katherin castro rÍos - universidad de caldas · 2 inhibiciÓn de microorganismos patÓgenos...

89
INHIBICIÓN DE MICROORGANISMOS PATÓGENOS PRESENTES EN AGUA POR MÉTODOS COMBINADOS KATHERIN CASTRO RÍOS UNIVERSIDAD DE CALDAS FACULTAD DE CIENCIAS AGROPECUARIAS DOCTORADO EN CIENCIAS AGRARIAS MANIZALES 2014

Upload: truongkhue

Post on 07-May-2018

216 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: KATHERIN CASTRO RÍOS - UNIVERSIDAD DE CALDAS · 2 inhibiciÓn de microorganismos patÓgenos presentes en agua por mÉtodos combinados katherin castro rÍos comitÉ tutorial gonzalo

INHIBICIÓN DE MICROORGANISMOS PATÓGENOS PRESENTES EN AGUA POR

MÉTODOS COMBINADOS

KATHERIN CASTRO RÍOS

UNIVERSIDAD DE CALDAS

FACULTAD DE CIENCIAS AGROPECUARIAS

DOCTORADO EN CIENCIAS AGRARIAS

MANIZALES

2014

Page 2: KATHERIN CASTRO RÍOS - UNIVERSIDAD DE CALDAS · 2 inhibiciÓn de microorganismos patÓgenos presentes en agua por mÉtodos combinados katherin castro rÍos comitÉ tutorial gonzalo

2

INHIBICIÓN DE MICROORGANISMOS PATÓGENOS PRESENTES EN AGUA POR

MÉTODOS COMBINADOS

KATHERIN CASTRO RÍOS

COMITÉ TUTORIAL

Gonzalo Taborda Ocampo, Ph.D. Universidad de Caldas.

Amanda Lucía Mora Martínez, Ph.D. Universidad Nacional (Sede Medellín)

Ricardo Torres Palma, Ph.D. Universidad de Antioquia.

UNIVERSIDAD DE CALDAS

FACULTAD DE CIENCIAS AGROPECUARIAS

DOCTORADO EN CIENCIAS AGRARIAS

MANIZALES

2014

Page 3: KATHERIN CASTRO RÍOS - UNIVERSIDAD DE CALDAS · 2 inhibiciÓn de microorganismos patÓgenos presentes en agua por mÉtodos combinados katherin castro rÍos comitÉ tutorial gonzalo

3

Page 4: KATHERIN CASTRO RÍOS - UNIVERSIDAD DE CALDAS · 2 inhibiciÓn de microorganismos patÓgenos presentes en agua por mÉtodos combinados katherin castro rÍos comitÉ tutorial gonzalo

4

TABLA DE CONTENIDO

RESUMEN .......................................................................................................................................... 5

CAPÍTULO I ....................................................................................................................................... 6

INTRODUCCIÓN .......................................................................................................................... 6

OBJETIVOS DEL PRESENTE ESTUDIO .................................................................................... 7

CAPÍTULO II ..................................................................................................................................... 8

REVISIÓN DE LA LITERATURA ............................................................................................... 8

CAPÍTULO III .................................................................................................................................. 18

Experimental design to measure Escherichia coli removal in water through electrocoagulation . 18

CAPÍTULO IV .................................................................................................................................. 25

Removal of chemical oxygen demand in coffee mucilage by electrocoagulation ........................ 25

CAPÍTULO V ................................................................................................................................... 31

Reducción de la demanda química de oxígeno, coliformes, mohos y levaduras en mucílago de

café mediante electrocoagulación ................................................................................................. 31

CAPÍTULO VI .................................................................................................................................. 39

Eficiencia de inactivación de coliformes totales y Escherichia coli en agua natural dopada

mediante Fenton heterogéneo........................................................................................................ 39

CAPÍTULO VII ................................................................................................................................ 47

Effect of supporting electrolyte on inactivation efficiency of Escherichia coli and degradation

pathways by electrooxidation with Ti/IrO2 anode ......................................................................... 47

CAPÍTULO VIII ............................................................................................................................... 57

Electrochemical oxidation with RuO2 anode coupled with ultrasound in the disinfection of urban

wastewater ..................................................................................................................................... 57

CAPÍTULO IX .................................................................................................................................. 69

Inactivation of Escherichia coli by combination of ultrasound, ultraviolet irradiation and iron .. 69

CAPÍTULO X ................................................................................................................................... 76

CONCLUSIONES GENERALES ................................................................................................ 76

RECOMENDACIONES ............................................................................................................... 77

BIBLIOGRAFÍA ............................................................................................................................... 78

Page 5: KATHERIN CASTRO RÍOS - UNIVERSIDAD DE CALDAS · 2 inhibiciÓn de microorganismos patÓgenos presentes en agua por mÉtodos combinados katherin castro rÍos comitÉ tutorial gonzalo

5

RESUMEN

Este trabajo evaluó experimentalmente la inhibición de microorganismos patógenos,

mediante la combinación de procesos avanzados de oxidación y procesos electroquímicos.

Para ello fue necesario establecer una línea base sobre la eficiencia de inhibición,

empleando diferentes tratamientos alternativos de inactivación como: electrocoagulación,

electrooxidación, Fenton heterogéneo y ultrasonido, en diferentes tipos de agua.

Los resultados indican que es posible la inhibición de los microorganismos mediante la

aplicación de las técnicas estudiadas, siendo los tratamientos de electrooxidación y

ultrasonido los más prometedores, con inactivaciones superiores a 2.7-log (99.8%) en bajos

tiempos de tratamiento; esto se debe a los efectos químicos y físicos sobre los

microorganismos, que mejoraron la mortalidad de estos respecto a los otros tratamientos.

Se combinaron técnicas como electrooxidación, ultrasonido, radiación ultravioleta y hierro.

Estos procesos combinados fueron efectivos en la inhibición de microorganismos,

existiendo un marcado efecto del tiempo de tratamiento en la eficiencia de inhibición. Se

observaron inactivaciones superiores a 3.0-log (99.9%), en diferentes tipos agua.

Los modelos que mejor se ajustaron a las curvas de inactivación de los tratamientos

combinados (R2

> 0.9), fueron Doble Weibull y Bifásico para la combinación de

ultrasonido, irradiación ultravioleta y hierro; mientras que los modelos Weibull y Doble

Weibull fueron los más ajustados para la inactivación mediante la combinación de

ultrasonido y electrooxidación.

Page 6: KATHERIN CASTRO RÍOS - UNIVERSIDAD DE CALDAS · 2 inhibiciÓn de microorganismos patÓgenos presentes en agua por mÉtodos combinados katherin castro rÍos comitÉ tutorial gonzalo

6

CAPÍTULO I

INTRODUCCIÓN

Entre las estrategias para el control de la calidad microbiológica de las aguas residuales, se

encuentra la desinfección, que busca la destrucción de microorganismos por la aplicación

de técnicas químicas y físicas. El principal método de desinfección utilizado en la

actualidad es la cloración, esto se debe a su costo bajo y poder oxidante alto; sin embargo

existe una creciente preocupación por la formación de subproductos relacionados con la

desinfección, como los Trihalometanos, algunos de ellos identificados por la Agencia

Internacional para la Investigación en Cáncer como posibles carcinógenos en humanos

(Matamoros, Mujeriego, & Bayona, 2007; The International Agency for Research on

Cancer, 2010; G. S. Wang, Deng, & Lin, 2007; Watson, Shaw, Leusch, & Knight, 2012).

Diferentes técnicas han mostrado ser alternativas para la remoción e inactivación de

microorganismos, entre estas se encuentran los tratamientos electroquímicos como la

electrocoagulación y la electrooxidación que remueven contaminantes por el paso de una

corriente eléctrica a través de electrodos de diferentes materiales. En la electrocoagulación

se generan coagulantes que permiten la remoción de materia orgánica e inorgánica y en la

electrooxidación se forman oxidantes in-situ que degradan los contaminantes (Akbal &

Camci, 2011; Anglada, Urtiaga, & Ortíz, 2009; Durango-Usuga et al., 2010; Katal &

Pahlavanzadeh, 2011; Saravanan, Sambhamurthy, & Sivarajan, 2010; Tchamango, Nanseu-

Njiki, Ngameni, Hadjiev, & Darchen, 2010; Tezcan Ün, Koparal, & Bakır Ögütveren,

2009). En ambos casos se han realizado estudios que evidencian su potencial en la

remoción e inactivación de microorganismos. Mediante la electrocoagulación se han

removido exitosamente algas, bacterias y virus (Azarian, Mesdaghinia, Vaezi, Nabizadeh,

& Nematollahi, 2007; Barashkov et al., 2010; Zhu, Clifford, & Chellama, 2005), evaluando

parámetros como el pH y la intensidad de corriente. Mediante la electrooxidación, se han

inactivado principalmente bacterias indicadoras como los coliformes, además de otras

bacterias patógenas de interés(Cano, Cañizares, Barrera, Sáez, & Rodrigo, 2011; Delaedt et

al., 2008; Frontistis, Brebou, Venieri, Mantzavinos, & Katsaounis, 2011; Griessler et al.,

2010; Polcaro et al., 2007; Schmalz, Dittmar, Haaken, & Worch, 2009).

Existen además los procesos avanzados de oxidación (PAO) que presentan las ventajas

como: la transformación química de los contaminantes, generación baja o nula de lodos,

posibilidad de tratar contaminantes a baja concentración, no formación de subproductos de

reacción y aumento de la biodegradabilidad (Forero, Ortiz, & Ríos, 2005). Estas

tecnologías involucran la generación de especies altamente oxidantes como el radical

hidroxilo. Entre los PAO se encuentran tecnologías no-fotoquímicas y fotoquímicas, como

los procesos tipo Fenton y el ultrasonido, ambos procesos también tienen la habilidad de

eliminar microorganismos, principalmente bacterias en diferentes tipos de aguas (Al Bsoul

et al., 2010; Boateng, Price, Huddersman, & Walsh, 2011; Shinobu Koda, Masaki

Miyamoto, Maricela Toma, Tatsuro Matsuoka, & Masahiro Maebayashi, 2009; Mahamuni

& Adewuyi, 2010; Moncayo-Lasso, Torres-Palma, Kiwi, Benitez, & Pulgarin, 2008; Nieto-

Juarez & Kohn, 2013).

Page 7: KATHERIN CASTRO RÍOS - UNIVERSIDAD DE CALDAS · 2 inhibiciÓn de microorganismos patÓgenos presentes en agua por mÉtodos combinados katherin castro rÍos comitÉ tutorial gonzalo

7

La combinación de los tratamientos antes citados, permitirá la ampliación del conocimiento

en cuanto a técnicas alternativas de desinfección, ya que pese a los avances que se han

realizado, aún es necesario investigar con mayor detalle el efecto de los tratamientos

combinados y los factores de operación en la eficiencia de inhibición de microorganismos,

por esta razón el objetivo de este trabajo fue estudiar los procesos avanzados de oxidación

y los procesos electroquímicos en la eficiencia de inactivación de microorganismos

patógenos en agua.

OBJETIVOS DEL PRESENTE ESTUDIO

Objetivo General

Generar un sistema teórico y experimental basado en la combinación de procesos

avanzados de oxidación y procesos electroquímicos, para la inhibición de

microorganismos patógenos.

Objetivos Específicos

Establecer una línea base conceptual sobre la eficiencia de la inhibición de

microorganismos patógenos en agua, empleando procesos avanzados de oxidación y

procesos electroquímicos.

Construir un modelo experimental para la inhibición de microorganismos patógenos

basado en la combinación de procesos avanzados de oxidación y/o procesos

electroquímicos.

Estudio de la cinética de inhibición de microorganismos patógenos de agua,

empleando procesos avanzados de oxidación y/o procesos electroquímicos

combinados.

Page 8: KATHERIN CASTRO RÍOS - UNIVERSIDAD DE CALDAS · 2 inhibiciÓn de microorganismos patÓgenos presentes en agua por mÉtodos combinados katherin castro rÍos comitÉ tutorial gonzalo

8

CAPÍTULO II

REVISIÓN DE LA LITERATURA

La desinfección de aguas residuales tiene por objetivo la destrucción de microorganismos

potencialmente patógenos (Gerardi & Zimmerman, 2005), esto se puede lograr aplicando

diversas técnicas. La cloración es el método tradicional para la desinfección de aguas,

debido a su efectividad y economía, sin embargo está relacionada con la formación de

subproductos como los Trihalometanos, los cuales son reconocidos como potenciales

cancerígenos(Hrudey, 2009; G. S. Wang et al., 2007). Esto requiere la evaluación de

técnicas alternativas que sirvan como pre-tratamiento o reemplazo de la cloración.

En vista de esta problemática se han propuesto alternativas como los métodos

electroquímicos, ultrasonido, procesos tipo-Fenton y la combinación de estas y otras

técnicas.

Electrocoagulación

La electrocoagulación es el proceso empleado para remover contaminantes en un medio

acuoso, por el paso de una corriente eléctrica a través de electrodos principalmente de

hierro o aluminio, generando de forma electroquímica iones coagulantes en el ánodo que

permiten desestabilizar los contaminantes, para luego formar flocs que sedimentan o flotan.

Las reacciones involucradas se pueden resumir de la siguiente forma (Mollah et al., 2004):

En el ánodo

M(s) → M(ac)n+

+ ne-

2H2O(l) →4H+ + O2 +4e

-

Enel cátodo

M(ac)n+

+ ne- →M(s)

n+

2H2O(l) + 2e-→ H2

- + 2OH

-

Los procesos de electrocoagulación, son de fácil operación, efectivos en un amplio rango

de contaminantes, no requieren la adición de productos químicos y los lodos generados son

menores que en la coagulación química. Sin embargo requieren un reemplazo periódico de

los ánodos de sacrificio y los costos operacionales pueden ser altos, dependiendo del costo

de la energía.

Como se observa en la Tabla 1, la electrocoagulación ha sido exitosa en la remoción de

bacterias, algas y virus, presentes en aguas residuales y soluciones con el microorganismo.

Los valores de remoción reportados se encuentran por encima del 79%, hasta alcanzar la

remoción completa. En la electrocoagulación los microorganismos son adsorbidos en los

flocs formados que posteriormente flotan hacia la superficie o sedimentan en el fondo del

Page 9: KATHERIN CASTRO RÍOS - UNIVERSIDAD DE CALDAS · 2 inhibiciÓn de microorganismos patÓgenos presentes en agua por mÉtodos combinados katherin castro rÍos comitÉ tutorial gonzalo

9

reactor, sin embargo también es posible la desinfección de aguas en presencia de cloruros,

promoviendo la electrogeneración de especies cloradas con potencial desinfectante (Castro-

Ríos, Taborda-Ocampo, & Torres-Palma, 2014; Ricordel, Miramon, Hadjiev, & Darchen,

2013; Zaleschi, Sáez, Cañizares, Cretescu, & Rodrigo, 2013). Hasta la fecha solamente ha

sido combinada la electrocoagulación con electrodos de hierro y aluminio, junto con la

electrooxidación con ánodos de diamante dopado con boro (BDD). Los resultados son

prometedores por el papel que juegan los electrodos tipo BDD en la formación de

sustancias oxidantes y por lo tanto en la desinfección, mientras que la electrocoagulación

favoreció principalmente la disminución de turbidez (Cotillas, Llanos, Canizares, Mateo, &

Rodrigo, 2013; Llanos, Cotillas, Cañizares, & Rodrigo, 2014).

Tabla 1. Microorganismos removidos mediante electrocoagulación

Microorganismo Tipo de

Agua

Electrodos Parámetro

eléctrico

Remoción Referencia

E.coli Solución

CaCl2,

K2HPO4,

Na2SO4,

MgSO4

Acero inox. 30-110 mA 100% (Pareilleux &

Sicard, 1970)

Virus Solución

NaHCO3 y

CaCl2

Hierro,

Acero

Inox.

0.25 mA/cm2 99.99% (Zhu et al.,

2005)

Bacteriófago Solución

NaHCO3 y

CaCl2

Hierro y

Acero inox.

0.25 mA/cm2 99.99% (Zhu et al.,

2005)

Microcystis

aeruginosa

Agua

residual

Aluminio 6 -550

W/dm3

99.5 - 100% (Azarian et

al., 2007)

E.coli Agua

destilada

Aluminio,

Acero,

Acero inox.

0.1 - 1 A 80 - 100% (Ghernaout,

Badis, Kellil,

& Ghernaout,

2008)

Microcystis

aeruginosa

Agua

ajustada a

pH 7

Aluminio

Hierro

0.5- 5

mA/cm2

79- 100% (Gao, Yang,

et al., 2010)

Salmonella

typhimurium

Agua

producción

avícola y

Solución

(NH4)2SO4

Acero

Inox.

0.21 A 99.9% (Barashkov et

al., 2010)

E.coli Lixiviado Aluminio 30 V 97% (Ricordel et

Page 10: KATHERIN CASTRO RÍOS - UNIVERSIDAD DE CALDAS · 2 inhibiciÓn de microorganismos patÓgenos presentes en agua por mÉtodos combinados katherin castro rÍos comitÉ tutorial gonzalo

10

de

vertedero

al., 2013)

Coliformes

fecales

Agua

residual

municipal

Aluminio

Hierro

10 A/m2 100% (Zaleschi et

al., 2013)

E.coli Solución

Na2SO4

Aluminio 2.27 mA/cm2 99% (Castro-Ríos

et al., 2014)

Electrooxidación

La electrooxidación es un proceso electroquímico que se perfila como una alternativa

atractiva a la cloración, ya que empleando electrodos como grafito, Pt, IrO2, RuO2, SnO2,

PbO2 y BDD sobre un medio acuoso, permite por medio de la oxidación directa o indirecta

la reducción de diversos contaminantes (Figura 1), entre ellos microorganismos patógenos

(Anglada et al., 2009). En la oxidación directa ocurre una difusión y oxidación de los

contaminantes en la superficie del ánodo. En la oxidación indirecta la descontaminación se

logra por la electro-generación de oxidantes como el Cl2, ClO, H2O2, O3 y OH•, que sirven

como mediadores en la reacción (Cong, Wu, & Li, 2008b; Martinez-Huitle & Brillas,

2008).

Figura 1. Esquemas de electrooxidación directa e indirecta.

Fuente: Adaptado (Anglada et al., 2009)

La principal ventaja de la electrooxidación es su potencial como tecnología limpia, ya que

el reactivo empleado es el electrón, además la técnica demanda muy poco o ningún

producto químico, ya que estos son generados in-situ. Entre las desventajas se encuentran

los altos costos operativos por el consumo de energía, y la formación de productos

intermediarios tóxicos (M. E. H. Bergmann, Rollin, & Iourtchouk, 2009; Sánchez-

Carretero, Sáez, Cañizares, & Rodrigo, 2011).

Page 11: KATHERIN CASTRO RÍOS - UNIVERSIDAD DE CALDAS · 2 inhibiciÓn de microorganismos patÓgenos presentes en agua por mÉtodos combinados katherin castro rÍos comitÉ tutorial gonzalo

11

Tabla 2. Inactivación de microorganismos mediante electrooxidación

Microorganismo Tipo de

Agua

Electrodos Parámetro

eléctrico

Inhibición Referencia

Coliformes y

Streptococos

Agua

potable

TiO2 125-250 mA 100% (Patermarakis

&

Fountoukidis,

1990)

Aeromonas

hydrophila

Agua

potable

TiN 1.2 V 68% (Matsunaga et

al., 1992)

Bacillus subtilis 96%

E. coli 100%

Klebsiella

pneumoniae

98.2%

Pseudomonas

cepacia

82.2%

P. fluorescens 61.2%

Saccharomyces

cerevisiae

93.4%

E.coli,

P. aeruginosa

Bacteriófago

Solución

150nM KCl

Platino y

Cobre

25 - 350

mA/cm2

Reporte

gráfico

(Drees,

Abbaszadegan,

& Maier,

2003)

E.coli Solución

NaCl,

NaNO3,

Na2SO4

Acero Inox.

Y TiO2

1-5 mA/cm2 99.5 -100% (X. Y. Li et

al., 2004)

E.coli Solución

NaCl

TiO2, RuO2,

ZrO2

16-25 mA

/cm2

99.98-100% (Diao, Li, Gu,

Shi, & Xie,

2004)

Legionella spp. Solución

NaCl

Ti/RuO2 1-1.5 kV 99.5-100% (Feng et al.,

2004)

E.coli y

Bacteriófago

Solución

NaCl,

NaH2PO4,

Na2SO4

Platino y

Acero

24 mA/cm2 99 –

99.99%

(M.I. Kerwick,

S.M. Reddy,

A.H.L.

Chamberlain,

& D.M. Holt,

2005)

Bacterias halófilas Solución Platino 0.5 A 100% (Y. Birbir &

Page 12: KATHERIN CASTRO RÍOS - UNIVERSIDAD DE CALDAS · 2 inhibiciÓn de microorganismos patÓgenos presentes en agua por mÉtodos combinados katherin castro rÍos comitÉ tutorial gonzalo

12

20% NaCl Birbir, 2006)

E.coli Buffer

fosfato 0.2

M (pH 7)

Platino y

Grafito

0.1 -100

mA/cm2

80% (Joonseon

Jeong, Kim,

Cho, Choi, &

Yoon, 2007)

Microcystis

aeruginosa (alga)

Solución

con el alga

Ti-RuO2 y

Grafito

3-12 mA/cm2 92% (Xu, Yang,

Ou, Wang, &

Jia, 2007) Ti-RuO2 y

Acero inox.

Grafito y

Acero inox.

E. coli Solución

1mM

Na2SO4

BBD y

Acero inox.

1.5 a 13.3

mA/cm2

100% (Polcaro et al.,

2007) Enterococcus

faecalis

Solución con

coliformes

Bacterias mesófilas Agua

residual de

curtiembre

Platino 2 – 6 A 100% (Y. Birbir,

Ugur, &

Birbir, 2008)

Bacterias halófilas Agua

residual de

curtiembre,

Solución

NaCl

Platino 0.1-0.5 A 100% (Y. Birbir,

Degirmenci, &

Birbir, 2008)

E.coli Agua

potable

Titanio 0.25-0.75 A 100% (Delaedt et al.,

2008) Legionella

pneumophila

99.9%

Deinococcus

geothermalis

Agua

residual de

industria

papelera

MMO

(Mixed

Metal

Oxide)

5 - 65

mA/cm2

100% (Särkkä,

Vepsäläinen ,

Pulliainen, &

Sillanpää,

2008)

Pseudoxanthomonas

taiwanensis

Meiothermus

silvanus

Coliformes Agua

residual

PbO2 y

Aleación de

Ni-Cr-Ti

0-7 mA/cm2 99.9% (Cong et al.,

2008b)

E. coli Sln. NaCl,

NaH2PO4,

Na2SO4

Ti/IrO2,

Ti/RuO2,

Ti/Pt-IrO2,

17-167

mA/cm2

< 99% (J. Jeong, Kim,

& Yoon, 2009)

Page 13: KATHERIN CASTRO RÍOS - UNIVERSIDAD DE CALDAS · 2 inhibiciÓn de microorganismos patÓgenos presentes en agua por mÉtodos combinados katherin castro rÍos comitÉ tutorial gonzalo

13

NaHCO3 Pt, BDD y

Acero Inox.

E.coli Agua rio y

mar

Platino 0.5 A 100% (M. Birbir,

Hüsniye,

Birbir, &

Gülşen, 2009)

1 A

1.5 A

2 A

Coliformes Aguas

residuales

BDD 2.5 - 120

mA/cm2

99.99% (Schmalz et

al., 2009)

Staphylococos

aureus

Solución

0.08M

Na2SO4

Ti/RuO2 y

Acero Inox.

25 y 75

mA/cm2

100% (Gusmão,

Moraes, &

Bidoia, 2009)

E.coli Agua de

balasto

Ti/Ti 1.25 mA/cm2 23-100% (Nanayakkara,

Alam, Zheng,

& Chen, 2012)

E.coli Efluente

pre-

clorinado

contaminado

con

disruptor

endocrino

BDD 2.1 mA/cm2 100% (Frontistis et

al., 2011)

E.coli Agua

residual

municipal

BDD 40 – 120

mA/cm2

100% (Perez,

Gomez,

Ibanez, Ortiz,

& Urtiaga,

2010)

Pseudomonas

aeruginosa

Agua

potable

BDD 80-118

mA/cm2

99.9 –

99.99%

(Griessler et

al., 2011)

E.coli

Coliformes totales

Agua

residual

municipal

BDD 15-105

mA/cm2

99.99% (Daniela

Haaken,

Dittmar,

Schmalz, &

Worch, 2012)

Coliformes fecales Agua

residual

municipal

BDD/Acero

inoxidable

1.3-130 A/m2 100% (Cano et al.,

2011)

E.coli Agua

potable

Grafito/Pt 0.1-0.4 V 99.97 a

100%

(Shang, Qiao,

Sun, Fan, &

Ai, 2013)

Page 14: KATHERIN CASTRO RÍOS - UNIVERSIDAD DE CALDAS · 2 inhibiciÓn de microorganismos patÓgenos presentes en agua por mÉtodos combinados katherin castro rÍos comitÉ tutorial gonzalo

14

Como se puede apreciar en la Tabla 2, existen varios estudios que evidencian el potencial

de desinfección de la electrooxidación. La mayoría de las bacterias estudiadas por

electrooxidación son indicadores de contaminación fecal usadas ampliamente, entre ellas se

encuentran Coliformes, Coliformes fecales, E.coli, Estreptococos fecales y Enterococos

fecales. También se han investigado otras bacterias como Pseudomonas aeruginosa,

considerada un indicador alternativo enfocado a evaluar el proceso de desinfección química

y Legionella pneumophila, importante por su capacidad para formar biofilms y como

agente etiológico en la “enfermedad de los legionarios”. Los principales materiales de

electrodos estudiados han sido los ánodos dimensionalmente estables (DSA) y BDD, estos

junto con la composición del medio, tienen un papel importante en el tipo de oxidante

formado. En general el mecanismo de la electrooxidación en la inactivación de los

microorganismos parece estar relacionado con un incremento en la permeabilidad de la

membrana celular inducida intercambio de electrones en la oxidación directa (Park et al.,

2003; Tolentino-Bisneto & Bidoia, 2003), y una posterior difusión de las sustancias

oxidantes al interior de la célula, generadas mediante la oxidación indirecta. (H. Bergmann,

Koparal, Koparal, & Ehrig, 2008).

