lecciÓn 13: molÉculas poliatÓmicas …...una vez resuelto este determinante, y conocidas las seis...

31
Lección 13 Química Física (Curso 2010-11) 291 LECCIÓN 13: MOLÉCULAS POLIATÓMICAS COMPLEJAS. Objetivos de la Lección. Introducción. El método de Hückel para sistemas conjugados. Moléculas con heteroátomos. Índices de reactividad y aplicaciones del método de Hückel. Teoría del campo de Ligandos. Teoría de bandas de sólidos. El método del campo auto-consistente de Hartree-Fock. Métodos de Química Computacional. Apéndice 13.1. Distribución de orbitales simétricamente adaptados en el complejo CoF 6 -3 . Cuestiones. Problemas OBJETIVOS DE LA LECCIÓN En esta lección se analizan algunas de las diferentes situaciones en las que la aproximación de la Valencia Dirigida no puede ser aplicada. Tal es el caso de los compuestos aromáticos, complejos inorgánicos, y la formación de bandas en sólidos. Para el tratamiento de estos sistemas se aplica el concepto de orbital molecular poli-céntrico, que conduce a orbitales que se extienden por toda la molécula. Por su importancia, se prestará una atención preferente al problema de los compuestos aromáticos, estudiándose, debido a su sencillez, el método semi-empírico de Hückel, el cual nos permite obtener información cualitativa sobre determinadas propiedades moleculares. En la última parte de la lección, se describe el método del campo auto-consistente para moléculas (método de Hartree-Fock), así como la implementación de este en los denominados métodos semi-empíricos y métodos ab-initio, de Química Computacional.

Upload: others

Post on 08-Feb-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: LECCIÓN 13: MOLÉCULAS POLIATÓMICAS …...Una vez resuelto este determinante, y conocidas las seis raíces de x, es decir, los 6 valores de energía, podemos reconstruir las ecuaciones

Lección 13 Química Física (Curso 2010-11)

291

LECCIÓN 13: MOLÉCULAS POLIATÓMICAS COMPLEJAS. Objetivos de la Lección. Introducción. El método de Hückel para sistemas conjugados. Moléculas con heteroátomos. Índices de reactividad y aplicaciones del método de Hückel. Teoría del campo de Ligandos. Teoría de bandas de sólidos. El método del campo auto-consistente de Hartree-Fock. Métodos de Química Computacional. Apéndice 13.1. Distribución de orbitales simétricamente adaptados en el complejo CoF6

-3. Cuestiones. Problemas

OBJETIVOS DE LA LECCIÓN

En esta lección se analizan algunas de las diferentes situaciones en las que la aproximación de

la Valencia Dirigida no puede ser aplicada. Tal es el caso de los compuestos aromáticos, complejos

inorgánicos, y la formación de bandas en sólidos. Para el tratamiento de estos sistemas se aplica el

concepto de orbital molecular poli-céntrico, que conduce a orbitales que se extienden por toda la

molécula.

Por su importancia, se prestará una atención preferente al problema de los compuestos

aromáticos, estudiándose, debido a su sencillez, el método semi-empírico de Hückel, el cual nos

permite obtener información cualitativa sobre determinadas propiedades moleculares.

En la última parte de la lección, se describe el método del campo auto-consistente para

moléculas (método de Hartree-Fock), así como la implementación de este en los denominados

métodos semi-empíricos y métodos ab-initio, de Química Computacional.

Page 2: LECCIÓN 13: MOLÉCULAS POLIATÓMICAS …...Una vez resuelto este determinante, y conocidas las seis raíces de x, es decir, los 6 valores de energía, podemos reconstruir las ecuaciones

Lección 13 Química Física (Curso 2010-11)

292

INTRODUCCIÓN

Fijémonos en la molécula de benceno (Figura 13.1). Esta es una molécula plana con ángulos

de enlace C-C-C de 120º, y en la que sus 6 átomos de carbono poseen hibridación sp2. Los 3 orbitales

híbridos de cada carbono forman enlaces (aproximación de valencia dirigida), con átomos de

carbono o hidrógenos contiguos, lo que le otorga una estructura plana de gran estabilidad a la

molécula. En la descripción anterior, a cada átomo de carbono le resta un orbital atómico pz,

perpendicular al plano de la molécula (ver Figura 13.1), donde se sitúa un electrón por cada átomo.

En un primer intento por explicar la estructura de esta molécula, podría pensarse que dos

orbitales pz contiguos se combinan para formar OM de carácter . Sin embargo, el planteamiento de

enlaces bicéntricos entre estos orbitales pz, conduce a situaciones en las que los enlaces C-C dejarían

de ser equivalentes (estructuras resonantes en la parte derecha superior de la Figura 13.1), lo que no se

observa experimentalmente. Esto nos obliga a suponer, que los electrones situados en dichos orbitales,

que seguiremos denominando como electrones , no están localizados entre átomos contiguos, sino

que pueden circular libremente por toda la molécula. A este fenómeno se le denomina aromaticidad, o

conjugación. La forma como aborda este problema la teoría de Orbitales Moleculares se analizará en

la siguiente pregunta.

En la teoría de Enlace Valencia, este problema se trata proponiendo diferentes estructuras

resonantes, construyéndose una función de onda diferente para cada una de ellas (en la Figura 13.1, se

representan las 5 estructuras resonantes no iónicas y dos iónicas, de la más de 40 que existen). La

función de onda total se construye como una combinación lineal de dichas funciones, ψ = ciψi. El

cuadrado de los coeficientes, ci, nos indica la importancia relativa de cada una de las estructuras. El

concepto de resonancia no es aplicable en la teoría de Orbitales Moleculares, ya que en esta partimos

de orbitales poli-céntricos que se extienden por toda la molécula.

Figura 13.1

H

HH

HH

H

Page 3: LECCIÓN 13: MOLÉCULAS POLIATÓMICAS …...Una vez resuelto este determinante, y conocidas las seis raíces de x, es decir, los 6 valores de energía, podemos reconstruir las ecuaciones

Lección 13 Química Física (Curso 2010-11)

293

EL MÉTODO DE HÜCKEL PARA SISTEMAS CONJUGADOS.

Le energía de los electrones deslocalizados, o electrones , puede ser estimada mediante un

método aproximado debido a Hückel. Dicho método parte de suponer que los electrones y , son

independientes (los orbitales correspondientes no están simétricamente adaptados), por lo que puede

escribirse

y H H H (13.1)

Esta aproximación implica despreciar las repulsiones entre los electrones y . Por dicha

razón, el método no es cuantitativo, aunque predice correctamente el orden de llenado de los orbitales

moleculares. El siguiente paso del método consiste en suponer que los orbitales pz (i) de los átomos

de carbono, forman orbitales moleculares (OM) deslocalizados por toda la molécula, los cuales se

construye mediante combinación lineal de orbitales atómicos (CLOA):

6

i ii 1

c

(13.2)

La energía se obtiene mediante:

6 6

i j iji 1 j 1

ij i j ij i j6 6

i j iji 1 j 1

c c HH d N

E donde H H d S dDd c c S

(13.3)

A continuación, aplicamos el método variacional según el cual la energía es minimizada con

respecto a los 6 coeficientes ci, de forma que, a partir de la relación E/ci = 0 (donde N y D

representan el numerador y el denominador de la expresión de la energía E = N/D),

6 6

j ij j ij 6j 1 j 1

j ij ij2j 1i

2D c H 2N c SE 2

0 c H ESc D D

(13.4)

se obtienen 6 ecuaciones lineales homogéneas con la forma:

6

j ij ijj 1

c H ES 0 para i 1,2 6

(13.5)

A este sistema de ecuaciones se le denomina ecuaciones seculares. Para que dicho sistema

tenga solución diferente de la trivial, debe cumplirse que el determinante de los coeficientes sea cero:

11 11 12 12 16 16

21 21 22 22 26 26

61 61 62 62 66 66

H ES H ES H ES

H ES H ES H ES0

H ES H ES H ES

(13.6)

Este determinante, llamado secular, representa el mapa de todas la interacciones, entre los

orbitales atómicos pz, que existen en la molécula. Así, cada átomo viene representado por una fila, o

columna del determinante. Existen varias aproximaciones para intentar resolver el anterior

determinante, las más sencillas son las debidas a Hückel:

Page 4: LECCIÓN 13: MOLÉCULAS POLIATÓMICAS …...Una vez resuelto este determinante, y conocidas las seis raíces de x, es decir, los 6 valores de energía, podemos reconstruir las ecuaciones

Lección 13 Química Física (Curso 2010-11)

294

1) Hii = α. Estas integrales son las denominadas integrales de Coulomb, y vimos para la

molécula de H2+, que aproximadamente, su valor coincide con la energía de los orbitales atómicos de

partida, es decir, α Epz.

2) Hij = β, para átomos i y j adyacentes. Estas son las integrales de resonancia. El valor de esta

integral depende de la distancia R entre los átomos i y j.

3) Hij = 0 para átomos no adyacentes.

4) Sii = 1.

5) Sij =0. Esta es la peor de las aproximaciones, ya que para átomos adyacentes, en el benceno,

la integral de solapamiento es del orden de 0.25. La introducción de esta aproximación simplifica

enormemente los cálculos, aunque resta exactitud a los resultados, que en cualquier caso son siempre

cualitativos.

