información de nanotecnología

8
Bibliografías: Álvarez Barreto, Cristina (2011). “Visión general de la nanotecnología y sus posibilidades en la industria de alimentos”. Shelley, Toby(2006). “Nanotecnología: nuevas promesas nuevos peligros”

Upload: aguirrealfonso

Post on 28-Dec-2015

20 views

Category:

Documents


1 download

TRANSCRIPT

Bibliografías: Álvarez Barreto, Cristina (2011). “Visión general de la nanotecnología y sus posibilidades en la industria de alimentos”.

Shelley, Toby(2006). “Nanotecnología: nuevas promesas nuevos peligros”

Nuevos avances en nanotecnología pone a tiro a las supercomputadoras del mañana. Dentro de unos años, las computadoras serán bastante diferentes de las actuales. Los avances en el campo de la nanotecnología harán que las computadoras dejen de utilizar el silicio como sistema para integrar los transistores que la componen y empiecen a manejarse con lo que se llama mecánica cuántica, lo que hará que utilicen transistores a escala atómica.

Aproximadamente para el año 2010, el tamaño de los transistores o chips llegará a límites de integración con la tecnología actual, y ya no se podrán empaquetar más transistores en un área de silicio, entonces se entrará al nivel atómico o lo que se conoce como mecánica cuántica.

Las computadoras convencionales trabajan simbolizando datos como series de unos y ceros –dígitos binarios conocidos como bits. El código binario resultante es conducido a través de transistores, switches que pueden encenderse o prenderse para simbolizar un uno o un cero.

Las computadoras cuánticas, sin embargo, utilizan un fenómeno físico conocido como “superposición”, donde objetos de tamaño infinitesimal como electrones o átomos pueden existir en dos o más lugares al mismo tiempo, o girar en direcciones opuestas al mismo tiempo. Esto significa que las computadoras creadas con procesadores superpuestos puedan utilizar bits cuánticos –llamados qubits- que pueden existir en los estados de encendido y apagado simultáneamente.

De esta manera, estas computadoras cuánticas pueden calcular cada combinación de encendido y apagado al mismo tiempo, lo que las haría muchísimo más veloces que los actuales procesadores de datos a la hora de resolver ciertos problemas complejos de cálculos matemáticos. La investigación de la computación cuántica está ganando terreno rápidamente en laboratorios de investigación militares, de inteligencia y universidades alrededor del planeta. Entre otros, están involucrados gigantes como AT&T, IBM, Hewlett-Packard, Lucent and Microsoft .

En electrónica, miniaturización es sinónimo de éxito. Reducir el tamaño de los circuitos integrados implica una respuesta más rápida y un menor consumo de energía. Y en esta escalada hacia lo extremadamente pequeño, la nanotecnología se convierte en un aliado imprescindible.

Informática a nanoescala

Hasta ahora nos habíamos habituado a que la Ley de Moore, que afirma que la capacidad de nuestros ordenadores se dobla cada 18 meses, se cumpliera a rajatabla. Pero la realidad muestra que, utilizando la tecnología convencional, que utiliza los transistores como pieza básica, este desarrollo alcanzará pronto sus límites. La alternativa para que el progreso no se detenga es crear los dispositivos de almacenamiento a escala molecular, nuevos métodos de cálculo, interruptores moleculares y cables de tubos de carbono estirados. En definitiva, lo que se conoce como ordenadores cuánticos.

El primer paso hacia estos dispositivos se producía a finales de agosto de 2001, cuando los investigadores de IBM crearon un circuito capaz de ejecutar cálculos lógicos simples mediante un nanotubo de carbono autoensamblado. En estos momentos es la empresa Hewlett-Packard la que se encuentra más cerca de crear una tecnología capaz de sustituir a los actuales procesadores. Hace tan solo unos meses daban un paso de gigante al lograr que una nueva técnica basada en sistemas usados actualmente en matemáticas, criptografía y telecomunicaciones les permita crear dispositivos con equipos mil veces más económicos que los actuales. La compañía promete que habrá chips de sólo 32 nanómetros en el mercado dentro de 8 años.

Otras empresas como IBM o Intel le siguen de cerca. En concreto, en el marco de la First Internacional Nanotechnology Conference celebrada el pasado mes de junio, Intel desvelaba por primera vez públicamente sus planes para el desarrollo de chips de tamaño inferior a 10 nanómetros, combinando el silicio con otras tecnologías que están aún en sus primeras fases de investigación.

Tan importante como la velocidad de procesamiento es la capacidad de almacenamiento. Eso lo sabe bien Nantero, una empresa de nanotecnología que trabaja en el desarrollo de la NRAM. Se trata de un chip de memoria de acceso aleatorio no volátil y basada en nanotubos. Sus creadores aseguran que podría reemplazar a las actuales memorias SRAM, DRAM y flash, convirtiéndose en la memoria universal para teléfonos móviles, reproductores MP3, cámaras digitales y PDAs.