Pese al interés en la electro-desinfección, aún son pocos los tratamientos que han sido

combinados con esta técnica, probablemente por las eficiencias que se han reportado, sin

embargo se ha realizado la combinación con electrocoagulación como se exponía

anteriormente (Cotillas et al., 2013; Llanos et al., 2014), y con ultrasonido para la

desinfección de Klebsiella pneumoniae y E.coli en soluciones con el microorganismo, la

eficiencia en estos procesos combinados mejoró por el efecto físico del ultrasonido, que

hizo más susceptible al microorganismo frente a las sustancias oxidantes generadas por

electrooxidación (Joyce, Mason, Phull, & Lorimer, 2003; Ninomiya, Arakawa, Ogino, &

Shimizu, 2013).

Ultrasonido

Se denomina ultrasonido a la onda acústica que se encuentra por encima de los 20 kHz, se

encuentra dividido en ultrasonido de alta, media y baja frecuencia (Goncharuk,

Malyarenko, & Yaremenko, 2008). Esta técnica posee un potencial para el tratamiento de

aguas y aguas residuales, además ha demostrado la habilidad para inactivar diferentes

bacterias coliformes principalmente en soluciones con los microorganismos (Tabla 3); sin

embargo requiere mucha energía para efectuar la inactivación (Al Bsoul et al., 2010; S.

Koda, M. Miyamoto, M. Toma, T. Matsuoka, & M. Maebayashi, 2009; Mahamuni &

Adewuyi, 2010). Por esta razón se ha combinado con otras técnicas como radiación

Ultravioleta (Bazyar Lakeh, Kloas, Jung, Ariav, & Knopf, 2013; Chrysikopoulos,

Manariotis, & Syngouna, 2013), Foto-Fenton (Giannakis et al., 2014), electro-catálisis

(Ninomiya, Arakawa, et al., 2013) y electrólisis (Joyce et al., 2003). La combinación con

otras técnicas ha permitido disminuir los tiempos de desinfección, repercutiendo en los

costos energéticos y una mejor inactivación de los microorganismos, por el aumento en la

concentración de sustancias altamente oxidantes o por la sinergia entre el efecto físico del

ultrasonido y el efecto químico de las otras técnicas.

Page 15: KATHERIN CASTRO RÍOS - UNIVERSIDAD DE CALDAS · 2 inhibiciÓn de microorganismos patÓgenos presentes en agua por mÉtodos combinados katherin castro rÍos comitÉ tutorial gonzalo

15

Tabla 3. Inactivación de microorganismos mediante ultrasonido

Microorganismo Tipo de Agua Frecuencia Potencia Inhibición Referencia

Bacillus subtilis Solución con el

microorganismo

20 - 850 kHz 0.064 – 0.24

W/cm3

< 80% (Joyce et al.,

2003)

Mycobacterium

spp

Solución con el

microorganismo

20 - 612 kHz 58 – 411 W/L 35.5– 93% (Al Bsoul et

al., 2010)

Legionella

pneumophila

Solución con el

microorganismo

36 kHz 0.064 – 0.191

kW/L

90– 99.9% (Declerck et

al., 2010)

E.coli

Pseudomonas

aueruginosa

Flavobacterium

breve

Aeromonas

hydrophila

Solución con los

microorganismos

20-25 kHz 700 -1000 W 99 –100 % (Hulsmans et

al., 2010)

E.coli

Streptococcus

mutans

Solución con el

microorganismo

20 – 500 kHz 1.7- 12.8 W 90 – 99% (S. Koda et

al., 2009)

E.coli Solución con el

microorganismo

20 – 1071

kHz

80 -140 W 99.9% (Hua &

Thompson,

2000)

E.coli Solución con el

microorganismo

27.5 kHz 42 W/mL 99% (Furuta et al.,

2004)

Enterobacter

aerogenes

Bacillus subtilis

Staphylococcus

epidermis

Solución con el

microorganismo

20 kHz 1-12.7 W 99.9% -

100%

(Gao, Lewis,

Ashokkumar,

& Hemar,

2014a,

2014b)

E.coli K-12 Solución con el

microorganismo

20 kHz 12.57 – 18.86

W/m3

99.9% (Hunter,

Lucas,

Watson, &

Parton,

2008)

E.coli Agua residual 24 -80 kHz 90 – 450 W 100% (Antoniadis,

Page 16: KATHERIN CASTRO RÍOS - UNIVERSIDAD DE CALDAS · 2 inhibiciÓn de microorganismos patÓgenos presentes en agua por mÉtodos combinados katherin castro rÍos comitÉ tutorial gonzalo

16

Fenton Heterogéneo (Fe2+

/H2O2)

La tecnología Fenton, ha sido ampliamente estudiada en la degradación de contaminantes

orgánicos en agua. A través del reactivo Fenton (Fe2+

/H2O2) se generan radicales hidroxilo,

que pueden oxidar la materia orgánica rápidamente. Sin embargo esta técnica tiene la

desventaja que requiere la acidificación del medio para el tratamiento y una posterior

recuperación del hierro de los lodos. Para evitar lo último, se viene utilizando el Fenton

heterogéneo, en donde se emplean catalizadores para soportar el hierro. Las reacciones

involucradas en este proceso son:

Fe2+

+ H2O2→ Fe3+

+ OH- + OH

• (1)

Fe3+

+ H2O → Fe2+

+ H+

+ OH• (2)

H2O2→ 2OH• (3)

Aunque la desinfección mediante Fenton y foto Fenton ha sido estudiada, aún son pocos los

trabajos que involucran la inactivación de microorganismos mediante Fenton heterogéneo.

Los trabajos desarrollados mediante esta técnica han evaluado la eliminación de bacterias

como E.coli, Pseudomonas aeruginosa, Staphylococcus aureus y Virus (Boateng et al.,

2011; Moncayo-Lasso, Torres-Palma, Kiwi, Benitez, et al., 2008; Nieto-Juarez & Kohn,

2013). Los resultados son variables, ya que dependen del tipo de catalizador y la

concentración de H2O2, sin embargo es posible lograr la inactivación de los

microorganismos, una ventaja es que permite trabajar con soluciones con pH cercano a la

neutralidad. La desinfección de los microorganismos se atribuye a la adsorción de estos en

el catalizador, que luego son atacados por los radicales hidroxilos y demás oxidantes

formados.

municipal Poulios,

Nikolakaki,

&

Mantzavinos,

2007)

Enterobacter

aerogenes

Bacillus subtilis

Staphylococcus

epidermis

Aureobasidium

pullulans

Solución con el

microorganismo

850 kHz 50-62 W 99-100% (Gao,

Hemar,

Ashokkumar,

Paturel, &

Lewis, 2014)

Page 17: KATHERIN CASTRO RÍOS - UNIVERSIDAD DE CALDAS · 2 inhibiciÓn de microorganismos patÓgenos presentes en agua por mÉtodos combinados katherin castro rÍos comitÉ tutorial gonzalo

17

Page 18: KATHERIN CASTRO RÍOS - UNIVERSIDAD DE CALDAS · 2 inhibiciÓn de microorganismos patÓgenos presentes en agua por mÉtodos combinados katherin castro rÍos comitÉ tutorial gonzalo

18

CAPÍTULO III

Experimental design to measure Escherichia coli removal in water through

electrocoagulation

Abstract

The experimental design herein was used to evaluate the influence of electrocoagulation

parameters, such as initial pH and electrolyte support (Na2SO4) concentration, on

Escherichia coli (E.coli) removal. The initial pH and Na2SO4 concentration influenced the

response variable. E.coli removal is more efficient with a decrease in pH and an increase in

Na2SO4 concentration. The predicted values from the empirical model were consistent with

the experimental values. In a final experiment under optimal conditions (2.5 mg L-1

of

Na2SO4 and initial pH 4.0), the electrocoagulation with aluminum electrodes was able to

remove 1-log after 40 min and 1.9-log in a contact time of 90 min of E.coli. The study

shows electrocoagulation as a promising alternative to remove microorganisms in water.

Keywords: Factorial design, electrochemistry, microorganism, pH, electrolyte support

Introduction

Chlorination is the primary method for disinfecting water because it is effective and

inexpensive, but this method is related to trihalomethanes (THMs) byproduct formations,

which are recognized as a potentially carcinogenic substances (Hrudey, 2009; G. S. Wang

et al., 2007). This requires evaluating alternative techniques that may serve as a

pretreatment or chlorination replacement.

Electrocoagulation is an alternative for water treatment and reduces or removes

contaminants in an aqueous medium by passing an electric current through iron or

aluminum electrodes and generating coagulants at the anode that form flocs, which settle or

float with the contaminants (Mollah et al., 2004). This technique has successfully removed

Page 19: KATHERIN CASTRO RÍOS - UNIVERSIDAD DE CALDAS · 2 inhibiciÓn de microorganismos patÓgenos presentes en agua por mÉtodos combinados katherin castro rÍos comitÉ tutorial gonzalo

19

inorganic and organic contaminants (Akbal & Camci, 2011; Durango-Usuga et al., 2010;

Katal & Pahlavanzadeh, 2011; Saravanan et al., 2010; Tchamango et al., 2010; Tezcan Ün,

Koparal, & Bakır Ögütveren, 2009), including microorganisms such as algae, bacteria and

viruses (Azarian et al., 2007; Barashkov et al., 2010; Zhu et al., 2005). In previous studies

using electrocoagulation, Azarian, et al. (2007) removed between 99.8% and 100% of the

Microcystis aeruginosa in the final effluent from a water treatment plant, and Gao, Du, et

al. (2010) entirely removed the algae in a NaCl solution using aluminum electrodes.

Ghernaout, et al. (2008) removed between 80-100% of the bacteria Escherichia coli using

aluminum and stainless steel electrodes; evaluated certain parameters, such as pH and

current; and observed a positive impact on microorganism removal by using a neutral pH

and increasing the current.

For this study, the influence of electrocoagulation parameters, such as initial pH and

Na2SO4 concentration, on E.coli removal was studied using the experimental design

described herein. This statistical methodology facilitates an assessment of two or more

factors relevant to a response variable and generates an appropriate number of experiments;

the results are expressed as a regression model (Montgomery, 2001).

Experimental

Reagents

Sodium sulfate and nitric acid were purchased from Sigma-Aldrich; the microbiological

reagents, peptone water, and Endo agar were purchased from Oxoid. Sulfuric acid and

sodium hydroxide were acquired from Merck and were used to adjust the pH. Distilled

water was used to prepare the aqueous solutions and for the experiments.

Electrochemical experiments

Figure 1.Schematic diagram of electrocoagulation experiment

Page 20: KATHERIN CASTRO RÍOS - UNIVERSIDAD DE CALDAS · 2 inhibiciÓn de microorganismos patÓgenos presentes en agua por mÉtodos combinados katherin castro rÍos comitÉ tutorial gonzalo

20

Electrochemical tests were performed in a batch reactor, which comprised a 500 mL glass

beaker equipped with 4 aluminum electrodes, a 44 cm2

effective area, and a 1.0 cm

interelectrodic space (Figure 1). The electrodes were connected to a direct current power

supply (MCP Lab electronics) at 2.27 mA cm-2

. Before each experiment, the aluminum

electrodes were washed, sanded, dipped in a nitric acid solution (0.1 mol L-1

), and rinsed

with distilled water.

Na2SO4 was selected as the support electrolyte to avoid forming organic chlorine by-

products (Yildiz, Koparal, & Keskinler, 2008). Before the electrocoagulation process, the

initial pH of the water was adjusted using NaOH or H2SO4 (0.1 mol L-1

). Samples were

collected at different time intervals for microbiological analysis.

E.coli preparation and quantitation

A suspension comprising native E.coli in peptone water was prepared and incubated at 37

°C until the sample was at 105-10

6 CFU mL

-1. The samples were analyzed using the

filtration membrane technique in accordance with standard methods (APHA, 1999). Sterile

cellulose membranes (Advantec MFS) comprising a 0.45 µm pore size were placed in a

Petri dish with Endo agar (Oxoid). The E.coli colonies were counted after incubation at 35

°C for 24 h.

Experimental design

A two-level factorial design (2k) with three replicate center points was used; the factors

considered for this study were initial pH and support electrolyte (Na2SO4) concentration.

The levels for the factors studied are shown in Table 1. The response variable was E.coli

removal, which was defined as Log (Nt/No), where No is the initial E.coli concentration,

and Nt is the remaining E.coli population at time t. The experiments were performed in a

random order in duplicate, and the data were analyzed using the software

Statgraphics®plus.

Table 1. Factors and levels used in the experiment

Variables Low Level, -1 Center points, 0 High Level, +1

Initial pH 4.0 5.5 7.0

Na2SO4 (mg L-1

) 0.25 1.38 2.5

Page 21: KATHERIN CASTRO RÍOS - UNIVERSIDAD DE CALDAS · 2 inhibiciÓn de microorganismos patÓgenos presentes en agua por mÉtodos combinados katherin castro rÍos comitÉ tutorial gonzalo

21

Results and discussion

Experimental design applied to E.coli removal through electrocoagulation

Table 2 shows the design matrix generated using the software Statgraphics®plus. It includes

the experimental conditions and results for each experiment and response variable, which is

defined as E.coli removal after electrocoagulation for 50 min. The study was conducted

using a 95% confidence level.

Table 2. Design matrix and experimental results

Assays Initial pH Na2SO4 (mg L-1

) Log (Nt/No)

1 5.5 1.38 –0.83

2 5.5 1.38 –0.79

3 4.0 0.25 –0.18

4 7.0 0.25 –0.47

5 4.0 2.5 –1.36

6 5.5 1.38 –0.72

7 7.0 2.5 –0.22

8 5.5 1.38 –0.66

9 5.5 1.38 –0.79

10 4.0 0.25 –0.24

11 7.0 0.25 –0.46

12 4.0 2.5 –1.29

13 5.5 1.38 –0.51

14 7.0 2.5 –0.15

The primary-effects plot (Figure 2) shows the effect of each factor on the response variable.

An increase in the Na2SO4 concentration had a positive effect on the response variable and

may be explained by an increase in conductivity, which would improve microorganism

removal (Otenio, Panchoni, Cruz, Ravanhani, & Bidóia, 2008; Tezcan Ün, Koparal, &

Ögütveren, 2009). A decrease in initial pH also had an effect on E.coli removal, which is

consistent with previous research that shows higher efficiency at acidic and neutral pH

values using aluminum electrodes; in addition, an acidic pH can limit E.coli growth and

Page 22: KATHERIN CASTRO RÍOS - UNIVERSIDAD DE CALDAS · 2 inhibiciÓn de microorganismos patÓgenos presentes en agua por mÉtodos combinados katherin castro rÍos comitÉ tutorial gonzalo

22

survival (G. Chen, 2004a; Mates, Sayed, & Foster, 2007; McQuestin, Shadbolt, & Ross,

2009).

Figure 2.Primary-effects plot for E.coli removal through electrocoagulation

The Pareto chart (Figure 3) was used to draw conclusions on the most significant variables

and variable interactions. This chart shows both the magnitude and importance of the

effects (variables and interactions). The chart comprises a reference line (discontinuous

vertical plot), and any effect that extends past this line is potentially important. An

interaction between the initial pH and Na2SO4 (AB) as well as initial pH (A) and Na2SO4

(B) concentration is considered important in E.coli removal.

Figure 3.Pareto chart for E.coli removal through electrocoagulation

The experimental design used herein included a reduced model that directly relates the

response variable with the factors to facilitate subsequent evaluation of the data.

Page 23: KATHERIN CASTRO RÍOS - UNIVERSIDAD DE CALDAS · 2 inhibiciÓn de microorganismos patÓgenos presentes en agua por mÉtodos combinados katherin castro rÍos comitÉ tutorial gonzalo

23

Figure 4.Comparison of the experimental and predicted values for E.coli removal through

electrocoagulation using the empirical reduced model

The reduced empirical model for E.coli removal through electrocoagulation is shown in

Equation 1. The R2

value for Equation 1 is 0.9153, which indicates that 91.53% of the total

variation in E.coli removal is attributed to the factors studied.

Log (Nt/No) = 0.388 – 0.137[pH] – 1.322 [Na2SO4] + 0.207[pH][Na2SO4] (1)

Figure 4 shows a comparison between the experimental values generated from each

experiment (Table 2) and the predicted values for E.coli removal, which were calculated

using Equation 1. The predicted values are consistent with the experimental data.

E.coli removal through electrocoagulation under optimal conditions

Page 24: KATHERIN CASTRO RÍOS - UNIVERSIDAD DE CALDAS · 2 inhibiciÓn de microorganismos patÓgenos presentes en agua por mÉtodos combinados katherin castro rÍos comitÉ tutorial gonzalo

24

Figure 5.Variation of E.coli removal through electrocoagulation

In a final experiment, the removal of E.coli through electrocoagulation was conducted

under optimal conditions (2.5 mg L-1

of Na2SO4 and initial pH 4.0) in distilled water. As

seen in Figure 5, the electrocoagulation with aluminum electrodes is able to remove 1-log

after 40 min and 1.9-log in a contact time of 90 min, similar results had been reported

previously (Ghernaout et al., 2008; Otenio et al., 2008). The water without electrolysis

(control) did not show significant effect on the growth of E.coli, indicating that removal of

the microorganism is due electrocoagulation, this is attributed to the adsorption of E.coli in

the flocs formed, which float to the surface or settle to the bottom of the reactor (G. Chen,

2004a; Ghernaout et al., 2008; Zhu et al., 2005), as seen in the Figure 6. The

microorganism can survive in the flocs, therefore is important to complement this technique

for a complete elimination.

Figure 6.Schematic representation for E.coli removal through electrocoagulation

Conclusions

The experimental design, it allowed to observe the influence of the factors initial pH and

electrolyte concentration support on the removal of the bacteria E.coli using

electrocoagulation. The results indicated that the factors initial pH and electrolyte support

(Na2SO4) concentration as well as the interaction between these factors affected

microorganism removal, which improved with a decrease in initial pH and an increase in

Na2SO4 concentration. An empirical model was established that describes E.coli removal

using electrocoagulation. The removal of E.coli is attributed to the physical effect promoted

by electrocoagulation.

© 2013 by ESG (www.electrochemsci.org)

Page 25: KATHERIN CASTRO RÍOS - UNIVERSIDAD DE CALDAS · 2 inhibiciÓn de microorganismos patÓgenos presentes en agua por mÉtodos combinados katherin castro rÍos comitÉ tutorial gonzalo

25

CAPÍTULO IV

Removal of chemical oxygen demand in coffee mucilage by electrocoagulation

Abstract

The mucilage and the coffee pulp, are semi-liquid by-products involved in the generation of

wastewater with high values of solids and chemical oxygen demand (COD), negatively

impacting the efficiency and costs of the traditional treatments. A factorial design was

applied to evaluate the removal of COD in coffee mucilage by electrocoagulation,

analyzing the effects and interactions of three parameters (current intensity, pH and time) in

the response variable (percentage of COD removal). The electrocoagulation process using

Fe-Al electrode pair, showed a maximum removal of the COD of 46%, in a treatment time

of 50 min, 3.0 A and initial pH of 6.3. The statistical analysis showed a significant effect

from initial pH and treatment time in the removal of COD. The electrocoagulation is a

suitable alternative for pre-treatment of liquid waste of the coffee

Introduction

The coffee cherry is composed of skin, pulp, mucilage, parchment, silver skin and seed. To

remove these layers and obtain the product of commercial importance, it is necessary to

submit the coffee cherry to various stages. The mucilage and coffee pulp, are by-products

mainly composed of polysaccharides, proteins and polyphenols (Avallone, Guiraud, Guyot,

Olguin, & Brillouet, 2000; Mussatto, Machado, Martins, & Teixeira, 2011), and constitute

wastewater with COD levels between 1500 to 101200 mg L-1

(Chanakya & Alwis, 2004;

Olvera & Gutiérrez, 2010b; Rodríguez, Silva, & Boizán, 2000a; Selvamurugan, Doraisamy,

Maheswari, & Nandakumar, 2010; Zambrano-Franco & Cárdenas-Cárdenas, 2000).

Anaerobic treatment is traditionally used for the removal of organic matter in wastewater

from coffee processing, however this technique requires a long treatment time, impacting

on cost and efficiency. This was observed in some studies, which evaluated the anaerobic

biodegradability of wastewater from wet processing of coffee, using as inoculum the cow

manure and sludge stabilization pond, achieving a COD removal less than 40% (Rodríguez,

Silva, & Boizán, 2000b). In a similar study using bovine rumen fluid as inoculum, for the

Page 26: KATHERIN CASTRO RÍOS - UNIVERSIDAD DE CALDAS · 2 inhibiciÓn de microorganismos patÓgenos presentes en agua por mÉtodos combinados katherin castro rÍos comitÉ tutorial gonzalo

26

purification of water from pulping, the COD removal was 91.2%, at pH 4.6 and 28°C in 16

days (Olvera & Gutiérrez, 2010a). Other treatments such as anaerobic treatment module

system (SMTA), developed by Cenicafe reported removals of COD and BOD5 below 80%,

but the whole process takes about 5 months(Zambrano-Franco, Isaza-Hinestroza,

Rodríguez-Valencia, & Posada, 1999).

The wastewater treatment by electrocoagulation is an alternative, which reduces or removes

contaminants in an aqueous medium, by passing an electric current through electrodes of

iron or aluminum, generating coagulants at the anode involved in the formation of flocs that

settle or float with the contaminants (Mollah et al., 2004). This technique has shown

potential in removing contaminants in wastewater from agricultural and the food industry

(Drogui, Asselin, Brar, Benmoussa, & Blais, 2008; Papastefanakis, Mantzavinos, &

Katsaounis, 2010; Sundarapandiyan, Chandrasekar, Ramanaiah, Krishnan, & Saravanan,

2010; Tchamango et al., 2010).

The complexity of coffee mucilage demand the evaluation of new techniques, that

effectively reduce COD in a shorter time, and serve as an alternative for the pre-treatment

of wastewater from coffee processing. The aim of this study was to evaluate the

electrocoagulation and some process parameters, on the removal of COD from the coffee

mucilage.

Experimental

Effluent characteristics

The effluent sample was mainly composed by coffee mucilage, it was collected from two

farms in Manizales (Colombia), and the sample was stored between 24-48h at 4°C. The

coffee mucilage contained a high amount of COD (66000 mg L-1

), the conductivity was 4.2

mS cm-1

and the initial pH 3.8, these conditions were determined before the

electrocoagulation process.

Electrocoagulation Experiments

The electrochemical experiments were performed in a batch reactor, which consisted in a

glass beaker of 500 mL, equipped with Fe electrode and a cathode of Al, with effective area

of 44_cm2 and interelectrodic space of 1.0 cm (Figure 1). The electrodes were connected to

a DC power supply of 30 V and 20 A (MCP Lab electronics). Before each experiment the

electrodes were washed, sanded and dipped in a nitric acid solution. Previous to the

electrocoagulation process the initial pH of the water was adjusted with NaOH or H2SO4

(0.1 M) acquired from Merck. Influent and effluent pH values were measured by a pH

meter (Metrohm 744), and COD were conducted by the procedures described in the

Standard Methods (APHA, 1999).

Page 27: KATHERIN CASTRO RÍOS - UNIVERSIDAD DE CALDAS · 2 inhibiciÓn de microorganismos patÓgenos presentes en agua por mÉtodos combinados katherin castro rÍos comitÉ tutorial gonzalo

27

Figure 1.Schematic diagram of the electrochemical reactor

Experimental Design

A factorial design was selected, the variables studied were: initial pH, current intensity and

treatment time. The levels of the variables studied are show in Table I. The response

variable was the percentage of COD removal. The data analysis was done with the software

Statgraphics®plus.

Table 1.Levels of selected variables for the experimental design.