Introduciendo las anteriores condiciones en la ecuación (13.6), se obtiene:

E 0 0 0

E 0 0 0

0 E 0 00

0 0 E 0

0 0 0 E

0 0 0 E

(13.7)

Dividiendo todas las filas por β, y efectuando el cambio de variable, x = (α-E)/β, se obtiene:

6 4 2

Ex 1 0 0 0 11 1

1 x 1 0 0 0E

1 0 0 1 x 1 0 0x 6x 9x 4 0

0 0 1 x 1 0

0 0 0 1 x 1E

1 0 1 0 0 0 1 x

(13.8)

La ventaja de trabajar de esta forma es que, aparentemente, solo tenemos una incógnita, x, si

bien hay que recalcar que x, en realidad, es la combinación de dos integrales (α y β), y un valor

numérico, la energía E, que es la auténtica incógnita. Una vez resuelto este determinante, y conocidas

las seis raíces de x, es decir, los 6 valores de energía, podemos reconstruir las ecuaciones seculares a

partir del determinante secular. Para ello bastará con multiplicar cada fila del determinante por c1, c2,

c3, .., c6, y reescribirlas como:

1 2 6

1 2 3

2 3 4

3 4 5

4 5 6

1 5 6

c x c c 0

c c x c 0

c c x c 0

c c x c 0

c c x c 0

c c c x 0

(13.9)

Page 5: LECCIÓN 13: MOLÉCULAS POLIATÓMICAS …...Una vez resuelto este determinante, y conocidas las seis raíces de x, es decir, los 6 valores de energía, podemos reconstruir las ecuaciones

Lección 13 Química Física (Curso 2010-11)

295

con objeto de calcular los valores de ci, y por lo tanto, de obtener la forma explícita de los orbitales

moleculares. Sin embargo, es importante resaltar que es posible construir el determinante secular

correspondiente a los electrones conjugados de cualquier molécula, utilizando las aproximaciones de

Hückel, sin necesidad de volver a efectuar todo el desarrollo anterior. En efecto, el determinante se

construye colocando una x en todas las posiciones de la diagonal del determinante, un 1 en las

posiciones correspondientes a átomos adyacentes, y un cero en las posiciones correspondientes a

átomos no adyacentes. Así por ejemplo, en la Figura 13.2, se muestra el determinante secular de la

molécula de butadieno, donde ha de tenerse en cuenta que el átomo 1 solo es adyacente al 2, mientras

que el 2 lo es del 1 y 3.

Volvamos al determinante de la ecuación (13.8), correspondiente a la molécula de benceno, la

resolución de dicho determinante, que puede desarrollarse como un polinomio de orden 6, conduce a

seis soluciones en x = (α-E)/β. Resolver este determinante secular es difícil, ya que implica tratar con

polinomios de alto grado (6 en nuestro caso). Sin embargo, si la molécula posee elementos de simetría,

estos pueden utilizarse para simplificar el determinante secular. Veamos cómo; impongamos la

condición de que los orbitales moleculares están normalizados:

6 6

2 2 2 2 2 2 2i j ij 1 2 3 4 5 6

i 1 j 1

1 d c c S c c c c c c

(13.10)

Si 1 es la probabilidad total de encontrar al electrón, ci2, será la probabilidad de que el electrón

se sitúe sobre el átomo i. Por lo tanto, si dos átomos, i y j, son equivalentes, deberá cumplirse que ci2 =

cj2, o lo que es lo mismo ci = ±cj.

En la molécula de benceno existen muchos elementos de simetría, pertenece a un grupo que se

denomina D6h, de hecho, todos los átomos de carbono de la molécula deben ser equivalentes. Si nos

1

2

34

5

6

i, Centro desimetría

C2

Figura 13.3

Figura 13.2

1

4C

C

C

C

23

/00000000/00000000

x 1 0 01 x 1 00 1 x 10 0 1 x

' 0

Page 6: LECCIÓN 13: MOLÉCULAS POLIATÓMICAS …...Una vez resuelto este determinante, y conocidas las seis raíces de x, es decir, los 6 valores de energía, podemos reconstruir las ecuaciones

Lección 13 Química Física (Curso 2010-11)

296

fijamos, por ejemplo, en su centro de simetría (Figura 13.3), debe cumplirse que, c12 = c4

2, c22 = c5

2, c32

= c62, o lo que es lo mismo c1 = ± c4, c2 = ± c5, c3 = ± c6. Los orbitales moleculares serán simétricos

con respecto al centro de simetría si el signo es positivo, y antisimétrico si es negativo. Para utilizar

estas relaciones volvamos a las ecuaciones seculares 13.9:

1 2 31 41 2 6

1 2 32 51 2 3

2 3 13 62 3 4

3 4 5 1 4 1 2 3

4 5 6 2 5 1 2 3

1 5 6 3 6

c x c c 0c cc x c c 0c c x c 0c cc c x c 0 simetri cosc c x c 0c cc c x c 0

c c x c 0 c c c x c c 0c c x c 0 antisimetricos c c c c x cc c c x 0 c c

2 3 1

0

c c x c 0

(13.11)

Luego, nuestro sistema de 6 ecuaciones se transforma en dos sistemas independientes de 3

ecuaciones cada uno, para los cuales podemos construir sus correspondientes determinantes seculares

y resolverlos de forma independiente. Así, para la solución simétrica:

3

1 1

1 1 0 3 2 2,1( )

1 1

x

x x x x doble

x

(13.12)

La molécula de benceno posee muchos más elementos de simetría, y podemos simplificar este

determinante aún más, antes de resolverlo. Por ejemplo, supongamos un eje de rotación C2 (ver Figura

13.3). Según este eje, a las condiciones anteriores habría que añadir que; c22 = c3

2, o lo que es lo

mismo c2 = ± c3,. Apliquemos estas condiciones:

1 22 3

1 21 2 3

1 2 3 1

2 3 1 2 3 1 2 1 2

1 2

c x 2c 0 x 2c c 0 x 2,1

c c x 1 0 1 x 1c x c c 0

c c x c 0 c x 0c c x c 0 c c c c x 1 0 c 0 c x 1 0 x 1

c c 1 x 0

(13.13)

Consideremos las soluciones x=-2 y x=1, para las que se cumplen que c1 = c4 y c2 = c3 = c5 =

c6, lo que permite escribir la condición de normalización (ecuación 13.10) como:

2 21 21 2c 4c (13.14)

Asimismo, c1 y c2, están relacionados por cualquiera de las ecuaciones seculares de (ecuaciones

13.13), por ejemplo, a partir de la primera se debe cumplir que:

2 2

21 11 2 2 1 1 2

c x c x 1c x 2c 0 c 1 2c 4 c

2 4 2 x

(13.15)

donde arbitrariamente, se ha tomado el signo positivo para c1. Si utilizamos la solución x = -2, se

obtiene que

11 4 2 3 5 62

c x1 1 1c c c c c c

26 62 x

(13.16)

Page 7: LECCIÓN 13: MOLÉCULAS POLIATÓMICAS …...Una vez resuelto este determinante, y conocidas las seis raíces de x, es decir, los 6 valores de energía, podemos reconstruir las ecuaciones

Lección 13 Química Física (Curso 2010-11)

297

por lo que los 6 coeficientes son idénticos, luego:

1 2 3 4 5 61 2ua para x 2

6

(13.17)

En la parte inferior de Figura 13.4 se muestra la representación (isosuperficies) de dicho

orbital desde los puntos de vista frontal, y lateral de la molécula.

Como puede observarse, el orbital posee un plano nodal que coincide con el plano de la

molécula, en el cual el orbital cambia de signo (el color rosa, o verde de la figura nos indica signos

diferentes). Esto sucedía también en los orbitales de moléculas diatómicas. Por esta razón, se suele

denominar también como orbitales a estos orbitales moleculares. En teoría de grupo a este orbital

molecular se le denomina a2u, (este es el símbolo que se utiliza en la Figura 13.4). El símbolo a, indica

que el orbital permanece inalterado cuando se rota 60º alrededor del eje C6, cuando el orbital cambia

de signo se designa como b. Asimismo, el subíndice 2, indica que el orbital cambia de signo cuando se

rota 180º alrededor de cualquier eje C2 (ver Figura 13.3), si el orbital no cambia de signo se denomina

1. Por último, si el orbital cambia de signo al efectuar una inversión con respecto al centro de simetría

de la molécula, se designa u, y si no cambia g.

Si ahora sustituimos x = 1, en las ecuaciones (13.15) y (13.16), obtenemos

11 4 2 3 5 62

c x1 1 1c c c c c c

23 2 32 x

(13.18)

Por lo que el orbital molecular correspondiente será:

Figura 13.4

Page 8: LECCIÓN 13: MOLÉCULAS POLIATÓMICAS …...Una vez resuelto este determinante, y conocidas las seis raíces de x, es decir, los 6 valores de energía, podemos reconstruir las ecuaciones

Lección 13 Química Física (Curso 2010-11)

298

2 3 5 61 44 2ue para x 1

3 2 3

(13.19)

En teoría de grupo a este orbital se le denomina e2u. El símbolo e, como en casos anteriores

indica un orbital dos veces degenerados.

