influencia de los balances microscópicos en el diseño de ... · del óxido de propileno, de forma...

53
Influencia de los balances microscópicos en el diseño de reactores de flujo-pistón. Grado en Ingeniería Química Trabajo Fin de Grado Autor: Sergio López Rodríguez Tutor/es: Jose Rubén Ruiz Femenia Junio 2017

Upload: others

Post on 14-Oct-2019

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Influencia de los balances microscópicos en el diseño de ... · del óxido de propileno, de forma similar a la reacción con el óxido de etileno. No obstante, mientras que la producción

1

Influencia de los balances

microscópicos en el diseño de

reactores de flujo-pistón.

Grado en Ingeniería Química

Trabajo Fin de Grado

Autor:

Sergio López Rodríguez

Tutor/es:

Jose Rubén Ruiz Femenia

Junio 2017

Page 2: Influencia de los balances microscópicos en el diseño de ... · del óxido de propileno, de forma similar a la reacción con el óxido de etileno. No obstante, mientras que la producción

2

Page 3: Influencia de los balances microscópicos en el diseño de ... · del óxido de propileno, de forma similar a la reacción con el óxido de etileno. No obstante, mientras que la producción

3

ÍNDICE DEL TRABAJO FIN DE GRADO.

Documento 1: Memoria y Anexos……………………………………………4

Documento 2: Planos…………………………………………………………46

Documento 3: Análisis económico……………………………………………48

Page 4: Influencia de los balances microscópicos en el diseño de ... · del óxido de propileno, de forma similar a la reacción con el óxido de etileno. No obstante, mientras que la producción

4

MEMORIA Y ANEXOS

Page 5: Influencia de los balances microscópicos en el diseño de ... · del óxido de propileno, de forma similar a la reacción con el óxido de etileno. No obstante, mientras que la producción

5

ÍNDICE DE LA MEMORIA Y ANEXOS.

RESUMEN. ..................................................................................................................... 6

1. INTRODUCCIÓN. .................................................................................................. 7

2. PLANTEAMIENTO DEL PROBLEMA ............................................................ 10

3. MODELO DE SIMULACIÓN. ............................................................................ 12

3.1. Caracterización del sistema. ............................................................................. 12

3.2. Formulación matemática. ................................................................................. 13

3.3. Configuración del modelo de simulación. ....................................................... 15

3.4. Casos de estudio. ................................................................................................ 16

4. MODELO DE OPTIMIZACIÓN. ....................................................................... 19

4.1. Formulación matemática. ................................................................................. 19

4.2. Análisis económico. ........................................................................................... 19

4.3. Resultados. ......................................................................................................... 21

5. CONCLUSIONES. ................................................................................................ 22

6. NOMENCLATURA .............................................................................................. 24

7. ANEXOS. ............................................................................................................... 27

ANEXO 1. MODELO DE SIMULACIÓN. .............................................................. 27

1.1. Condiciones del modelo de simulación. ........................................................... 27

1.2. Mallado del modelo. ......................................................................................... 29

1.3. Demás resultados de las simulaciones. ............................................................ 30

1.4. Modelo matemático de dispersión. .................................................................. 32

ANEXO 2. LA FUNCIÓN DE INTERPOLACIÓN. ................................................. 35

ANEXO 3. CORRELACIONES DEL ANÁLISIS ECONÓMICO. ........................ 40

ANEXO 4. APLICACIÓN CON CARÁCTER EDUCACIONAL PARA LA

INGENIERÍA DE REACCIONES QUÍMICAS. ................................................................... 42

8. REFERENCIAS .................................................................................................... 44

Page 6: Influencia de los balances microscópicos en el diseño de ... · del óxido de propileno, de forma similar a la reacción con el óxido de etileno. No obstante, mientras que la producción

6

RESUMEN.

Actualmente, la optimización de los equipos de la industria de procesos en base a criterios

económicos (sin dejar de lado el impacto medioambiental) está creciendo de manera significante.

Una de las grandes limitaciones, en este sentido, es el tiempo de computación debido a la

necesidad de optimizar uno o varios objetivos (coste e impacto ambiental generalmente)

utilizando modelos complejos basados en ecuaciones diferenciales. En este trabajo, se ha

propuesto una estructura sistemática para el diseño de reactores tubulares (aplicado a la

producción de propilenglicol a partir de óxido de propileno) que combina un método riguroso de

optimización con un modelo surrogado (del inglés, “surrogate”) con el objetivo de minimizar los

costes de procesado de la materia prima. Los resultados obtenidos muestran tanto las condiciones

de operación como el diseño óptimo de entre los tres casos de estudio realizados.

De forma complementaria, se ha creado una aplicación con carácter docente como

material complementario a la asignatura Diseño de Reactores I del Grado en Ingeniería Química.

Con esta aplicación, generada a partir de la herramienta Application Builder provista en COMSOL

Multiphysic’s, se pretende que el alumno pueda visualizar los gradientes radiales, así como los

fenómenos de transporte implicados en un reactor tubular cuando sucede una reacción de primer

orden. Del mismo modo, también permite calcular la conversión en estas condiciones para poder

estimar el error que se comete al utilizar los modelos ideales de flujo unidimensional.

Palabras clave: optimización, modelo surrogado, modelado, reactores tubulares,

condiciones de operación, COMSOL.

Page 7: Influencia de los balances microscópicos en el diseño de ... · del óxido de propileno, de forma similar a la reacción con el óxido de etileno. No obstante, mientras que la producción

7

1. INTRODUCCIÓN.

El propilenglicol (1,2-propanodiol) es un compuesto orgánico perteneciente al grupo de

los alcoholes, líquido a temperatura ambiente. Se caracteriza por la variedad de usos que precisa,

desde humectante en productos farmacéuticos, cosmética, industria alimentaria, desinfectante,

lubricante hasta anticongelante de alimentos.