Variables Level 1 Level 2 Level 3

Initial pH 3.5 6.3 9.0

Current Intensity (A) 1.5 2.3 3.0

Treatment Time (min) 15 30 50

Results and Discussion

COD removal by electrocoagulation treatment

The experimental results of electrocoagulation with Fe-Al electrode pair in coffee mucilage

(Figures 2-4), show a COD maximum removal of 46% in a time of 50 min, these values are

close to studies reported by other authors (30-55%), in wastewaters with high COD value

(Abraham, Radhakrishnan Nair, & Madhu, 2009; Agustin, Sengpracha, & Phutdhawong,

2008; Chavalparit & Ongwandee, 2009; Inan, Dimoglo, ÅžimÅŸek, & Karpuzcu, 2004;

Tezcan Ün, Ugur, Koparal, & Bakır Ögütveren, 2006). The lowest efficiency of the process

is presented in the shortest treatment time, with COD removal between 10-18%; therefore

the increase in treatment time, improves the removal of COD. Also was observed a better

efficiency in COD removal with the increasing of current intensity, showing the best results

between 2.3 A and 3.5 A, this behavior is attributed to a greater dissolution of the anode

according to Faraday's law, improving the amount of coagulant and consequently the

Page 28: KATHERIN CASTRO RÍOS - UNIVERSIDAD DE CALDAS · 2 inhibiciÓn de microorganismos patÓgenos presentes en agua por mÉtodos combinados katherin castro rÍos comitÉ tutorial gonzalo

28

removal of pollutants (Abdelwahab, Amin, & El-Ashtoukhy, 2009; Tezcan Ün, Koparal, &

Ögütveren, 2009).

Initial pH was evaluated in the electrocoagulation process, due their impact on the

contaminant removal efficiency (G. Chen, 2004b; C. T. Wang, Chou, & Kuo, 2009). The

COD removal is better at initial pH 6.3, using currents intensity of 2.3 A and 3.5 A, this

coincides with other research that showed improved efficiencies in the removal of

contaminants at pH close to 7.0, using electrocoagulation with iron anodes, due to the

formation of iron complexes which allow a more efficient coagulation (Escobar, Soto-

Salazar, & Toral, 2006; Kobya, Ciftci, Bayramoglu, & Sensoy, 2008; Kobya & Delipinar,

2008).

Figure 2. Electrochemical removal of COD in coffee mucilage, as function of time,

applying a current intensity of 1.5 A.

Figure 3. Electrochemical removal of COD in coffee mucilage, as function of time,

applying a current intensity of 2.3 A.

Page 29: KATHERIN CASTRO RÍOS - UNIVERSIDAD DE CALDAS · 2 inhibiciÓn de microorganismos patÓgenos presentes en agua por mÉtodos combinados katherin castro rÍos comitÉ tutorial gonzalo

29

Figure 4. Electrochemical removal of COD in coffee mucilage, as function of time,

applying a current intensity of 3.0 A.

Experimental Design

According to the ANOVA (Table II) the factors with statistical significance in the response

variable was the initial pH and treatment time (p<0.05), while the current intensity and the

interactions between variables did not show a statistically significant effect on the response

variable.

Table2. ANOVA table for electrocoagulation of coffee mucilage with Fe-Al electrode

pair.

Source Sum of

Squares

Mean Square P-Value

A: Time 1152.67 576.333 0.0001

B: Current Intensity 132.667 66.3333 0.0695

C: pH 182.0 91.0 0.0357

AB 7.33333 1.83333 0.9776

AC 69.3333 17.3333 0.4651

BC 130.667 32.6667 0.2098

Figures 5-6 shows the differences between the initial pH and treatment time, calculated by

Fisher's Least Significant Difference (LSD) test, showing the existence of statistical

differences in the averages calculated. It can be seen differences between the times 15-30

min, 15-50 min and 30-50 min, verifying the effect of increased time on COD removal

Page 30: KATHERIN CASTRO RÍOS - UNIVERSIDAD DE CALDAS · 2 inhibiciÓn de microorganismos patÓgenos presentes en agua por mÉtodos combinados katherin castro rÍos comitÉ tutorial gonzalo

30

efficiency. About the initial pH, there were differences between 3.9-9.0 and 6.3-9.0, while

values between 3.5-6.3 did not show significant differences, suggesting a better removal of

COD, for the coffee mucilage at acidic-neutral initial pH.

Figure 5. COD removal means for each treatment time and 95% LSD Intervals

Figure 6.COD removal means for each initial pH and 95% LSD Intervals

Conclusions

The results demonstrate that electrocoagulation is effective for partial COD removal from

coffee mucilage, and can be considered as a suitable alternative for pre-treatment of liquid

waste of the coffee, when is used a treatment time of 50 min, 3.0 A and initial pH value of

6.3.

Page 31: KATHERIN CASTRO RÍOS - UNIVERSIDAD DE CALDAS · 2 inhibiciÓn de microorganismos patÓgenos presentes en agua por mÉtodos combinados katherin castro rÍos comitÉ tutorial gonzalo

31

CAPÍTULO V

Reducción de la demanda química de oxígeno, coliformes, mohos y levaduras en mucílago

de café mediante electrocoagulación

Resumen

El mucílago y la pulpa de café, son subproductos semilíquidos involucrados en la

generación de aguas residuales con alta concentración de materia orgánica y diversas

especies de microorganismos, afectando negativamente la eficiencia de los tratamientos

tradicionales, que requieren hasta cinco meses para la descontaminación total de este tipo

de aguas. Esto demanda la evaluación de diferentes técnicas de tratamiento, que mejoren la

eficiencia de los procesos tradicionales.

Se evaluó la electrocoagulación con electrodos Fe/Al, 2.3 A y pH natural, en la reducción

de la demanda química de oxígeno y algunos microorganismos, presentes en mucílago de

café. El proceso electroquímico propició una remoción máxima de 93% para bacterias

coliformes, mohos y levaduras, en un tiempo de tratamiento de 50 min. La reducción de la

demanda química de oxígeno fue 32% para la muestra sin diluir, 45% para la muestra

diluida al 50% (v/v) y 51%, para las muestra diluida al 25% (v/v); indicando una mejor

eficiencia con la disminución de la materia orgánica. El consumo energético fue inferior a

los 0.083 kWh/m3, para las muestras analizadas. Esta técnica es una alternativa adecuada

para el pre-tratamiento o reutilización de aguas contaminadas con mucílago de café.

Palabras claves: Bacterias, electroquímica, hongos, materia orgánica, subproductos de

café.

Page 32: KATHERIN CASTRO RÍOS - UNIVERSIDAD DE CALDAS · 2 inhibiciÓn de microorganismos patÓgenos presentes en agua por mÉtodos combinados katherin castro rÍos comitÉ tutorial gonzalo

32

Abstract

The mucilage and coffee pulp are by-products involved in the generation of wastewater

with high concentration of organic matter and different species of microorganisms,

adversely affecting the efficiency of traditional treatments, which require up to five months

to complete decontamination of this type of water. This demands the evaluation of different

treatment techniques that improve the efficiency of traditional processes.

The electrocoagulation was assessed with Fe/Al electrodes, 2.3 A and natural pH, in the

reduction of chemical oxygen demand and some microorganisms present in coffee

mucilage. The electrochemical process led to a maximum of 93% removal for coliform

bacteria, molds and yeasts, in a treatment time of 50 min. The reduction of chemical

oxygen demand was 32% for the undiluted sample, 45% for the sample diluted at 50% (v /

v) and 51% for the sample diluted at 25% (v / v), indicating better efficiency with reduced

organic material.

The energy consumption was less than 0.083 kWh/m3 for the samples analyzed. This

technique is a suitable alternative for pre-treatment or reuse of contaminated water with

coffee mucilage.

Key Words: Bacteria, coffee by-products, electrochemistry, fungus, organic matter.

Introducción

El fruto de café se encuentra compuesto de cáscara, pulpa, mucílago, pergamino, película

plateada y semilla. Para retirar estas capas y obtener el producto de importancia comercial,

es necesario someter a este a diversas etapas conocidas como beneficio, generando diversos

productos secundarios. El mucílago de café, es un subproducto semilíquido compuesto

principalmente por polisacáridos, proteínas y polifenoles (Avallone et al., 2000; Mussatto et

al., 2011); además alberga microorganismos de los géneros Enterobacter, Staphylococos,

Serratia, Candida, Torulopsis, Rhodotorula, Escherichia y Citrobacter (Blandón-Castaño,

Dávila-Arias, & Rodríguez-Valencia, 1999). Sus características físico-químicas y

biológicas lo convierten en un subproducto complejo y altamente contaminante; implicado

en la generación de aguas residuales con altos porcentajes de sólidos y demanda química de

oxígeno (DQO), con reportes entre 1500 a 101200 mgO2/L, dependiendo de la etapa del

proceso y la tecnología empleada (Chanakya & Alwis, 2004; Olvera & Gutiérrez, 2010b;

Rodríguez et al., 2000a; Selvamurugan et al., 2010; Zambrano-Franco & Cárdenas-

Cárdenas, 2000).

El tratamiento anaerobio es empleado tradicionalmente para la remoción de materia

orgánica en las aguas residuales del beneficio del café, sin embargo esta técnica demanda

un largo tiempo de tratamiento, lo que incrementa los costos y eficiencia del proceso. Esto

se observa en trabajos como el de Rodríguez et al. (2000b) que determinaron la

biodegradabilidad anaerobia de las aguas residuales procedentes del beneficio húmedo del

café, empleando como inóculo el estiércol de vacuno y lodos de laguna de estabilización,

Page 33: KATHERIN CASTRO RÍOS - UNIVERSIDAD DE CALDAS · 2 inhibiciÓn de microorganismos patÓgenos presentes en agua por mÉtodos combinados katherin castro rÍos comitÉ tutorial gonzalo

33

alcanzando una reducción de la DQO menor al 40%. En un estudio similar empleando

fluido ruminal vacuno como inóculo para la depuración de agua del despulpado, alcanzaron

una remoción de 91.2% con pH de 4.6 y 28 °C en 16 días (Olvera & Gutiérrez, 2010a).

Otros sistemas más robustos como el Sistema Modular de Tratamiento Anaerobio

(SMTA), desarrollado por Cenicafé para el tratamiento de las aguas residuales del

lavado, han reportado remociones de DQO y DBO5 (Demanda bioquímica de oxígeno)

inferiores al 80%, pero todo el proceso requiere un tiempo aproximado de 5 meses

(Zambrano-Franco et al., 1999).

El tratamiento de aguas residuales mediante electrocoagulación es una alternativa que

reduce o remueve contaminantes en un medio acuoso, mediante el paso de una corriente

eléctrica a través de electrodos de hierro o aluminio, generando de forma electroquímica

iones coagulantes en el ánodo que desestabilizan los contaminantes, para luego formar flocs

que sedimentan o flotan (Mollah et al., 2004). Esta técnica ha evidenciado un potencial en

la remoción de contaminantes de aguas residuales de la agroindustria y la industria de

alimentos (Drogui et al., 2008; Kobya & Delipinar, 2008; Papastefanakis et al., 2010;

Tchamango et al., 2010), y recientemente un efecto en la reducción del contenido de

microorganismos (Gao, Yang, et al., 2010; Ghernaout et al., 2008; Martinez-Huitle &

Brillas, 2008).

Las características del mucílago del café, implican la evaluación de nuevas técnicas que

reduzcan eficientemente los contaminantes físico-químicos y biológicos, proporcionando

alternativas de reutilización o pre-tratamiento de los residuos líquidos del beneficio de café.

El objetivo del presente trabajo es la evaluación de la electrocoagulación y algunos

parámetros intrínsecos del proceso, en la reducción de DQO y microorganismos (bacterias

coliformes, mohos y levaduras) en mucílago de café.

Materiales y métodos

Localización

Se recolectaron muestras provenientes de dos fincas del municipio de Manizales

(Colombia), con condiciones similares de procesamiento del café cereza, la temperatura

promedio de la zona es de 23°C y pluviosidad máxima de 280mm/mes. Las muestras

fueron almacenadas entre 24-48h a 4°C, hasta el momento de ser electrocoaguladas. Las

características físico-químicas del mucílago de café recolectado se muestran en la Tabla 1.

Tabla 1. Características físico-químicas del mucílago de café antes de la

electrocoagulación.

Parámetro Valor

Humedad (%) 96.20

Materia seca (%) 3.80

Page 34: KATHERIN CASTRO RÍOS - UNIVERSIDAD DE CALDAS · 2 inhibiciÓn de microorganismos patÓgenos presentes en agua por mÉtodos combinados katherin castro rÍos comitÉ tutorial gonzalo

34

Nitrógeno total (%) 2.08

Proteína bruta (%) 13.00

Fósforo (%) 0.17

Potasio (%) 0.44

Hierro (mg/L) 264.30

Cobre (mg/L) 19.20

Manganeso (mg/L) 44.10

Zinc (mg/L) 18.20

DQO (mg/L) 67500

Sólidos Totales (mg/L) 46680

Conductividad (mS/cm) 4.2 (22.7°C)

pH 3.56

Procedimiento experimental

Los experimentos electroquímicos fueron realizados en un reactor tipo batch, que consistió

en un beaker de vidrio de 500 mL, equipado con dos electrodos de hierro (ánodos) y dos

electrodos de aluminio (cátodos), con área efectiva de 44 cm2 y una distancia inter-

electródica de 1.0 cm (Figura 1). Los electrodos se conectaron a una fuente de corriente

directa (MCP Labelectronics) de 30 V y 20 A. La intensidad de corriente aplicada fue 2.3

A, pH natural, sin adición de electrolito soporte a la muestra, debido a la conductividad

presentada (Tabla 1), estos parámetros fueron seleccionados con base a resultados previos

(Castro-Ríos, Orozco, & Taborda, 2012; Castro-Ríos, Orozco, & Taborda Ocampo, 2012).

Adicionalmente, se realizó un estudio modelo utilizando los mismos parámetros, con el fin

de determinar la eficiencia del proceso electroquímico según la concentración de materia

orgánica presente, empleando diluciones al 50% (v/v) y 25% (v/v) de la matriz inicial. Los

datos fueron analizados mediante estadística descriptiva y análisis de varianza, realizado

con el software Statgraphics® plus.

Page 35: KATHERIN CASTRO RÍOS - UNIVERSIDAD DE CALDAS · 2 inhibiciÓn de microorganismos patÓgenos presentes en agua por mÉtodos combinados katherin castro rÍos comitÉ tutorial gonzalo

35

Figura 1.Esquema reactor electroquímico

Análisis de las muestras tratadas

La DQO, fue medida empleando el método de reflujo cerrado por técnica colorimétrica,

según procedimiento APHA 5220 D (APHA, 1999), luego fue determinada la

concentración de DQO en un fotómetro Spectroquat® Nova 60 (Merck, Alemania). Las

medidas de pH, se realizaron empleando un potenciómetro Metrohm Mod. E-744

(Metrohm, Suiza). Las muestras para el análisis microbiológico fueron asépticamente

pipeteadas, y posteriormente diluidas hasta 10-3

, en agua peptonada (Oxoid). Luego se

inocularon mediante la técnica de siembra en superficie en agar EMB (Oxoid) y agar YGC

(Scharlau). Las muestras se incubaron a 37°C durante 24-48h para coliformes, y 25°C

durante 5 días para mohos y levaduras. Finalmente se efectuó el conteo de las colonias.

Consumo energético

El consumo de energía eléctrica es un parámetro económico muy importante en el proceso

electroquímico y fue calculado usando la ecuación (1) (Akbal & Camci, 2011):

𝐄 =𝐔. 𝐈. 𝐭

𝐕 (1)

Donde E es el consumo de energía (kWh/m3), U es el voltaje aplicado (V), I es la

intensidad de corriente (A), t es el tiempo de EC (h), y V es el volumen del agua residual

tratada (L).

Resultados

Reducción de DQO presente en mucílago de café

La reducción de las sustancias orgánicas disueltas en mucílago de café fue confirmada por

la disminución en la DQO, y la diferencia estadística evaluada mediante análisis de

varianza (p<0.05) y contraste de Fisher (LSD, Least significant difference test) de los

resultados previos y posteriores al proceso electroquímico. El valor promedio de DQO

antes de la electrocoagulación fue 67500 mg/L, el cual fue reducido a 45825 mg/L (50

min), correspondiente a 32.11% de reducción (Figura 2). En lo relacionado con el pH de la

solución se aprecia un aumento de 3.56 a 5.32 (Figura 3).

Los resultados de las diluciones del mucílago de café, se observan en la Figura 4, allí se

evidencia el incremento del porcentaje de reducción de DQO, a mayor dilución. La máxima

reducción, fue 51.16% para la dilución al 50% (v/v) y un 45.34% para la dilución al 25%

(v/v), en 50 min. Los valores de DQO inicial para las muestras diluidas al 50 y 25% (v/v)

fueron 32250mg/L y 14750 mg/L respectivamente.

Page 36: KATHERIN CASTRO RÍOS - UNIVERSIDAD DE CALDAS · 2 inhibiciÓn de microorganismos patÓgenos presentes en agua por mÉtodos combinados katherin castro rÍos comitÉ tutorial gonzalo

36

Figura 2. Reducción de DQO

Figura 3.Variación del pH durante el tratamiento electroquímico

Page 37: KATHERIN CASTRO RÍOS - UNIVERSIDAD DE CALDAS · 2 inhibiciÓn de microorganismos patÓgenos presentes en agua por mÉtodos combinados katherin castro rÍos comitÉ tutorial gonzalo

37

Figura 4.Reducción de DQO en muestras diluidas

Reducción de mohos, levaduras y coliformes presentes en mucílago de café

La Figura 5, muestra la reducción de microorganismos por electrocoagulación, en esta se

observa que el 70% de la reducción de mohos y levaduras, y el 90% de bacterias coliformes

ocurre durante los primeros 30 min del proceso de electrocoagulación. La reducción

máxima para ambos microorganismos, fue 93% en 50 min.

Figura 5. Reducción de microorganismos

Consumo energético

Se analizó el consumo de energía eléctrica empleando la ecuación (1), para lo cual se

utilizó el potencial (v) registrado durante el tiempo de electrocoagulación y los valores de

los parámetros de corriente, tiempo, pH y volumen citados anteriormente. El consumo

Page 38: KATHERIN CASTRO RÍOS - UNIVERSIDAD DE CALDAS · 2 inhibiciÓn de microorganismos patÓgenos presentes en agua por mÉtodos combinados katherin castro rÍos comitÉ tutorial gonzalo

38

energético obtenido fue 0.0368 kWh/m3, 0.0524 kWh/m

3 y 0.0827 kWh/m

3 para la muestra

sin diluir, diluida al 50% (v/v) y diluida al 25

Discusión y conclusiones

Los resultados muestran, que la electrocoagulación puede reducir hasta un 32% la cantidad

de materia orgánica presente en el mucílago de café con los parámetros evaluados, aunque

los porcentajes de reducción de DQO son menores en comparación con estudios similares

(Agustin et al., 2008; Khoufi, Feki, & Sayadi, 2007; Tezcan Ün et al., 2006); debido al alto

contenido de materia orgánica en el mucílago de café. Esto se puede comprobar con los

resultados de las muestras diluidas (Figura 4), ya que al disminuir la concentración de

materia orgánica, es posible obtener porcentajes de reducción de DQO mayores. En lo

relacionado con el pH de la solución, se aprecia un aumento de 3.56 a 5.32 (Figura 3). Esto

podría ser explicado por la formación de iones hidroxilo y de Fe+3

(ac) conforme las

reacciones (2-4):

Reacción ánodo:

Fe → Fe3+ + 3e− (2)

Reacción cátodo:

2H2O + 2e− → 2OH− + H2 (3)

Reacción total:

2Fe + 6H2O → 2Fe(OH)3 + 3H2 (4)

El hierro también puede reaccionar directamente con compuestos orgánicos que contienen

átomos con carga negativa, o formar complejos de hidróxidos poliméricos tales como:

Fe(H2O)63+

, Fe(H2O)5(OH)2+

, Fe(H2O)4(OH)2+, que dependen del pH del medio acuoso.

Estos hidróxidos, polihidróxidos o compuestos polihidroximetálicos tienen fuerte afinidad

por las partículas dispersas, así como contra-iones, lo cual provoca la coagulación (Mollah

et al., 2004).

La reducción de microorganismos muestra un proceso en dos etapas (Figura 5). La etapa

inicial promueve una rápida reducción y se presenta entre los 25 y 30 min, y la segunda

etapa se caracteriza por una reducción más lenta. El porcentaje máximo de reducción fue

93% para los dos grupos de microorganismos, un valor similar al obtenido por Ghernaout,

et al. (2008) empleando electrodos de aluminio y acero en un agua residual contaminada

con la bacteria E.coli. La mínima eficiencia del proceso se presentó en el menor tiempo

de tratamiento, con valores de 90% para la reducción de coliformes y 72% para la

reducción de mohos y levaduras; por lo tanto el aumento en el tiempo de tratamiento,

mejora la reducción de microorganismos, esto coincide con los resultados presentados por

otros autores (Azarian et al., 2007; Gao, Yang, et al., 2010).El proceso de

electrocoagulación bajo las condiciones estudiadas, generó resultados satisfactorios en la

reducción de DQO, coliformes, mohos y levaduras, perfilándose como una alternativa de

pre-tratamiento o reutilización de aguas contaminadas con mucílago de café.

Page 39: KATHERIN CASTRO RÍOS - UNIVERSIDAD DE CALDAS · 2 inhibiciÓn de microorganismos patÓgenos presentes en agua por mÉtodos combinados katherin castro rÍos comitÉ tutorial gonzalo

39

CAPÍTULO VI

Eficiencia de inactivación de coliformes totales y Escherichia coli en agua natural dopada

mediante Fenton heterogéneo

Resumen

Se evaluó la inactivación de coliformes totales y Escherichia coli (E.coli) mediante el

proceso avanzado de oxidación conocido como Fenton heterogéneo, catalizado con arcilla

pilarizada preparada por ultrasonido y por microondas, en un reactor semibatch empleando

como factores, la concentración del agente oxidante, la carga del catalizador, el pH y el

tiempo de reacción.

El análisis estadístico demostró que los factores evaluados, tienen un efecto significativo

(p<0.05) en el porcentaje de inactivación de coliformes totales y E.coli, con un 95% de

confianza, independiente del tratamiento empleado en la elaboración del catalizador

(ultrasonido y microondas). La eficiencia de inactivación para coliformes y E.coli fue

superior al 70%. Las mejores condiciones para la inactivación de los microorganismos se

presentaron cuando se utilizó pH de 3.7, carga de catalizador de 0.5 g/L, tiempo de 240 min

y concentración de H2O2 entre 0.12 y 0.18 mg/L.

Palabras clave: Procesos avanzados de oxidación, oxidación catalítica en fase húmeda,

inactivación bacteriana, desinfección de agua, catalizador.

Abstract

Was evaluated the inactivation of total coliforms and Escherichia coli (E.coli) by using the

advanced oxidation process known as Heterogeneous Fenton, catalyzed with pillared clay,

prepared by ultrasound and microwave in a semibatch reactor using as variables of reaction,

the concentration of the oxidizing agent, catalyst load, pH, and the reaction time.

Statistical analysis showed that the factors evaluated, have a statistically significant effect

(p<0.05) in the percentage of inactivation of total coliforms and E. coli, with 95%

confidence, regardless of the treatment used in the preparation of the catalyst (ultrasound

and microwave). Inactivation efficiency for coliforms and E.coli was greater than 70%. The

best conditions for the inactivation of microorganisms were pH of 3.7, catalyst load of 0.5

g/L, time of 240 min and H2O2 concentration between 0.12 and 0.18 mg/L.

Page 40: KATHERIN CASTRO RÍOS - UNIVERSIDAD DE CALDAS · 2 inhibiciÓn de microorganismos patÓgenos presentes en agua por mÉtodos combinados katherin castro rÍos comitÉ tutorial gonzalo

40

Keywords: Advanced oxidation processes, wet catalytic oxidation, bacterial inactivation,

water desinfection.

Introducción

La falta de agua potable, definida por la Organización Mundial de la Salud como aquella

“…adecuada para consumo humano y para todo uso doméstico habitual, incluida la higiene

personal” (OMS, 2004), continua siendo un problema mundial ligado a la deficiencia del

suministro seguro de este líquido (Boateng et al., 2011), generando 3 millones de muertes

al año en el mundo, de las cuales 2 millones son ocasionadas por enfermedades diarreicas,

con un alto impacto en la mortalidad infantil (UNICEF., 2008). También hay influencia en

el desarrollo del individuo, puesto que se ha demostrado, que la seguridad y sanitización del

agua, impactan en la salud física e intelectual y el desarrollo social y económico humano

(Spuhler, Rengifo-Herrera, & Pulgarin, 2010). Esta realidad, sumada a las implicaciones

del desarrollo tecnológico, la contaminación de los recursos hídricos y el cambio climático

a nivel mundial, hace prever deficiencias en el suministro inocuo del agua.

El principal desinfectante empleado en los procesos de potabilización es el cloro, debido a

su disponibilidad, economía, carácter oxidante y potencial de eliminación de

microorganismos patógenos (Diao et al., 2004), sin embargo, también se considera una

sustancia corrosiva y potencialmente peligrosa para la salud humana, ya que puede generar

subproductos de desinfección como los Trihalometanos (THMs), que se forman al

reaccionar con la materia orgánica presente en el agua (Moncayo-Lasso, Torres-Palma,

Kiwi, Benítez, & Pulgarín, 2008; A. G. Rincón & Pulgarín, 2007; Romero, 2009), algunos

THMs han sido identificados por la Agencia Internacional para la Investigación en Cáncer

como posibles carcinógenos en humanos (2010), generando una creciente conciencia en los

riesgos que presenta para la salud (Moncayo-Lasso, Sanabria, Pulgarín, & Benítez, 2009;

The International Agency for Research on Cancer, 2010) y para la conservación ambiental

(Diao et al., 2004).