Si volvemos a la ecuación (13.15), y usamos la relación c2 = -c3

1 4 2 5 3 6c c 0 c c c c para x 1 (13.20)

lo que permite escribir la ecuación de normalización como:

22 2 5 3 6

11 4c c c c c

2 (13.21)

siendo el orbita molecular

2 5 3 65 2ue para x 1

2 2

(13.22)

En la Figura 13.4, se muestra la representación de los dos orbitales e2u. La aplicación de las

condiciones antisimétricas en las ecuaciones (13.11), permiten obtener las restantes soluciones del

determinante secular. Estas soluciones corresponden a las funciones, ψ2 = e1g, ψ3 = e1g, y ψ6 = b2g. Los

coeficientes correspondientes, y los valores de x para estas soluciones, se muestran en la Tabla 13.1.

Asimismo, en la figura 13.4, se muestra la representación de estos tres orbitales moleculares.

Analicemos la energía de los orbitales; como x = (α – E)/β, se obtiene que E = α – xβ. En Tabla 13.1,

se muestran también las energías de cada uno de los orbitales moleculares en función de las integrales

α y β. La integral de Coulomb, α, coincide, aproximadamente, con la energía del orbital atómico de

partida α Epz. La integral de resonancia β, tiene valor negativo, luego el orbital ψ1 = a2u, es el de

menor energía. En la parte central de la Figura 13.4, se muestra un diagrama de energía, a distancia

constante de estos orbitales moleculares.

La molécula posee 6 electrones , uno por cada átomo de carbono, que se sitúan en los tres

orbitales moleculares de menor energía, siendo su configuración electrónica: (a2u)2(e1g)

4. La energía

total de estos seis electrones será:

C1 C2 C3 C4 C5 C6 x E

ψ1 = a2u 1/ 6 1/ 6 1/ 6 1/ 6 1/ 6 1/ 6 -2 α + 2β

ψ2 = e1g 1/ 3 1/ 2 3 1/ 2 3 1/ 3 1/ 2 3 1/ 2 3 -1 α + β

ψ3 = e1g 0 1/2 1/2 0 -1/2 -1/2 -1 α + β

ψ4 = e2u 1/ 3 1/ 2 3 1/ 2 3 1/ 3 1/ 2 3 1/ 2 3 1 α – β

ψ5 = e2u 0 1/2 -1/2 0 1/2 -1/2 1 α – β

ψ6 = b2g 1/ 6 1/ 6 1/ 6 1/ 6 1/ 6 1/ 6 2 α – 2β

Tabla 13.1

Page 9: LECCIÓN 13: MOLÉCULAS POLIATÓMICAS …...Una vez resuelto este determinante, y conocidas las seis raíces de x, es decir, los 6 valores de energía, podemos reconstruir las ecuaciones

Lección 13 Química Física (Curso 2010-11)

299

TE 2 2 4 6 8 (13.23)

Imaginemos, que en el benceno los electrones , no están deslocalizados por toda la molécula,

sino formando dobles enlaces rígidos. La situación podría ser representada por una de las estructuras

de Kekulé, por ejemplo la mostrada en la Figura 13.5.

En esta, entre los átomos 1 y 2 se forma un doble enlace. Si analizamos solo el enlace formado

por los electrones , tendríamos que se combinan los dos orbitales pz de dichos átomos para formar

orbitales moleculares. La energía de estos orbitales puede obtenerse resolviendo un determinante

secular de orden 2

21 1 2 2

x 1c c 0 x 1 x 1 E

1 x (13.24)

En estos orbitales moleculares, se introducen dos electrones, una por cada átomo por lo que la

energía de dichos electrones será 2(α+β). Como en la molécula hay 3 dobles enlaces, la energía total

de los 6 electrones será tres veces esta cantidad. A dicha energía la llamaremos EL = 6(α+β). Esta

cantidad es la energía que tendrían los 6 electrones si estuvieran localizados, es decir, si formaran

parte de dobles enlaces rígidos. A la diferencia entre ET y EL se le denomina energía de

deslocalización,

D T LE E E 2 (13.25)

Los valores de ET y EL, son solo aproximados ya que se ha ignorado la energía de repulsión

entre electrones, pero podemos suponer que dicha energía de repulsión se cancela al restar. Dado que β es una integral con valor negativo, ED, es una magnitud negativa, que nos indica que la molécula de

benceno es más estable una cantidad de energía igual a 2β, a consecuencia de la deslocalización de sus

electrones .

En la práctica la integral β, se determina de forma semiempírica, y su valor depende del

método de evaluación. Así, pueden utilizarse; calores de hidrogenación, datos de espectroscopía

electrónica, potenciales de ionización, potenciales de reducción etc. Diferentes métodos conducen a

valores diferentes, aunque para un método dado, los resultados son consistentes, siempre que se

analicen familias de compuestos similares.

Figura 13.5

1

2

3

4

5

6

1

2 3

4

56

Page 10: LECCIÓN 13: MOLÉCULAS POLIATÓMICAS …...Una vez resuelto este determinante, y conocidas las seis raíces de x, es decir, los 6 valores de energía, podemos reconstruir las ecuaciones

Lección 13 Química Física (Curso 2010-11)

300

Veamos cómo se determina β a partir de medidas de calores de hidrogenación. Si el benceno

no fuera aromático, su calor de hidrogenación debería ser 3×28.6 = 85.8 Kcal/mol. Donde 28.6

Kcal/mol, es el calor de hidrogenación del ciclohexeno (ver Figura 13.6). Sin embargo, en realidad, su

calor de hidrogenación es bastante menor, 49.8 Kcal/mol. La diferencia entre estas dos cantidades,

49.8 - 85.8 = - 36 Kcal/mol, es la diferencia entre la energía real del benceno, y la de una molécula

similar al benceno, donde se supone que los tres dobles enlaces son rígidos (ciclohexatrieno), es decir,

dicha cantidad, es una medida directa de la energía de deslocalización de los electrones. Luego 2β = -

36 Kcal/mol, por lo que β = -16 Kcal/mol.

En realidad la cuestión es más compleja, ya que en el 1,2-Ciclohexeno, las distancias C-C no

son idénticas a la del benceno, por lo que habría que corregir dicho efecto.

Otra forma de estimar el valor de β, es mediante datos de espectroscopia electrónica. Cuando

la molécula es excitada por absorción de radiación se produce el salto de un electrón desde un orbital

ψ2 = ψ3, hasta un orbital ψ4 = ψ5. La energía de dicho salto será, -2β, pudiendo determinarse esta

magnitud a partir de la energía a la que aparece la banda en el espectro electrónico de la molécula. De

esta forma los valores de β salen algo mayores que en el caso anterior, aunque cuando se estudia un

conjunto de moléculas aromáticas, cada método es consistente consigo mismo.

Existen otros métodos para intentar evaluar β, como es a partir de potenciales de ionización,

potenciales de reducción etc. Esta integral puede tabularse en función de la distancia entre núcleos

(métodos semi-empírico).

Ciclohexano

1,3-CiclohexadienoBenceno

Ciclohexeno

HipotéticoCiclohexatrieno

55.4

49.8 28.6

85.8

Figura 13.6

Page 11: LECCIÓN 13: MOLÉCULAS POLIATÓMICAS …...Una vez resuelto este determinante, y conocidas las seis raíces de x, es decir, los 6 valores de energía, podemos reconstruir las ecuaciones

Lección 13 Química Física (Curso 2010-11)

301

MOLÉCULAS CON HETEROÁTOMOS

El tratamiento de Hückel puede generalizarse a moléculas aromáticas con átomos diferentes al

carbono, introduciendo dos aproximaciones adicionales:

6) La integral de Coulomb para un átomo x, diferente al del carbono se define como

x xh (13.26)

donde α, es la integral de Coulomb del carbono, y β, la integral de resonancia del enlace C-C en el

benceno, valores que se siguen utilizando como referencias. Al parámetro hx, se le denomina

parámetro de electronegatividad, y aproximadamente, puede determinarse mediante la relación:

x x Ch X X (13.27)

donde Xx y XC, son las electronegatividades de los átomos x y de carbono, respectivamente.

7) La integral de resonancia del enlace C-x, se determina mediante la relación:

C x Cxk (13.28)

donde de nuevo β, es la integral de resonancia del enlace C-C en el benceno, y a kCx, se le denomina

parámetro de enlace, y aproximadamente puede obtenerse mediante la relación:

C x C xCx

C C C C

E Ek

E E

(13.29)

Donde EC=x, y EC=C, representan las energías de formación de los dobles enlaces C=x y C=C,

mientras EC-x, y EC-C, son las correspondientes energías de formación de los enlaces sencillos C-x y C-

C. En la tabla 13.2, se dan algunos valores de hX y kCx, para algunos átomos seleccionados. Átomos

como N y O, pueden participar en compuestos conjugados aportando un solo electrón (N y C ), o

dos electrones (N: y O:). Por ejemplo para la piridina (N ), hx =0.5, y kCx=0.8, mientras que para el

pirrol (N:), hx = 1.5, y kCx=1.

