transmisión balanceada y desbalanceada

1.3 Representación eléctrica de la línea de Transmisión

1.4 Líneas de transmisión uniforme de dos conductores

1.5 Ecuaciones diferenciales que definen el comportamiento de la línea de transmisión bajo diferentes condiciones de carga

1.6 Solución para las ecuaciones diferenciales de tención y corriente . Representación grafica

Líneas de transmisión:

Page 4: Lineas 1

De acuerdo con nuestro concepto modelo electromagnético,

sabemos que las cargas y las corrientes variables con el tiempo son fuentes de campos y ondas electromagnéticas. Cuales comprenden dirección, descripción, potencia , velocidad de la luz o de disipación, distancia, medios de transmisión, etc.

1.0 Líneas de transmisión

Page 5: Lineas 1

Una vez conceptualizada la onda en el espacio (TEM) , sabemos que esta puede ser dirigida a pesar de su transmisión radial a un punto saliente de otro. Guiadas por lo que llamamos líneas de transmisión:

Líneas de transmisión de placas paralelas: Consiste en la transmisión de frecuencias de microondas entre dos placas paralelas separadas por una lamina de dieléctrico de grosor uniforme con bajos costos usando tecnología como la de los circuitos impresos. (micro tiras).

1.1 Modos de Propagación en las líneas de Transmisión

Page 6: Lineas 1

Líneas de transmisión de dos alambres: Consiste en la colocación de dos alambres paralelos en una distancia uniforme esta onda es un poco anticuada ya a los nuevos medios pero aun se puede ver en el cable plano que baja la señal de la antena a el televisor podría decirse como un puente físico entre el emisor que le sigue al receptor y envía a un traductor.

Page 7: Lineas 1

Líneas de transmisión coaxial: este es un cable con un forro y forma especial para su funcionamiento se cubre un alabare central y mas poderoso en cuestión de grosor y conductividad al recibir la señal o diferencia de potencial positiva el recubierto por un aislante y a su vez el segundo conductor en un ilaje mas fino cubre en forma de forro estas dos capas para ser recubierto con su aislante esto con fin de confinar el campo eléctrico y magnético dentro de la región dieléctrica.

Page 8: Lineas 1

LINEAS DE TRANSMISION BALANCEADA Y DESBALANCEADA

Las líneas de transmisión se clasifican generalmente como balanceadas o desbalanceadas.

Balanceada: Los dos conductores son suspendidos a la misma altura sobre el piso. Ninguno de ellos está conectado a

tierra; el potencial de uno es igual y de signo contrario al potencial del otro, con relación a tierra. A este tipo de configuración se le llama “línea balanceada”. Los dos conductores son suspendidos a la misma altura sobre el piso. Ninguno de ellos está conectado a tierra; el potencial de uno es igual y de signo contrario al potencial del otro, con relación a tierra. A este tipo de configuración se le llama “línea balanceada”.

Page 9: Lineas 1

En cambio, si por ejemplo, los dos

conductores están en un plano vertical, el

conductor inferior tiene una capacitancia más

grande que la del superior con relación al

piso, y se dice que la línea esta

“desbalanceada” o desequilibrada porque las

corrientes resultantes en los dos conductores

son diferentes.

Desbalanceada:

Page 10: Lineas 1

A diferencia de los ejemplos tratados en el Análisis de Circuitos, en las Líneas de Transmisión

(LT) se manejan normalmente tensiones y corrientes con longitudes de onda pequeñas en relación a la longitud total de la línea empleada. Esto implica un tratamiento diferente para las tensiones y corrientes, involucrando una nueva variable que es la posición a lo largo de la línea.

La LT presenta una Impedancia Característica (Z0), y los elementos comentados anteriormente representarán la única complicación si la línea está terminada en una impedancia terminal (ZT) igual a la de la LT. Esta condición define el concepto de línea acoplada.

Para otras condiciones (Z0 distinta de ZT), existirán ondas que se reflejarán desde la carga hacia el generador e interactuarán con las ondas transmitidas. Esto dará lugar a un efecto denominado "onda estacionaria".

Los nuevos elementos para este caso de líneas "desacopladas" son el Coeficiente de Reflexión y la Relación de Onda Estacionaria de Tensión (VSWR = Voltage Standing Wave Ratio).

El objetivo de ingeniería implica conocer los métodos y realizar los cálculos necesarios para lograr que una línea desacoplada se comporte como una línea sin reflexiones, logrando así un uso eficiente de la misma en la transmisión de señales de información o de potencia.

1.3 Representación eléctrica de la línea de

Transmisión

Page 11: Lineas 1

Postulado 1.- El sistema o línea uniforme consiste de dos conductores rectos y paralelos.

El adjetivo "uniforme" significa que los materiales, dimensiones y sección transversal de la línea y el medio que la rodea, permanecen constantes en todo el trayecto. Típicamente en un extremo se conecta una fuente de señal y en el otro una carga, como se muestra:

Figura 1.- Representación de una Línea de Transmisión.

No significa que los dos conductores sean del mismo material o tengan la misma forma en su sección transversal. El análisis es válido para un conductor de cualquier material y sección transversal que actúe junto con otro conductor con diferentes características, o para un alambre paralelo a cualquier plano conductor o banda (pista de circuito impreso).

Page 12: Lineas 1

Algunas secciones transversales de conductores usados en ingeniería se muestran:

Figura 2.- Secciones transversales de varias líneas de transmisión prácticas. En general, las torsiones o curvaturas en una línea de transmisión violan el postulado de "uniformidad" y crean efectos no explicables por la teoría de circuito distribuido. Lo mismo sucede con cualquier discontinuidad en la línea, tal como el punto de conexión entre dos líneas uniformes que difieren físicamente en alguna forma.