La producción de propilenglicol de forma convencional se lleva a cabo por hidratación

del óxido de propileno, de forma similar a la reacción con el óxido de etileno. No obstante,

mientras que la producción de etilenglicol consume entre un 50 y 60% de la producción de óxido

de etileno, el propilenglicol solo requiere un tercio del óxido de propileno como materia prima.

Es por ello que el uso de óxido de propileno resulta más interesante desde el punto de vista

económico, y ha sido objeto de estudio en numerosos campos de investigación desde hace diez

años [1].

Actualmente, la producción de propilenglicol a gran escala es competencia exclusiva de

The Dow Chemical [2], que es el principal productor a nivel mundial (409 mil toneladas métricas

anuales). Las diferentes rutas de obtención son las siguientes:

▪ Hidratación. La hidratación del óxido de propileno da lugar a mezclas de

propilenglicol, dipropilenglicol y tripropilenglicol, junto con poliglicoles de elevado

peso molecular [3]. Este proceso utiliza frecuentemente agua en exceso (15 moles de

agua/mol de óxido de propileno) para maximizar la producción de

monopropilenglicoles [4].

Figura 1. Hidratación del óxido de propileno para dar mezclas de glicoles [5].

Aunque el proceso comercial normalmente utiliza elevadas presiones y temperaturas en

ausencia de catalizador, la utilización de catalizadores ácidos o básicos tales como ácido sulfúrico,

dióxido de carbono o sales de fosfato cuaternarias reducen el exceso de agua requerido; mientras

que sistemas heterogéneos aumentan la selectividad de los monopropilenglicoles [6].

El mecanismo de reacción tiene lugar mediante la apertura del anillo epóxido en medios

ácidos o básicos. Esta apertura es prácticamente exclusiva de ciclos de tres carbonos ya que

acumulan una tensión importante y son susceptibles a ataques nucleófilos. En medio ácido se

Page 8: Influencia de los balances microscópicos en el diseño de ... · del óxido de propileno, de forma similar a la reacción con el óxido de etileno. No obstante, mientras que la producción

8

produce la protonación del oxígeno, que genera una gran polaridad positiva sobre los carbonos,

especialmente sobre el más sustituido ya que tienen mayor capacidad para estabilizar la carga.

Así pues, el ataque nucleófilo de los iones hidroxilio se dará sobre el carbono con más

sustituyentes (inversamente a lo que tiene lugar un medio básico, que el ataque se produce sobre

el menos sustituido) abriendo el ciclo, puesto que el oxígeno protonado se comporta como un

buen grupo saliente. El mecanismo de reacción, muy similar a una 𝑆𝑁1 , se muestra en la siguiente

Figura:

Figura 2. Mecanismo de reacción en la apertura de los oxaciclopropanos [7].

▪ Reacciones con ácidos. El óxido de propileno y los acidos carboxílicos producen

monoésteres de propilenglicol cuando reaccionan en proporciones equimolares. En

presencia de catalizadores básicos, estos monoésteres son sometidos a reacciones de

trasnesterificacion y dar lugar a mezclas de propilenglicoles, monoésteres y diésteres

[8]

Figura 3. Reacción entre al grupo carboxilo y el óxido de propileno para dar mezclas de esteres

de propilenglicoles [9].

A pesar de los numerosos estudios realizados en los últimos años, todos ellos dedicados

a la búsqueda de nuevos catalizadores que mejores el proceso de obtención del propielnglicol

(como por ejemplo a partir de glicerol [10], el proceso convencional de hidratación catalizado por

ácido sulfúrico continúa siendo puntero. La principal ventaja de utilizar catalizadores ácidos es

que la reacción ocurre a temperatura ambiente. En este ámbito, Furusawa et al. [11] establecieron

un modelo cinético para la hidratación del óxido de propileno a temperatura ambiente que resultó

en una reacción de orden uno respecto de la concentración del óxido de propileno y de orden cero

respecto del agua, cuando ésta se encuentra en exceso.

Page 9: Influencia de los balances microscópicos en el diseño de ... · del óxido de propileno, de forma similar a la reacción con el óxido de etileno. No obstante, mientras que la producción

9

El objetivo del presente proyecto consiste, pues, en la simulación de un reactor tubular

con diferentes condiciones de operación y en la optimización de las mismas con el mínimo coste

de procesado de propilenglicol posible. La simulación se ha llevado a cabo tomando como

referencia un ejercicio de conversión de óxido de propileno en propilenglicol provisto en el Fogler

[12].

La novedad de este proyecto reside en la conjunción de la simulación usando el software

comercial basado en los elementos finitos COMSOL Multiphysic’s, que permite resolver

ecuaciones en derivadas parciales (PDE), y la posterior optimización de las condiciones de

operación del reactor mediante un modelo sustituido que contenga a las variables principales del

proceso, y que permita facilitar los tiempos de cálculo en la optimización. Así pues, el procesado

del propilenglicol se ha estudiado considerando:

1. Reactor adiabático.

2. Reactor isotermo.

3. Reactor con fluido refrigerante.

El problema de optimización, en este sentido, se ha planteado como un problema no lineal

con diferentes casos de estudio. Es por ello que no es necesario plantear superestructura alguna;

basta con considerar las tres condiciones de operación anteriormente descritas y realizar los

estudios por separado y decidir qué condiciones son las más adecuadas 1

La conversión del óxido de propileno a propilenglicol, definida como

𝑋𝐴 = 1 −𝑛𝑎

𝑛𝑎𝑜 ,

es la variable dependiente, mientras que las variables independientes que definen el

sistema de reacción son: Temperatura de entrada al reactor, 𝑇𝑖𝑛; Volumen del reactor, V; caudal

molar del óxido de propileno, 𝑛𝑎. Y que, en fase líquida (densidad constante), se puede

reemplazar por concentraciones.