Vamos a aplicar las aproximaciones anteriores al estudio de la piridina (Figura 13.7):

x hx kCx x hx kCx

N 0.5 0.8 F 3 0.7

N: 1.5 1 Cl 2 0.4

O 1 0.8 Br 1.5 0.3

O: 2 1 S 0 0.8

Tabla 13.2

Figura 13.7

12

34

5

6

N

Page 12: LECCIÓN 13: MOLÉCULAS POLIATÓMICAS …...Una vez resuelto este determinante, y conocidas las seis raíces de x, es decir, los 6 valores de energía, podemos reconstruir las ecuaciones

Lección 13 Química Física (Curso 2010-11)

302

El determinante secular, se construye de forma similar al caso anterior, efectuando el mismo

cambio de variable, x = (α – E)/β. Es resultado se muestra a continuación:

N CN CN

CN

CN

x h k 0 0 0 k

k x 1 0 0 0

0 1 x 1 0 00

0 0 1 x 1 0

0 0 0 1 x 1

k 0 0 0 1 x

(13.30)

Es posible, por lo tanto, construir el determinante secular de cualquier molécula conjugada

con heteroátomos, construyendo directamente el determinante. Para ello, se numeran los átomos

(Figura 13.7). A continuación, en la diagonal del determinantes se sitúa, x = (α – E)/β, si la posición

corresponde a un átomo de carbono, y x + hx, en nuestro caso x + hN, si corresponde al heteroátomo.

En las restantes posiciones del determinante se sitúa un cero, si corresponde a átomos no adyacentes,

un 1, si corresponde a átomos adyacentes de carbono, y kCx (kCN), si el átomo de carbono y el

heteroátomo son adyavcentes

La molécula de piridina posee muchos menos elementos de simetría que el benceno, aunque

conserva algunos, como por ejemplo, un plano de simetría que corta verticalmente la estructura de la

molécula a través de los átomos 1 (N) y 4 (plano v1). Es decir, los átomos 2 y 6, y los 3 y 5, son

equivalentes. Estas relaciones permiten simplificar el determinante de orden 6, en dos determinantes,

uno de orden 4 y otro de orden 2. En la Tabla 13.3, se muestran las soluciones (energías) y los

Figura 13.8

12

34

5

6

N

2a2

4b1

1b1

2b1

1a2

3b1

Page 13: LECCIÓN 13: MOLÉCULAS POLIATÓMICAS …...Una vez resuelto este determinante, y conocidas las seis raíces de x, es decir, los 6 valores de energía, podemos reconstruir las ecuaciones

Lección 13 Química Física (Curso 2010-11)

303

coeficientes de los diferentes O.M. La forma de los orbitales moleculares es muy parecida a los del

benceno. Estos se muestran en la Figura 13.8.

Al igual que el benceno, la molécula de piridina también posee 6 electrones π, uno por cada

átomo de carbono, y otro por el nitrógeno. El nitrógeno tiene 5 electrones en su última capa, de estos,

2 los utiliza en enlaces con los átomos de carbono contiguos, otros dos los coloca en un orbital

atómico híbrido sp2 no enlazante. El electrón restante lo sitúa en el orbital pz. El diagrama de energía

se muestra en la Figura 13.8.

La energía total de estos 6 electrones será:

TE 2 1.954 2 1.062 2 6 8.032 (13.31)

Supongamos ahora que la molécula de piridina no es aromática, sino que los electrones

están localizados en tres dobles enlaces rígidos, dos de ellos C=C y uno C=N. La energía de los

orbitales moleculares de los dobles enlaces C=C podremos determinarla a partir de la ecuación

13.24. Para determinar la energía de los electrones de un doble enlace C=N, tenemos que construir

un determinante de orden dos (el átomo 1 será el N, y el átomo 2 el C):

N CN 2

CN

x h k0 x x 0.5 0.8 x 0.589, 1.088

k x

(13.32)

En la Figura 13.9, se muestra el diagrama de energía de los O.M, correspondiente a la

estructura con dobles enlaces rígidos, donde no se ha representado el hibrido sp2 no enlazante del N.

c1 c2 c3 c4 c5 c6 x E

ψ11b1 0.424 0.386 0.414 0.424 0.414 0.386 -1.954 α + 1.954β

ψ22b1 0.665 0.234 -0.284 -0.535 -0.284 0.234 -1.062 α + 1.062β

ψ 31a2 0 1/2 1/2 0 -1/2 -1/2 -1 α + β

ψ 43b1 0.564 -0.412 -0.177 0.530 -0.177 -0.412 0.667 α – 0.667β

ψ 52a2 0 1/2 -1/2 0 1/2 -1/2 +1 α – β

ψ 64b1 0.243 -0.357 0.465 -0.503 0.465 -0.357 1.849 α – 1.849β

Tabla 13.3

¼¿

¼¿

¼¿

Doble enlace C=N

Dobles enlaces C=C

Figura 13.9

Page 14: LECCIÓN 13: MOLÉCULAS POLIATÓMICAS …...Una vez resuelto este determinante, y conocidas las seis raíces de x, es decir, los 6 valores de energía, podemos reconstruir las ecuaciones

Lección 13 Química Física (Curso 2010-11)

304

La energía de estos electrones π, suponiéndolos confinados en dobles enlaces rígidos será:

LE 2 1.088 4 6 6.176 (13.33)

Luego la energía de deslocalización será: ED = ET – EL = 1.856β. La energía de

deslocalización es menor, en valor absoluto, que en el caso del benceno. La introducción de cualquier

heteroátomo en una estructura aromática disminuye la deslocalización electrónica.

INDICES DE REACTIVIDAD Y APLICACIONES DEL MÉTODO DE HÜCKEL

Los coeficientes de los orbitales moleculares obtenidos para las moléculas de benceno y

piridina (Tablas 13.1 y 13.3), pueden utilizarse para predecir una gran variedad de propiedades

moleculares, en base a calcular ciertos índices de reactividad. Vamos a definir solo los dos más

simples:

A) Densidad de carga: La densidad de carga, correspondiente a los electrones sobre un

átomo cualquiera, r, se define como:

2r i ri

i

q n c (13.34)

donde ni, es el número de electrones que existe en cada orbital molecular i, y cri, es el coeficiente del

átomo r en dicho orbital i. Para el benceno se obtiene que qi = 1, para todos los átomos. Como cada

átomo de carbono aporta un electrón la densidad de carga neta será:

r r1 q 0 (13.35)

es decir, r = 0, ya que la molécula no posee momento dipolar permanente.

Para la piridina: 2 2

1 1 1q 2 0.424 2 0.665 2 0 1.245 1 q 0.245 (13.36)

de la misma forma se obtiene que:

2 6 2 6

3 5 3 5

4 4

q q 0.906 0.094

q q 1.005 0.005

q 0.933 0.067

(13.37)

Estos valores pueden utilizarse para predecir el momento dipolar de una molécula.

Evidentemente:

ii

0 (13.38)

NF = 0

PT = 1.667

F = -0.245

F = +0.094

F = -0.005

F = +0.067

PT = 1.638

PT = 1.687

PT = 1.655

Figura 13.10

Page 15: LECCIÓN 13: MOLÉCULAS POLIATÓMICAS …...Una vez resuelto este determinante, y conocidas las seis raíces de x, es decir, los 6 valores de energía, podemos reconstruir las ecuaciones

Lección 13 Química Física (Curso 2010-11)

305

La densidad de carga sobre cada átomo está relacionada con la población de cada orbital

molecular. Si dicha población se modifica, ya sea por la excitación, o ionización de la molécula, las

densidades de carga sobre cada átomo se modifican, y no de una forma lineal en todos los átomos.

B) Orden de enlace: Se dice que la unión C-C tiene orden de enlace 1, 2 o 3, si entre dichos

átomos existe unas distancias interatómicas de 1.54, 1.33 y 1.20 D, respectivamente. En la teoría de

orbitales moleculares, se asocian distancias interatómicas intermedias, a órdenes de enlace

intermedios. En el benceno, por ejemplo, la distancia C-C es de 1.4 D. Se define el orden de enlace π

entre dos átomos contiguos, a la relación:

rs i ri sii

P n c c (13.39)

Donde r y s, son dos átomos de carbono contiguos cualesquiera Así, para el benceno se

obtiene

rs

2P

3 (13.40)

para dos parejas cualesquiera de átomos contiguos. El orden de enlace total se define como:

Trs rs rsP P P (13.41)

En el caso del benceno, el orden de enlace total entre dos parejas cualesquiera de átomos de

carbono contiguos es de 1.667, como se muestra en la Figura 13.10, donde también se indica la

densidad de carga total sobre cada átomo.

Para el caso de la piridina, los órdenes de enlace que se obtienen son:

T T12 16 12 16

T T23 56 23 56

T T34 45 34 45

P P 0.638 P P 1.638

P P 0.687 P P 1.687

P P 0.655 P P 1.655

(13.42)

Es decir, la unión entre los átomos 2 y 3 tiene un carácter de doble enlace mayor que en el

benceno, mientras que en las otras uniones es al contrario. Orden de enlace y distancia interatómica

están relacionadas. De forma empírica, la distancia entre dos átomos de carbono en D viene dada por:

rsrs

rs

1.59 0.26Pd

1.05 0.05P

(13.43)

Es decir, en la molécula de piridina el aumento en el orden de enlace entre los átomos 2 y 3

(ver Figura 13.7), implica un acortamiento de la distancia con respecto al benceno, sucediendo lo

contrario en el caso del enlace entre los átomos 3 y 4.

