jem-euso: la misión espacial para la detección del universo a … · 2011-07-07 · • the ams...

31
JEM-EUSO: la misión espacial para la detección Del Universo a las energías más extremas. . M.D.Rodríguez Frías for JEM-EUSO Spanish Consortium. http://spas.uah.es/ SPace & AStroparticles (SPAS) Group. UAH.

Upload: others

Post on 20-Jun-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

JEM-EUSO: la misión espacial para la detecciónDel Universo a las energías más extremas.

. M.D.Rodríguez Frías for JEM-EUSO Spanish Consortium. http://spas.uah.es/SPace & AStroparticles (SPAS) Group. UAH.

I. Why the origin of Cosmic Rays is stillunknown ?

II. Why a space-based experiment for CosmicRays detection ?

III.Spanish contribution to JEM-EUSO:Mid-IR camera & 137 HVPS.

Overview

MD. Rodríguez Frías. ASTROMADRID, June 29, 2011.

Due to magnetic deflections in EGMF & GMF, veryhigh statistics at EHECR are crucial to identifysources and established:

“Particle-Astronomy” @ E> 1020 eV

Why the origin of CR’s is still unknown ?

I. CR-Astronomy is only possible @ E>100 EeV.

II. Huge statistics at EHECR’s is needed

Why the origin of CR’s is still unknown?

MD: Rodríguez-Frías. JEM-EUSO meeting @ Spain, February 9th, 2009.

Anisotropy of UHECR has been established @ > 99% CL27 events with P = 2x10-10@ E=57 EeV, z=0.017 & =3.2º. GZK sphere: D~100 Mpc.

Pierre Auger Collaboration. Science,

Particle Astronomy

- 1,000 events : E>7x1019eV- Several dozen clusters are expected. All sky coverage

If we get >1,000 events,

by Boris Khrenov 2006

Progress of EECRs Observation in the near future:

4×105JEM-EUSO(nadir)

JEM-EUSO (tilt)

Why a Space-based experiment for CR´s detection ?

Why a space-based experiment for CR’s detection ?

Experiment Acceptance(km2 sr) Operational Period

Operational Life

(years)

Observational Efficiency

( % )

Exposure(km2 sr year)

Relative Exposure

Auger SouthSD

FD=Hybrid 7,0007,000

2006-20152006-2015

10+10+

10010

7.0 ×1047.0 ×104

10.1

Telescope ArraySDFD

1,4006,700 2008-2015 10

10

10010

1.4×1046.7×103

0.20.1

TUS 30,000 2009-2014 5 20 3.0×104 0.5

JEM-EUSOnadirtiltedTotal

520,0002,580,,000

2016-20172018-

23+(5)5+(5)

202020

2.1×1051.5 ×1061.7 ×106

4 in two years25+(42)30+(42)

EUSO ~ 1000 x AGASA ~ 30 x AugerEUSO (Instantaneous) ~ 5000 x AGASA

~ 150 x Auger

AGASA

JEM-EUSO tilt-mode

JEM-EUSO FoV

JEM-EUSO Space Observatory

Japan : T. Ebisuzaki, Y. Uehara, H. Ohmori, Y. Kawasaki, M. Sato, Y. Takizawa, K. Katahira, S. Wada, K. Kawai,H. Mase (RIKEN), F. Kajino, M. Sakata, H. Sato, Y. Yamamoto, T. Yamamoto, N. Ebizuka, (Konan Univ.), M.Nagano, Y. Miyazaki (Fukui Inst. Tech.), N. Sakaki, T. Shibata (Aoyama Gakuin Univ.), N. Inoue (Saitama Univ.), Y.Uchihori (NIRS), K. Nomoto (Univ. of Tokyo), Y. Takahashi (Tohoku Univ.), M. Takeda (ICRR, Univ. Tokyo), Y. Arai,Y. Kurihara, H.M. Shimizu, J. Fujimoto (KEK), S. Yoshida, K. Mase (Chiba Univ.), K. Asano, S. Inoue, Y. Mizumoto,J. Watanabe, T. Kajino (NAOJ), H. Ikeda, M. Suzuki, T. Yano (ISAS, JAXA), T.Murakami, D. Yonetoku (KanazawaUniv.), T. Sugiyama (Nagoya), Y. Ito (STEL, Nagoya Univ.), S. Nagataki (YITP, Kyoto Univ.), A. Saito(Kyoto Univ.),S. Abe, M. Nagata (Kobe Univ.), T. Tajima (KPSI, JAEA)、M. Chikawa (Kinki Univ.), and M. Tajima (HiroshimaUniv.)USA : J. H. Adams Jr., S. Mitchell, M.J. Christl, J. Watts Jr., A. English, R. Young (NASA/ MSFC) , Y. Takahashi, D.Gregory, M. Bonamente, K. Pitalo, J. Hadaway, J. Geary, R. Lindquist, P. ReardonT. Blackwell (Univ. Alabama inHuntsville), H. Crawford, E. Judd, C. Pennypacker (LBL, UC Berkeley), K. Arisaka, D. Cline, J. Kolonko, V.Andreev (UCLA), A. Berlind, T. Weiler, S. Csorna (Vanderbilt Univ.), R. Chipman, S. MaClain (Arizona)France : D. Allard, J-N. Capdevielle, J. Dolbeau, P. Gorodetzky, J. J. Jaeger, E. Parizot, T. Patzak, D. Semikoz, J.Waisbard (APC-Paris 7)Germany: M. Teshima, T. Schweizer (Max Planck Munich), A. Santangelo, E.Kendziorra, F.Fenu (Univ. Tuebingen),P. Biermann (MPI Bonn), K. Mannheim (Wuerzburg), J. Wilms (Univ. Erlangen)Italy : M. Focardi, E. Pacce, P. Spillantini (Univ.Firenze), V. Bratina, L. Gambicorti, A. Zuccaro (CNR-INOA,Firenze), A. Anzalone, O. Catalano, M.C. Maccarone, P. Scarsi, B. Sacco, G. LaRosa (IAS-PA/INAF), G. D’AliSaiti, D. Tegolo (U. Palermo), R. Battiston (Perugia), M. Casolino, M.P. De Pascale, A. Morselli, P. Picozza, R.Sparvoli (INFN and Univ. Rome “Tor Vergata”), P. Vallania (INAF-IFSI Torino), P. Galleotti, C. Vigorito, M. Bertaina(Univ. Torino)