1 El problema podría plantearse como un MINLP, pero dado el grado de no linealidad de las ecuaciones y evitar problemas

de convergencia se ha estudiado cada caso por separado.

Page 10: Influencia de los balances microscópicos en el diseño de ... · del óxido de propileno, de forma similar a la reacción con el óxido de etileno. No obstante, mientras que la producción

10

2. PLANTEAMIENTO DEL PROBLEMA

En el presente trabajo, la optimización de las condiciones de operación del reactor que

dan lugar al mínimo coste de producción de propilenglicol se puede plantear tal y como se muestra

en el siguiente diagrama de flujo:

Figura 4. Algoritmo resumido para llevar a cabo la optimización rigurosa.

El procedimiento se resume tal y como se enuncia a continuación:

Primeramente, conocido el rango de las variables independientes del modelo (establecido

para que garantice una conversión mínima aceptable, y cuya información viene proporcionada en

[13] ) se simulan en COMSOL Multiphysic’s todas las combinaciones obtenidas que mejor pueden

ajustar el modelo a dicho rango. La conversión obtenida en cada simulación, junto con las

variables independientes se ajustan a una superficie de interpolación obteniéndose un modelo

sustituido o surrogado (del inglés, “surrogate”). Este modelo, que generalmente consiste en una

suma de polinomios de grado G, sirve de base para llevar a cabo la posterior optimización.

La descripción detallada de la conexión MATLAB – COMSOL Multiphysic’s a través del

modelo surrogado aparece en el Anexo 2 del presente informe.

Page 11: Influencia de los balances microscópicos en el diseño de ... · del óxido de propileno, de forma similar a la reacción con el óxido de etileno. No obstante, mientras que la producción

11

Asimismo, se han tenido en cuenta las siguientes consideraciones para llevar a cabo la

simulación:

Consideraciones generales.

▪ No hay gradiente de velocidad en la dirección radial a lo largo del reactor. Esto es

∇𝑈𝑟 = 0.

▪ En la camisa refrigerante solo hay variación axial de la temperatura.

▪ La caída de presión a lo largo del reactor es despreciable.

▪ Estado estacionario.

Page 12: Influencia de los balances microscópicos en el diseño de ... · del óxido de propileno, de forma similar a la reacción con el óxido de etileno. No obstante, mientras que la producción

12

3. MODELO DE SIMULACIÓN.

3.1. Caracterización del sistema.

La reacción estudiada consiste en la conversión de óxido de propileno y agua en

propilenglicol en fase líquida:

𝐴(𝑙) + 𝐵(𝑙) ↔ 𝐶(𝑙)

(1)

En donde se ha denotado A al oxido de propileno, B al agua y C al propilenglicol para

una mayor facilidad de lectura.

A continuación, se muestra un esquema de la geometría del modelo, que incluye al reactor

adiabático y al reactor refrigerado.

Figura 5. Modelo de la geometría para un modelo 2D con un eje de simetría. A la izquierda, modelo para

un reactor con camisa refrigerante; a la derecha, modelo para un reactor adiabático.

El haber incluir el aislante en el esquema del reactor adiabático anterior es solo de carácter

opcional, ya que no es necesario tenerlo en cuenta para llevar a cabo la simulación. No obstante,

sí que se deberá incluir en el análisis económico.

Page 13: Influencia de los balances microscópicos en el diseño de ... · del óxido de propileno, de forma similar a la reacción con el óxido de etileno. No obstante, mientras que la producción

13

3.2. Formulación matemática.

El sistema está descrito por un conjunto de ecuaciones en derivadas parciales sobre una

geometría (o dominio) 2D que representa la sección de un reactor tubular en el plano rz. (ver

Figura 4). Los cuatro contornos que definen la geometría representan la entrada, la salida y la

pared del reactor. El modelado matemático del reactor se basa en un problema de ingeniería de

reacciones químicas. Como tal, los balances de materia, energía y cantidad de movimiento

acoplados con la cinética de reacción son las ecuaciones que gobiernan el proceso. Dado que la

geometría empleada posee un eje de simetría, el software solo necesita resolver dichas ecuaciones

en medio dominio de la Figura 4, lo que simplifica el tiempo de cálculo considerablemente.

Los balances de materia, energía y cantidad de movimiento se describen mediante

ecuaciones diferenciales en derivadas parciales (cuyo acrónimo en inglés es PDE,” Partial

Differential Equations”). Éstas ya vienen implementadas en la interfaz de COMSOL

Multiphysic’s en los módulos Transport of Diluted Species, Heat Transfer in Fluids, y Coefficient

From Boundary PDE ( este último para simular el gradiente de temperaturas en la camisa).

Balance de materia para el reactivo A:

𝐷𝐴

1

𝑟(

𝜕𝐶𝐴

𝜕𝑟) + 𝐷𝐴 (

𝜕2𝐶𝐴

𝜕2𝑟) + 𝐷𝐴

𝜕2𝐶𝐴

𝜕2𝑧− 2𝑈 (1 − (

𝑟

𝑅)

2

)𝜕𝐶𝐴

𝜕𝑧+ 𝑟𝐴 = 0

(2)

Donde 𝐷𝐴 es la difusividad efectiva del reactivo A (m²/s), 𝐶𝐴 es la concentración del

mismo (mol/m³), U es la velocidad superficial (m/s), R es el radio del reactor (m) y 𝑟𝐴 es la

velocidad de reacción referida a la especie A (mol/m³s). De la ecuación (2) es posible deducir una

expresión (modelo de dispersión) analítica bajo ciertas condiciones operacionales. La deducción

puede comprobarse en el Anexo 1.