C) Aplicaciones: Veamos cómo puede predecirse las propiedades dadoras, o aceptoras de

electrones, de una especie. Analizaremos el radical ciclopropenilo (estructura I, de la Figura 13.11): su

determinante secular viene dado por:

3

x 1 1

1 x 1 0 x 3x 2 x 2,1(doble)

1 1 x

(13.44)

Page 16: LECCIÓN 13: MOLÉCULAS POLIATÓMICAS …...Una vez resuelto este determinante, y conocidas las seis raíces de x, es decir, los 6 valores de energía, podemos reconstruir las ecuaciones

Lección 13 Química Física (Curso 2010-11)

306

El diagrama de energía de esta molécula se muestra en la Figura 13.11, debajo de la estructura

I. El radical neutro tiene 3 electrones π, uno por cada átomo de carbono, luego la energía de estos tres

electrones es: ET = 3α + 3β (ver Tabla 13.4).

Si la molécula no fuera aromática, existiría un doble C=C, y el tercer átomo de carbono,

quedaría como radical, con su orbital pz no enlazante (esquema II de la Figura 13.11). En este caso, la

energía de los mismos tres electrones sería: EL = 3α + 2β, siendo la energía de deslocalización ED = β

(ver Tabla 13.4).

Supongamos ahora que el radical está cargado positivamente, es decir que pierde un electrón

π, que son los más lábiles. Si utilizamos los diagramas de energía de la Figura 13.11, tendríamos que

retirar el electrón de mayor energía de ambas estructuras (deslocalizada, I, y con el doble enlace

rígido, II). La energía de los electrones π que quedan, en ambos casos, se muestran en la tabla 13.4.

Así, como la energía de deslocalización resulta ser de ED = 2β, implica que en lo que respecta a los

electrones π, el catión es más estable (más aromático) que la forma neutra.

Por último, si el radical adiciona un electrón (anión), tendríamos que añadir un electrón a los

tres que existen en la forma neutra. También se muestran las energías correspondientes en la tabla

13.4, siendo en este caso la energía de deslocalización ED =0. Es decir, el anión no es aromático.

Evidentemente, el ciclopropenilo es muy inestable, debido a la alta tensión que poseen

los enlaces σ, donde el ángulo es solo de 60º, y el solapamiento es pequeño. Sin embargo, los cálculos

efectuados indican una cierta tendencia a que esta especie puede estabilizarse por deslocalización

C C

C

H

H H

I II

1

23

¼¿

¼

¼¿¼

Figura 13.11

n ET EL ED = ET-EL

radical 3 3α+3β 3α+2β β

catión 2 2α+4β 2α+2β 2β

anión 4 4α+2β 4α+2β 0

Tabla 13.4

Page 17: LECCIÓN 13: MOLÉCULAS POLIATÓMICAS …...Una vez resuelto este determinante, y conocidas las seis raíces de x, es decir, los 6 valores de energía, podemos reconstruir las ecuaciones

Lección 13 Química Física (Curso 2010-11)

307

electrónica, como catión. Así, la especie III (Figura 13.12), que en principio no es aromática, ha

podido ser sintetizada. Esta especie tiene una alta contribución de la forma iónica IV, la cual si es

aromática. Esta sustancia en disolución, y en presencia de HBr, precipita dando lugar a una sal de

bromuro de la forma V.

O

C6H5C6H5

O

C6H5C6H5

OH

C6H5C6H5

+ HBr + Br

III

IV V

Figura 13.12

Page 18: LECCIÓN 13: MOLÉCULAS POLIATÓMICAS …...Una vez resuelto este determinante, y conocidas las seis raíces de x, es decir, los 6 valores de energía, podemos reconstruir las ecuaciones

Lección 13 Química Física (Curso 2010-11)

308

TEORÍA DEL CAMPO DE LIGANDOS.

El éxito de la teoría de orbitales moleculares (OM) estriba en el hecho de que dichos OM

pueden obtenerse fácilmente a partir de combinaciones lineales de orbitales atómicos simétricamente

adaptados. Los OM obtenidos, pueden ser ordenados energéticamente teniendo en cuenta el número

planos nodales que poseen. Cuantos más planos nodales posee un OM, mayor es su energía. Una

situación similar tiene lugar durante la formación de complejos metálicos donde intervienen orbitales

d. Estos complejos constan de un ión central metálico rodeado de una estructura tridimensional de

ligandos. La teoría del campo de ligando es una versión tridimensional de la teoría de Hückel, en la

cual la simetría del sistema juega un papel central, y donde propiedades estructurales,

espectroscópicas, magnéticas o termodinámicas son parametrizadas en función de una constante, Δ,

que hace las veces de β, en la anterior teoría.

Veamos un ejemplo: El complejo Co(F6)3-, tiene estructura octaédrica (ver Figura 13.13). El

Co3+ tiene una configuración electrónica 3d64s04p0, mientras que para los átomos de F- es 2s2p6. Es

decir, a la formación de orbitales moleculares el Co contribuye con 9 orbitales atómicos y 6 electrones,

y los átomos de F con 4 orbitales cada uno (24 en total), y 8 electrones (48 electrones en total). Es

decir, en total combinaríamos 33 orbitales atómicos para obtener 33 orbitales moleculares, en los que

se introducen 54 electrones. En la figura 13.13, se muestra el diagrama de OM del complejo.

Para construir estos orbitales moleculares, se utilizan combinaciones lineales de orbitales

atómicos simétricamente adaptados. Las moléculas octaédricas pertenecen a un grupo de simetría que

se denomina Oh. En el apéndice 13.1, se muestra la tabla de caracteres de este grupo puntual. En este

1a1g

2t1u

2eg

2t2g

1t1u

2a1g

1eg

1t2u

1t1g

4t1u

¼¿¼¼

¼¼

1t2g

3eg

)

3t1u

3a1g

24 OM ocupados48 electrones

x

y

z

12

6

5

dxzdxy

dyz

3eg

2t2g

x

y

z

Co(F6)3-A1g

xy

z

Co(F6)3-

Figura 13.13

Page 19: LECCIÓN 13: MOLÉCULAS POLIATÓMICAS …...Una vez resuelto este determinante, y conocidas las seis raíces de x, es decir, los 6 valores de energía, podemos reconstruir las ecuaciones

Lección 13 Química Física (Curso 2010-11)

309

grupo, las funciones totalmente simétricas se denominas a1g. El orbital atómico 4s del Co pertenece a

este grupo, así como una combinación positiva de los 6 orbitales 2s de los átomos de flúor, y una

combinación de orbitales 2p de los átomos de flúor adecuada, la cual se construye de forma que todos

los orbitales p posean un lóbulo con el mismo signo dirigidos hacia el Co (ver el apéndice 13.1).

1g 1 4s 2 2s 3 2pi i

a c Co c (F) c (F) (13.45)

De esta combinación lineal surgen 3 orbitales moleculares de simetría a1g (ver Figura 13.13).

Los orbitales 4p del Co poseen simetría t1u. Estos, se unen con determinadas combinaciones

simétricamente adaptadas de los orbilales 2s y 2p de los átomos de flúor. Un ejemplo de estas

combinaciones se muestra en la Figura 13.14. Los orbitales 4px, 4py y 4pz, del Co, forman una base de

orden 3, por lo que los OM formados están 3 veces degenerados.

La combinación de orbitales 2p de los átomos de flúor, con simetría t1g, mostrada en la Figura

13.14, no está simétricamente adaptada para combinar con orbitales del átomo de Co. De este tipo de

combinaciones, existen 3, una por cada plano, que, por lo tanto están tres veces degeneradas.

La especial simetría de los orbitales d del Co limita el número de formas mediante las que

estos pueden solapar adecuadamente con los orbitales de los átomos de flúor. Según la teoría de

grupos, los orbitales dz2 y dx2-y2 forman una base irreductible de orden 2, y estos combinan solo con

orbitales de los átomos de flúor que estén simétricamente adaptados, dando lugar a O.M. 2 veces

degenerados. En la figura 13.13, se muestran 2 de estos OM, en concreto los 3eg.

Por su parte, los orbitales dxy, dxz, y dyz, forman una base irreductible de orden 3, por lo que

dan lugar a orbitales moleculares triplemente degenerados, que se denominan t2g, mostrándose un

grupo de estos (2t2g) en la Figura 13.13.

En una visión simplificada sobre la formación del complejo, suele decirse que la degeneración

de los 5 orbitales atómicos d del Co se rompe a consecuencia del campo de ligandos que rodean al ión

central, formándose dos grupos de orbitales, dz2 y dx2-y2 (3eg, dos veces degenerados ), que están

directamente orientados hacia los átomos de F-, y por lo tanto son energéticamente más inestables, y

dxy, dxz, y dyz, (2t2g, tres veces degenerados), cuyos lóbulos no están dirigidos directamente hacia los

átomos de flúor, por lo que deben de ser más estables que los anteriores. Se denomina Δ, a la

separación entre las energías de estos orbitales. En realidad, los orbitales d del Co, se combinan con

orbitales s y p de los átomos de flúor para dar orbitales moleculares deslocalizados por toda la

t1g t1u

Figura 13.14

Page 20: LECCIÓN 13: MOLÉCULAS POLIATÓMICAS …...Una vez resuelto este determinante, y conocidas las seis raíces de x, es decir, los 6 valores de energía, podemos reconstruir las ecuaciones

Lección 13 Química Física (Curso 2010-11)

310

molécula, siendo el solapamiento máximo cuando los orbitales del flúor están dirigidos directamente

hacia los del Co. Sin embargo, los orbitales moleculares 3eg y 2t2g, representados anteriormente son

orbitales antienlazantes. Los correspondientes orbitales enlazantes son los 1eg, 2eg y 1tg (ver Figura

13.13), y en estos, el razonamiento es el opuesto, 1eg y 2eg son más estables que el 1t2g.