Mexico: G. Medina-Tanco, J.C. D’Olivo, J.F.Valdes (Mexico UNAM), H. Salazar, O. Martines (BUAP), L. Villasenor(UMSNH)Republic of Korea : S. Nam, I. H. Park, J. Yang (Ehwa W. Univ.)

Russia: Garipov G.K., Khrenov, B.A., Klimov P.A. Panasyuk M.I., Yashin I.V. (SINP MSU), D. Naumov, Tkachev. L(Dubna JINR)Switzerland : A. Maurissen, V. Mitev (Neuchatel, Switzerland) :

Spain: M.D.Rodriguez-Frias, L.del Peral, JA. Morales de los Ríos, G. Sáez, H. Prieto, N. Pacheco, J. HernandezCarretero(UAH), M.D. Sabau, T. Belenguer, C. González-Alvarado (NTA), F. López, A. De Castro,. S. Briz F.Cortés UC3M), J. Licandro, E. Jóven, M. Serra, V. Ali, O. Vaduvescu (IAC).

JEM-EUSO Collaboration

Parameters of Mission

Time of launch: year 2016 Operation Period: 3 years (+ 2 years) Launching Rocket : H2B Transportation to ISS: non pressurized Carrier of

H2 Transfer Vehicle (HTV) Site to Attach: Japanese Experiment Module/

Exposure Facility #2 Height of the Orbit: ~430km Inclination of the Orbit: 51.6°

Mass: 1983 kg Power: 926 W (operative),

352 W (non-operative) Data Transfer Rate: 285 kpbs

Approved Phase A 2007-mid 2009 by JAXA.

Phase B1+ SRR: mid 2009-2011.

Phase B2+BBM+PDR: 2012.

Construction, Assembly & Verification: 2013-2015.

Launch by HIIB-HTV & Commissioning 2016.

Operation period:2016-2018 (Nadir mode).2019- (Title mode).

Resources:90.000 k€-26.000 k€ Europe ( 33% Europe, 66% Others).

JEM-EUSO Status

ESA committees Reviews • 2010: ESA: “Fundamental Physics Roadmap Advisory Team

(FPR-AT)”• 2010: ESA “Astronomical Working Group (AWG)”.• 2010: Program ELIPS (European programme for Life and P

hysical sciences and applications) accepted by the ESA committee for “Human Spaceflight, Microgravity and Exploration”.

• 2010: The Science Unit of The European Space FoundaKon (ESF) has informed positively the JEM-EUSO space mission.

• April 2011 ESA Topical Team for Coordination of the European Involvement in JEM-EUSO.

mid-IR Camera

MD: Rodríguez-Frías. JEM-EUSO meeting @ Spain, February 9th, 2009.

JEM-EUSO Focal Surface

137

Spanish contribution since 2007 (MOU: UAH-RIKEN).

JEM-EUSO funded in Spain (2009-2011) fromMICINN+CAM+UAH.

Dec 2009: Feasibility Study. Aug 2010: Phase A. Dec 2011: Phase B1 & SRR (ongoing).

Just submitted to MICINN for the first time a coordinatedproject for Phase B2 (BBM & PDR) to be delivered to Japanby Dec 2012.