Lo planteado anteriormente ha llevado a valorar métodos alternativos, como los procesos

avanzados de oxidación (PAO), estos involucran la generación de especies oxidantes

altamente reactivas, capaces de atacar y degradar sustancias orgánicas y

microorganismos (Gómez, González, Santa, Chiroles, & García, 2007; Mamane, Shemer,

& Linden, 2007; Pham, Brar, Tyagi, & Surampalli, 2010), estas técnicas tienen ventajas

como, la transformación química de los contaminantes, generación baja o nula de lodos,

posibilidad de tratar contaminantes a baja concentración, no formación de subproductos de

reacción y aumento de la biodegradabilidad(Forero et al., 2005). Entre los PAO se

encuentran tecnologías no-fotoquímicas y fotoquímicas, como los procesos Fenton y foto-

Fenton. Estos tratamientos buscan la formación de radicales hidroxilo, por la aplicación del

proceso Fenton (Fe2+

/H2O2) o la combinación de este e irradiación con luz UV (λ >

300nm)(Osorio, Torres, & Sánchez, 2010). La efectividad de estos procesos, se han

evaluado en la remoción de contaminantes de aguas de origen textil (Blanco, Torrades,

Page 41: KATHERIN CASTRO RÍOS - UNIVERSIDAD DE CALDAS · 2 inhibiciÓn de microorganismos patÓgenos presentes en agua por mÉtodos combinados katherin castro rÍos comitÉ tutorial gonzalo

41

Varga, & García-Montaño, 2012), farmacéutico (Sirtori et al., 2009), hospitalario (Berto et

al., 2009), y en la eliminación de microorganismos patógenos (Chong, Jin, Zhu, & Saint,

2010; De Oliveira, Rosso, Cabonelli, & Giordano, 2011; A.-G. Rincón & Pulgarin, 2006b;

Watts, Washington, Howsawkeng, Loge, & Teel, 2003).

El objetivo del trabajo fue la evaluación eficiencia de inactivación de coliformes totales y

E.coli, en agua natural dopada destinada para consumo humano, empleando Fenton

heterogéneo con catalizadores preparados mediante ultrasonido y microondas.

Materiales y métodos

Catalizadores

La solución pilarizante fue preparada previamente mediante un trabajo desarrollado en el

grupo de investigación (Cárdenas, 2012), allí se sintetizó la solución a partir de

AlCl3•6H2O, FeCl3•6H2O y NaOH. La relación de hidrólisis OH/metal fue de 1.6. Una vez

la hidrólisis se completó, la temperatura se mantuvo a 80oC durante 1h, para un total de 7 h

de tratamiento térmico, transcurrido este tiempo la solución se dejó en reposo durante una

noche. La arcilla montmorillonita fue dispersada en tres medios: agua, etanol y acetona, a

tres concentraciones 2, 25 y 50 % (p/p).Para el proceso de intercalación se preparó la

disolución que contenía los policationes a intercalar y la suspensión con la arcilla, estos

fueron posteriormente sometidos a tratamiento por microondas o ultrasonido, para después

conseguir los óxidos correspondientes, de esta forma se obtuvo el catalizador preparado por

ultrasonido (CAT-US) y el catalizador preparado por microondas (CAT-MO).

Procedimiento Experimental

Los experimentos se desarrollaron en un reactor de vidrio (pyrex) semibatch, con capacidad

1000_mL y agitación constante (300 rpm). Se utilizaron 450 mL de agua natural,

proveniente del río Pasto (DQO 26 mgO2/L). La muestra fue dopada con los

microorganismos estudiados. El pH fue ajustado con NaOH y H2SO4 (0.1 mg/L) y el

registro de las variaciones fue medido con un potenciómetro (Metrhom, Suiza). Los

ensayos se realizaron a una temperatura promedio de 17±1°C.

Análisis Microbiológico

Se preparó una suspensión con coliformes totales y E.coli nativos, hasta alcanzar una

concentración de ~106 UFC/mL. Las muestras fueron analizadas mediante el método de

filtración por membrana de acuerdo con los métodos estándar (APHA, 1999). Las

membranas de celulosa de 0.45_µm, se situaron en una caja de petri con el medio de

cultivo Chromocult (Merck, Alemania) y se incubaron a 35±2°C, durante 24-48 h.

Page 42: KATHERIN CASTRO RÍOS - UNIVERSIDAD DE CALDAS · 2 inhibiciÓn de microorganismos patÓgenos presentes en agua por mÉtodos combinados katherin castro rÍos comitÉ tutorial gonzalo

42

Diseño experimental

Se aplicó un diseño experimental factorial donde se evaluaron las variables tiempo de

tratamiento (30 a 240 min), pH (3.7 y 7.3), concentración del oxidante (0.06 a 0.18 mg/L) y

carga del catalizador (0.5 a 5 g/L). Estos parámetros fueron seleccionados basados en

investigaciones previas (Cárdenas, 2012; S.-P. Sun & Lemley, 2011). La variable de

respuesta fue la eficiencia de inactivación de coliformes totales y E.coli. Los datos fueron

analizados mediante el software estadístico Statgraphics® plus.

Resultados y discusión

Inactivación de coliformes totales y E.coli

Los factores concentración de H2O2, carga del catalizador, pH y tiempo de tratamiento,

tienen importancia estadística significativa (p<0.05) en la eficiencia de inactivación de

coliformes totales y E.coli, con un 95% de confianza, independiente del proceso

microondas o ultrasonidoempleado en la elaboración del catalizador.

Efecto del tiempo en la eficiencia de inactivación de coliformes totales y E.coli

En la Figura 1, es posible observar un aumento en la inactivación de coliformes totales y

E.coli, al incrementar el tiempo de tratamiento, esto coincide con los resultados presentados

por otros autores, en trabajos desarrollados con los procesos Fenton y Foto-Fenton (M.

Cengiz, M. O. Uslu, & I. Balcioglu, 2010; Moncayo-Lasso, Torres-Palma, Kiwi, Benitez, et

al., 2008; A.-G. Rincón & Pulgarin, 2006a). La mayor eficiencia de inactivación de los

microorganismos se alcanzó a los 240 min, la cual fue superior a 50 y 70% empleando

CAT-MO y CAT-US respectivamente. Existieron diferencias estadísticas entre los

diferentes tiempos evaluados, excepto entre 180 y 240 min para el CAT-US, señalando la

fase final de la inactivación.

Page 43: KATHERIN CASTRO RÍOS - UNIVERSIDAD DE CALDAS · 2 inhibiciÓn de microorganismos patÓgenos presentes en agua por mÉtodos combinados katherin castro rÍos comitÉ tutorial gonzalo

43

Figura 1. Eficiencia de inactivación de coliformes totales y E.coli respecto al tiempo,

empleando CAT-US y CAT-MO

Efecto del pH en la eficiencia de inactivación de coliformes totales y E.coli

Se presentó una diferencia estadística significativa en los porcentajes de inactivación de

coliformes totales y E.coli según el pH. La eficiencia de inactivación de los

microorganismos fue mejor al emplear un pH de 3.7 (Figuras 2 y 3), con una inactivación

superior al 50%. Cuando se utilizó pH 7.3, los valores de inactivación fueron inferiores al

40% para CAT-US y 12% para el CAT-MO. Esto se debe a que la reacción Fenton se ve

favorecida al emplear pH<3, mejorando la solubilidad del Fe y la interacción con el H2O2,

por lo tanto hay un incremento en la eficiencia del tratamiento (Moncayo-Lasso, Torres-

Palma, Kiwi, Benitez, et al., 2008; Nogueira, Trovó, Silva, Villa, & Oliveira, 2007; Small,

Blankenhorn, Welty, Zinser, & Slonczewski, 1994); esto se ajusta a las interacciones

encontradas mediante el análisis estadístico, entre la dosis de H2O2 y el pH (p<0.05).

Figura 2. Eficiencia de inactivación de coliformes totales y E.coli respecto al pH,

empleando CAT-US.

Page 44: KATHERIN CASTRO RÍOS - UNIVERSIDAD DE CALDAS · 2 inhibiciÓn de microorganismos patÓgenos presentes en agua por mÉtodos combinados katherin castro rÍos comitÉ tutorial gonzalo

44

Figura 3. Eficiencia de inactivación de coliformes totales y E.coli respecto al tiempo,

empleando CAT-MO.

Efecto de la carga del catalizador en la eficiencia de inactivación de coliformes totales y

E.coli.

En las figuras 4 y 5 se observa un incremento en la inactivación de los microorganismos, al

disminuir la carga del CAT-US, con valores de 56% y 60% para coliformes y E.coli

respectivamente. El análisis estadístico comprobó diferencias al emplear CAT-US, entre

0.5-2.17g/L y 0.5- 5.0g/L. Para CAT-MO, existió un incremento en la eficiencia de

inactivación de coliformes totales y E.coli, al emplear la carga mínima y máxima; con

reducciones superiores al 40%. El análisis estadístico comprobó diferencias en la

inactivación, al utilizar concentraciones del catalizador entre 0.5-2.17 g/L y 2.17g– 5.0 g/L.

Los resultados sugieren que mayores dosis de catalizador pueden propiciar reacciones

competitivas con la materia orgánica presente el agua natural evaluada, afectando la

generación de radicales hidroxilo, que inciden en la inactivación de los microorganismos

(Lin & Lo, 1997; Spuhler et al., 2010).

Figura 4. Eficiencia de inactivación de coliformes totales y E.coli respecto a la carga del

catalizador, empleando CAT-US.

Page 45: KATHERIN CASTRO RÍOS - UNIVERSIDAD DE CALDAS · 2 inhibiciÓn de microorganismos patÓgenos presentes en agua por mÉtodos combinados katherin castro rÍos comitÉ tutorial gonzalo

45

Figura 5. Eficiencia de inactivación de coliformes totales y E.coli respecto a la carga del

catalizador, empleando CAT-MO.

Efecto de la dosis de H2O2 en la eficiencia de inactivación de coliformes totales y E.coli.

Cuando se emplearon concentraciones superiores a 0.12 mg/L de H2O2 con CAT-US y

CAT-MO (Figura 6 y 7), se observó un incremento en la inactivación de coliformes totales

y E.coli, excepto en los coliformes totales con CAT-US, en donde la mayor eficiencia es

con 0.18 mg/L de H2O2. El análisis estadístico mostró diferencias en los porcentajes de

inactivación de los microorganismos, entre 0.06 – 0.12 mg/L y 0.06– 0.18 mg/L. Algunos

autores indican que el exceso de H2O2, puede disminuir la eficiencia del proceso, al

producir la recombinación de los radicales hidroxilo en HO2, (Gil Pavas, Quintero Olaya,

Rincón Uribe, & Rivera Agudelo, 2007; Nogueira et al., 2007); sin embargo los resultados

evidencian un incremento en la eficiencia de inactivación de los microorganismos, al

emplear las mayores dosis de H2O2, esto indica que las concentraciones empleadas no son

suficientes para comprometer la efectividad del tratamiento sobre la inactivación de los

microorganismos.

Page 46: KATHERIN CASTRO RÍOS - UNIVERSIDAD DE CALDAS · 2 inhibiciÓn de microorganismos patÓgenos presentes en agua por mÉtodos combinados katherin castro rÍos comitÉ tutorial gonzalo

46

Figura 6. Eficiencia de inactivación de coliformes totales y E.coli respecto al H2O2,

empleando CAT-US.

Figura 7. Eficiencia de inactivación de coliformes totales y E.coli respecto a al H2O2,

empleando CAT-MO.

Acción del tratamiento Fenton heterogéneo en los microorganismos.

Existen diversos estudios que sugieren que la formación de radicales hidroxilo durante el

proceso Fenton, inciden en la destrucción de las células microbianas (Berto et al., 2009;

Blanco et al., 2012; Boateng et al., 2011; Murat Cengiz, Merih Otker Uslu, & Isil

Balcioglu, 2010; Moncayo-Lasso et al., 2009; Moncayo-Lasso, Torres-Palma, Kiwi,

Benítez, et al., 2008; Pham et al., 2010; A.-G. Rincón & Pulgarin, 2006b; A. G. Rincón &

Pulgarín, 2007; Sirtori et al., 2009). Mamane, et al. plantea la coexistencia de dos

mecanismos de destrucción bacteriana por radicales hidroxilo, la oxidación y destrucción

de la membrana y pared celular, y al interior de la célula, la inactivación de enzimas,

deterioro de estructuras e interrupción de la síntesis proteica (Mamane et al., 2007). En el

caso específico de E. coli, se ha demostrado su mineralización a CO2 y H2O a través de una

cadena de reacciones, resaltándose como clave principal, la adhesión de los radicales

hidroxilo, para la destrucción de las uniones C-O en el exterior de la membrana celular (D.

D. Sun, Tay, & Tan, 2003).

Conclusiones

La aplicación del proceso avanzado de oxidación Fenton heterogéneo, permitió una

eficiencia de inactivación de coliformes totales y E.coli superior al 70% al emplear el

catalizador preparado mediante ultrasonido, los factores pH, carga de catalizador y pH,

fueron significativos en la eficiencia de inactivación.

El proceso Fenton heterogéneo evidenció un potencial para la disminución de los

contaminantes biológicos del agua natural destinada al consumo.

Page 47: KATHERIN CASTRO RÍOS - UNIVERSIDAD DE CALDAS · 2 inhibiciÓn de microorganismos patÓgenos presentes en agua por mÉtodos combinados katherin castro rÍos comitÉ tutorial gonzalo

47

CAPÍTULO VII

Effect of supporting electrolyte on inactivation efficiency of Escherichia coli and

degradation pathways by electrooxidation with Ti/IrO2 anode

Abstract

It was found that inactivation of E.coli is better in the presence of NaCl and NaHCO3,

reaching 2.9-log and 2.8-log respectively in 5 min of treatment, in Na2SO4 solution, the

inactivation was 0.2-log. In natural water, the inactivation was 2.7-log in 7 min of contact

time, with a maximum oxidant concentration of 4.4 µmol L-1

. The high inactivation

efficiency with Ti/IrO2 anode when NaCl and NaHCO3 were used as supporting

electrolytes, is due mainly to the electro-generation of oxidants (indirect oxidation) with

bactericide effect, while in the presence of Na2SO4, the inactivation of the microorganisms

is due mainly for the direct electron transfer between the electrode and the microorganism

(direct oxidation), however for a better inactivation is necessary that both degradation

pathways occur simultaneously.

Keywords: Electrodisinfection, direct oxidation, indirect oxidation, electrooxidation

pathways.

Introduction

The waterborne diseases such as gastroenteritis, diarrhea, cholera, typhoid fever and

bacillary dysentery, are among the leading causes of death in developing countries,

affecting more than two million deaths annually, mainly in children (Cabral, 2010;

Woodall, 2009). This can be prevented with water disinfection, which allows the

inactivation of pathogenic microorganisms (bacteria, viruses and protozoa), that cause these

diseases. Chlorination is the primary method of water disinfection because it is effective

and economical, however is related to the formation of byproducts such as trihalomethanes

(THMs), which are recognized as potential carcinogens (Hrudey, 2009; G. S. Wang et al.,

2007).

The electrooxidation is an attractive alternative to chlorination, which allows the

degradation of different pollutants through direct or indirect oxidation, using electrodes as

graphite, Pt, Ti, DSA® and BDD on an aqueous medium (Palma-Goyes, Guzmán-Duque,

Peñuela, & González, 2010; Torres, Torres, Peringer, & Pulgarin, 2003). Through this

technique also have been successfully eliminated indicators microorganisms as coliforms,

fecal coliforms, E.coli, Streptococcus faecalis and Enterococcus faecalis(Cano et al., 2011;

Page 48: KATHERIN CASTRO RÍOS - UNIVERSIDAD DE CALDAS · 2 inhibiciÓn de microorganismos patÓgenos presentes en agua por mÉtodos combinados katherin castro rÍos comitÉ tutorial gonzalo

48

Cotillas et al., 2013; Cui, Quicksall, Blake, & Talley, 2013; Frontistis et al., 2011; Schmalz

et al., 2009). Electrooxidation effectiveness was also studied in others bacteria such as

Pseudomonas aeruginosa(Griessler et al., 2010), which is considered an alternative

indicator aimed to evaluate the chemical disinfection process and L. pneumophila(Delaedt

et al., 2008), important for their ability to form biofilms and as an etiologic agent in the

"Legionnaires' disease". There are several studies that show the potential for disinfection of

the electrooxidation, but still there is little research related to parameters such as the

concentration and type of supporting electrolyte and its effect on the electrodisinfection

process. Some of these studies (Cong, Wu, & Li, 2008a; M. I. Kerwick, S. M. Reddy, A. H.

L. Chamberlain, & D. M. Holt, 2005; X. Li et al., 2004) have evaluated the effect of

supporting electrolytes NaCl, Na2SO4 and NaNO3 and its effect on the inactivation of

coliform bacteria, obtaining greater efficiency disinfection with NaCl, depending on the

concentration of the electrolyte, the current density and the treatment time. It can be

observed in these works, that the type of electrolyte and the electrode material has an

important role in electrodisinfection. So far, there are no reports of the effect of supporting

electrolytes using Ti/IrO2 anodes.

Therefore, the main objective of this study was to evaluate the influence of different

supporting electrolyte (NaCl, NaHCO3 and Na2SO4) in degradation pathways and

inactivation efficiency of E.coli using as anode Ti/IrO2.

Experimental

Reagents

Sodium sulfate (Sigma-Aldrich), sodium bicarbonate (Merck), sodium chloride

(Honeywell) were used as supporting electrolytes. Potassium iodide (JT Baker) and

ammonium heptamolybdate (Merck) were used in the measurement of oxidants. The

microbiological reagents, peptone water, and Endo agar were purchased from Oxoid. All

solutions were prepared with distilled water.

Aqueous solutions

Distilled water and natural water, contaminated with native E.coli were used in the

experiments. Inorganic species contained in natural water are shown in Table 1.

Table 1.Characteristics of natural water

pH Conductivity

(µS cm-1

)

Cl-

(mg L-1

)

Ca2+

(mg L-1

)

SO42-

(mg L-1

)

HCO3-

(mg L-1

)

Na+

(mg L-1

)

7.7 1149 54.8 179 445 239 33.6

Electrochemical experiments

Page 49: KATHERIN CASTRO RÍOS - UNIVERSIDAD DE CALDAS · 2 inhibiciÓn de microorganismos patÓgenos presentes en agua por mÉtodos combinados katherin castro rÍos comitÉ tutorial gonzalo

49

Electrochemical tests were performed in a 200 mL batch reactor equipped with Ti/IrO2

anode, with an effective area of 6.25 cm2, and a 1 cm interelectrodic space. The electrodes

were connected to a direct current power supply (MCP Lab electronics), at a current density

of 16 mA cm-2

. The system was continuously stirred at 200 rpm. Assays were performed in

triplicate.

E.coli preparation and quantitation

A suspension with native E.coli in peptone water was prepared and incubated at 37 °C until

the sample was at 105-10

6 CFU 100 mL

-1. The bacterial suspension was adjusted according

to McFarland standard. The detection and quantitation of E.coli in the electrochemically

treated solution was performed by the membrane filtration technique according to standard

methods (APHA, 1999). The treated samples were filtered through cellulose membranes

(Advantec MFS) and then placed in Petri dishes with Endo agar, subsequently incubated at

37 °C for 24 h and counted.

Analysis

The oxidants evolution in the electrochemistry system, was determined by the Iodometric

method (Kormann, Bahnemann, & Hoffmann, 1988), in which the aliquots taken from the

electrochemical cell were placed in a quartz cell, containing a solution of potassium iodide

(0.1 mol L-1

) and ammonium heptamolybdate (0.01mol L-1

), the absorbance of this solution

was measured at 350 nm in a UV/Vis spectrophotometer (XLS Perkin Elmer, USA).

The energy consumption was calculated using the following equation (Akbal & Camci,

2011):

𝐸𝑐 =𝑈. 𝐼. 𝑡

𝑉 (2)

Where EC is the energy consumption (kWh m-3

), U is the applied voltage (V), I is the

current (A), t is the time of the electrooxidation (h), and V is the volume of treated water

(L).

Page 50: KATHERIN CASTRO RÍOS - UNIVERSIDAD DE CALDAS · 2 inhibiciÓn de microorganismos patÓgenos presentes en agua por mÉtodos combinados katherin castro rÍos comitÉ tutorial gonzalo

50

Results and discussion

Effect of supporting electrolyte in the inactivation efficiency of E.coli

Figure 1.Effect of supporting electrolyte: a) Inactivation of E.coli, b) Evolution of oxidants.

[E.coli]o=106 CFU 100 mL

-1 ; [NaCl, NaHCO3, Na2SO4]o = 0.4 mol L

-1. Error bars indicate

standard deviation.

The Figure 1 shows the effect of the supporting electrolyte NaCl, NaHCO3, Na2SO4,

employing a concentration of 0.4 mol L-1

in the inactivation of E.coli and the oxidant

formation. In presence of NaCl the inactivation of the microorganism was efficient,

increasing with the time of treatment to 2.9-log in 5 min, with an energy consumption of

0.16 kWh m-3

. Similar results were obtained for other authors, using short contact time and

Ti/RuO2 anodes in E.coli inactivation(Diao et al., 2004; X.Y. Li et al., 2004). The

generation of oxidants with NaCl (Figure 1b), was superior to 221 µmol L-1

, this is due to

the catalytic activity of IrO2 anode in presence of chloride (Panizza & Cerisola, 2009),

generating active chlorinated species with bactericide effect, according to the equations:

Page 51: KATHERIN CASTRO RÍOS - UNIVERSIDAD DE CALDAS · 2 inhibiciÓn de microorganismos patÓgenos presentes en agua por mÉtodos combinados katherin castro rÍos comitÉ tutorial gonzalo

51

2Cl- → Cl2 + 2e

- (2)

Cl2 + H2O → HOCl + H+ + Cl

- (3)

HOCl → H+ + OCl

- (4)

The formation of these active chlorinated species are depending on the pH solution, the

solutions with NaCl used in this study submitted an average pH of 6.7, therefore the

disinfection could be attributed mainly to the formation of HOCl, because is the main

chlorinated species in the pH range between 3 to 7 (McPherson, 1993; Torres, Sarria,

Torres, Peringer, & Pulgarin, 2003).

The disinfection of E.coli in presence of NaHCO3 was very effective (2.7-log) in the first 3

min of treatment, reaching 2.8-log at 5 min, with an energy consumption of 0.17 kWh m-3

.

The rapid decrease of E.coli (Figure 1a) and the formation of oxidants (Figure 1b), suggest

that the inactivation of the microorganism is because the formation of oxidants species with

disinfectant potential (J. Jeong et al., 2009). Some authors propose the formation of

percarbonate as a result of the indirect reduction of carbonate ions (Amstutz, Katsaounis,

Kapalka, Comninellis, & Udert, 2012; Osetrova, Bagotzky, Guizhevsky, & Serov, 1998),

this substance has an oxidant potential of 1.8V, superior to HOCl (1.49V) and OCl-

(0.89V), this could justify the fast inactivation in the first minutes at low concentration of

the oxidant (1.3 - 1.9 µmol L-1

).

When Na2SO4 is present in the aqueous medium not significant inactivation of E.coli was

observed. The results of the Figure 1a, shows a reduction of 0.2-log in 5 min of treatment,

with an energy consumption of 0.17 kWh m-3

. In Figure 1b is observed that the formation

of oxidants is low (0.2 µmol L-1

), this suggest that the inactivation is due to the direct

oxidation of the microorganism in the anode surface, because was not observed

instantaneous inactivation, as usual in the presence of oxidants (Joonseon Jeong et al.,

2007). Also is possible an inhibitory effect when is employed Na2SO4, due to increased

oxygen evolution with IrO2 anodes (Carlesi Jara, Fino, Specchia, Saracco, & Spinelli, 2007;

Siedlecka et al., 2013; Turro et al., 2011).

Effect of supporting electrolyte on degradation pathway in the inactivation of E.coli

A organic pollutant degradation by electrooxidation can occur in two ways: by direct

oxidation where the contaminants are destroyed at the anode surface or by indirect

oxidation where electrochemical generated substances may also destroy or convert the

oxidizable contaminants (Anglada et al., 2009). As can be seen from the results of this

study, biological contaminants such as E.coli can be degraded by electrooxidation,

therefore in order to understand the main degradation pathway of this microorganism were

performed electrooxidation tests under the conditions studied previously. Oxidizing

species were accumulated for 5 min, then was disconnected the power source and was

added the microorganism to the reactor, which remained in contact for 5 minutes with the

oxidants electro-generated, the results are shown below.

Page 52: KATHERIN CASTRO RÍOS - UNIVERSIDAD DE CALDAS · 2 inhibiciÓn de microorganismos patÓgenos presentes en agua por mÉtodos combinados katherin castro rÍos comitÉ tutorial gonzalo

52

Oxidation in the presence of NaCl

Figure 2.E.coli inactivation and oxidants generated in NaCl solution. The electrochemical

treatment was stopped after 5 min (dotted line). [E.coli]o=105 CFU 100 mL

-1 ; [NaCl]o =

0.4 mol L-1

. Error bars indicate standard deviation.