Los electrones se sitúan, de dos en dos, por orden creciente de energía en los diferentes

orbitales moleculares (Figura 13.13). Cuando Δ es grande (ligandos de campo alto), los 6 últimos

electrones se colocan en el nivel 2t2g, siendo la configuración electrónica (2t2g)6 (3eg)

0. Este es el caso

del complejo Co(NH3)63+. Sin embargo, si Δ es pequeño (ligandos de campo débil), como es el caso

del F-, algunos electrones pueden situarse en el nivel superior, de forma que el aumento de la

multiplicidad, estabiliza al complejo, siendo la configuración electrónica, en este caso (2t2g)4 (3eg)

2, lo

cual significa que existen 4 electrones desapareados. El parámetro, Δ, en realidad, es un parámetro

ajustable, función de la propiedad molecular que se quiera reproducir (método semi-empírico).

Un complejo inorgánico es una molécula en la que se forman OM policéntricos,

deslocalizados. Como ya se ha indicado, los orbitales 3eg y 2t2g, mostrados en la figura 13.13,

corresponden a los orbitales más externos, y tienen carácter antienlazante. Los orbitales 1eg , 2eg y 2t2g,

son los orbitales moleculares enlazantes que surgen al combinar los mismos orbitales atómicos.

Page 21: LECCIÓN 13: MOLÉCULAS POLIATÓMICAS …...Una vez resuelto este determinante, y conocidas las seis raíces de x, es decir, los 6 valores de energía, podemos reconstruir las ecuaciones

Lección 13 Química Física (Curso 2010-11)

311

LA TEORÍA DE BANDAS DE SÓLIDOS

Supongamos las aproximaciones de Hückel, y sea una molécula, o red de átomos, para

simplificar, monodimensional, en la que están enlazados un número indeterminado de átomos

idénticos, N, mediante el solapamiento de orbitales s. Se formarán orbitales moleculares como

combinaciones lineales de los orbitales atómicos

i ii

c (13.46)

siendo sus energías las soluciones del determinante:

x 1 0 0

1 x 1 0

0

0 0 0 x

(13.47)

Este determinante conduce a un polinomio de orden N, que tiene solución analítica:

kE kx 2cos k 1,2, , N

N 1

(13.48)

Esta ecuación nos permite calcular la energía de cada uno de los N orbitales moleculares que

se forman. Por ejemplo si N = 2, el determinante corresponde a una molécula diatómica, y en este caso

las soluciones como ya sabemos son x = 1 . En efecto, -2cos( /3) = -1 y -2cos(2 /3) = +1. Para N

= 3, x = {1.414,0,-1.414}, para N = 4, x={1.618,0.618,-0.618,-1.618}, etc, ver Figura 13.15.

Supongamos que N tiende a infinito. El nivel de menor energía corresponde a k = 1, para el

que, cos(π/4) . cos(0) = 1, por lo que x = -2, y E1 = α + 2β. El nivel de mayor energía corresponde a la

solución k = N, en cuyo caso cos(N/(N+1)) . cos(π) = -1, por lo que x = +2, y por lo tanto la energía

será EN = α - 2β. Entre estos dos niveles existen, N-2 . infinitos niveles, por lo que en realidad

obtenemos una banda de anchura E1 - EN = 4 β de energía (ver figura 13.15).

Figura 13.15

"

"-$

"-2$

"+$

"+2$

N= 2 3 4 5 ... 4

Page 22: LECCIÓN 13: MOLÉCULAS POLIATÓMICAS …...Una vez resuelto este determinante, y conocidas las seis raíces de x, es decir, los 6 valores de energía, podemos reconstruir las ecuaciones

Lección 13 Química Física (Curso 2010-11)

312

Si en cada orbital s hay inicialmente un solo electrón, de los N orbitales moleculares, solo

estarán ocupados los N/2 de menor energía, pero la separación entre niveles es muy pequeña, casi

continua, y siempre existirá una pequeña fracción de electrones excitados, como consecuencia de la

energía térmica. Estos electrones pueden moverse libremente por toda la red metálica, y ante la acción

de un campo externo (diferencia de potencial), darán lugar al paso de corriente eléctrica. Si cada

átomo aporta 2 electrones en su orbital s, la banda estará llena por lo que no es posible el paso de

electrones a través de ella.

Al igual que hemos combinado los orbitales s, pueden combinarse los orbitales p, d etc, lo que

da lugar a diferentes bandas, de las cuales algunas pueden estar llenas, otras vacías, y en ocasiones una

de ellas semi-llena (banda de valencia). Las sustancias que tienen bandas semi-llenas son los metales,

y las que tienen todas sus bandas llenas, o vacías, los aislantes, o semiconductores, en función de la

distancia entre la última banda llena y la primera vacía.

Page 23: LECCIÓN 13: MOLÉCULAS POLIATÓMICAS …...Una vez resuelto este determinante, y conocidas las seis raíces de x, es decir, los 6 valores de energía, podemos reconstruir las ecuaciones

Lección 13 Química Física (Curso 2010-11)

313

EL MÉTODO DEL CAMPO AUTO-CONSISTENTE DE HARTREE-FOCK.

El método de Hartree-Fock (HF), o método del campo auto-consistente, es el método más

utilizado para la determinación de estructura energética y otras propiedades moleculares. Su aplicación

a moléculas es similar a como se estudio en su día para el caso de átomos, aunque surgen algunas

complicaciones adicionales. El procedimiento parte de construir los orbitales moleculares

monoelectrónicos:

OM i ii

c (13.49)

Donde para simplificar, supondremos que las funciones i son orbitales atómicos

simétricamente adaptados. En substitución de los orbitales atómicos, pueden utilizar bases de

funciones diferentes. Como es habitual, los coeficientes ci se determinan inicialmente aplicando el

método variacional. Estos cálculos, nos permiten obtener una primera configuración electrónica, si

bien, factores como el spin, o la energía de repulsión entre electrones, no han sido considerados aún.

A continuación, se construye la función de onda total, antisimétrica de la molécula:

1 1 2

1 1 2

T 1 1 2

1 1 2

1 1 1 1

2 2 2 2

3 3 3 3

n n n n

(13.50)

En el método de Hartree-Fock, el operador energía se escribe de la forma:

n n n

0 0i i i i

i 1 i 1 i 1

H H V H V h

(13.51)

Donde Hi0, son operadores energía del tipo del átomo de hidrógeno, V representa todos los

términos de energía potencial, no incluidos en los anteriores, y iV , representa la energía de repulsión

promedio entre el electrón i, y todos los demás (ver las Lecciones 7-9). La energía es así determinada

mediante:

n n n

0T T T T i T i T i T i T i T i

i 1 i 1 i 1

E H d h d H d V d

(13.52)

Téngase en cuenta que ψT, es la función de la ecuación (13.50). El desarrollo de la integral

anterior es complejo, aunque si todos los orbitales moleculares ψα, estan doblemente ocupados, existe

una expresión analítica con la forma:

n n / 2

T i ij iji 1 i, j

E 2J K

(13.53)

Donde εi, es la energía del electrón según la aproximación de electrones independientes, y Jij y

Kij, son las denominadas integrales de Coulomb y de intercambio, respectivamente, analizadas en la

Lección 8 (ecuaciones 8.12 y 8.19), que en este caso, tienen la forma:

Page 24: LECCIÓN 13: MOLÉCULAS POLIATÓMICAS …...Una vez resuelto este determinante, y conocidas las seis raíces de x, es decir, los 6 valores de energía, podemos reconstruir las ecuaciones

Lección 13 Química Física (Curso 2010-11)

314

2 2

ij ijij ij

i j i i j jJ d K d

r r

(13.54)

En estas expresiones, las letras griegas indican orbitales moleculares, es decir combinaciones

lineales de orbitales atómicos (ver ecuación 13.40). Tanto para J, como para K, podemos desarrollar

en la forma:

m nl m n p l p

l,m,n,pij ij

l m n pl,m,n,p

(i) (i) ( j) ( j) ( j) ( j)d c c c c (i) (i)d

r r

c c c c lp | mn

(13.55)

Para simplificar se suele utilizar la notación:

m nl p

12

(2) (2)lp | mn (1) (1)d

r

(13.56)

En esta ecuación, l, m, n y p representan orbitales atómicos centrados sobre átomos distintos

procedentes del método CLOA. El electrón 1 se sitúa en los orbitales de la izquierda de la barra, y el

electrón 2 en los de la derecha. En general estas integrales son tetracéntricas (centradas sobre 4 átomos

diferentes).

Una vez determinada la energía, y la función de onda total (de forma numérica), el método de

Hartree-Fock, modifica las funciones de onda individuales de cada electrón, y por lo tanto los orbitales

moleculares, volviendo a repetir todo el ciclo, hasta que dos soluciones contiguas coincidan (ver

Lección 7). En la Figura 13.16, se muestra un esquema que describe de forma simplificada el procedo

Figura 13.16

Construcción de los OM(CLOA simétricamenteadaptados)

Total OM OMi

E n E

OM OM

OM

OM OM

H dE

d

OM

i

E0

c

Configuraciónelectrónica.