Balance de energía en el interior del reactor:

𝑘𝑒

1

𝑟(

𝜕𝑇

𝜕𝑟) + 𝑘𝑒 (

𝜕2𝑇

𝜕2𝑟) + 𝑘𝑒 (

𝜕2𝑇

𝜕2𝑧) − 2𝑈 (1 − (

𝑟

𝑅)

2

) 𝜌𝐶𝑃

𝜕𝑇

𝜕𝑧− 𝑟𝐴(−∆𝐻𝑅) = 0

(3)

Donde 𝑘𝑒 es la conductividad térmica (W/m²K), T en la temperatura en el interior del

reactor (K), 𝜌 es la densidad de la mezcla (kg/m³), Cp es la capacidad calorífica de la mezcla

(J/mol K) y ∆𝐻𝑅 es la entalpía de reacción (J/mol).

Page 14: Influencia de los balances microscópicos en el diseño de ... · del óxido de propileno, de forma similar a la reacción con el óxido de etileno. No obstante, mientras que la producción

14

Balance de energía del fluido en la camisa refrigerante:

𝜕𝑇𝑗

𝜕𝑧=

2𝜋𝑅𝑈𝑘(𝑇 − 𝑇𝑗)

𝑚𝑐𝐶𝑃𝐶𝑂

(4)

En donde 𝑇𝑗 es la temperatura del fluido refrigerante (K), 𝑚𝑐 es el caudal másico de fluido

que circula (kg/s), 𝐶𝑃𝐶𝑂 es la capacidad calorífica del mismo (J/kgºC) y 𝑈𝑘 es el coeficiente global

de transferencia de calor (W/m²K).

Las condiciones de contorno necesarias pero no suficientes, incluyendo el caso en que se

emplee el refrigerante, se muestran a continuación

Tabla 1. Condiciones de contorno del sistema.

En 𝑧 = 0:

𝐶𝐴(𝑟, 0) = 𝐶𝐴𝑂

(5)

𝑇(𝑟, 0) = 𝑇𝑜

(6)

𝑇𝑗(𝑟, 0) = 𝑇𝑗𝑂

(7)

En 𝑧 = 𝐿:

𝜕𝐶𝐴

𝜕𝑧(𝑟, 𝐿) = 0

(8)

𝜕𝑇

𝜕𝑧(𝑟, 𝐿) = 0

(9)

En 𝑟 = 𝑅:

𝜕𝐶𝐴

𝜕𝑧(𝑅, 𝑧) = 0

(10)

𝜕𝑇

𝜕𝑧(𝑅, 𝑧) =

𝑈𝐾

𝑘𝑒

(𝑇 − 𝑇𝑗)

(11)

Page 15: Influencia de los balances microscópicos en el diseño de ... · del óxido de propileno, de forma similar a la reacción con el óxido de etileno. No obstante, mientras que la producción

15

3.3. Configuración del modelo de simulación.

Los pasos seguidos para llevar a cabo la simulación se enuncian a continuación. Nótese

que el diseño de la geometría, las variables y los parámetros no aparecen descritos ya que se listan

en el Anexo 1.

▪ Component Couplings. Integrations.

El cálculo de la conversión de acuerdo a (28) y (29) requiere de dos integrales de

superficie. COMSOL Multiphysic’s permite realizar integrales numéricas de superficie o de

volumen e incluso modificar el orden de integración mediante la herramienta Integration. Se

deben añadir dos en este caso, a la entrada y a la salida para cuantificar el flujo molar de A en

dichos contornos.

▪ Transport of Diluted Species:

Las variables dependientes de este módulo son las tres concentraciones. Para completar

el sistema, se deben añadir como condiciones de contorno tanto las entradas como las salidas;

esto es, las concentraciones de entrada al reactor (Inflow) y la salida, en donde gobierna la

convección (Outflow). Por último, dado que ocurre una reacción química es necesario añadir un

dominio de reacción (Reactions) de toda geometría. Con ello se asume que la reacción tiene lugar

desde el primer momento en el que las especies se ponen en contacto en el reactor.

▪ Heat transfer in Fluids:

La variable dependiente es la temperatura del interior del reactor. No obstante, para el

caso en el que el reactor esté refrigerado será necesario incluir más condiciones de contorno

además de la entrada y la salida.

Como condición de entrada, la temperatura de entrada al reactor (Temperature). A la

salida, se asume que todo el calor se disipa por convección (Outflow). La disipación de calor

debido a la reacción química ocurre en el propio dominio de reacción (Heat Source). Por último,

se debe añadir el contorno referido a la disipación de calor por convección (Heat Flux), que tiene

lugar a través del área lateral del reactor.

▪ Coefficient From Boundary (PDE):

La variable dependiente es la temperatura del refrigerante. Dado que se ha asumido que

en la camisa solo existe variación axial, no es necesario utilizar otro módulo de Heat Transfer in

Fluids. Por otro lado, para simplificar el tiempo de computación se ha utilizado la interfaz

Coefficient From Boundary puesto que permite establecer las ecuaciones de transporte sobre el

contorno lateral del reactor y no sobre un dominio. Para completar el módulo, solo es necesario

Page 16: Influencia de los balances microscópicos en el diseño de ... · del óxido de propileno, de forma similar a la reacción con el óxido de etileno. No obstante, mientras que la producción

16

añadir la condición de entrada de la temperatura de entrada del refrigerante, en este caso Dirichlet

Boundary Condition, en la parte inferior del reactor.

3.4. Casos de estudio.

Se han propuesto tres casos con diferentes condiciones de operación para llevar a cabo la

reacción (1), tal y como se ha descrito en la introducción de este proyecto (ver sección 1). En

ellos, se ha estudiado el efecto de la variación del caudal molar de entrada del óxido de propileno

(A), longitud de reactor y temperatura de entrada al mismo 2. Los resultados obtenidos mediante

COMSOL Multiphysic’s tras haber implementado el modelo descrito y con las mismas

condiciones de entrada en los tres casos (adiabático, isotermo y refrigerado) se muestran a

continuación:

Figura 6. Evolución de la conversión (superior) y de la temperatura (inferior) considerando

reactor adiabático. Condiciones de entrada: caudal molar de A = 4 mol/s; temperatura de entrada = 302.8

K; longitud del reactor = 4.30 m.