Figure 2 shows an increase of oxidants concentration over time until the moment that the

electrochemical treatment is stopped, while the microorganism shows a rapid decrease

when it was in contact with the electro-generated oxidants; in less than a minute there is a

reduction of 3.1-log, this is a typical behavior in the presence of oxidants (Joonseon Jeong

et al., 2007), this result confirms that the main mechanism for the inactivation of

microorganism is due indirect oxidation. Figure 2 also shows that some microorganism

survives and grows even after being in contact with oxidants, which does not occur in the

presence of electrochemical treatment, as shown in Figure 1a. This result indicates that

although the indirect oxidation is the main mechanism of degradation in the inactivation of

E.coli, the direct oxidation also is an important mechanism on the inactivation and has an

important role on the total inactivation efficiency.

Oxidation in the presence of NaHCO3

Figure 3.E.coli inactivation and oxidants generated in NaHCO3 solution. The

electrochemical treatment was stopped after 5 min (dotted line). [E.coli]o=106 CFU 100

mL-1

; [NaHCO3]o = 0.4 mol L-1

. Error bars indicate standard deviation.

Page 53: KATHERIN CASTRO RÍOS - UNIVERSIDAD DE CALDAS · 2 inhibiciÓn de microorganismos patÓgenos presentes en agua por mÉtodos combinados katherin castro rÍos comitÉ tutorial gonzalo

53

In Figure 3, there is an increase of oxidants with time until the electrochemical treatment is

stopped, after switching off the device the oxidants are quickly consumed in the first

minute, impacting in the inactivation of E.coli which decreases rapidly after 9 min to a 2.1-

log. This inactivation behavior is similar to Figure 1a in the presence of NaHCO3, verifying

that the main mechanism for the inactivation of E.coli in presence of this electrolyte is the

indirect oxidation, which can lead to the formation of oxidants such as percarbonate

(Amstutz et al., 2012; Osetrova et al., 1998). However unlike the behavior exhibited by the

inactivation in Figure 1a, the inactivation of E.coli in the absence of electrochemical

treatment is slower, this could be explained for the effect of the direct oxidation in the

microorganism, which improves the efficiency of inactivation.

Oxidation in the presence of Na2SO4

Figure 4. E.coli inactivation and oxidants generated in Na2SO4 solution. The

electrochemical treatment was stopped after 5 min (dotted line). [E.coli]o=106 CFU 100

mL-1

; [Na2SO4]o = 0.4 mol L-1

. Error bars indicate standard deviation.

Figure 4 shows a lower generation of oxidants, which are fully consumed one minute after

the electrochemical treatment stop. The low concentration of oxidants generated in the

presence of Na2SO4, has no significant impact on the inactivation of E.coli (0.02-log). By

comparing these results with the results of Figure 1a, allows verifying that the main route of

inactivation of microorganisms in the presence of Na2SO4, is by direct oxidation, justifying

the low efficiency of inactivation. These results validate a hypothesis previously exposed

by Gusmão, et al (Gusmão, Moraes, & Bidoia, 2010), indicating that one of the possible

mechanisms of disinfection of E.coli using DSA® electrode in a solution of Na2SO4, was

the direct electron transfer between the electrodes and the organism.

Page 54: KATHERIN CASTRO RÍOS - UNIVERSIDAD DE CALDAS · 2 inhibiciÓn de microorganismos patÓgenos presentes en agua por mÉtodos combinados katherin castro rÍos comitÉ tutorial gonzalo

54

Proposed degradation pathway of E.coli in the presence de NaCl, NaHCO3 and Na2SO4 as

supporting electrolyte

Figure. 5. Microorganism degradation pathways. 1) Direct oxidation, 2) Indirect Oxidation.

The results presented in the study allow to state that the inactivation of E.coli in the

presence of NaCl, NaHCO3 and Na2SO4 as supporting electrolyte by electrooxidation with

Ti/IrO2 anode can be given in two ways as outlined in Figure 5. The first path is the direct

oxidation which involves the transfer of electrons between the anode and the

microorganism, and the second way is the indirect oxidation, where electro-generated

oxidizing substances act on the contaminant, in this case the microorganism.

The main mechanism of degradation of E.coli with the anode studied, for the case of NaCl

and NaHCO3is attributed to the indirect oxidation, unlike Na2SO4 attributed to the direct

oxidation. Also the fast inactivation of the microorganism is achieved to the electro-

generated substances with bactericide potential, generated by indirect oxidation (Figure 5,

pathway 2); however greater E.coli inactivation efficiency depends that the direct and

indirect oxidation occur simultaneously, and that the electro-generated substances have

sufficient oxidative capacity to inactivate the microorganism. So far, the microorganism

degradation employing electrooxidation with DSA® type electrodes has been attributed to

the formation of oxidants or the electric current independently (Y. Birbir & Birbir, 2006; Q.

Chen et al., 2009; Diao et al., 2004; Gusmão et al., 2009; X. Li et al., 2004; Li, Ding, Lo, &

Sin, 2002). Only Jeong, et al(Joonseon Jeong et al., 2007) had proposed a simultaneously

mechanism for the degradation of microorganism (direct and indirect oxidation), but using

Pt anodes in a phosphate buffer solution.

The efficient inactivation of the E.coli by electrooxidation, suggest that the effect on the

microorganism is due to an increased permeability of the cell membrane induced by

Page 55: KATHERIN CASTRO RÍOS - UNIVERSIDAD DE CALDAS · 2 inhibiciÓn de microorganismos patÓgenos presentes en agua por mÉtodos combinados katherin castro rÍos comitÉ tutorial gonzalo

55

electron exchange in the direct oxidation (Park et al., 2003; Tolentino-Bisneto & Bidoia,

2003), and later the diffusion of bactericidal substances into the cell (H. Bergmann et al.,

2008), generated in the indirect oxidation pathway.

Effect of electrooxidation in natural water with Ti/IrO2 anode

Figure 6.E.coli inactivation in natural water with Ti/IrO2 anode. Error bars indicate

standard deviation.

In a further test, was evaluated the effect of electrooxidation on E.coli inactivation in

natural water which had a high concentration of the electrolytes studied (Table 1). The

generation of oxidants in the first minute was 1.3µmol L-1

, enough to quickly decrease the

microorganism 2.3-log, with an energy consumption of 0.09 kWh m-3

. The oxidant

concentration increased with time, reaching a maximum of 4.4 µmol L-1

in 7 min,

corresponding to a 2.7-log inactivation and an energy consumption of 0.53 kWh m-3

. The

fast inactivation observed in Figure 6, shows that the electro-generation of oxidants

(indirect oxidation), is the main route of degradation of the microorganism in this type of

water. The results demonstrated the technological capabilities of the electrooxidation for

the disinfection of water, because in short time and without the need of add supplementary

electrolytes, it is possible to inactivate E.coli.

Conclusions

The following conclusions were obtained from this study:

The study shows the electrooxidation with Ti/IrO2 anode as a promising alternative,

efficient and with low energy consumption, for disinfection of microorganisms in water.

E.coli inactivation by electrooxidation with Ti/IrO2 anode, is more effective when NaCl and

NaHCO3 are used as supporting electrolyte.

Page 56: KATHERIN CASTRO RÍOS - UNIVERSIDAD DE CALDAS · 2 inhibiciÓn de microorganismos patÓgenos presentes en agua por mÉtodos combinados katherin castro rÍos comitÉ tutorial gonzalo

56

The main degradation pathway of the microorganism in the presence of NaCl and NaHCO3

as supporting electrolyte is the indirect oxidation; while the main mechanism with Na2SO4

as electrolyte is direct oxidation.

To improve the efficiency of inactivation of E.coli, it is necessary that direct and indirect

oxidation occur simultaneously, and the electro-generated substances have the sufficient

oxidative capacity to inactivate the microorganism.

On the electrooxidation of natural water contaminated with E.coli, predominated electro-

generation of oxidants, with a positive effect on the inactivation of the microorganism.

Page 57: KATHERIN CASTRO RÍOS - UNIVERSIDAD DE CALDAS · 2 inhibiciÓn de microorganismos patÓgenos presentes en agua por mÉtodos combinados katherin castro rÍos comitÉ tutorial gonzalo

57

CAPÍTULO VIII

Electrochemical oxidation with RuO2 anode coupled with ultrasound in the disinfection of

urban wastewater

Abstract

This work focuses on coupling electrooxidation, with RuO2 anodes and ultrasound (sono-

electrolysis), for the inactivation of E.coli from actual treated urban wastewaters. Results

show that the electrooxidation is a promising technology in the inactivation of

microorganisms; however, when this technology is coupled with ultrasound is possible to

obtain better efficiency in inactivation. E.coli is inactivated not only by the

electrochemically produced chlorine disinfectant species but also by the physical effect

of the cavitation and pulses and the formation of free radicals in the ultrasound treatment.

Keywords: Electrolysis, Electrodisinfection, Sono-electrolysis, Power ultrasound, E.coli.

Introduction

The regeneration of urban wastewater is an interesting alternative for the efficient use of

water resources, because with the fulfilling of some quality requirements is possible to

apply this water on agricultural and urban irrigation, fire protection systems, industrial

cleaning or cooling systems (R.D 1620/2007). However, this type of water is characterized

by the microbiological risk associated with the presence of coliforms; therefore, the

reduction or elimination of pathogen microorganism is necessary in the treated effluent for

its safe reuse.

Traditionally, chlorination (for persistent) or ultraviolet (for non-persistent) disinfection

have been used for the inactivation of pathogenic microorganisms. These traditional

processes of water disinfection present some limitations as the possible formation of

disinfection byproducts (e. g. trihalomethanes) by using chlorination (Matamoros et al.,

2007), or the limitations related to presence of total suspended solids and the possibility of

the reactivation of bacteria for UV disinfection (Gehr, Wagner, Veerasubramanian, &

Payment, 2003; D. Haaken, Dittmar, Schmalz, & Worch, 2014; Quek & Hu, 2008).

Electrooxidation arises as a promising technique, which allows the inactivation of coliform

microorganism through direct or indirect oxidation. In this context, several investigations

have shown the potential of this technique on the elimination of coliform bacteria as

Escherichia coli (E.coli) in natural water, ballast water and wastewater, with different

anode materials (Cui et al., 2013; Lopez-Galvez et al., 2012; Ma, Liu, Tang, Yin, & Ai,

2011; Nanayakkara et al., 2012). In addition, our research group has previously

demonstrated the successful application of electrodisinfection on the elimination of

coliforms bacteria in urban wastewater using BDD anodes (Cano et al., 2011; Cano,

Cañizares, Barrera, Sáez, & Rodrigo, 2012; Cotillas et al., 2013; Llanos et al., 2014). In

these works, it was observed that the main mechanism of inactivation is the indirect

oxidation of E. coli by the oxidants formed by the oxidation of chlorides, one of the anion

most common in municipal treated wastewaters. Moreover, it was shown that both the

Page 58: KATHERIN CASTRO RÍOS - UNIVERSIDAD DE CALDAS · 2 inhibiciÓn de microorganismos patÓgenos presentes en agua por mÉtodos combinados katherin castro rÍos comitÉ tutorial gonzalo

58

electrode material and the physicochemical characteristics of the water are key parameters

for the efficient disinfection of the target effluent.

Among the most commonly electrodes used for electrodisinfection are the dimensionally

stable anodes (DSA), these are generally made with a base of titanium and coated with

metal oxide material like PbO2, SnO2, PtO2, RuO2, IrO2 and TiO2 (Comninellis & Chen,

2010; Panizza & Cerisola, 2009). When some DSA-type anodes are used in the presence of

chloride, the principal chlorinated species generated is chlorine, which in water solution can

rapidly disproportionate to hypochlorite and chloride, as shown in the equations (1-3)

(Panizza & Cerisola, 2009). Moreover, hypochlorite can react with the ammonium ions,

produced from the reduction of nitrates present in the urban wastewater, producing

chloramines(4-6) (Lacasa, Llanos, Cañizares, & Rodrigo, 2012). These oxidant species has

a disinfectant potential, and help to minimize the formation of disinfection byproducts

(Krasner, 2009).

2Cl- → Cl2 + 2e

- (1)

Cl2 + H2O → HOCl + H+ + Cl

- (2)

HOCl → H+ + OCl

- (3)

NH3 + HClO → NH2Cl +H2O (4)

NH2Cl + HClO → NHCl2 + H2O (5)

NHCl2 + HClO → NCl3 + H2O (6)

In addition, ultrasound has demonstrated its ability to disinfect different types of water and

microorganisms, however requires a lot of energy to achieve inactivation, for this reason

there is increasing interest in coupling or combining with other techniques such as UV

(Bazyar Lakeh et al., 2013; Chrysikopoulos et al., 2013), Photo Fenton (Giannakis et al.,

2014), electrocatalysis(Ninomiya, Arakawa, et al., 2013) and electrolysis (Joyce et al.,

2003). In the sono-electrolysis published work, were evaluated electrodes of different

material (copper, carbon and stainless steel), featuring better treatment with copper

electrodes, attributed to its antibacterial properties.

Based on the potential of electrooxidation and ultrasound in water disinfection, the main

objective of this study was to evaluate the performance of an electrochemical oxidation

with RuO2 anode, as a single technique and coupled with ultrasound in the disinfection of

treated urban wastewater, putting special attention in the E.coli inactivation and the

formation of disinfection byproducts.

Page 59: KATHERIN CASTRO RÍOS - UNIVERSIDAD DE CALDAS · 2 inhibiciÓn de microorganismos patÓgenos presentes en agua por mÉtodos combinados katherin castro rÍos comitÉ tutorial gonzalo

59

Material and Methods

Wastewater characterization

An effluent from the municipal wastewater treatment facilities (Ciudad Real, Spain) was

used. The samples were taken under similar weather conditions. Their main characteristics

are shown in Table 1.

Table 1. Main characteristics of treated wastewater

Parameter Value

Total Nitrogen (mg dm-3

) 37.86

TOC (mg dm-3

) 37.86

Conductivity (µS cm-1

) 1386

pH 7.93

E.coli (MPN 100 ml-1

) 750 - 18000

TOC – Total organic carbon

MPN – Most probable number

Experimental setup

The electrodisinfection experiments were carried out in a single-compartment

electrochemical flow cell, coupled with an ultrasound generator (Cañizares, Lobato, Paz,

Rodrigo, & Saez, 2005). RuO2 anode (Tiaano, India) was used as anodic material and

stainless steel (SS) AISI 304 (Mervilab, Spain) as cathodic material. The electrodes were

circular with a diameter of 10 cm. The ultrasound generator was a UP200S (Hielscher

Ultrasonics GmbH, Germany) equipped with a titanium glass horn of 40 mm

diameter, length 100 mm, emitting 24 kHz and maximum ultrasonic power of 200

W. The output can be continuous or pulsed and the amplitude can be varying in a duty

range from 20 to 100%.

The urban wastewater was fed to a glass tank of 2 dm3 and recirculated through the cell

with a peristaltic pump (JP Selecta Percom N-M328). Samples were collected from the

glass tank. E.coli and chlorine compounds (free and combined) were measured

immediately. In this way, it is not necessary the addition of reagents (e.g. Na2S2O3) to stop

the reaction between microorganisms and disinfectant species and therefore, the

experimental error of the measure is minimized.

Before electrooxidation experiments, the electrode was polarized during 15 min in a 1 M

Na2SO4 solution, at pH of 2. The temperature of the system was controlled with a

thermostatic bath and a heat exchanger, maintaining the temperature at 25°C.

Page 60: KATHERIN CASTRO RÍOS - UNIVERSIDAD DE CALDAS · 2 inhibiciÓn de microorganismos patÓgenos presentes en agua por mÉtodos combinados katherin castro rÍos comitÉ tutorial gonzalo

60

Analytical procedure

Chloride inorganic anions (Cl-, ClO

-, ClO2

-, ClO3

-, ClO4

-) were measured by ion

chromatography using a Shimadzu LC-20A (Shodex IC I-524A column; mobile phase

2.5_mM phthalic acid at pH 4.0; flow rate 1.0 ml min-1

). Because the peak corresponding to

hypochlorite interferes with the chloride peak; the determination of hypochlorite was

carried out by titration with 0.001 M As2O3 in 2 M NaOH solution. The same ion

chromatography equipment (Shodex IC YK-421 column; mobile phase, 5.0 mM tartaric,

1.0 mM dipico-linic acid and 24.3 mM boric acid; flow rate, 1.0 ml min-1

) was used to

measure the nitrogen inorganic cation (NH4+). Inorganic chloramines were measured

following the DPD standard method described in the literature (APHA, 1999). The

presence of trihalomethanes was evaluated by gas chromatography (detection limit <0.2

ppb) using a SPB 10 column (30 m x 0.25 mm; macroporous particles with 0.25 µm

diameter), the injection volume was set to 1 µL.

Due to the nature of wastewater, the faecal coliforms were determined using the most

probable technique (MPN) with a confidence level of 95%, in accordance with standard

method (APHA, 1999). Microorganism counts were carried out by the multiple-tube-

fermentation technique (24 h of incubation at 44 °C) using 5 tubes at each dilution (1:10,

1:100, and 1:1000).

Inactivation kinetics

The inactivation kinetics were obtained with GInaFiT (Geeraerd and Van Impe Inactivation

Model Fitting Tool), this is a is a freeware add-in for Microsoft©

Excel, that allows testing

experimental data with different types of microbial survival models (Geeraerd,

Valdramidis, & Van Impe, 2005): log–linear regression, log–linear regression with

shoulder and tail, Weibull and biphasic models. The best fit model was selected by

evaluating different statistical tools (Root mean sum of squared error, and R2).

Page 61: KATHERIN CASTRO RÍOS - UNIVERSIDAD DE CALDAS · 2 inhibiciÓn de microorganismos patÓgenos presentes en agua por mÉtodos combinados katherin castro rÍos comitÉ tutorial gonzalo

61

Results and discussion

General behavior of the electrodisinfection with RuO2 anode

Figure 1. Variation of E.coli with the applied electric charge at different current densities

during electrodisinfection of urban wastewater.

Figure 1 shows the changes in E.coli during the electrodisinfection of urban wastewater at

different current densities (1.49 to 25.54 A m-2

). As it can be observed, the inactivation of

E.coli increase with the applied charge, however are necessary current densities greater

than 11.65 A m-2

, to achieve the complete inactivation. The increase of E.coli inactivation

and it relation with the current, is due an improvement in the generation of chlorine species

with bactericide effect, this could explain a better inactivation efficiency. Also is possible a

better transfer of electrons between the anode and the microorganism, increasing the

permeability of the cell membrane (Diao et al., 2004; X. Li et al., 2004; Park et al., 2003).

Q (A h dm-3

)

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

E.c

oli

/ E

.coli

0

0.0

0.2

0.4

0.6

0.8

1.0

1.49 A m-2

4.12 A m-2

6.89 A m-2

9.77 A m-2

Q (A h dm-3

)

0.0 0.1 0.2 0.3 0.4

E.c

oli

/ E

.co

li0

0.0

0.2

0.4

0.6

0.8

1.011.65 A m-

2

16.03 A m-2

20 A m-2

25.54 A m-2

(a)

(b)

Page 62: KATHERIN CASTRO RÍOS - UNIVERSIDAD DE CALDAS · 2 inhibiciÓn de microorganismos patÓgenos presentes en agua por mÉtodos combinados katherin castro rÍos comitÉ tutorial gonzalo

62

Figure 2. Variation of chlorine species with the applied electric charge at different current

densities during electrodisinfection of urban wastewater. (a) 4.12 A m-2

, (b) 9.77 A m-2

, (c)

25.54 A m-2

.

Q (A h dm-3

)

0.000 0.005 0.010 0.015 0.020 0.025

Chlo

rine

spec

ies

(m

mo

l d

m-3

)

0.00

0.05

0.10

0.15

0.20

ClO-

ClO3

-

ClO4

-

NH2Cl

NHCl2

NCl3

Q (A h dm-3

)

0.000 0.005 0.010 0.015 0.020 0.025

Chlo

rine

spec

ies

(m

mo

l dm

-3)

0.00

0.05

0.10

0.15

0.20

ClO-

ClO3

-

ClO4

-

NH2Cl

NHCl2

NCl3

Q (A h dm-3

)

0.000 0.005 0.010 0.015 0.020 0.025

Chlo

rine

spec

ies

(m

mo

l d

m-3

)

0.0

0.1

0.2

0.3

0.4

0.5ClO

-

ClO3

-

ClO4

-

NH2Cl

NHCl2

NCl3

(a)

(b)

(c)

Page 63: KATHERIN CASTRO RÍOS - UNIVERSIDAD DE CALDAS · 2 inhibiciÓn de microorganismos patÓgenos presentes en agua por mÉtodos combinados katherin castro rÍos comitÉ tutorial gonzalo

63

As can be observed in Figure 2, hypochlorite concentrations ranged between 0.020 and

0.505 mmol dm-3

, increasing at higher current densities, this could explain the better

efficiency inactivation of microorganism above 11.65 A m-2

. Chlorates and perchlorates,

were not detected at the current densities evaluated, this is an advantage of the DSA type

electrodes compared with other electrodes materials as the BDD (at higher currents

densities) (M. E. H. Bergmann et al., 2009; Sánchez-Carretero et al., 2011), avoiding the

formation of substances with adverse health effects (Jung, Baek, Oh, & Kang, 2010;

Kucharzyk, Crawford, Cosens, & Hess, 2009; Vellanki & Batchelor, 2013).

As previously mentioned the reaction of hypochlorite with ammonia present in the

municipal wastewater promotes the formation of chloramines, these substances are less

reactive and aggressive than hypochlorite (Llanos et al., 2014), decreasing the formation of

disinfection by-products, and with the advantage that also affect microorganisms (Berry,

Holder, Xi, & Raskin, 2010; Holder, Berry, Dai, Raskin, & Xi, 2013). It was observed and

increase of chloramines concentration with the current density, with values over 0.032

mmol dm-3

for 20 A m-2

and 25.54 A m-2

, this also could explain a better inactivation

efficiency at higher current densities.

Figure 3. Formation of trihalomethanes at different current densities. Dashed lines indicate

the limit of trihalomethanes set by the EU in drinking water.

Figure 3 shows the variation of trihalomethanes in the urban wastewater after the

electrochemical treatment. Although the EU does not require the determination of

trihalomethanes in this type of wastewater, were measured due to the capacity of

chlorination for the formation of this byproducts, which are recognized as potential hazards

for the health (Hrudey, 2009). It can be observed the presence of trihalomethanes with a

maximum value of 40.793µg L-1

, however these were lower than the limits set by the EU of

100_µg_L-1

for drinking water (Council Directive 98/83/EC). Despite the formation of free

chlorine in the presence of organic matter, the concentration of trihalomethanes formed in

the electrochemical process is not considerable to be taken into account as a risk to health.

Current density (A m-2

)

0 5 10 15 20 25

TH

Ms

(µg L

-1)

0

20

40

60

80

100

Min

Max

Page 64: KATHERIN CASTRO RÍOS - UNIVERSIDAD DE CALDAS · 2 inhibiciÓn de microorganismos patÓgenos presentes en agua por mÉtodos combinados katherin castro rÍos comitÉ tutorial gonzalo

64

General behavior of the electrooxidation with RuO2 anode coupled with ultrasound

In a final set of experiments, bacteria inactivation by means of sono-electrolysis was

investigated. Based on the results showed previously, a current density of 9.77 A m-2

was

selected, because at a current density lower of 11.65 A m-2

the inactivation was incomplete,

thus an improvement in efficiency can be observed easily.

Figure 4. Variation of E.coli with the applied electric charge at different ultrasound power,

during sono-electrolysis of urban wastewater. (a) Continuous, (b) Pulsed (0.5 s).

As can be observed in Figure 4, the results show a substantial improvement in the

inactivation efficiency by using the coupled sono-electrolysis process, compared to the

results obtained with a 9.77 A m-2

employing only electrooxidation (Fig. 1a). The

inactivation efficiency was better when the ultrasound was pulsed at 40 W and 80 W, in

continuous mode the best inactivation was with 200 W. This might be explained by a

mechanical effect of the pulses on the microorganism, this additional effect to cavitation

and the formation of free radicals of the ultrasound, would allow to the microorganism be

more susceptible to the chlorinated species produced by the electrooxidation.

Q (A h dm-3

)

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

E.c

oli

/ E

.co

li0

0.0

0.2

0.4

0.6

0.8

1.040 W

80 W

120 W

160 W

200 W

Q (A h dm-3

)

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

E.c

oli

/ E

.co

li0

0.0

0.2

0.4

0.6

0.8

1.040 W

80 W

120 W

160 W

200 W

(a)

(b)

Page 65: KATHERIN CASTRO RÍOS - UNIVERSIDAD DE CALDAS · 2 inhibiciÓn de microorganismos patÓgenos presentes en agua por mÉtodos combinados katherin castro rÍos comitÉ tutorial gonzalo

65

Figure 5. Variation of chlorine species with the applied electric charge and ultrasound at

200W, during sono-electrolysis of urban wastewater. (a) Continuous, (b) Pulsed (0.5 s).

Figure 5 shows that the highest concentration of hypochlorite was 0.1 mmol dm-3

at 200 W

with pulsed and continued mode. The highest concentration of chloramines with pulses was

0.012 mmol dm-3

at 40W, while without pulses the highest concentration of chloramines

was 0.032 mmol dm-3

at 120 W. Chlorates and perchlorates, were not detected in the sono-

electrolysis process. In continuous mode, predominate the cavitation promoting the

formation of free radicals, and helping to oxidation of the different compounds present in

the wastewater. Therefore, the formation of chlorine species tend to be higher, this also

affects the formation of trihalomethanes (Figure 6), showing a maximum concentration of

trihalomethanes of 87.495 mg L-1

for the continuous treatment at 120 W and 37.199 mg L-1

pulsed and 80 W. Despite the values, are also below the limits set by the EU of 100 µg L-1

for drinking water (Council Directive 98/83/EC).