Por su parte, investigadores de la Texas A&M University y del Rensselaer Polytechnic Institute han diseñado un tipo memoria flash de nanotubo que tiene una capacidad potencial de 40 gigas por centímetro cuadrado y 1000 terabits por centímetro cúbico. Y la compañía Philips trabaja en una nueva tecnología de almacenamiento óptico que permite el almacenaje de hasta 150 gigabytes de datos en dos capas sobre un medio óptico similar a los actuales DVDs.

Computadoras casi invisibles

La nanotecnología será un salto importante en la reducción de los componentes, y ya hay avances, pero muchos de estos adelantos se consideran secretos de las empresas que los están desarrollando.

Algunos estudios pronostican que la técnica híbrida, que conjuga microcircuitos semiconductores y moléculas biológicas, pasará bastante pronto del dominio de la fantasía científica a las aplicaciones comerciales. Son varias las moléculas biológicas que se podrían utilizar con vistas a su utilización en componentes informáticos.

Lo que las tendencias en el mercado nos indican, es que entre más pequeño es un aparato electrónico, mejor es éste. Al mismo tiempo que queremos que los chips y los procesadores sean más rápidos, queremos que desarrollen más funcionen y consuman menos energía. Es aquí donde entra la Nanotecnología.

Una computadora personal promedio, como muchas de las que están en este salón, tiene aproximadamente 125 millones de transitores, cada uno de ellos funcionando al mismo tiempo que los otros.

Einstein nos dice que no hay nada más rápido que la luz. De hecho, cuando alguien llegue a alcanzar la velocidad de la luz, el tiempo pasa más lento. Cuando enviamos un correo urgente o una tarea a última hora, queremos que se envíe a la velocidad de la luz.

To a large extent, the computer’s processing ability relies upon the size of the device — the smaller the device, the better. Not only does the smaller size speed up computer processing, it also allows greater portability — after all, where would laptops, PDAs, and cellphones be without fast computing power and small size? As our demands increase for faster and more easily portable computing power, so does our demand for smaller and smaller computer chips. At the same time that we want our processors smaller, we want them to perform more functions and consume less power. But there’s a physical limit on how small a chip can be when we use our current top-down manufac- turing techniques. Heat dissipation and electronic interference are also big hurdles that prevent us from going smaller.

Today’s computer chips (and the integrated circuits that turn up in all sorts of everyday electronic devices) have to come from somewhere; fabrication is the industrial-sounding word for the complex process that creates them. Your computer processor in your home computer has roughly 125 million transistors — each working in unison with the others, flipping those 1s and 0s to help you play video games or file your taxes. Each of these transistors are built in one sitting, layer by layer — basically, you have your substrate (ground layer) and you build up layers of different metals, oxides, or polysili- con, one upon the other, until eventually you get something that resembles your processor.

This isn’t easy — we’re talking over 250 steps over a two-week period, in an ultraclean environment, in order to produce just one silicon-based micro- processor. This highlights two very obvious problems in traditional chip fabrication — it takes too darn long and the working environment is a bear that just gets bigger and hungrier for resources. And, as the scale of the prod- uct gets smaller and smaller, we run into additional problems — stray signals on the chip, a need to dissipate built-up heat . . . this is getting costly, in terms of both time and money. If, as recent trends show, the smallest possible feature size decreases about 30 percent every two years — and (presumably) needs more time and money to make — then by 2015, we may hit the wall:

Einstein tells us nothing moves faster than light. In fact, it is so fast that as you

approach the speed of light, time itself starts to slow down. (Now, that’s fast.) So when you want your e-mail or your fax to get to somebody as soon as possible, what you really want to say is “get it there at the speed of light.”

Of course, visible light is just one narrow segment of the electromagnetic spectrum — and all those waves travel at light speed. Telecommunications utilize some of these various forms of light (radio waves or microwaves, for example) to throw information from one spot on the earth to another. With billions of pieces of information flying over our heads every split second or passing below us in an optical cable, the whole world seems to be full of our thoughts. So full, in fact, that it takes a monstrous network of electric devices, cables, and computers to keep it all sorted.

And sorting takes time. Even with the best electronics today, sorting digital signals is not instantaneous, and every device, cable, or computer slows down the flow, even as it’s doing its appointed task of straightening all the signals out. Where then, is that perfect device, the one that does all the work without taking any time at all to do said work? As you might have guessed, nanotechnologists are leading the way here, exploring ways to create an all- optical router that could route the information without having to convert it from light to electricity — in the process increasing its speed by a factor of 100! They are also looking at other applications for nano-designed optics, including ultrasharp image recorders and projectors — even a nano-size laser. In the world of nanotechnology, the future won’t just be smaller; it’ll get a whole lot faster!