2 El rango de valores de las tres variables independientes está determinado por la malla de puntos (del inglés, ‘Sample

points’) a través de la cual se realiza la interpolación. Ver detalles de la interpolación en Anexo 2.

Page 17: Influencia de los balances microscópicos en el diseño de ... · del óxido de propileno, de forma similar a la reacción con el óxido de etileno. No obstante, mientras que la producción

17

Figura 7. Evolución de la conversión (superior) considerando el reactor isotermo. Condiciones

de entrada: caudal molar de A = 4 mol/s; temperatura de entrada = 302.8 K; longitud de reactor = 4.30 m.

Figura 8. Evolución de la conversión (superior) y de la temperatura (inferior) considerando el

reactor refrigerado. Condiciones de entrada: caudal molar de A = 4 mol/s; temperatura de entrada = 302.8

K; longitud del reactor = 4.30 m.

Page 18: Influencia de los balances microscópicos en el diseño de ... · del óxido de propileno, de forma similar a la reacción con el óxido de etileno. No obstante, mientras que la producción

18

En las Figuras 5-7 se pueden observar los gradientes radiales de la temperatura y de la

conversión. También se puede comprobar que los reactores tubulares poseen zonas calientes (del

inglés “hot spots”), debido a que los gradientes radiales de temperatura son mayores que los

longitudinales, y sobre todo, si la reacción es muy exotérmica como es el caso. A la vista de los

resultados obtenidos, operar en condiciones isotermas no sería viable en el rango de temperaturas

establecido puesto que la conversión promedio a la salida del reactor sería relativamente baja.

Puede comprobarse que la conversión obtenida con el reactor refrigerado es inferior a la

que se obtiene en adiabático. La ventaja de operar con refrigeración en estos casos es el control

de la temperatura del interior del reactor, necesaria si la alguna de las especies posee un punto de

ebullición bajo (55ºC para el óxido de propileno). Por lo que, operar adiabáticamente podría

suponer la vaporización de una parte de él. No obstante, se podría solventar utilizando un

intercambiador de calor a la salida del reactor. Así pues, la elección entre la operación adiabática

o con refrigeración no solo debe hacerse en base a criterios de qué operación da mayor conversión

sino también en función de los costes de operación.

Page 19: Influencia de los balances microscópicos en el diseño de ... · del óxido de propileno, de forma similar a la reacción con el óxido de etileno. No obstante, mientras que la producción

19

4. MODELO DE OPTIMIZACIÓN.

4.1. Formulación matemática.

La formulación del problema de optimización puede ser planteada tal y como se muestra

a continuación:

min z = TAC (𝑥 )

s.t. h (𝑥 ) = 0

g (𝑥 ) ≤ 0

𝑥 𝑙𝑜 ≤ 𝑥 ≤ 𝑥

𝑢𝑝

𝑥 ∈ 𝑅𝑛

donde x es un vector que contiene las variables continuas del proceso tales como: longitud

del reactor, temperatura de entrada y caudal molar del óxido de propileno (A). La función objetivo

TAC(x) representa el coste del procesado de la especie A que se analizará en la siguiente sección.

El conjunto de restricciones de igualdad h(x) = 0 se corresponde con las ecuaciones de los costes,

así como balances de energía; mientras que el conjunto de restricciones de desigualdad g(x) ≤ 0

se corresponde con el rango de especificaciones de las variables continuas y aparecen de forma

detallada en el Anexo 1.

4.2. Análisis económico.

La optimización de las condiciones de operación debe realizarse en base a un análisis

económico de cada proceso considerado con el objetivo de encontrar la solución óptima. En este

caso, el coste asociado a cada proceso, o caso de estudio, está referido al coste por kilogramo de

óxido de propileno. En este trabajo, se ha seguido el algoritmo de cálculo de costes [14], por lo

que el coste del procesado del óxido de propileno ha tenido en cuenta el coste capital, los costes

asociados a las materias primas y los costes referidos a los servicios externos. Evidentemente, un

análisis más exhaustivo comprendería realizar un análisis económico global de todo el proceso

incluyendo la ingeniería de detalle, pero queda fuera del alcance de este proyecto. En la siguiente

Tabla se muestran los parámetros y consideraciones tomadas para el análisis económico.

Page 20: Influencia de los balances microscópicos en el diseño de ... · del óxido de propileno, de forma similar a la reacción con el óxido de etileno. No obstante, mientras que la producción

20

Tabla 2. Parámetros y consideraciones para el análisis económico

Reactor Adiabático

Coste total de procesado, TAC

($/año)

𝐓𝐀𝐂 = 𝐂𝐀𝐏𝐄𝐗 + 𝐎𝐏𝐄𝐗

CAPEX = 𝑪𝒑. 𝒇𝑨𝑵𝑼𝑨𝑳

OPEX = 𝑪𝑼𝑻 + 𝑪𝑹𝑴

(12)

Coste capital (𝐶𝑝)3

𝐶𝑝 = 𝑓(𝑉𝑚, 𝑃, 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙)

(13)

Coste servicios externos (𝐶𝑈𝑇)

𝐶𝑈𝑇 = 𝑓(Á𝑟𝑒𝑎)

(14)

Coste materias primas4 (𝐶𝑅𝑀) 𝐶𝑅𝑀 = 1195 (

$

𝑡𝑜𝑛) . 𝑚𝑃𝑂 (15)

Reactor Isotermo

Coste total de procesado, TAC

($/año)

𝐓𝐀𝐂 = 𝐂𝐀𝐏𝐄𝐗 + 𝐎𝐏𝐄𝐗

CAPEX = 𝑪𝒑. 𝒇𝑨𝑵𝑼𝑨𝑳

OPEX = 𝑪𝑼𝑻 + 𝑪𝑹𝑴

(16)