Q (A h dm-3

)

0.000 0.005 0.010 0.015 0.020 0.025

Chlo

rine

spec

ies

(m

mo

l dm

-3)

0.00

0.05

0.10

0.15

0.20ClO

-

ClO3

-

ClO4

-

NH2Cl

NHCl2

NCl3

Q (A h dm-3

)

0.000 0.005 0.010 0.015 0.020 0.025

Chlo

rine

spec

ies

(m

mo

l dm

-3)

0.00

0.05

0.10

0.15

0.20

ClO-

ClO3

-

ClO4

-

NH2Cl

NHCl2

NCl3

(a)

(b)

Page 66: KATHERIN CASTRO RÍOS - UNIVERSIDAD DE CALDAS · 2 inhibiciÓn de microorganismos patÓgenos presentes en agua por mÉtodos combinados katherin castro rÍos comitÉ tutorial gonzalo

66

Figure 6. Formation of trihalomethanes at different current densities. (a) Continuous, (b)

Pulsed (0.5 s). Dashed lines indicate the limit of trihalomethanes set by the EU in drinking

water.

Inactivation kinetics

Table 2. Inactivation kinetics for sono-electrolysis in continuous mode

Power

(W)

Model

log-lineal Weibull Double Weibull Biphasic

RMSE R2 RMSE R

2 RMSE R

2 RMSE R

2

40 0.2444

0.8062 0.1050

0.9693 0.0541

0.9932 0.0828

0.9841

80 0.0842

0.9770 0.0927

0.9778 0.1070

0.9778 0.1059

0.9782

Power (W)

0 50 100 150 200

TH

Ms

(µg L

-1)

0

20

40

60

80

100

Min

Max

Power (W)

0 50 100 150 200

TH

Ms

(µg L

-1)

0

20

40

60

80

100

Min

Max

(a)

(b)

Page 67: KATHERIN CASTRO RÍOS - UNIVERSIDAD DE CALDAS · 2 inhibiciÓn de microorganismos patÓgenos presentes en agua por mÉtodos combinados katherin castro rÍos comitÉ tutorial gonzalo

67

120 0.1194

0.9769 0.1290

0.9784 0.1490

0.9784 0.1541

0.9769

160 0.1240

0.9694 0.0697

0.9919 0.0455

0.9973 0.0483

0.9969

200 0.1339

0.9659 0.1115

0.9823 0.1087

0.9888 0.1894

0.9659

Table 3. Inactivation kinetics for sono-electrolysis pulsed mode

Power

(W)

Model

log-lineal Weibull Double Weibull Biphasic

RMSE R2 RMSE R

2 RMSE R

2 RMSE R

2

40 0.1101 0.9095 0.0901

0.9545 0.0393

0.9942 0.0745

0.9793

80 0.0712

0.9342 0.0424

0.9825 0.0369

0.9912 0.0439

0.9875

120 0.0498

0.9059 0.0548

0.9089 0.0573

0.9252 0.0643

0.9059

160 0.0888

0.9597 0.0738

0.9778 0.0852

0.9778 0.1147

0.9597

200 0.2528

0.9065 0.2696

0.9114 0.3015

0.9114 0.3097

0.9065

A non-linear analysis of regression was used to investigate the inactivation of E.coli with

different cycles and the potential of ultrasound in a coupled sonoelectrolysis treatment.

Although the process of inactivation by sonoelectrolysis not presented a marked log-linear

trend, this model has a good fitting to data (R2>0.806). However, the models with the best-

fitted experimental results were the Double Weibull and Weibull, with a R2 value ranged

between 0.911 and 0.997, it were the most suitable models for describing the decline of

E.coli. These models allows show different shapes of survival curves, related to a stressful

environment or different physiological state of the cells (Coroller, Leguerinel, Mettler,

Savy, & Mafart, 2006), linked to the conditions of the evaluated coupled treatment.

Page 68: KATHERIN CASTRO RÍOS - UNIVERSIDAD DE CALDAS · 2 inhibiciÓn de microorganismos patÓgenos presentes en agua por mÉtodos combinados katherin castro rÍos comitÉ tutorial gonzalo

68

Conclusions

The following conclusions were obtained from this study:

Electrooxidation with RuO2 anodes is an efficient technology for the inactivation of E.coli

in municipal wastewater, the production of chlorine species has a key role in the

inactivation of the microorganism.

Inactivation of E.coli is more efficient when is coupled electrooxidation and ultrasound,

allowing to use lower current densities. The improve in the inactivation is due the physical

effect of the cavitation and pulses by ultrasound, and the chlorine species by

electrooxidation.

Application of a pulsed ultrasound shows a positive effect on the efficiency of the

inactivation of E.coli, probably related to a mechanical effect of the pulses on the

microorganism, allowing a better effect of the chlorinated species produced by the

electrooxidation.

The formation of dangerous compounds such as perchlorate and chlorate was not found.

Trihalomethanes were detected in low concentrations, but are below the limits set by the

EU for drinking water.

The Weibull models can be used to describe the inactivation of E.coli during the sono-

electrolysis of a treated municipal wastewaters.

Page 69: KATHERIN CASTRO RÍOS - UNIVERSIDAD DE CALDAS · 2 inhibiciÓn de microorganismos patÓgenos presentes en agua por mÉtodos combinados katherin castro rÍos comitÉ tutorial gonzalo

69

CAPÍTULO IX

Inactivation of Escherichia coli by combination of ultrasound, ultraviolet irradiation and

iron

Abstract

This work focuses on the combination of Ultrasound (US), ultraviolet irradiation (UV) and

Iron (Fe), for the inactivation of E.coli in water. Results show that the combination US/Fe,

US/UV and US/UV/Fe are promising technologies for the inactivation of microorganisms.

The inactivation behavior of the combined treatment was better than when were applied

individually. The H2O2 formed during the ultrasound process is important for the

subsequent reaction with Iron and UV, this lead to the formation of hydroxyl radicals,

which have an important role in inactivation of microorganism. The non-linear biphasic and

double Weibull models, had the best-fitted experimental inactivation survival curves,

indicated by the lowest RMSE and values and the highest R2.

Keywords: Advanced oxidation process, disinfection, sono-photo Fenton, E.coli.

Introduction

Water-borne diseases are among the leading causes of deaths in developing countries,

affecting mainly children (Cabral, 2010; Woodall, 2009). The common strategy to

eliminate these pathogenic microorganisms in water is through chlorination; however they

are currently evaluating other alternatives due some limitations as the possible formation of

disinfection byproducts such as trihalomethanes (THMs) (Hrudey, 2009; G. S. Wang et al.,

2007).

Several studies show other techniques with a potential of microorganisms inactivation in

water, such as advanced oxidation processes (AOPs), these process involve the generation

of highly reactive oxidizing species, able to attack and degrade organic substances and

microorganisms (Gómez et al., 2007; Mamane et al., 2007; Pham et al., 2010). AOPs also

have other advantages as, the chemical transformation of the pollutants, low or no sludge

generation, possibility to treat contaminants at a low concentration, no reaction product

formation and increased biodegradability (Forero et al., 2005). Among the PAOs it can be

found the ultrasound.

It is called ultrasound to the sound waves with frequencies above the threshold of human

hearing, is divided into high, medium and low frequency ultrasound (Goncharuk et al.,

2008). It has shown great potential in the treatment of water and wastewater, and also the

ability to disinfect different types of water and microorganisms, however requires a lot of

energy to achieve inactivation (Al Bsoul et al., 2010; Shinobu Koda et al., 2009; Mahamuni

& Adewuyi, 2010). For this reason there is increasing interest in coupling or combining

with other techniques such as Photocatalysis (Ogino, Farshbaf Dadjour, Takaki, & Shimizu,

2006), disinfectants (Ayyildiz, Sanik, & Ileri, 2011), Ultraviolet irradiation (Bazyar Lakeh

Page 70: KATHERIN CASTRO RÍOS - UNIVERSIDAD DE CALDAS · 2 inhibiciÓn de microorganismos patÓgenos presentes en agua por mÉtodos combinados katherin castro rÍos comitÉ tutorial gonzalo

70

et al., 2013; Chrysikopoulos et al., 2013), Photo-Fenton (Giannakis et al., 2014),

electrocatalysis (Ninomiya, Arakawa, et al., 2013) and electrolysis (Joyce et al., 2003),

mainly for the disinfection of bacteria like E.coli, total coliforms, and Legionella

pneumophila.

The disinfection by combined treatments with ultrasound, allow different effect in the

microorganism, like damage for mechanical stress, disaggregation of microorganism

cluster, membrane an cellular wall damage and formation of oxidants with bactericide

effect like H2O2 and hydroxyl radicals (Ninomiya, Arakawa, et al., 2013; Ninomiya, Ogino,

et al., 2013; Shimizu, Ninomiya, Ogino, & Rahman, 2010).

The main objective of this study was the evaluation of combined treatment of ultrasound,

ultraviolet irradiation and Iron in the E.coli inactivation and formation of oxidants.

Material and Methods

Reagents

Potassium iodide (Riedel-de Hanën) and ammonium heptamolybdate (Merck) were used in

the measurement of Hydrogen peroxide evolution. Ferrous sulfate, was obtained from

Riedel-de Hanën. The microbiological reagents, peptone water, and Endo agar were

purchased from Oxoid. All solutions were prepared with deionized water.

Experimental setup

The source of ultrasonic waves (600 kHz, 60 W) was a piezoelectric disk (diameter 4 cm)

fixed on a Pyrex plate (diameter 5 cm) in the bottom of a cylindrical water-jacketed glass

reactor of 500 mL of capacity, which was fed with 300 mL of the solution with the

microorganism. The cylindrical sonochemical reactor was thermostated by a water jacket at

20°C. A germicidal lamp (General electric, 4 W) emitting at a predominant wavelength of

254 nm provided UV irradiation.

Analytical procedure

Hydrogen peroxide evolution in the system, was determined by the Iodometric method

(Kormann et al., 1988), in which the aliquots taken from the reactor were placed in a quartz

cell, containing a solution of potassium iodide (0.1 mol L-1

) and ammonium

heptamolybdate (0.01mol L-1

), the absorbance of this solution was measured at 350 nm in a

UV/Vis spectrophotometer (SPECTRONIC® 20 GENESYS™).

E.coli preparation and quantitation

A suspension with native E.coli in peptone water was prepared and incubated at 37 °C until

the sample was at 105-10

6 CFU 100 mL

-1. The bacterial suspension was adjusted according

to McFarland standard. The detection and quantitation of E.coli in the electrochemically

treated solution was performed by the membrane filtration technique according to standard

Page 71: KATHERIN CASTRO RÍOS - UNIVERSIDAD DE CALDAS · 2 inhibiciÓn de microorganismos patÓgenos presentes en agua por mÉtodos combinados katherin castro rÍos comitÉ tutorial gonzalo

71

methods (APHA, 1999). The treated samples were filtered through cellulose membranes

(Advantec MFS) and then placed in Petri dishes with Endo agar, subsequently incubated at

37 °C for 24 h and counted.

Inactivation kinetics

The inactivation kinetics were obtained with GInaFiT (Geeraerd and Van Impe Inactivation

Model Fitting Tool), this is a is a freeware add-in for Microsoft©

Excel, that allows testing

experimental data with different types of microbial survival models (Geeraerd et al., 2005):

log–linear regression, log–linear regression with shoulder and tail, Weibull and biphasic

models. The best-fit model was selected by evaluating different statistical tools (Root mean

sum of squared error - RMSE, and R2).

Results and discussion

General behavior of different advanced oxidation processes (AOPs)

Figure 1, shows the inactivation of E.coli as a function of time, when Ultrasound (US),

Ultraviolet irradiation (UV), Fe, US/UV, US/Fe and US/UV/Fe treatments were applied.

UV irradiation and iron alone are not considered AOPs, but are control for the

microorganism inactivation.

Figure 1. Inactivation of E.coli under different treatments as a function of time.

Time (min)

0 10 20 30 40 50 60

Lo

g (

N/N

o)

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

US

UV

Fe

US/Fe

US/UV

US/UV/Fe

Page 72: KATHERIN CASTRO RÍOS - UNIVERSIDAD DE CALDAS · 2 inhibiciÓn de microorganismos patÓgenos presentes en agua por mÉtodos combinados katherin castro rÍos comitÉ tutorial gonzalo

72

Figure 2. Evolution of H2O2 under different treatments as a function of time.

Ultraviolet irradiation

As can be seen in Figure 1, UV irradiation has an impact in the inactivation of E.coli,

reaching 1.3-log in 15 min of treatment; the maximum inactivation was 2.4-log at 60 min.

The formation of H2O2 show in the Figure 2, was negligible. Is well known the effect of

UV in disinfection of water (Blatchley et al., 2012), generating a DNA damage in the

microorganism, causing loss of culturability (Suss, Volz, Obst, & Schwartz, 2009).

However there is some limitations related to presence of total suspended solids and the

possibility of the reactivation of bacteria after the treatment (Gehr et al., 2003; D. Haaken et

al., 2014; Quek & Hu, 2008).

Iron

Figure 1 illustrates, that iron alone do not have any effect on the inactivation of E.coli, and

in fact, the microorganism continue their growth during the 60 min of treatment. In

addition, as was expected there is no formation of H2O2 during the essays (Figure 2).

Ultrasound

Ultrasound alone allow a slow inactivation of E.coli, the best inactivation efficiency was at

60 min, obtaining 2.9-log. The inactivation by ultrasound is attributed to the mechanical

forces by the collapse of the cavitation bubbles affecting the cell wall of the

microorganism, moreover there is an attack of free radicals and H2O2 formed by

sonochemical reactions (Gao, Lewis, et al., 2014a, 2014b; Goncharuk et al., 2008).

O2 + H• → HO2

• (1)

O2→ O + O (2)

Time (min)

0 10 20 30 40 50 60

H2O

2 (

µm

ol L

-1)

0

10

20

30

40

US

UV

Fe

US/Fe

US/UV

US/UV/Fe

Page 73: KATHERIN CASTRO RÍOS - UNIVERSIDAD DE CALDAS · 2 inhibiciÓn de microorganismos patÓgenos presentes en agua por mÉtodos combinados katherin castro rÍos comitÉ tutorial gonzalo

73

O + H2O → HO• + HO

• (3)

HO2•+ HO2

•→ H2O2 + O2 (4)

In Figure 2 it can be observed, that ultrasound reach the highest concentration of H2O2 with

38.73_µmol L-1

in 60 min. Despite this, the treatment did not present the best inactivation

for the microorganism, this is because in high frequency ultrasound, predominate the

sonochemistry effects over the mechanical effects (Al Bsoul et al., 2010), therefore

probably there is not sufficient damage in the cell wall to allow entry of free radicals to

interior of the microorganism cell.

US/ Fe

The inactivation of E.coli with the combined process US/Fe show in the Figure 1, was more

efficient than in ultrasound and Fe alone, with a inactivation of 2.5-log in 15 min to 3.3-log

in 60 min. This good behavior is due to a synergy of H2O2 generated by ultrasound (Figure

2), which together with Fe, allowed a Fenton reagent, generating hydroxyl radicals

(Selvakumar, Tuccillo, Muthukrishnan, & Ray, 2009) as shown in the following equations:

Fe2+

+ H2O2 → Fe3+

+ HO• + OH

– (5)

Fe3+

+ H2O2 → Fe2+

+ HOO• + H

+ (6)

The inactivation is attributed to bacterial destruction by hydroxyl radicals, the oxidation

and destruction of the membrane and cell wall and into the cell, the inactivation of

enzymes, and interruption of protein synthesis (Mamane et al., 2007).

US/UV

Under the US/UV treatment, a similar effect to US/Fe was observed, with a inactivation of

2.7-log in the first 15 min of treatment to 3.3-log in 60 min, this can be explained by the

photodecomposition at 254 nm of H2O2 produced by ultrasound (Figure 2), generating

hydroxyl radicals as shown in equation (7) (Legrini, Oliveros, & Braun, 1993). This causes

damage to the membrane and cellular wall, allowing better UV radiation into the cell (Cho,

Gandhi, Hwang, Lee, & Kim, 2011).

H2O2 + hν→ 2 HO•

(7)

US/UV/ Fe

Figure 1 shows a fast inactivation of E.coli in 15 min of treatment with 2.9-log, up to 3.2-

log in 60 min, when US/UV/Fe was applied. The inactivation efficiency was similar to

US/UV and US/Fe. The decrease of H2O2 (Figure 2), was higher that the observed with the

other combined treatments, this is explained by the reaction of Fe with the H2O2, explain in

the equations (5) and (6), and the photodecomposition of H2O2 showed in the equation (7),

Page 74: KATHERIN CASTRO RÍOS - UNIVERSIDAD DE CALDAS · 2 inhibiciÓn de microorganismos patÓgenos presentes en agua por mÉtodos combinados katherin castro rÍos comitÉ tutorial gonzalo

74

producing additionally hydroxyl radicals. Therefore, is expected a combined effect from

H2O2 and hydroxyl radicals, over the lipidic bilayer membrane and DNA damage caused

for the UV irradiation (Cabiscol, Tamarit, & Ros, 2000).

Inactivation kinetics

Table 2. Inactivation kinetics for sono-electrolysis in continuous mode

Treatments Model

Biphasic Weibull Double Weibull Biphasic

RMSE R2 RMSE R

2 RMSE R

2 RMSE R

2

US/Fe 0.8150

0.6801 0.4931

0.9219 0.4101

0.9730 0.3461

0.9808

US/UV 0.8567

0.6882 0.1804

0.9908 0.2552

0.9908 0.1755

0.9956

US/Fe/UV 1.0119

0.5857 0.5045

0.9313 0.0740

0.9993 0.4607

0.9714

A non-linear analysis of regression was used to investigate the inactivation of E.coli with

the combined treatments US/Fe, US/UV and US/Fe/UV. The different process of

inactivation showed no marked log-linear trend, as can be observed in Table 1 (R2

< 0.688).

The models with best the best-fitted experimental inactivation survival curves, were

biphasic and double Weibull as indicated by the lowest RMSE and values and the highest

R2. Biphasic model was better for US/Fe and US/UV treatments, with a R

2> 0.980 and the

double Weibull model was better for the combined process of US/Fe/UV, with a R2 value

of 0.999.

These models show different shapes of survival curves, related to a stressful environment or

different physiological state of the cells (Cerf, 1977; Coroller et al., 2006), linked to the

conditions of the evaluated combined treatment.

Conclusions

Inactivation of E.coli is more efficient during the combination of Ultrasound, ultraviolet

irradiation and Iron; this is due the formation of H2O2 by ultrasound, the reaction of Iron

with the H2O2, and the photodecomposition of H2O2, producing additionally hydroxyl

radicals, which has a key role in the inactivation of the microorganism. Double Weibull

model and the biphasic model can be used to describe the inactivation of E.coli during the

combination of Ultrasound, UV irradiation and Iron.

Page 75: KATHERIN CASTRO RÍOS - UNIVERSIDAD DE CALDAS · 2 inhibiciÓn de microorganismos patÓgenos presentes en agua por mÉtodos combinados katherin castro rÍos comitÉ tutorial gonzalo

75

Page 76: KATHERIN CASTRO RÍOS - UNIVERSIDAD DE CALDAS · 2 inhibiciÓn de microorganismos patÓgenos presentes en agua por mÉtodos combinados katherin castro rÍos comitÉ tutorial gonzalo

76

CAPÍTULO X

CONCLUSIONES GENERALES

Las siguientes conclusiones se derivan de este trabajo:

La electrocoagulación demostró ser un excelente método para la remoción de

microorganismos y materia orgánica, con un bajo consumo energético. El incremento en el

tiempo de tratamiento, un pH inicial ácido resultaron ser de gran importancia en la

remoción de microorganismos.

El proceso Fenton heterogéneo, presentó una eficiencia superior al 70% en la inactivación

de E.coli y coliformes fecales. La eficiencia de inactivación fue dependiente de factores

como el tiempo de tratamiento, la dosis del catalizador y la concentración de H2O2. Sin

embargo es necesario un tiempo de tratamiento >180 min y la acidificación del medio a

tratar.

La electrooxidación con ánodos tipo DSA, presentó una buena eficiencia de inhibición de

microorganismos, un bajo consumo energético y baja o nula formación de subproductos de

desinfección, por lo que se perfila como una alternativa prometedora de desinfección. En

este proceso electroquímico, la formación de sustancias oxidantes y el intercambio de

electrones entre el ánodo y los microorganismos, tienen un papel importante en la

inactivación.

El tratamiento combinado entre electrooxidación y ultrasonido permitió mejorar la

eficiencia de inactivación del proceso de electrooxidación individual, esto se debe a la

formación de especies cloradas con un efecto bactericida durante la electrooxidación y el

efecto físico-químico generado por el ultrasonido.

Durante el tratamiento combinado entre electrooxidación y ultrasonido, no se generaron

cloratos o percloratos; y aunque se formaron Trihalometanos, estos fueron en

concentraciones inferiores a las expuestas por la Unión Europea en agua de consumo, por

lo que no representan un riesgo para la salud.

Los tratamientos combinados entre ultrasonido, radiación ultravioleta y hierro, fueron

eficientes en la inactivación de E.coli, debido a la reacción del hierro y la radiación

ultravioleta con el H2O2 formado durante el tratamiento de ultrasonido, produciendo

radicales hidroxilo, que tienen un papel importante en la inactivación de microorganismos.

Page 77: KATHERIN CASTRO RÍOS - UNIVERSIDAD DE CALDAS · 2 inhibiciÓn de microorganismos patÓgenos presentes en agua por mÉtodos combinados katherin castro rÍos comitÉ tutorial gonzalo

77

Los tratamientos combinados de ultrasonido y electrooxidación, presentaron como modelos

más ajustados a las curvas de inactivación, los modelos Weibull y Doble Weibull; mientras

que para la combinación de ultrasonido, irradiación ultravioleta y hierro, los modelos que

mejor se ajustaron a las curvas de inactivación, fueron Doble Weibull y Bifásico.

RECOMENDACIONES

Con base en los resultados obtenidos en este trabajo, se sugiere las siguientes

recomendaciones para futuras investigaciones:

Se recomienda allegar más información para elucidar los mecanismos de inactivación, tanto

individuales como combinados.

Validar los modelos expuestos en este trabajo, que explican teóricamente las curvas de

inactivación de los tratamientos combinados estudiados.

Estudiar algunos aspectos operativos, el efecto de la matriz acuosa y otros microorganismos

desde el punto de vista de inocuidad, en los tratamientos combinados propuestos.

Se recomienda mejorar los procesos individuales y combinados desde el punto de vista

económico y tecnológico antes de una aplicación a mayor escala.

Page 78: KATHERIN CASTRO RÍOS - UNIVERSIDAD DE CALDAS · 2 inhibiciÓn de microorganismos patÓgenos presentes en agua por mÉtodos combinados katherin castro rÍos comitÉ tutorial gonzalo

78

BIBLIOGRAFÍA

Abdelwahab, O., Amin, N. K., & El-Ashtoukhy, E. S. (2009). Electrochemical removal of phenol

from oil refinery wastewater. Journal of Hazardous Materials, 163(2-3), 711-716. doi:

10.1016/j.jhazmat.2008.07.016

Abraham, V. T., Radhakrishnan Nair, N., & Madhu, G. (2009). Electrochemical treatment of skim

serum effluent from natural rubber latex centrifuging units. Journal of Hazardous

Materials, 167(1-3), 494-499. doi: 10.1016/j.jhazmat.2009.01.004

Agustin, M. B., Sengpracha, W. P., & Phutdhawong, W. (2008). Electrocoagulation of palm oil mill

effluent. Int J Environ Res Public Health, 5(3), 177-180.

Akbal, F., & Camci, S. (2011). Copper, chromium and nickel removal from metal plating

wastewater by electrocoagulation. Desalination, 269(1-3), 214-222.

Al Bsoul, A., Magnin, J. P., Commenges-Bernole, N., Gondrexon, N., Willison, J., & Petrier, C.

(2010). Effectiveness of ultrasound for the destruction of Mycobacterium sp. strain (6PY1).

Ultrasonics Sonochemistry, 17(1), 106-110. doi: 10.1016/j.ultsonch.2009.04.005

Amstutz, V., Katsaounis, A., Kapalka, A., Comninellis, C., & Udert, K. M. (2012). Effects of

carbonate on the electrolytic removal of ammonia and urea from urine with thermally

prepared IrO2 electrodes. Journal of Applied Electrochemistry, 42(9), 787-795.

Anglada, Á., Urtiaga, A., & Ortíz, I. (2009). Contribution of electrochemical oxidation to waste-

water treatment: fundamentals and review of applications. J ChemTechnol Biotechnol,

84(12), 1747–1755.

Antoniadis, A., Poulios, I., Nikolakaki, E., & Mantzavinos, D. (2007). Sonochemical disinfection of

municipal wastewater. Journal of Hazardous Materials, 146(3), 492-495. doi:

10.1016/j.jhazmat.2007.04.065

APHA. (1999). Standard Methods for the Examination of Water and Wastewater (Version 19th).

Washington DC.

Avallone, S., Guiraud, J.-P., Guyot, B., Olguin, E., & Brillouet, J.-M. (2000). Polysaccharide

Constituents of Coffee-Bean Mucilage. Journal of Food Science, 65(8), 1308-1311.