¼¿¼¿

12

j

Función de onda total(Principio deantisimetría de Pauli) +Determinate de Slater

1 1

T 1

1 1

2

T T

T

T T

H dE

d

Método de HF

Integrales Hij y Sij que dependen de losparámetros estructurales (R, θ, ..) Luego EOM depende de R, θ, ..

OM i ii

c

Integrales de solapamientodiferencial (tetracéntricas)

Optimización de la energía total ET(R, θ, ..) Parámetros estructuralesDensidades electrónicasmomentos dipolares, etc..

T TE E0 0

R

Se fijan R y

Repulsión interelectrónica

Método devariacional

Page 25: LECCIÓN 13: MOLÉCULAS POLIATÓMICAS …...Una vez resuelto este determinante, y conocidas las seis raíces de x, es decir, los 6 valores de energía, podemos reconstruir las ecuaciones

Lección 13 Química Física (Curso 2010-11)

315

de cálculo.

De forma resumida, dicho procedimiento consiste en construir inicialmente los orbitales

moleculares, determinándose sus coeficientes mediante la aplicación del método variacional

(minimizar la energía de cada orbital molecular). A continuación puede construirse la configuración

electrónica de la molécula, que nos proporciona información cualitativa de los niveles de energía

mediante la construcción de los términos espectroscópicos. Solo es posible obtener información

cuantitativa construyendo la función de onda total, para lo que ha de tenerse en cuenta el principio de

antisimetría de Pauli, utilizando determinates de Slater. A partir de esta función de onda total de la

molécula, puede determinarse la energía total, en función de distancias y ángulos de enlace. Este

procedimiento permite predecir propiedades moleculares, como entalpías de formación, potenciales de

ionización, densidades electrónicas, momentos bipolares, etc, las cuales pueden ser comparadas con

las experimentales.

En una molécula de M átomos, y empleando solo un orbital por átomo, aparecerán del orden

de M4 integrales del tipo <lp/mn>. Muchas de estas integrales pueden identificarse como cero o

despreciables a consecuencia de que los átomos a los que correspondan estén muy alejados

(solapamiento despreciable). Sin embargo, y a pesar de todo, la magnitud del problema es

desmesurada. Piénsese que en una molécula con 10 átomos son 10000 integrales, y en una con 100

serían 100 millones de integrales.

Existen algunos procedimientos para simplificar los cálculos. Uno de ellos es el método

restringido de Hartree-Fock (RHF). Este método se utiliza cuando no existen electrones desapareados

y consiste en considerar solo la mitad de los electrones de la molécula, ya que en estos casos, los

electrones son equivalentes de dos en dos. Cuando la molécula tiene electrones desapareados este

método no es válido, siendo necesario considerar todos los electrones (método no restringido, UHF).

Para reducir el número de iteraciones se utiliza un método denominado de Interacción de

Configuraciones (CI). El método consiste en emplear orbitales moleculares construidos como

combinaciones lineales del estado fundamental y de un estado excitado próximo en energía a él, que

tenga las mismas propiedades de simetría y de spin. Las bases matemáticas de este procedimiento se

comentaron en la lección 2 y se basan en que cualquier función de onda puede construirse como la

combinación lineal del conjunto completo de las funciones propias de cualquier operador hermítico.

Page 26: LECCIÓN 13: MOLÉCULAS POLIATÓMICAS …...Una vez resuelto este determinante, y conocidas las seis raíces de x, es decir, los 6 valores de energía, podemos reconstruir las ecuaciones

Lección 13 Química Física (Curso 2010-11)

316

MÉTODOS DE QUÍMICA COMPUTACIONAL.

Se denomina Química Computacional, al conjunto de aproximaciones y métodos matemáticos

que permiten resolver de forma aproximada la ecuación de Scrödinger de una molécula, así como

determinar la energía de interacción entre moléculas. En general, estos métodos matemáticos suelen

clasificarse en tres grupos, métodos ab initio, métodos semi empíricos, y mecánica molecular. Los

métodos ab initio intentan resolver el Hamiltoniano de la molécula, sin utilizar información

experimental previa de ella. Estos solo pueden ser aplicados, en la actualidad, a moléculas de tamaño

medio.

En los métodos semi-empíricos, se utiliza información experimental para simplificar los

cálculos. Así, el empleo de orbitales híbridos o el método de Hückel, son métodos semi-empíricos. En

el método de Hückel, las propiedades moleculares son expresadas en función de la integral de

resonancia β, cuyo valor se determina a partir de datos experimentales.

Con la aparición de los ordenadores a partir de los años 70, se han desarrollado una serie de

métodos semi-empíricos muy sofisticados, que permiten predecir con gran precisión ciertas

propiedades moleculares, al menos para familias concretas de moléculas. Estos métodos utilizan el

procedimiento de Hartree-Fock para calcular la energía, si bien, las integrales que aparecen en él no se

resuelven en cada caso, sino que están tabuladas en función de la distancia entre átomos.

El primero de estos métodos que se desarrolló, consistía en suponer que las integrales de

solapamiento diferencial son cero (CNDO, complete neglect of differential overlap). Estas integrales

son aquellas que, en la ecuación (13.56), poseen l ≠ p, y m ≠ n, lo que puede escribirse como

lp mnlp / mn lp / mn ll / mm (13.57)

donde δij es la función delta de Kronecker (δij=1 si i=j, y δij=0 si i…j).

El método INDO (intermediate neglect of differential overlap), permite que las integrales

<lm/lm> sean también diferentes de cero. MINDO/3 es una versión actualizada del anterior método.

En el método NDDO (neglect of diatomic differential overlap), se hacen cero solo las

integrales de solapamiento diferencial que corresponden a 4 átomos diferentes. Así, en este método la

integral <lp/ml>, no es diferente de cero. Este método fue propuesto J. A. Pople, y desarrollado por

Dewar, en otra variante denominada MNDO (modified neglect of differential overlap). Pople recibió

el premio Nobel en 1998, por estos trabajos y otras contribuciones a la Química Computacional. En

1985, Dewar desarrollo una versión mejorada del método MNDO, denominada AM1 (Austin model

1). Esta versión corrige ciertos problemas de la versión anterior, que fallaban en predecir

correctamente la formación de puentes de hidrógeno, así como mejora sustancialmente las

predicciones de entalpías de formación, y energías de ionización de moléculas. Una tercera versión del

MNDO denominada PM3 (parametrization model 3), fue construida en 1989, este mejora las

predicciones de longitudes de enlace, entalpías de formación y energías de ionización. Por último

ZINDO/1 y ZINDO/S, son versiones modificadas del método INDO. Estos permiten el empleo de

Page 27: LECCIÓN 13: MOLÉCULAS POLIATÓMICAS …...Una vez resuelto este determinante, y conocidas las seis raíces de x, es decir, los 6 valores de energía, podemos reconstruir las ecuaciones

Lección 13 Química Física (Curso 2010-11)

317

cualquier elemento de la tabla periódica, lo cual no es posible en los anteriores y en concreto el

ZINDO/S está pensado para reproducir espectros electrónicos mediante el uso de CI.

Recientemente se ha desarrollado una nueva metodología para resolver el Hamiltoniano de

moléculas poliatómicas, denominado Funcional de la Densidad (DF). Estos métodos ab initio, parten

de un teorema que demuestra que la energía total de una molécula puede determinarse a partir del

cuadrado de la función de onda (densidad electrónica), la idea por lo tanto consiste en determinar

directamente la densidad electrónica total, sin necesidad de obtener previamente los orbitales

moleculares. El tiempo de cálculo se reduce bastante ya que la densidad electrónica total depende solo

de tres coordenadas y no de la posición individual de cada electrón. El problema de este método es la

selección de una función de onda lo más aproximada posible a la real.

Existen un tercer grupo de métodos de cálculo, denominados como, Mecánica Molecular.

Estos se basan en modelos de mecánica clásica. En estos métodos, las interacciones entre los átomos

vienen determinadas por una serie de campos de potenciales. Supongamos por ejemplo un enlace entre

dos átomos. La curva energía potencial distancia entre estos átomos ha de calcularse mediante la

mecánica cuántica, sin embargo, en las proximidades del equilibrio dicha curva puede ser representada

por una función del tipo V = k(r-r0)2/2 (oscilador armónico). Por lo que si se pretende obtener la

estructura más estable, basta con utilizar esta última expresión, donde k es la constante de fuerza y r0

la distancia del enlace, las cuales son datos experimentales tabulados en el programa. En realidad se

utilizan potenciales algo más complejos añadiéndoles un término del tipo (r-r0)3. Otro ejemplo sería un

ángulo de enlace. La correspondiente curva de energía potencial-ángulo de enlace, puede expresarse

mediante V = k(θ-θ0)2, pudiendo incluirse también términos de tercer orden. Naturalmente k y θ0 son

parámetros conocidos, y tabulados para todos los posibles tipos de enlaces. De esta forma se pueden

añadir campos de potenciales que den cuenta de, interacciones de carga, de ángulos de torsión, de

fuerzas de van der Waals, de puentes de hidrógeno, etc.