Coste capital (𝐶𝑝)5

𝐶𝑝 = 𝑓(Á𝑟𝑒𝑎𝑚 , 𝑃, 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙)

(17)

Coste servicios externos (𝐶𝑈𝑇)

𝐶𝑈𝑇 = 𝐶𝐴𝑅 . 𝑓(𝑚𝑎𝑔𝑢𝑎)

𝑚𝑎𝑔𝑢𝑎 = 𝑓(𝑄𝑒𝑙𝑖𝑚𝑖𝑛𝑎𝑑𝑜)

(18)

Coste agua de refrigeración (𝐶𝐴𝑅)

0.06 $/kg (19)

Coste materias primas(𝐶𝑅𝑀) 𝐶𝑅𝑀 = 1195 ($

𝑡𝑜𝑛) . 𝑚𝑃𝑂 (20)

Reactor refrigerado

Coste total de procesado, TAC

($/año)

𝐓𝐀𝐂 = 𝐂𝐀𝐏𝐄𝐗 + 𝐎𝐏𝐄𝐗

CAPEX = 𝑪𝒑. 𝒇𝑨𝑵𝑼𝑨𝑳

OPEX = 𝑪𝑼𝑻 + 𝑪𝑹𝑴

(21)

Coste capital (𝐶𝑝)6

𝐶𝑝 = 𝐶𝑃,𝐻𝐸 + 𝐶𝑃,𝑉

𝐶𝑝,𝑉 = 𝑓(𝑉𝑚, 𝑃, 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙)

𝐶𝑝,𝐻𝐸 = 𝑓(Á𝑟𝑒𝑎𝑚 , 𝑃, 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙)

(22)

Coste servicios externos (𝐶𝑈𝑇) 7

𝐶𝑈𝑇 = 𝐶𝐴𝑅 . 𝑓(𝑚𝑎𝑔𝑢𝑎) (23)

Coste materias primas (𝐶𝑅𝑀) 𝐶𝑅𝑀 = 1195 (

$

𝑡𝑜𝑛) . 𝑚𝑃𝑂 (24)

3 De acuerdo con las correlaciones dadas en [14]. 4 De acuerdo con [17] 5 De acuerdo con las correlaciones dadas en [14]. 6 De acuerdo con las correlaciones dadas en [14]. 7 De acuerdo con Anexo 1.

Page 21: Influencia de los balances microscópicos en el diseño de ... · del óxido de propileno, de forma similar a la reacción con el óxido de etileno. No obstante, mientras que la producción

21

4.3. Resultados.

Los resultados de costes de procesado del óxido de propileno y conversión del mismo se

pueden visualizar en la siguiente Tabla:

Tabla 3. Costes de procesado y conversión obtenidos.

Condiciones isotermas Condiciones adiabáticas Condiciones con refrigeración

Coste total ($/kg

óxido de propileno)

0.715

0.299

1.37

Conversión

- 0.48 0.50

De la Tabla anterior se puede deducir que no es viable operar en condiciones isotermas

puesto que la relación costes de operación / conversión es notablemente elevada. Atendiendo al

resto de condiciones, la configuración optima resulta al operar adiabáticamente dado que los

costes son mínimos comparados con el reactor refrigerado y la conversión que se obtiene es

aceptable. Así pues, el resultado de las condiciones de operación óptimas puede observarse en la

siguiente Figura:

Figura 9. Evolución en la conversión a lo largo del reactor en las condiciones de operación

óptimas.

Condición: Adiabático.

Costes = 0.299 $/kg PO.

Caudal molar de entrada de A = 3.47 mol/s. Temperatura de entrada = 301.5 K. Longitud del reactor = 3.90 m. Conversión de A = 0.45 Error cometido = 6.05%

Page 22: Influencia de los balances microscópicos en el diseño de ... · del óxido de propileno, de forma similar a la reacción con el óxido de etileno. No obstante, mientras que la producción

22

5. CONCLUSIONES.

Se han simulado y optimizado las condiciones de operación de un reactor tubular para la

producción de propilenglicol a partir de óxido de propileno y agua en estado estacionario en base

a minimizar los costes del procesado del propilenglicol. La simulación se ha llevado a cabo en

COMSOL Multiphysic’s, utilizando el módulo de Ingeniería de reacciones químicas, mientras que

para la optimización de las condiciones de operación se ha empleado el solver CONOPT,

implementado en el software de modelado GAMS. Las condiciones óptimas, así como el coste de

procesado del propilenglicol se han obtenido para los distintos casos de estudio.

Con respecto al estudio realizado y posibles mejoras, convendría realizar el estudio en

estado dinámico para comprobar el transcurso de la reacción. Además, se podría simular

utilizando una geometría tridimensional a escala miniaturizada para evitar los gradientes de

temperatura. No obstante, si el objetivo es aumentar la conversión (o intentar alcanzar la

conversión de equilibrio) utilizando un reactor a escala real debido a la tasa de producción de

propilenglicol, podría considerarse un sistema constituido por múltiples reactores tubulares

dispuestos en serie con refrigeración intermedia.

Por último, con objeto de comprobar la validez del modelo implantado de COMSOL para

la simulación, se ha realizado un análisis de sensibilidad. En condiciones isotermas y si la reacción

es de primer orden, la ecuación de conservación de las especies químicas (2) tiene solución

analítica cuando se desprecian los gradientes radiales 8. Representa un caso especial que permite

comparar la solución numérica con la que se obtendría analíticamente, tal y como se muestra en

la siguiente Figura:

Figura 10. Conversión del óxido de propileno 𝑋𝐴 en función de la longitud del reactor L en

condiciones isotermas utilizando método numérico y analítico.