Ayyildiz, O., Sanik, S., & Ileri, B. (2011). Effect of ultrasonic pretreatment on chlorine dioxide

disinfection efficiency. Ultrasonics Sonochemistry, 18(2), 683-688. doi:

10.1016/j.ultsonch.2010.08.008

Azarian, G. H., Mesdaghinia, A. R., Vaezi, F., Nabizadeh, R., & Nematollahi, D. (2007). Algae

Removal by Electro-coagulation Process, Application for Treatment of the Effluent from an

Industrial Wastewater Treatment Plant. Iranian J Publ Health., 36(4), 57-64.

Barashkov, N. N., Eiseinberg, D., Eisenberg, S., Shegebaeva, G. S., Irgibaeva, I. S., & Barashkova,

I. I. (2010). Electrochemical Chlorine Free AC Disinfection of Water Contaminated with

Salmonella typhimurium Bacteria. Russian Journal of Electrochemistry (Translation of

Elektrokhimiya), 46(3), 320–325.

Bazyar Lakeh, A. A., Kloas, W., Jung, R., Ariav, R., & Knopf, K. (2013). Low frequency

ultrasound and UV-C for elimination of pathogens in recirculating aquaculture systems.

Ultrasonics Sonochemistry, 20(5), 1211-1216. doi: 10.1016/j.ultsonch.2013.01.008

Bergmann, H., Koparal, A. T., Koparal, A. S., & Ehrig, F. (2008). The influence of products and

by-products obtained by drinking water electrolysis on microorganisms. Microchemical

Journal, 89(2), 98–107.

Bergmann, M. E. H., Rollin, J., & Iourtchouk, T. (2009). The occurrence of perchlorate during

drinking water electrolysis using BDD anodes. Electrochimica Acta, 54(7), 2102-2107. doi:

10.1016/j.electacta.2008.09.040

Berry, D., Holder, D., Xi, C., & Raskin, L. (2010). Comparative transcriptomics of the response of

Escherichia coli to the disinfectant monochloramine and to growth conditions inducing

Page 79: KATHERIN CASTRO RÍOS - UNIVERSIDAD DE CALDAS · 2 inhibiciÓn de microorganismos patÓgenos presentes en agua por mÉtodos combinados katherin castro rÍos comitÉ tutorial gonzalo

79

monochloramine resistance. Water Research, 44(17), 4924-4931. doi:

10.1016/j.watres.2010.07.026

Berto, J., Rochenbach, G. C., Barreiros, M. A., Correa, A. X., Peluso-Silva, S., & Radetski, C. M.

(2009). Physico-chemical, microbiological and ecotoxicological evaluation of a septic

tank/Fenton reaction combination for the treatment of hospital wastewaters. Ecotoxicology

and Environmental Safety, 72(4), 1076-1081. doi: 10.1016/j.ecoenv.2008.12.002

Birbir, M., Hüsniye, H., Birbir, Y., & Gülşen, A. (2009). Inactivation of Escherichia coli by

alternative electric current in rivers discharged into sea. Journal of Electrostatics, 67(4),

640-645.

Birbir, Y., & Birbir, M. (2006). Inactivation of extremely halophilic hide-damaging bacteria via

low-level direct electric current. J Electrostat(64), 791–795.

Birbir, Y., Degirmenci, D., & Birbir, M. (2008). Direct electric current utilization in destruction of

extremely halophilic bacteria in salt that is used in brine curing of hides. Journal of

Electrostatics(66), 388–394.

Birbir, Y., Ugur, G., & Birbir, M. (2008). Inactivation of bacterial population in hide-soak liquors

via direct electric current. Journal of Electrostatics(66), 355–360.

Blanco, J., Torrades, F., Varga, M. D. l., & García-Montaño, J. (2012). Fenton and biological-

Fenton coupled processes for textile wastewater treatment and reuse. Desalination, 286,

394–399.

Blandón-Castaño, G., Dávila-Arias, M. T., & Rodríguez-Valencia, N. (1999). Caracterización

microbiológica y físico-química de la pulpa de café sola y con mucílago en proceso de

compostaje. Cenicafé, 50(1), 5-23.

Blatchley, E. R., Weng, S., Afifi, M. Z., Chiu, H.-H., Reichlin, D. B., Jousset, S., & Erhardt, R. S.

(2012). Ozone and UV254 Radiation for Municipal Wastewater Disinfection. Water

Environment Research, 84(11), 2017-2029. doi: 10.2175/106143012x13373550426634

Boateng, M. K., Price, S. L., Huddersman, K. D., & Walsh, S. E. (2011). Antimicrobial activities of

hydrogen peroxide and its activation by a novel heterogeneous Fenton's-like modified PAN

catalyst. J Appl Microbiol, 111(6), 1533-1543. doi: 10.1111/j.1365-2672.2011.05158.x

Cabiscol, E., Tamarit, J., & Ros, J. (2000). Oxidative stress in bacteria and protein damage by

reactive oxygen species. Int Microbiol, 3(1), 3-8.

Cabral, J. P. (2010). Water microbiology. Bacterial pathogens and water. Int J Environ Res Public

Health, 7(10), 3657-3703. doi: 10.3390/ijerph7103657

Cano, A., Cañizares, P., Barrera, C., Sáez, C., & Rodrigo, M. A. (2011). Use of low current

densities in electrolyses with conductive-diamond electrochemical — Oxidation to disinfect

treated wastewaters for reuse. Electrochemistry Communications, 13(11), 1268-1270.

Cano, A., Cañizares, P., Barrera, C., Sáez, C., & Rodrigo, M. A. (2012). Use of conductive-

diamond electrochemical-oxidation for the disinfection of several actual treated

wastewaters. Chemical Engineering Journal (Lausanne), 211-212(0), 463-469. doi:

10.1016/j.cej.2012.09.071

Cañizares, P., Lobato, J., Paz, R., Rodrigo, M. A., & Saez, C. (2005). Electrochemical oxidation of

phenolic wastes with boron-doped diamond anodes. Water Research, 39(12), 2687-2703.

doi: 10.1016/j.watres.2005.04.042

Cárdenas, V. (2012). Preparación de Arcillas pilarizadas con Al-Fe y su actividad catalítica en el

tratamiento de agua para consumo, optimizadas por medio de la superficie de respuesta.

(Magister en Química), Universidad de Caldas.

Carlesi Jara, C., Fino, D., Specchia, V., Saracco, G., & Spinelli, P. (2007). Electrochemical removal

of antibiotics from wastewaters. Appl Catal B-Environ, 70(1–4), 479-487.

Castro-Ríos, K., Orozco, L. F., & Taborda, G. (2012). Remoción de microorganismos presentes en

mucílago de café mediante electrocoagulación. Paper presented at the V Seminario

Colombiano de Electroquímica, Medellín, Colombia.

Page 80: KATHERIN CASTRO RÍOS - UNIVERSIDAD DE CALDAS · 2 inhibiciÓn de microorganismos patÓgenos presentes en agua por mÉtodos combinados katherin castro rÍos comitÉ tutorial gonzalo

80

Castro-Ríos, K., Orozco, L. F., & Taborda Ocampo, G. (2012). Reducción de la demanda química

de oxígeno en mucílago de café mediante electrocoagulación. Paper presented at the

XXVII Congreso de la Sociedad Mexicana de Electroquímica, Toluca, México.

Castro-Ríos, K., Taborda-Ocampo, G., & Torres-Palma, R. A. (2014). Experimental Design to

Measure Escherichia coli Removal in Water Through Electrocoagulation. International

Journal of Electrochemical Science, 9(2), 610-617.

Cengiz, M., Uslu, M. O., & Balcioglu, I. (2010). Treatment of E. coli HB101 and the tetM gene by

Fenton's reagent and ozone in cow manure. J Environ Manage, 91(12), 2590-2593. doi:

10.1016/j.jenvman.2010.07.005

Cengiz, M., Uslu, M. O., & Balcioglu, I. (2010). Treatment of E. coli HB101 and the tetM gene by

Fenton´s reagent and ozone in cow manure. Journal of Environmental Management,

91(12), 2590-2593.

Cerf, O. (1977). A REVIEW Tailing of Survival Curves of Bacterial Spores. J Appl Bacteriol,

42(1), 1-19. doi: 10.1111/j.1365-2672.1977.tb00665.x

Comninellis, C., & Chen, G. (2010). Electrochemistry for the Environment. New York (USA):

Springer.

Cong, Y., Wu, Z., & Li, Y. (2008a). Electrochemical inactivation of coliforms by in-situ generated

hydroxyl radicals. Korean Journal of Chemical Engineering, 25(4), 727-731.

Cong, Y., Wu, Z., & Li, Y. (2008b). Electrochemical inactivation of coliforms by in-situ generated

hydroxyl radicals. Korean J. Chem. Eng., 25(4), 727-731.

Coroller, L., Leguerinel, I., Mettler, E., Savy, N., & Mafart, P. (2006). General model, based on two

mixed weibull distributions of bacterial resistance, for describing various shapes of

inactivation curves. Applied and Environmental Microbiology, 72(10), 6493-6502. doi:

10.1128/AEM.00876-06

Cotillas, S., Llanos, J., Canizares, P., Mateo, S., & Rodrigo, M. A. (2013). Optimization of an

integrated electrodisinfection/electrocoagulation process with Al bipolar electrodes for

urban wastewater reclamation. Water Research, 47(5), 1741-1750. doi:

10.1016/j.watres.2012.12.029

Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for human

consumption.

Cui, X., Quicksall, A. N., Blake, A. B., & Talley, J. W. (2013). Electrochemical disinfection of

Escherichia coli in the presence and absence of primary sludge particulates. Water

Research, 47(13), 4383-4390. doi: 10.1016/j.watres.2013.04.039

Chanakya, H. N., & Alwis, A. A. P. D. (2004). Environmental issues and management in primary

coffee procesing. Process Safety and Environmental Protection(84 (B4)), 291–300.

Chavalparit, O., & Ongwandee, M. (2009). Optimizing electrocoagulation process for the treatment

of biodiesel wastewater using response surface methodology. Journal of Environmental

Sciences, 21(11), 1491-1496.

Chen, G. (2004a). Electrochemical technologies in wastewater treatment. Separation and

Purification Technology, 38(1), 11-41.

Chen, G. (2004b). Electrochemical technologies in wastewater treatment. Separation and

Purification Technology.(38), 11–41.

Chen, Q., Ai, S., Li, S., Xu, J., Yi, H., & Ma, Q. (2009). Facile preparation of PbO2 electrode for the

electrochemical inactivation of microorganism. Electrochemistry Communications(11),

2233-2236.

Cho, M., Gandhi, V., Hwang, T. M., Lee, S., & Kim, J. H. (2011). Investigating synergism during

sequential inactivation of MS-2 phage and Bacillus subtilis spores with UV/H2O2 followed

by free chlorine. Water Research, 45(3), 1063-1070. doi: 10.1016/j.watres.2010.10.014

Chong, M. N., Jin, B., Zhu, H., & Saint, C. (2010). Bacterial inactivation kinetics, regrowth and

synergistic competition in a photocatalytic disinfection system using anatase titanate

nanofiber catalyst. Journal of Photochemistry and Photobiology A: Chemistry, 214(1), 1-9.

Page 81: KATHERIN CASTRO RÍOS - UNIVERSIDAD DE CALDAS · 2 inhibiciÓn de microorganismos patÓgenos presentes en agua por mÉtodos combinados katherin castro rÍos comitÉ tutorial gonzalo

81

Chrysikopoulos, C. V., Manariotis, I. D., & Syngouna, V. I. (2013). Virus inactivation by high

frequency ultrasound in combination with visible light. Colloids Surf B Biointerfaces, 107,

174-179. doi: 10.1016/j.colsurfb.2013.01.038

De Oliveira, L., Rosso, T., Cabonelli, J., & Giordano, G. (2011). Fenton’s reagent application in the

domestic sewers disinfection. Revista Ambiente e Água, 6(1).

Declerck, P., Vanysacker, L., Hulsmans, A., Lambert, N., Liers, S., & Ollevier, F. (2010).

Evaluation of power ultrasound for disinfection of both Legionella pneumophila and its

environmental host Acanthamoeba castellanii. Water Research, 44(3), 703-710. doi:

10.1016/j.watres.2009.09.062

Delaedt, Y., Daneels, A., Declerck, P., Behets, J., Ryckeboer, J., Peters, E., & Ollevier, F. (2008).

The impact of electrochemical disinfection on Escherichia coli and Legionella pneumophila

in tap water. Microbiol Res, 163(2), 192-199.

Diao, H. F., Li, X. Y., Gu, J. D., Shi, H. C., & Xie, Z. M. (2004). Electron microscopic

investigation of the bactericidal action of electrochemical disinfection in comparison with

chlorination, ozonation and Fenton reaction. Process Biochemistry (Barking, UK), 39(11),

1421–1426.

Drees, K. P., Abbaszadegan, M., & Maier, R. M. (2003). Comparative electrochemical inactivation

of bacteria and bacteriophage. Water Research, 37(10), 2291-2300. doi: 10.1016/S0043-

1354(03)00009-5

Drogui, P., Asselin, M., Brar, S. K., Benmoussa, H., & Blais, J.-F. (2008). Electrochemical removal

of pollutants from agro-industry wastewaters. Separation and Purification Technology(61),

301–310.

Durango-Usuga, P., Guzman-Duque, F., Mosteo, R., Vazquez, M. V., Penuela, G., & Torres-Palma,

R. A. (2010). Experimental design approach applied to the elimination of crystal violet in

water by electrocoagulation with Fe or Al electrodes. Journal of Hazardous Materials,

179(1-3), 120-126. doi: 10.1016/j.jhazmat.2010.02.067

Escobar, C., Soto-Salazar, C., & Toral, M. I. (2006). Optimization of the electrocoagulation process

for the removal of copper, lead and cadmium in natural waters and simulated wastewater. J

Environ Manage, 81(4), 384-391. doi: 10.1016/j.jenvman.2005.11.012

Feng, C., Suzuki, K., Zhao, S., Sugiura, N., Shimada, S., & Maekawa, T. (2004). Water disinfection

by electrochemical treatment. Bioresource Technology, 94(1), 21-25. doi:

10.1016/j.biortech.2003.11.021

Forero, J., Ortiz, O., & Ríos, F. (2005). Aplicación de procesos de oxidación avanzada como

tratamiento de fenol en aguas residuales industriales de refinería. Revista ciencia,

tecnología y futuro, 3(1), 97-109.

Frontistis, Z., Brebou, C., Venieri, D., Mantzavinos, D., & Katsaounis, A. (2011). BDD anodic

oxidation as tertiary wastewater treatment for the removal of emerging micro-pollutants,

pathogens and organic matter. J Chem Technol Biot, 86(10), 1233-1236.

Furuta, M., Yamaguchi, M., Tsukamoto, T., Yim, B., Stavarache, C. E., Hasiba, K., & Maeda, Y.

(2004). Inactivation of Escherichia coli by ultrasonic irradiation. Ultrasonics

Sonochemistry, 11(2), 57-60. doi: 10.1016/S1350-4177(03)00136-6

Gao, S., Du, M., Tian, J., Yang, J., Yang, J., Ma, F., & Nan, J. (2010). Effects of chloride ions on

electro-coagulation-flotation process with aluminum electrodes for algae removal. Journal

of Hazardous Materials, 182(1-3), 827–834.

Gao, S., Hemar, Y., Ashokkumar, M., Paturel, S., & Lewis, G. D. (2014). Inactivation of bacteria

and yeast using high-frequency ultrasound treatment. Water Research, 60C, 93-104. doi:

10.1016/j.watres.2014.04.038

Gao, S., Lewis, G. D., Ashokkumar, M., & Hemar, Y. (2014a). Inactivation of microorganisms by

low-frequency high-power ultrasound: 1. Effect of growth phase and capsule properties of

the bacteria. Ultrasonics Sonochemistry, 21(1), 446-453. doi:

10.1016/j.ultsonch.2013.06.006

Page 82: KATHERIN CASTRO RÍOS - UNIVERSIDAD DE CALDAS · 2 inhibiciÓn de microorganismos patÓgenos presentes en agua por mÉtodos combinados katherin castro rÍos comitÉ tutorial gonzalo

82

Gao, S., Lewis, G. D., Ashokkumar, M., & Hemar, Y. (2014b). Inactivation of microorganisms by

low-frequency high-power ultrasound: 2. A simple model for the inactivation mechanism.

Ultrasonics Sonochemistry, 21(1), 454-460. doi: 10.1016/j.ultsonch.2013.06.007

Gao, S., Yang, J., Tian, J., Ma, F., Tu, G., & Du, M. (2010). Electro-coagulation–flotation process

for algae removal. Journal of Hazardous Materials(177), 336–343.

Geeraerd, A. H., Valdramidis, V. P., & Van Impe, J. F. (2005). GInaFiT, a freeware tool to assess

non-log-linear microbial survivor curves. Int J Food Microbiol, 102(1), 95-105. doi:

10.1016/j.ijfoodmicro.2004.11.038

Gehr, R., Wagner, M., Veerasubramanian, P., & Payment, P. (2003). Disinfection efficiency of

peracetic acid, UV and ozone after enhanced primary treatment of municipal wastewater.

Water Research, 37(19), 4573-4586. doi: 10.1016/S0043-1354(03)00394-4

Gerardi, M. H., & Zimmerman, M. (2005). Wastewater pathogens. New Jersey: John Wiley and

Sons, Inc.

Ghernaout, D., Badis, A., Kellil, A., & Ghernaout, B. (2008). Application of electrocoagulation in

Escherichia coli culture and two surface waters. Desalination, 219(1-3), 118–125.

Giannakis, S., Papoutsakis, S., Darakas, E., Escalas-Canellas, A., Petrier, C., & Pulgarin, C. (2014).

Ultrasound enhancement of near-neutral photo-Fenton for effective E. coli inactivation in

wastewater. Ultrasonics Sonochemistry. doi: 10.1016/j.ultsonch.2014.04.015

Gil Pavas, E., Quintero Olaya, L., Rincón Uribe, M., & Rivera Agudelo, D. (2007). Degradación de

colorantes de aguas residuales empleando UV/TiO2/H2O2/Fe2+

. Revista Universidad

EAFIT(abril-junio), 80-101.

Gómez, Y., González, M., Santa, L., Chiroles, S., & García, C. (2007). Calidad microbiológica de la

arcilla bentonita. Capacidad de remoción de E.coli ATCC Revista Higiene y Sanidad

Ambiental(7), 276-279.

Goncharuk, V. V., Malyarenko, V. V., & Yaremenko, V. A. (2008). Use of ultrasound in water

treatment. Journal of Water Chemistry and Technology, 30(3), 137-150. doi:

10.3103/s1063455x08030028

Griessler, M., Knetsch, S., Schimpf, E., Schmidhuber, A., Schrammel, B., Wesner, W., . . .

Kirschner, A. K. (2011). Inactivation of Pseudomonas aeruginosa in electrochemical

advanced oxidation process with diamond electrodes. Water Science and Technology,

63(9), 2010-2016. doi: 10.2166/wst.2011.444

Griessler, M., Knetsch, S., Schimpf, E., Schmidhuber, A., Schrammel, B., Wesner, W., . . .

Kirschner, A. K. T. (2010). Inactivation of Pseudomonas aeruginosa in electrochemical

advanced oxidation process with diamond electrodes. Water Science and Technology,

63(9), 2010–2016.

Gusmão, I. C., Moraes, P. B., & Bidoia, E. D. (2009). A thin layer electrochemical cell for

disinfection of water contaminated with Staphylococcus aureus. Braz J Microbiol, 40(3),

649-654. doi: 10.1590/S1517-838220090003000029

Gusmão, I. C., Moraes, P. B., & Bidoia, E. D. (2010). Studies on the electrochemical disinfection of

water containing Escherichia coli using dimensionally stable anode. Braz Arch Biol Techn,

53(5), 1235-1244.

Haaken, D., Dittmar, T., Schmalz, V., & Worch, E. (2012). Influence of operating conditions and

wastewater-specific parameters on the electrochemical bulk disinfection of biologically

treated sewage at boron-doped diamond (BDD) electrodes. Desalination and Water

Treatment, 46(1-3), 160-167.

Haaken, D., Dittmar, T., Schmalz, V., & Worch, E. (2014). Disinfection of biologically treated

wastewater and prevention of biofouling by UV/electrolysis hybrid technology: Influence

factors and limits for domestic wastewater reuse. Water Research, 52(0), 20-28. doi:

10.1016/j.watres.2013.12.029

Page 83: KATHERIN CASTRO RÍOS - UNIVERSIDAD DE CALDAS · 2 inhibiciÓn de microorganismos patÓgenos presentes en agua por mÉtodos combinados katherin castro rÍos comitÉ tutorial gonzalo

83

Holder, D., Berry, D., Dai, D., Raskin, L., & Xi, C. (2013). A dynamic and complex

monochloramine stress response in Escherichia coli revealed by transcriptome analysis.

Water Research, 47(14), 4978-4985. doi: 10.1016/j.watres.2013.05.041

Hrudey, S. E. (2009). Chlorination disinfection by-products, public health risk tradeoffs and me.

Water Research, 43(8), 2057-2092. doi: 10.1016/j.watres.2009.02.011

Hua, I., & Thompson, J. E. (2000). Inactivation of Escherichia coli by sonication at discrete

ultrasonic frequencies. Water Research, 34(15), 3888 - 3893.

Hulsmans, A., Joris, K., Lambert, N., Rediers, H., Declerck, P., Delaedt, Y., . . . Liers, S. (2010).

Evaluation of process parameters of ultrasonic treatment of bacterial suspensions in a pilot

scale water disinfection system. Ultrasonics Sonochemistry, 17(6), 1004-1009. doi:

10.1016/j.ultsonch.2009.10.013

Hunter, G., Lucas, M., Watson, I., & Parton, R. (2008). A radial mode ultrasonic horn for the

inactivation of Escherichia coli K12. Ultrasonics Sonochemistry, 15(2), 101-109. doi:

10.1016/j.ultsonch.2006.12.017

Inan, H., Dimoglo, A., ÅžimÅŸek, H., & Karpuzcu, M. (2004). Olive oil mill wastewater treatment

by means of electro-coagulation. Separation and Purification Technology, 36(1), 23-31.

Jeong, J., Kim, C., & Yoon, J. (2009). The effect of electrode material on the generation of oxidants

and microbial inactivation in the electrochemical disinfection processes. Water Research,

43(4), 895-901. doi: 10.1016/j.watres.2008.11.033

Jeong, J., Kim, J. Y., Cho, M., Choi, W., & Yoon, J. (2007). Inactivation of Escherichia coli in the

electrochemical disinfection process using a Pt anode. Chemosphere, 67(4), 652–659.

Joyce, E., Mason, T. J., Phull, S. S., & Lorimer, J. P. (2003). The development and evaluation of

electrolysis in conjunction with power ultrasound for the disinfection of bacterial

suspensions. Ultrasonics Sonochemistry, 10(4-5), 231-234. doi: 10.1016/S1350-

4177(03)00109-3

Jung, Y. J., Baek, K. W., Oh, B. S., & Kang, J. W. (2010). An investigation of the formation of

chlorate and perchlorate during electrolysis using Pt/Ti electrodes: the effects of pH and

reactive oxygen species and the results of kinetic studies. Water Research, 44(18), 5345-

5355. doi: 10.1016/j.watres.2010.06.029

Katal, R., & Pahlavanzadeh, H. (2011). Influence of different combinations of aluminum and iron

electrode on electrocoagulation efficiency: Application to the treatment of paper mill

wastewater. Desalination, 265(1-3), 199 –205.

Kerwick, M. I., Reddy, S. M., Chamberlain, A. H. L., & Holt, D. M. (2005). Electrochemical

disinfection, an environmentally acceptable method of drinking water disinfection?

Electrochimica Acta, 50(25–26), 5270-5277.

Kerwick, M. I., Reddy, S. M., Chamberlain, A. H. L., & Holt, D. M. (2005). Electrochemical

disinfection, an environmentally acceptable method of drinking water disinfection?.

Electrochimica Acta.(50), 5270–5277.

Khoufi, S., Feki, F., & Sayadi, S. (2007). Detoxification of olive mill wastewater by

electrocoagulation and sedimentation processes. Journal of Hazardous Materials, 142(1-2),

58-67. doi: 10.1016/j.jhazmat.2006.07.053

Kobya, M., Ciftci, C., Bayramoglu, M., & Sensoy, M. T. (2008). Study on the treatment of waste

metal cutting fluids using electrocoagulation. Separation and Purification Technology,

60(3), 285-291.

Kobya, M., & Delipinar, S. (2008). Treatment of the baker's yeast wastewater by

electrocoagulation. Journal of Hazardous Materials, 154(1-3), 1133-1140. doi:

10.1016/j.jhazmat.2007.11.019

Koda, S., Miyamoto, M., Toma, M., Matsuoka, T., & Maebayashi, M. (2009). Inactivation of

Escherichia coli and Streptococcus mutans by ultrasound at 500 kHz. Ultrasonics

Sonochemistry(16), 655–659.