Page 13: Lineas 1

Postulado 2.- Las corrientes en los conductores de la línea fluyen únicamente en la dirección de la longitud de la línea.

Bajo ciertas condiciones, las señales pueden propagarse en cualquier línea de transmisión uniforme con la totalidad de la corriente o una componente de ella fluyendo alrededor de los conductores, en lugar de fluir a lo largo de ellos. Estos casos no se presentan en una LT y se conocen como modos de propagación en una guía de onda.

Postulado 3.- En la intersección de cualquier plano transversal a los conductores de una línea de transmisión, las corrientes instantáneas totales en los dos conductores son iguales en magnitud, pero fluyen en direcciones opuestas.

En la teoría elemental de redes, para el circuito mostrado en la fig. 1 se estipula que la corriente es la misma en todos los puntos del circuito en un instante dado. El postulado 3 admite que las corrientes instantáneas sean diferentes en distintas secciones transversales de la línea, en el mismo instante.

Claramente esto no es posible sin violar la Ley de Kirchhoff de Corrientes, a menos que éstas puedan fluir transversalmente entre los dos conductores en cualquier parte a lo largo de la longitud de la línea.

Postulado 4.- En la intersección de cualquier plano transversal a los conductores de la línea hay un valor de diferencia de potencial único entre los conductores, en cualquier instante, que es igual a la integral del campo eléctrico a lo largo de todas las trayectorias en el plano transversal, entre cualquier punto sobre la periferia de uno de los conductores y cualquier punto sobre la periferia del otro.

De la misma manera que el postulado 3, este postulado tiene como consecuencia descartar los modos de propagación en la guía de onda, para los cuales la integral del campo eléctrico no es, en general, independiente de la trayectoria.

Postulado 5.- El comportamiento eléctrico de la línea se describe completamente por cuatro coeficientes del circuito eléctrico distribuido, cuyos valores por unidad de longitud de la línea son constantes en cualquier parte de esta. Estos coeficientes de circuito eléctrico son resistencias e inductancias uniformemente distribuidas, como elementos de circuito, en serie a lo largo de la línea, junto con capacitancias y conductancias uniformemente distribuidas, como elementos de circuito, en paralelo a lo largo de la línea.

Page 14: Lineas 1

Definiciones de los Coeficientes.-

Los símbolos para éstos son: R, L, G y C, cuyas definiciones son:

R.- Resistencia total en Serie de la línea por unidad de longitud, incluyendo ambos conductores. Unidades: Ohms/metro.

L.- Inductancia total en Serie de la línea por unidad de longitud, incluyendo la inductancia debida al flujo magnético interno y externo a los conductores de la línea. Henrios/metro.

G.- Conductancia en paralelo de la línea por unidad de longitud. Es una representación de las pérdidas que son proporcionales al cuadrado de la tensión entre los conductores o al cuadrado del campo eléctrico en el medio. Generalmente G representa una pérdida interna molecular de los materiales aislantes dieléctricos. Siemens/metro.

C.- Capacidad en paralelo de la línea por unidad de longitud. Farads/metro.

Nota.- Los símbolos definidos tienen diferentes significados y dimensiones que los empleados en el análisis de circuitos eléctricos. En el caso de las líneas de tx, tratadas como redes de dos puertos con longitudes no despreciables, dichos símbolos representan resistencia, inductancia, etc, por unidad de longitud.

Page 15: Lineas 1

COORDENADAS Y VARIABLES.-

El análisis de la línea de transmisión es unidimensional, con un eje de coordenadas único paralelo a la longitud de la línea. Este es el eje z (minúscula para diferenciar de Z, impedancia.) Dicha coordenada tiene su origen en la fuente de señal.

En algunas ocasiones la distancia de un punto sobre la línea a la carga, se indica por una coordenada d, con origen en la carga y creciendo de derecha a izquierda. El símbolo ð se usa normalmente para la longitud total de la línea. Esto es:

Figura 3.- Coordenadas en una Línea de Transmisión.

Page 16: Lineas 1

i(z, t) = Corriente instantánea en un punto específico sobre la línea de tx, es decir, corriente en el

tiempo t y en la coordenada z. Los símbolos en mayúsculas representan valores fasoriales de números complejos, con magnitudes en valores rms. Si no son designados específicamente como cantidades en la carga o en la fuente de señal, serán funciones de la posición a lo largo de la línea.

I(z) = Valor rms complejo (fasorial) de una corriente, en la coordenada z. En una coordenada z sobre una línea de tx, como se muestra en la figura siguiente, una tensión se puede representar por una flecha de un conductor a otro, en el plano transversal a z. La punta de la flecha tiene una polaridad positiva, y la tensión es positiva cuando la flecha está dirigida hacia el conductor superior. Similarmente, las corrientes en la coordenada z se indican por dos puntas de flecha una en cada conductor y apuntando en direcciones opuestas (postulado 3). El signo de la corriente es positivo cuando la corriente del conductor superior fluye en la dirección creciente de z.

Figura 4.- Tramos de línea de Transmisión mostrando las convenciones especificadas, en el dominio del tiempo y en el de la frecuencia.

Page 17: Lineas 1

Las líneas que consisten de dos conductores (bifilar,

coaxial, microcinta, placas paralelas), y varias otras

estructuras como la triplica, transmiten la

información electromagnética fundamentalmente de

una manera tal en que tanto el campo eléctrico como

el campo magnético de la señal son transversales o

perpendiculares a la dirección de propagación. A

esta forma en que la señal es transmitida se le llama

modo de propagación transversal electromagnética

o, abreviadamente, TEM.

Líneas de transmisión

uniforme de dos conductores

Page 18: Lineas 1