III. JEM-EUSO Consortium @ Spain

4 research centers: UAH, INTA, UC3M & IAC. 4 Space companies: SENER, LIDAX, SENSIA &

ARQUIMEA

137 HVPS

Status of the JEM-EUSO IR Camera Design

LINES

SENSIA

IR Camera Engineering Project Organization

IR Camera Overall Description

• The AMS IR Camera is based on a microbolometer sensor, minimizing the risk associated to the low TRL of PbSe sensors and providing access to a more typical spectral band (8-14 microns) for this kind of measurement.

• The AMS IR Camera current design is a multiband system, taking advantage of the flat spectral response of its detector over a wide spectral range (but at the expense of an increased data rate).

Parameter Pre-design value

Measurement Range 220K – 300 K (200K – 320K TARGET)

Spectral Range

B1: 10.2-11.2 microns

B2: 11.5-12.5 microns

B3: 14.4-15.4 microns (CALIBRATION over CO2 absorption line)iFoV 60ºx45º

Angular Resolution 0.1 º @ FOV center (= 4.4 mrad) [0.25º THRESHOLD]

Absolute temperature accuracy TBD. Depends on final NETD for the selected bands and calibration accuracy [+/-3K TARGET]

Mass 14 kg (20% margin included) [7kg TARGET]

Power 22 W (20% margin included) [11W TARGET]

Dimensions 400x300x225mm [300x300x500mm MAX.]

IR Camera Detector (Microbolometer)

1. Candidates already identified in December 2009 report.2. Baseline is ULIS-IR microbolometer, with the following parameters:

3. A 6-month qualification plan using a set of 20 detectors has been prepared. It should be executed before PDR. Alternative detectors may be subjected to ITAR (but this should not be a problem for the JEM-EUSO mission).

IR Camera Optical Design

2 3 5 6

7 8

10 11 12

13

EUSO Scale: 2.00 ORA 18-Jun-10

12.50 MM

EFL=10 mm #F=1 REFRACTIVE INDICES (8-12 microns)GLASS Name (nm) 12000.00 10400.00 8000.00GERMANIUM 4.002215 4.003118 4.005632

Cold Stop

IR Camera Thermal & Mechanical Design

• Filters and calibration blackbody (BB) inserted between the optics and the detector (roughly at exit pupil).

• IMAGING mode. Filters B1 and B2 are exchanged each ~10 seconds in order to obtain overlapped images of the camera FoV (60ºx45º). Stereo reconstruction is possible with this configuration for each spectral band.

• CALIBRATION mode. A complete sequence (B1-B2-B3-BB) is performed in less than ~40 seconds to avoid any loss of data. Calibration frequency needs to be analyzed.

SATELLITE IF

Mechanism

Baffle & optics

Filter 3

Black Body

Shielding & MLI

Optical bench

Detector & TEC

Radiator

ICU-CCU-PSU

Filter 2

Filter 1

Sensia (UC3M SPIN OFF) contribution to JEM-EUSO Mission

Simulation of the radiometric transfer problem in cloudscenarios of interest in JEM-EUSO

Algorithms development for cloud temperature retrievalbased on a microbolometer IR camera

Development of a laboratory a camera breadboard basedon a VOx focal plane array for testing multispectralresponse.

VOx engine

LWIR optics50 mm

Blackbody

Output Image

Control and acquisition system

LIDAX contribution to JEM-EUSO IRCAM Phase AMain Goals

• Consolidate thermo-mechanical architecture and definition of Thermal Control S/S

• Support to System Engineering in the elaboration of Requirement List and SRR documentation

LIDAX contribution to JEM-EUSO IRCAM Phase A

• Thermal Control S/S requirements capture based on:– Current opto-mechanical design– Current Tolerancing analysis– Components temperature range specification– Thermal Environment

• Thermal Control S/S Architecture trade-off– ¿Active or Passive?– Heating or cooling– Sensors ¿?

• Thermal analysis at Instrument and S/S level will support this architecture

• Contribution to documentation• Structural analysis

Use the experience and know-how of Arquimea in the design of ASICs for space application (“rad-hard” techniques and high reliability)

European foundry service specialized in microbolometer (α-Si) deposition techniques would be used for microbolometer deposition over custom

ROIC.

Custom microbolometer designed to fit specific requirements of the project.

ARQUIMEA Custom Microbolometer Development

ARQUIMEA Multispectral monolithic device

IR camera proposal follows a bi-spectral philosophy.As baseline a filter-wheel is proposed. But this approximation implies a hard impact in mass,volume and power budgets.A new innovative approximation is proposed: integrate in the same device the filters andthe microbolometer. This would permit remove the filter wheel obtaining a monolithicmultispectral device (in this case just a bi-spectral device is needed, but the approximation isvalid for more wavelengths)

JEM-EUSOTowards the first EHECR’s Observatory from Space...