Page 84: KATHERIN CASTRO RÍOS - UNIVERSIDAD DE CALDAS · 2 inhibiciÓn de microorganismos patÓgenos presentes en agua por mÉtodos combinados katherin castro rÍos comitÉ tutorial gonzalo

84

Koda, S., Miyamoto, M., Toma, M., Matsuoka, T., & Maebayashi, M. (2009). Inactivation of

Escherichia coli and Streptococcus mutans by ultrasound at 500kHz. Ultrasonics

Sonochemistry, 16(5), 655-659. doi: 10.1016/j.ultsonch.2009.02.003

Kormann, C., Bahnemann, D. W., & Hoffmann, M. R. (1988). Photocatalytic production of

hydrogen peroxides and organic peroxides in aqueous suspensions of titanium dioxide, zinc

oxide, and desert sand. Environmental Science and Technology, 22(7), 798-806. doi:

10.1021/es00172a009

Krasner, S. W. (2009). The formation and control of emerging disinfection by-products of health

concern. Philos Trans A Math Phys Eng Sci, 367(1904), 4077-4095. doi:

10.1098/rsta.2009.0108

Kucharzyk, K. H., Crawford, R. L., Cosens, B., & Hess, T. F. (2009). Development of drinking

water standards for perchlorate in the United States. J Environ Manage, 91(2), 303-310.

doi: 10.1016/j.jenvman.2009.09.023

Lacasa, E., Llanos, J., Cañizares, P., & Rodrigo, M. A. (2012). Electrochemical denitrificacion with

chlorides using DSA and BDD anodes. Chemical Engineering Journal (Lausanne), 184(0),

66-71.

Legrini, O., Oliveros, E., & Braun, A. M. (1993). Photochemical processes for water treatment.

Chem. Rev., 93(2), 671-698. doi: 10.1021/cr00018a003

Li, X., Diao, H., Fan, F., Gu, J., Ding, F., & Tong, A. (2004). Electrochemical Wastewater

Disinfection: Identification of Its Principal Germicidal Actions. J Environ Eng, 130(10),

1217-1221.

Li, X. Y., Diao, H. F., F.X.J.Fan, J.D.Gu, Ding, F., & Tong, A. S. F. (2004). Electrochemical

Wastewater Disinfection: Identification of Its Principal Germicidal Actions. Journal of

Environmental Engineering., 130(10), 1217–1221.

Li, X. Y., Diao, H. F., F.X.J.Fan, J.D.Gu, Ding, F., & Tong, A. S. F. (2004). Electrochemical

Wastewater Disinfection: Identification of Its Principal Germicidal Actions. Journal of

Environmental Engineering, 130(10), 1217–1221.

Li, X. Y., Ding, F., Lo, P. S. Y., & Sin, S. H. P. (2002). Electrochemical disinfection of saline

wastewater effluent. J Environ Eng, 128(8), 697-704.

Lin, S. H., & Lo, C. C. (1997). Fenton process for treatment of desizing wastewater. Water

Research, 31(8), 2050-2056.

Lopez-Galvez, F., Posada-Izquierdo, G. D., Selma, M. V., Perez-Rodriguez, F., Gobet, J., Gil, M. I.,

& Allende, A. (2012). Electrochemical disinfection: an efficient treatment to inactivate

Escherichia coli O157:H7 in process wash water containing organic matter. Food

Microbiol, 30(1), 146-156. doi: 10.1016/j.fm.2011.09.010

Llanos, J., Cotillas, S., Cañizares, P., & Rodrigo, M. A. (2014). Effect of bipolar electrode material

on the reclamation of urban wastewater by an integrated

electrodisinfection/electrocoagulation process. Water Research, 53C(0), 329-338. doi:

10.1016/j.watres.2014.01.041

Ma, Q., Liu, T., Tang, T., Yin, H., & Ai, S. (2011). Drinking water disinfection by hemin-modified

graphite felt and electrogenerated reactive oxygen species. Electrochimica Acta, 56(24),

8278-8284.

Mahamuni, N. N., & Adewuyi, Y. G. (2010). Advanced oxidation processes (AOPs) involving

ultrasound for waste water treatment: a review with emphasis on cost estimation.

Ultrasonics Sonochemistry, 17(6), 990-1003. doi: 10.1016/j.ultsonch.2009.09.005

Mamane, H., Shemer, H., & Linden, K. G. (2007). Inactivation of E. coli, B. subtilis spores, and

MS2, T4, and T7 phage using UV/H2O2 advanced oxidation. Journal of Hazardous

Materials, 146(3), 479-486.

Martinez-Huitle, C. A., & Brillas, E. (2008). Electrochemical alternatives for drinking water

disinfection. Angew Chem Int Ed Engl, 47(11), 1998-2005. doi: 10.1002/anie.200703621

Page 85: KATHERIN CASTRO RÍOS - UNIVERSIDAD DE CALDAS · 2 inhibiciÓn de microorganismos patÓgenos presentes en agua por mÉtodos combinados katherin castro rÍos comitÉ tutorial gonzalo

85

Matamoros, V., Mujeriego, R., & Bayona, J. M. (2007). Trihalomethane occurrence in chlorinated

reclaimed water at full-scale wastewater treatment plants in NE Spain. Water Research,

41(15), 3337-3344. doi: 10.1016/j.watres.2007.04.021

Mates, A. K., Sayed, A. K., & Foster, J. W. (2007). Products of the Escherichia coli Acid Fitness

Island Attenuate Metabolite Stress at Extremely Low pH and Mediate a Cell Density-

Dependent Acid Resistance. Journal of Bacteriology, 189(7), 2759–2768.

Matsunaga, T., Nakasono, S., Takamuku, T., Burgess, J. G., Nakamura, N., & Sode, K. (1992).

Disinfection of Drinking Water by Using a Novel Electrochemical Reactor Employing

Carbon-Cloth Electrodes. Applied and Environmental Microbiology, 58(2), 686-689.

McPherson, L. L. (1993). Understanding ORP’s role in the disinfection process. Water Eng

Manage, 140(11), 29-31.

McQuestin, O. J., Shadbolt, C. T., & Ross, T. (2009). Quantification of the relative effects of

temperature, pH, and water activity on inactivation of Escherichia coli in fermented meat

by meta-analysis. Applied and Environmental Microbiology, 75(22), 6963-6972. doi:

10.1128/AEM.00291-09

Mollah, M. Y., Morkovsky, P., Gomes, J. A., Kesmez, M., Parga, J., & Cocke, D. L. (2004).

Fundamentals, present and future perspectives of electrocoagulation. Journal of Hazardous

Materials, 114(1-3), 199-210. doi: 10.1016/j.jhazmat.2004.08.009

Moncayo-Lasso, A., Sanabria, J., Pulgarín, C., & Benítez, N. (2009). Simultaneous E. coli

inactivation and NOM degradation in river water via photo-Fenton process at natural pH in

solar CPC reactor. A new way for enhancing solar disinfection of natural water.

Chemosphere(77), 296–300.

Moncayo-Lasso, A., Torres-Palma, R. A., Kiwi, J., Benitez, N., & Pulgarin, C. (2008). Bacterial

inactivation and organic oxidation via immobilized photo-Fenton reagent on structured

silica surfaces. Applied Catalysis B: Environmental, 84(3-4), 577-583.

Moncayo-Lasso, A., Torres-Palma, R. A., Kiwi, J., Benítez, N., & Pulgarín, C. (2008). Bacterial

inactivation and organic oxidation via immobilized photo-Fenton reagent on structured

silica surfaces. Applied Catalysis B: Environmental.(84), 577–583.

Montgomery, D. C. (2001). Design and analysis of experiments (5th ed.). New York: Willey.

Mussatto, S. I., Machado, E. M. S., Martins, S., & Teixeira, J. A. (2011). Production, Composition,

and Application of Coffee and Its Industrial Residues. Food Bioprocess Technology(4),

661– 672.

Nanayakkara, K. G., Alam, A. K., Zheng, Y. M., & Chen, J. P. (2012). A low-energy intensive

electrochemical system for the eradication of Escherichia coli from ballast water: process

development, disinfection chemistry, and kinetics modeling. Marine Pollution Bulletin,

64(6), 1238-1245. doi: 10.1016/j.marpolbul.2012.01.018

Nieto-Juarez, J. I., & Kohn, T. (2013). Virus removal and inactivation by iron (hydr)oxide-mediated

Fenton-like processes under sunlight and in the dark. Photochemical & Photobiological

Sciences, 12(9), 1596-1605. doi: 10.1039/c3pp25314g

Ninomiya, K., Arakawa, M., Ogino, C., & Shimizu, N. (2013). Inactivation of Escherichia coli by

sonoelectrocatalytic disinfection using TiO2 as electrode. Ultrasonics Sonochemistry, 20(2),

762-767. doi: 10.1016/j.ultsonch.2012.10.007

Ninomiya, K., Ogino, C., Kawabata, S., Kitamura, K., Maki, T., Hasegawa, H., & Shimizu, N.

(2013). Ultrasonic inactivation of Microcystis aeruginosa in the presence of TiO2 particles.

Journal of Bioscience and Bioengineering, 116(2), 214-218. doi:

10.1016/j.jbiosc.2013.02.006

Nogueira, R. F. P., Trovó, A. G., Silva, M. R. A. d., Villa, R. D., & Oliveira, M. C. d. (2007).

Fundamentos e aplicações ambientais dos processos fenton e foto-fenton. Quimica Nova,

30, 400-408.

Page 86: KATHERIN CASTRO RÍOS - UNIVERSIDAD DE CALDAS · 2 inhibiciÓn de microorganismos patÓgenos presentes en agua por mÉtodos combinados katherin castro rÍos comitÉ tutorial gonzalo

86

Ogino, C., Farshbaf Dadjour, M., Takaki, K., & Shimizu, N. (2006). Enhancement of sonocatalytic

cell lysis of Escherichia coli in the presence of TiO2. Biochemical Engineering Journal,

32(2), 100-105. doi: 10.1016/j.bej.2006.09.008

Olvera, J. d. R., & Gutiérrez, J. I. (2010a). Biodegradación anaerobia de las aguas generadas en el

despulpado del café Revista Colombiana de Biotecnología., 12(2), 230-239.

Olvera, J. d. R., & Gutiérrez, J. I. (2010b). Biodegradación anaerobia de las aguas generadas en el

despulpado del café Revista Colombiana de Biotecnología, 12(2), 230-239.

OMS. (2004). Guías para la calidad del agua potable 2012, from

http://www.who.int/water_sanitation_health/dwq/gdwq3sp.pdf

Osetrova, N. V., Bagotzky, V. S., Guizhevsky, S. F., & Serov, Y. M. (1998). Electrochemical

reduction of carbonate solutions at low temperatures. Journal of Electroanalytical

Chemistry, 453(1–2), 239-241.

Osorio, F., Torres, J. C., & Sánchez, M. (2010). Tratamiento de aguas para la eliminación de

microorganismos y agentes contaminantes. España: Ediciones Díaz de Santos.

Otenio, M. H., Panchoni, L. C., Cruz, G. C. A. d., Ravanhani, C., & Bidóia, E. D. (2008). Avaliação

em escala laboratorial da utilização do processo eletrolítico no tratamento de águas.

Quimica Nova, 31(3), 508-513.

Palma-Goyes, R. E., Guzmán-Duque, F. L., Peñuela, G., & González, I. (2010). Electrochemical

degradation of crystal violet with BDD electrodes: Effect of electrochemical parameters

and identification of organic by-products. Chemosphere, 81(1), 26–32.

Panizza, M., & Cerisola, G. (2009). Direct and mediated anodic oxidation of organic pollutants.

Chem Rev, 109(12), 6541-6569. doi: 10.1021/cr9001319

Papastefanakis, N., Mantzavinos, D., & Katsaounis, A. (2010). DSA electrochemical treatment of

olive mill wastewater on Ti/RuO2 anode. Journal of Applied Electrochemistry(40), 729–

737.

Pareilleux, A., & Sicard, N. (1970). Lethal effects of electric current on Escherichia coli. Appl

Microbiol, 19(3), 421-424.

Park, J. C., Lee, M. S., Lee, D. H., Park, B. J., Han, D. W., Uzawa, M., & Takatori, K. (2003).

Inactivation of bacteria in seawater by low-amperage electric current. Applied and

Environmental Microbiology, 69(4), 2405-2408.

Patermarakis, G., & Fountoukidis, E. (1990). Disinfection of water by electrochemical treatment.

Pergamon, 24(12), 1491-1496.

Perez, G., Gomez, P., Ibanez, R., Ortiz, I., & Urtiaga, A. M. (2010). Electrochemical disinfection of

secondary wastewater treatment plant (WWTP) effluent. Water Science and Technology,

62(4), 892-897. doi: 10.2166/wst.2010.328

Pham, T. T., Brar, S. K., Tyagi, R. D., & Surampalli, R. Y. (2010). Optimization of Fenton

oxidation pre-treatment for B. thuringiensis - based production of value added products

from wastewater sludge. J Environ Manage, 91(8), 1657-1664. doi:

10.1016/j.jenvman.2010.03.007

Polcaro, A. M., Vacca, A., Mascia, M., Palmas, S., Pompei, R., & Laconi, S. (2007).

Characterization of a stirred tank electrochemical cell for water disinfection processes.

Electrochimica Acta, 52(7), 2595–2602.

Quek, P. H., & Hu, J. (2008). Indicators for photoreactivation and dark repair studies following

ultraviolet disinfection. Journal of Industrial Microbiology & Biotechnology, 35(6), 533-

541. doi: 10.1007/s10295-008-0314-0

R.D 1620/2007, de Diciembre de 2007, por el que se establece el régimen jurídico de la

reutilización de las aguas depuradas.

Ricordel, C., Miramon, C., Hadjiev, D., & Darchen, A. (2013). Investigations of the mechanism and

efficiency of bacteria abatement during electrocoagulation using aluminum electrode.

Desalination and Water Treatment, 1-10. doi: 10.1080/19443994.2013.807474

Page 87: KATHERIN CASTRO RÍOS - UNIVERSIDAD DE CALDAS · 2 inhibiciÓn de microorganismos patÓgenos presentes en agua por mÉtodos combinados katherin castro rÍos comitÉ tutorial gonzalo

87

Rincón, A.-G., & Pulgarin, C. (2006a). Comparative evaluation of Fe3+

and TiO2 photoassisted

processes in solar photocatalytic disinfection of water. Applied Catalysis B: Environmental,

63(3-4), 222-231.

Rincón, A.-G., & Pulgarin, C. (2006b). Comparative evaluation of Fe3+

and TiO2 photoassisted

processes in solar photocatalytic disinfection of water. Applied Catalysis B:

Environmental., 63(3-4), 222-231.

Rincón, A. G., & Pulgarín, C. (2007). Fe3+

and TiO2 solar-light-assisted inactivation of E. coli at

field scale Implications in solar disinfection at low temperature of large quantities of water.

Catalysis Today(122), 128–136.

Rodríguez, S. P., Silva, R. M. P., & Boizán, M. F. (2000a). Estudio de la biodegradabilidad

anaerobia de las aguas residuales del beneficio húmedo del café. Interciencia, 25(8), 386-

390.

Rodríguez, S. P., Silva, R. M. P., & Boizán, M. F. (2000b). Estudio de la biodegradabilidad

anaerobia de las aguas residuales del beneficio húmedo del café. Interciencia., 25(8), 386-

390.

Romero, J. A. (2009). Calidad del Agua. Bogotá: Escuela Colombiana de Ingeniería.

Sánchez-Carretero, A., Sáez, C., Cañizares, P., & Rodrigo, M. A. (2011). Electrochemical

production of perchlorates using conductive diamond electrolyses. Chemical Engineering

Journal (Lausanne), 166(2), 710-714. doi: 10.1016/j.cej.2010.11.037

Saravanan, M., Sambhamurthy, N. P., & Sivarajan, M. (2010). Treatment of Acid Blue 113 Dye

Solution Using Iron Electrocoagulation. CLEAN – Soil, Air, Water, 39(5–6), 565-571.

Särkkä, H., Vepsäläinen , M., Pulliainen, M., & Sillanpää, M. (2008). Electrochemical inactivation

of paper mill bacteria with mixed metal oxide electrode. Journal of Hazardous Materials,

156(1-3), 208-213. doi: 10.1016/j.jhazmat.2007.12.011

Schmalz, V., Dittmar, T., Haaken, D., & Worch, E. (2009). Electrochemical disinfection of

biologically treated wastewater from small treatment systems by using boron-doped

diamond (BDD) electrodes – Contribution for direct reuse of domestic wastewater. Water

Research, 43(20), 5260–5266.

Selvakumar, A., Tuccillo, M. E., Muthukrishnan, S., & Ray, A. B. (2009). Use of Fenton's Reagent

as a Disinfectant. Remediation Journal, 19(2), 135-142. doi: 10.1002/rem.20208

Selvamurugan, M., Doraisamy, P., Maheswari, M., & Nandakumar, N. B. (2010). High rate

anaerobic treatment of coffee procesing wastewater using upflow anaerobic hybrid reactor.

Iran. J. Environ. Health. Sci. Eng, 7(2), 129-136.

Shang, K., Qiao, Z., Sun, B., Fan, X., & Ai, S. (2013). An efficient electrochemical disinfection of

E. coli and S. aureus in drinking water using ferrocene–PAMAM–multiwalled carbon

nanotubes–chitosan nanocomposite modified pyrolytic graphite electrode. Journal of Solid

State Electrochemistry, 17(6), 1685-1691. doi: 10.1007/s10008-013-2031-5

Shimizu, N., Ninomiya, K., Ogino, C., & Rahman, M. M. (2010). Potential uses of titanium dioxide

in conjunction with ultrasound for improved disinfection. Biochemical Engineering

Journal.(48), 416-423.

Siedlecka, E. M., Fabiańska, A., Stolte, S., Nienstedt, A., Ossowski, T., Stepnowski, P., &

Thöming, J. (2013). Electrocatalytic Oxidation of 1-Butyl-3-Methylimidazolium Chloride:

Effect of the Electrode Material. International Journal of Electrochemical Science, 8(1),

5560 - 5574.

Sirtori, C., Zapata, A., Oller, I., Gernjak, W., Aguera, A., & Malato, S. (2009). Decontamination

industrial pharmaceutical wastewater by combining solar photo-Fenton and biological

treatment. Water Research, 43(3), 661-668. doi: 10.1016/j.watres.2008.11.013

Small, P., Blankenhorn, D., Welty, D., Zinser, E., & Slonczewski, J. L. (1994). Acid and base

resistance in Escherichia coli and Shigella flexneri: role of rpoS and growth pH. Journal of

Bacteriology, 176(6), 1729-1737.

Page 88: KATHERIN CASTRO RÍOS - UNIVERSIDAD DE CALDAS · 2 inhibiciÓn de microorganismos patÓgenos presentes en agua por mÉtodos combinados katherin castro rÍos comitÉ tutorial gonzalo

88

Spuhler, D., Rengifo-Herrera, J. A., & Pulgarin, C. (2010). The effect of Fe2+

, Fe3+

, H2O2 and the

photo-Fenton reagent at near neutral pH on the solar disinfection (SODIS) at low

temperatures of water containing Escherichia coli K12. Applied Catalysis B:

Environmental, 96(1-2), 126-141.

Sun, D. D., Tay, J. H., & Tan, K. M. (2003). Photocatalytic degradation of E.coli form in water.

Water Research, 37(14), 3452-3462.

Sun, S.-P., & Lemley, A. T. (2011). p-Nitrophenol degradation by a heterogeneous Fenton-like

reaction on nano-magnetite: Process optimization, kinetics, and degradation pathways.

Journal of Molecular Catalysis A: Chemical, 349(1-2), 71-79. doi:

10.1016/j.molcata.2011.08.022

Sundarapandiyan, S., Chandrasekar, R., Ramanaiah, B., Krishnan, S., & Saravanan, P. (2010).

Electrochemical oxidation and reuse of tannery saline wastewater. Journal of Hazardous

Materials, 180(1-3), 197-203. doi: 10.1016/j.jhazmat.2010.04.013

Suss, J., Volz, S., Obst, U., & Schwartz, T. (2009). Application of a molecular biology concept for

the detection of DNA damage and repair during UV disinfection. Water Research, 43(15),

3705-3716. doi: 10.1016/j.watres.2009.05.048

Tchamango, S., Nanseu-Njiki, C. P., Ngameni, E., Hadjiev, D., & Darchen, A. (2010). Treatment of

dairy effluents by electrocoagulation using aluminium electrodes. Science of the Total

Environment, 408(4), 947–952.

Tezcan Ün, U., Koparal, A. S., & Bakır Ögütveren, Ü. (2009). Electrocoagulation of vegetable oil

refinery wastewater using aluminum electrodes. Journal of Environmental Management,

90(1), 428-433.

Tezcan Ün, U., Koparal, A. S., & Ögütveren, Ü. B. (2009). Hybrid processes for the treatment of

cattle-slaughterhouse wastewater using aluminum and iron electrodes. Journal of

Hazardous Materials, 164(2-3), 580–586.

Tezcan Ün, U., Ugur, S., Koparal, A. S., & Bakır Ögütveren, Ü. (2006). Electrocoagulation of olive

mill wastewaters. Separation and Purification Technology(52), 136-141.

The International Agency for Research on Cancer. (2010). Agents Classified by the IARC

Monographs, Volumes 1–100. Retrieved 11/10/2010, 2010, from

http://monographs.iarc.fr/ENG/Classification/ClassificationsAlphaOrder.pdf

Tolentino-Bisneto, R., & Bidoia, E. D. (2003). Effects of the electrolytic treatment on Bacillus

subtilis. Braz J Microbiol, 34(1), 48-50.

Torres, R. A., Sarria, V., Torres, W., Peringer, P., & Pulgarin, C. (2003). Electrochemical treatment

of industrial wastewater containing 5-amino-6-methyl-2-benzimidazolone: toward an

electrochemical-biological coupling. Water Research, 37(13), 3118-3124. doi:

10.1016/S0043-1354(03)00179-9

Torres, R. A., Torres, W., Peringer, P., & Pulgarin, C. (2003). Electrochemical degradation of p-

substituted phenols of industrial interest on Pt electrodes. Attempt of a structure-reactivity

relationship assessment. Chemosphere, 50(1), 97-104.

Turro, E., Giannis, A., Cossu, R., Gidarakos, E., Mantzavinos, D., & Katsaounis, A. (2011).

Electrochemical oxidation of stabilized landfill leachate on DSA electrodes. Journal of

Hazardous Materials, 190(1-3), 460-465.

UNICEF. (2008). Handbook on Water Quality. New York: UNICEF.

Vellanki, B. P., & Batchelor, B. (2013). Perchlorate reduction by the sulfite/ultraviolet light

advanced reduction process. Journal of Hazardous Materials, 262, 348-356. doi:

10.1016/j.jhazmat.2013.08.061

Wang, C. T., Chou, W. L., & Kuo, Y. M. (2009). Removal of COD from laundry wastewater by

electrocoagulation/electroflotation. Journal of Hazardous Materials, 164(1), 81-86. doi:

10.1016/j.jhazmat.2008.07.122

Page 89: KATHERIN CASTRO RÍOS - UNIVERSIDAD DE CALDAS · 2 inhibiciÓn de microorganismos patÓgenos presentes en agua por mÉtodos combinados katherin castro rÍos comitÉ tutorial gonzalo

89

Wang, G. S., Deng, Y. C., & Lin, T. F. (2007). Cancer risk assessment from trihalomethanes in

drinking water. Science of the Total Environment, 387(1-3), 86-95. doi:

10.1016/j.scitotenv.2007.07.029

Watson, K., Shaw, G., Leusch, F. D. L., & Knight, N. L. (2012). Chlorine disinfection by-products

in wastewater effluent: Bioassay-based assessment of toxicological impact. Water

Research, 46(18), 6069-6083.

Watts, R. J., Washington, D., Howsawkeng, J., Loge, F. J., & Teel, A. L. (2003). Comparative

toxicity of hydrogen peroxide, hydroxyl radicals, and superoxide anion to Escherichia coli.

Advances in Environmental Research, 7(4), 961-968.

Woodall, C. J. (2009). Waterborne diseases – What are the primary killers? Desalination, 248(1–3),

616-621.

Xu, Y., Yang, J., Ou, M., Wang, Y., & Jia, J. (2007). Study of Microcystis aeruginosa inhibition by

electrochemical method. Biochemical Engineering Journal(36), 215–220.

Yildiz, Y. Ş., Koparal, A. S., & Keskinler, B. (2008). Effect of initial pH and supporting electrolyte

on the treatment of water containing high concentration of humic substances by

electrocoagulation. Chemical Engineering Journal (Lausanne), 138(1-3), 63-72.

Zaleschi, L., Sáez, C., Cañizares, P., Cretescu, I., & Rodrigo, M. A. (2013). Electrochemical

coagulation of treated wastewaters for reuse. Desalination and Water Treatment, 51(16-18),

3381-3388. doi: 10.1080/19443994.2012.749192

Zambrano-Franco, D. A., & Cárdenas-Cárdenas, J. (2000). Manejo y tratamiento primario de

lixiviados producidos en la tecnología Becolsub. Avances Técnicos(280), 1-8.

Zambrano-Franco, D. A., Isaza-Hinestroza, J. D., Rodríguez-Valencia, N., & Posada, U. L. (1999).

Tratamiento de aguas residuales del lavado de café Boletín Técnico. (pp. 30). Chinchiná:

Cenicafé.

Zhu, B., Clifford, D. A., & Chellama, S. (2005). Comparison of electrocoagulation and chemical

coagulation pretreatment for enhanced virus removal using microfiltration membranes.

Water Research, 39(13), 3098–3108.