8 La deducción, así como el desarrollo matemático, pueden comprobarse en el Anexo 1.

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

2 2,5 3 3,5 4 4,5 5

Co

nve

rsio

n, X

A

Reactor Length (m)

Numerical, COMSOL

Analytical

Ideal Plug Flow

Page 23: Influencia de los balances microscópicos en el diseño de ... · del óxido de propileno, de forma similar a la reacción con el óxido de etileno. No obstante, mientras que la producción

23

De la Figura anterior se puede observar que la solución numérica se ajusta notablemente

a la analítica, es decir, se trata de una buena aproximación al menos en condiciones isotermas y

en reacciones de primer orden, pero no es generalizable. Del mismo modo, se ha representado la

solución que se obtendría considerando el modelo flujo pistón ideal. Como cabría esperar, la

conversión obtenida es mayor que en los casos anteriores, puesto que no se considera dispersión

axial ni gradientes radiales. Con objeto de estudiar la sensibilidad del modelo, se ha estimado el

error cometido en ambos casos (numérico y analítico) respecto al modelo de flujo pistón ideal:

Tabla 4. Estimación del error cometido en los modelos numérico y analítico respecto al modelo

de flujo-pistón ideal.

L (m) Error respecto modelo

numérico (%)

Error respecto modelo

analítico (%)

2.0 11.7 14.3

2.5 9.40 11.3

3.0 9.50 9.40

3.5 6.60 8.00

4.0 5.60 7.00

4.5 4.80 6.30

5.0 4.40 5.60

Tal y como observa en la Tabla anterior, el error cometido disminuye al aumentar la longitud del

reactor, ya que la dispersión de reactivos es menor y el comportamiento tiende a aproximarse al

del flujo pistón ideal, en donde la dispersión es nula (la función de tiempos de residencia de este

es la función Delta de Dirac). Además, el error cometido no excede del 15% respecto ambos

modelos para longitudes de reactor pequeñas. Con ello, el modelo flujo-pistón puede de ser de

gran utilidad en determinadas condiciones de proceso y longitudes grandes (industria

petroleoquímica) puesto que garantiza una buena aproximación de modelos más rigurosos.

Page 24: Influencia de los balances microscópicos en el diseño de ... · del óxido de propileno, de forma similar a la reacción con el óxido de etileno. No obstante, mientras que la producción

24

6. NOMENCLATURA

Variables

Área Área de intercambio de calor (m²).

𝑄𝑒𝑙𝑖𝑚𝑖𝑛𝑎𝑑𝑜 Calor necesario eliminar del reactor (W).

𝑚𝑎𝑔𝑢𝑎 Caudal másico de agua de refrigeración (kg/s).

𝑛𝐴,𝑖𝑛 Caudal molar de entrada de la especie A (mol/s).

𝑛𝐵,𝑖𝑛 Caudal molar de entrada de la especie B (mol/s).

Qv Caudal volumétrico de la mezcla (m³/s).

𝐶𝐴 Concentración de la especie A (mol/m³).

𝐶𝐵 Concentración de la especie B (mol/m³).

𝐶𝐶 Concentración de la especie C (mol/m³).

𝐶𝐴𝑂 Concentración inicial de la especie A (mol/m³).

K Constate de equilibrio termodinámico.

𝑋𝐴 Conversión de la especie A.

𝐶𝑃 Coste capital ($).

𝐶𝑝𝑜

Coste capital de referencia ($).

𝐶𝑃,𝐻𝐸 Coste capital del intercambiador de calor ($).

𝐶𝑃,𝑉 Coste capital de un recipiente vertical ($).

𝐶𝐴𝑅 Coste del agua de refrigeración ($/kg).

𝐶𝑈𝑇 Coste de los servicios externos empleados ($/año o $/kg o $/ton).

CAPEX Coste total capital ($).

TAC Coste total del procesado del óxido de propileno ($/año).

OPEX Coste total operacional ($/año o $/kg o $/ton).

𝐹𝐴 Flujo molar de la especie A (mol/m²s).

L Longitud del reactor (m).

𝑃𝐴𝑜 Presión de vapor de la especie A (bar).

Page 25: Influencia de los balances microscópicos en el diseño de ... · del óxido de propileno, de forma similar a la reacción con el óxido de etileno. No obstante, mientras que la producción

25

P Presión en el interior del reactor (Pa).

𝑇𝑗 Temperatura del fluido refrigerante (K).

T Temperatura en el interior del reactor (K).

𝑟 Velocidad de reacción global (mol/m³s).

𝑟𝐴 Velocidad de reacción referida a la especie A (mol/m³s).

𝑈 Velocidad superficial (m/s).

Parámetros

𝐶𝑃𝐶 Capacidad calorífica del fluido refrigerante (J/kg ºC).

𝐶𝑃 Capacidad calorífica de la mezcla (J/mol K).

𝑚𝑐 Caudal másico del fluido refrigerante (kg/s).

𝐷𝐴 Coeficiente de difusividad efectiva de la especie A (m²/s).

𝑈𝑘 Coeficiente global de intercambio de calor (W/m²K).

R Constante universal de los gases (J/mol K).

𝐶𝑅𝑀 Coste de las materias primas ($/año o $/kg o $/ton)

𝑀𝐴 Masa molecular de la especie A (kg/mol).

𝑀𝐵 Masa molecular de la especie B (kg/mol).

𝑀𝐶 Masa molecular de la especie C (kg/mol).

Material Material utilizado para fabricar el reactor tubular.

Ra Radio del reactor (m).

𝑇𝑗,𝑖𝑛 Temperatura de entrada del refrigerante (K).

Page 26: Influencia de los balances microscópicos en el diseño de ... · del óxido de propileno, de forma similar a la reacción con el óxido de etileno. No obstante, mientras que la producción

26

Símbolos

𝑘 Conductividad de la mezcla (W/m K)

𝜌𝐴 Densidad de la especie A (kg/m³).

𝜌𝐵 Densidad de la especie B (kg/m³).

𝜌𝐶 Densidad de la especie C (kg/m³).

∆𝐻𝑅 Entalpía de reacción (J/mol).