Una vez que se construye la estructura de una molécula, o grupo de moléculas, se minimiza la

energía de la estructura. El método consiste en ir modificando las coordenadas de los átomos y

calculando la energía en función de dichas coordenadas E(r), de forma que es posible obtener dE(r)/dr,

y minimizar la estructura. En cualquier caso, hay que recordar que estos son métodos de mecánica

clásica, y pueden surgir problemas o errores en las predicciones. En cualquier caso se han desarrollado

métodos muy sofisticados. Uno de ellos es el MM+, que es el más general de los métodos,

desarrollado para moléculas orgánicas. El método permite estudiar problemas de solvatación y

dinámica molecular. Otro de los métodos es AMBER, el cual está desarrollado para proteinas y ácidos

nucléicos. BIO+, y OPLS son otros métodos de mecánica molecular. El tiempo de cálculo requerido

en estos métodos es muy inferior a los anteriores, por lo que son apropiados para estudiar

macromoléculas, de hecho son los únicos que pueden hoy día aplicarse a este tipo de sistemas.

Page 28: LECCIÓN 13: MOLÉCULAS POLIATÓMICAS …...Una vez resuelto este determinante, y conocidas las seis raíces de x, es decir, los 6 valores de energía, podemos reconstruir las ecuaciones

Lección 13 Química Física (Curso 2010-11)

318

Apéndice 13.1. Distribución de orbitales simétricamente adaptados en el complejo CoF6-3.

En la Figura 13.17 se muestran los orbitales atómicos

(OA), o combinaciones lineales de OA (CLOA) totalmente

simétricas (grupo a1g). Estos son el orbital atómico 4s del Co una

CLOA de los 6 orbitales 2s de los átomos de flúor, y otra CLOA

de los 2p de los átomos de flúor. De estos OA surgen 3 OM con

simetría a1g.

En la Figura 13.18 se

muestran los OA con simetría eg.

Estos son, los orbitales dz2 y dx2-y2

del Co, que forman una base

irreductible de orden 2, y

determinadas combinaciones de

los orbitales s y p de los átomos

de fluor. En total hay 6 OA o CLOA que se combinan, y que conducen a tres series de orbitales dos

veces degenerados eg.

Los orbitales dxy, dxz, y

dyz, forman una base irreductible

de orden 3, estos solapan

únicamente con ciertas

combinaciones lineales de los

orbitales p de los átomos de

fluor situados en su mismo

plano (ver Figura 13.19-

izquierda). Las CLOA de estos orbitales dan lugar a dos series

de OM triplemente degenerados, que se denominan t2g.

Ciertas combinaciones lineales de los orbitales 2p de los

átomos de flúor, no están simétricamente adaptada para

combinar con orbitales del átomo de Co. Estas tienen simetría

t1g, existen 3, una por cada plano, que, por lo tanto este OM está

tres veces degenerado.

Por último, los orbitales 4p del Co poseen simetría t1u.

Estos se unen con determinadas combinaciones simétricamente Figura 13.20

Co

F

F

F

F

F

F

t1u

y

x

z

Co

F

F

F

F

F

F

a1g

y

x

z

Figura 13.17 Co

F

F

F

F

F

F

eg Co

F

F

F

F

F

F

y

x

z

y

x

z

Figura 13.18

Co

F

F

F

F

F

F

t2g

Co

F

F

F

F

F

F

t1g

y

x

z

y

x

z

Figura 13.19

Page 29: LECCIÓN 13: MOLÉCULAS POLIATÓMICAS …...Una vez resuelto este determinante, y conocidas las seis raíces de x, es decir, los 6 valores de energía, podemos reconstruir las ecuaciones

Lección 13 Química Física (Curso 2010-11)

319

adaptadas de los orbilales 2s y 2p de los átomos de flúor (ver Figura 13.20).

En la Figura 13.21 se muestra la tabla de caracteres del grupo puntual Oh, al cual pertenece el

CoF63-. Este grupo posee 10 especias de simetría diferentes, aunque solo 5 aparecen en el diagrama de

OM del complejo. Los orbitales f, en el grupo puntual Oh se distribuyen en tres representaciones

irreductibles con simetría a2u, t1u y t2u.

Figura 13.21

Page 30: LECCIÓN 13: MOLÉCULAS POLIATÓMICAS …...Una vez resuelto este determinante, y conocidas las seis raíces de x, es decir, los 6 valores de energía, podemos reconstruir las ecuaciones

Lección 13 Química Física (Curso 2010-11)

320

CUESTIONES:

1) A la vista exclusivamente de los OM del benceno, representados en la Figura 13.4, ¿sería posible clasificar por orden de energía a dichos OM?. 2) En su estado fundamental, el benceno es eléctricamente neutro. ¿Sigue siendo cierto esto para sus configuraciones electrónicas excitadas?. Comprobar la respuesta utilizando la tabla 13.1, y determinando la densidad de carga neta sobre cada átomo para una configuración electrónica (a2u)

2(e1g)3(e2u)

1. Dato: Para el cálculo de densidad de carga, y cuando existe un solo electrón en OM degenerados, puede suponerse que 0.5 electrones ocupan cada uno de los OM degenerados. 3) Repetir el cálculo anterior para la molécula de piridina (Tabla 13.3), considerando la primera configuración electrónica excitada, y comparar los resultados con los obtenidos para la molécula neutra. 4) Utilizando la ecuación (13.48), determinar las raíces del determinante secular de la siguiente molécula conjugada: CH2=CH-CH=CH-CH=CH2 PROBLEMAS.

1) Comprobar si la molécula de ciclobutadieno es o no aromática. 2) Determinar los orbitales moleculares ,de la molécula de butadieno. 3) Considerar las siguientes moléculas: I) H2C=CH2 II) H2C=NH III) H2C=O IV) H2C=S a) Construir los orbitales moleculares , de cada molécula y determinar la densidad de carga sobre cada átomo, así como el orden de enlace. b) Determinar, en unidades de integral de resonancia β, la energía correspondiente al primer salto electrónico de cada molécula. Datos:

C ; N 0.5 ; O ; S ; CC ; CN 0.8 ; CO 0.8 ; CS 0.8 .

4) El tratamiento mediante el método de Hückel de los electrones de la molécula de pirrol (Figura 13.17), conduce a los O.M. cuyos coeficientes se muestran en la tabla 13.5.

a) Calcular la energía de deslocalización de los electrones de la molécula. b) Determinar la densidad de carga neta sobre cada átomo, así como los órdenes de enlace. Datos: N 1.5 ; CN .

5) Comprobar si la molécula de vinilamina es aromática. Datos: αN = α + 1.5; CN = . Una de las raíces del determinante secular es x = -2.11 6) Sea la molécula de la Figura 13.18. Sabiendo que las soluciones de su determinante secular son x = {-2.544, -1.338, -0.6, 1.041, 1.44}, determinar su estructura canónica más estable, y su energía de deslocalización. Datos: N: 1.5 ; CN: , N 0.5 ; CN 0.8

C1 C2 C3 C4 C5 x

1 0.706 0.362 0.346 0.346 0.362 -2.549

2 0.509 -0.089 -0.602 -0.602 -0.089 -1.147

3 0 0.6 0.371 -0.371 -0.6 -0.618

4 - - - - - 1.195

5 - - - - - 1.618

Tabla 13.5

C4C3

C5

N1

C2

H H

H

H

H

Figura 13.17

Page 31: LECCIÓN 13: MOLÉCULAS POLIATÓMICAS …...Una vez resuelto este determinante, y conocidas las seis raíces de x, es decir, los 6 valores de energía, podemos reconstruir las ecuaciones

Lección 13 Química Física (Curso 2010-11)

321

7) Utilizando el método de Hückel para los electrones de una molécula, determinar si el grupo azida (RN3) es o no lineal. Utilizar los mismos razonamientos con la molécula de ozono (O3). 8) Determinar si la molécula de S2N2 es o no aromática. Esta molécula tiene estructura plana cuadrada (ver Figura 13.19). Denominar α, a la integral de Coulomb del azufre, β, a la integral de resonancia del enlace N-S, y expresar la integral de Coulomb del N mediante la relación N 0.5 .

9) Utilizando el método de Hückel, construye el diagrama de orbitales moleculares de la molécula de B2H6 (ver Figura 13.20). Para ello, suponga que el B posee hibridación sp3, y que los enlaces B-H externos están localizados. Utilice B H , y BH .

10) El anión nitrato NO3

-, puede ser representado por cualquiera de las formas resonantes mostradas en la Figura 13.21. Utilizando el método de Hückel, determina la energía de deslocalización de los electrones que posee el ión. Datos: α O = α , α N = α + 0.5β, βON = β. x = 0 es solución doble del determinante secular.

11) a) La molécula de H3, puede tener estructura lineal o triangular. Utilizando el método de Hückel, determinar cual es la estructura más estable en el caso de las especies catiónica H3

+, y aniónica H3 . Denominar α, a la

integral de Coulomb del hidrógeno, β a la integral de resonancia entre dos orbitales 1s de átomos de hidrógeno contiguos, y suponer, que la integral de resonancia es cero para átomos no contiguos, y que el solapamiento es cero en todos los casos.

N4C3

C5

N1

C2

H

H

H

H

Figura 13.18

S

S N

N

Figura 13.19

B BH

H

H

H

H

H

Figura 13.20

O N

O

O

O N

O

O

O N

O

O

Figura 13.21

LinealTriangular

Figura 13.22