∆𝐶𝑃 Variación de la capacidad calorífica de la reacción (J/mol K).

Page 27: Influencia de los balances microscópicos en el diseño de ... · del óxido de propileno, de forma similar a la reacción con el óxido de etileno. No obstante, mientras que la producción

27

7. ANEXOS.

ANEXO 1. MODELO DE SIMULACIÓN.

1.1.Condiciones del modelo de simulación.

A continuación, se listan los parámetros de entrada del modelo, que bien se pueden definir como

restricciones o bien como expresiones lógicas en COMSOL Multiphysic’s. Las restricciones del

modelo son las siguientes:

a) Restricciones.

▪ Longitud del reactor, L = 2 ≤ 𝐿 ≤ 5 (m).

▪ Temperatura de entrada al reactor, 𝑇𝑖𝑛 = 298 ≤ 𝑇𝑖𝑛 ≤ 303 (K).

▪ Caudal molar de entrada de la especie A, 𝑛𝐴,𝑖𝑛 = 0.1 ≤ 𝑛𝐴,𝑖𝑛 ≤ 5 (mol/s).

b) Parámetros:

▪ Capacidad calorífica del fluido refrigerante, 𝐶𝑃𝐶𝑂 = 4180 (J/ kg ºC).

▪ Caudal másico de fluido refrigerante, 𝑚𝐶 = 0.5 (kg/s).

▪ Caudal molar de entrada de la especie B, 𝑛𝐵,𝑖𝑛= 20. 𝑛𝐴,𝑖𝑛 (mol/s).

▪ Caudal volumétrico (supuesto constante dado que la reacción ocurre en fase líquida), Qv

= 0.0255 m³/s.

▪ Coeficiente de difusión efectivo de la especie A, 𝐷𝐴 = 7.5 10−5 (m²/s).

▪ Coeficientes ecuación de Antoine del óxido de propileno tomados de [15].

▪ Coeficiente global de intercambio de calor, U = 1300 (W/m² K).

▪ Concentración de entrada de la especie A, 𝐶𝐴𝑂 = 3.92 ≤ 𝐶𝐴𝑂 ≤ 196 (mol/m³).

▪ Concentración de entrada de la especie B, 𝐶𝐵𝑂 = 78.4 ≤ 𝐶𝐵𝑂 ≤ 3920 (mol/m³).

▪ Constante universidad de los gases ideales, R = 8.314 (J/mol K).

▪ Conductividad térmica, 𝑘𝑒 = 0.599 (W/m K).

▪ Densidad de la especie A, 𝜌𝐴 = 830 (kg/m³).

▪ Densidad de la especie B, 𝜌𝐵 = 1000 (kg/m³).

▪ Densidad de la especie C, 𝜌𝐶 = 1040 (kg/m³).

▪ Diámetro interno, Din = 0.85 (m).

▪ Masa molecular de la especie A, 𝑀𝐴= 0.058 (kg/mol).

▪ Masa molecular de la especie B, 𝑀𝐵= 0.018 (kg/mol).

▪ Masa molecular de la especie C, 𝑀𝐶= 0.078 (kg/mol).

▪ Temperatura de entrada del fluido refrigerante, 𝑇𝑗,𝑖𝑛 = 278 (K).

▪ Velocidad superficial de entrada, 𝑈𝑜 = 0.045 (m/s).

Page 28: Influencia de los balances microscópicos en el diseño de ... · del óxido de propileno, de forma similar a la reacción con el óxido de etileno. No obstante, mientras que la producción

28

c) Ley cinética:

𝑟 = 𝑘(𝐶𝐴 −𝐶𝐶

𝐾)

(25)

; en donde k es la constante cinética de reacción (1/s); K es la constante de equilibrio

termodinámico; 𝐶𝐴 es la concentración de la especie A (mol/m³) y 𝐶𝐶 es la concentración de la

especie C (mol/m³).

Datos:

▪ Energía de activación, Ea = 75362 (J/mol).

▪ Factor pre-exponencial, ko = 1.7 1013 (1/h).

d) Termodinámica:

𝐾(𝑇) = 𝐾(𝑇1). exp ⌈∆𝐶𝑃

𝑅ln (

𝑇

𝑇𝑟𝑒𝑓) +

∆𝐶𝑃

𝑅𝑇𝑟𝑒𝑓(

1

𝑇−

1

𝑇𝑟𝑒𝑓) +

∆𝐻𝑜𝑟𝑒𝑓

𝑅(

1

𝑇𝑟𝑒𝑓−

1

𝑇)⌉

(26)

𝐾(𝑇1) = exp (−∆𝐺(𝑇1)

𝑅𝑇1)

(27)

; en donde K(T) es la contante de equilibrio termodinámico a la temperatura T; ∆𝐶𝑃es la variación

de la capacidad calorífica, que se obtiene tras el sumatorio de las capacidades caloríficas de los

componentes multiplicado por su coeficiente estequiométrico (J/mol K); 𝑇𝑟𝑒𝑓 es la temperatura

de referencia (K); R es la constante universal de los gases (J/mol K).

Datos:

▪ Entalpía de reacción estándar de referencia, ∆𝐻𝑜𝑟𝑒𝑓= -84666.6 (J/mol).9

▪ Variación de la energía libre Gibbs estándar, ∆𝐺𝑜 = -13.57 (kJ/mol).

▪ Capacidad calorífica a presión constante de la especie A, 𝐶𝑃𝐴 = 146.54 (J/mol K).

▪ Capacidad calorífica a presión constante de la especie B, 𝐶𝑃𝐵 = 75.36 (J/mol K).

▪ Capacidad calorífica a presión constante de la especie C, 𝐶𝑃𝐶 = 192.59 (J/mol K).

▪ Temperatura de referencia, Tref (K) = 293 (K).

9 Las condiciones estándar vienen referidas a 1bar de presión y no a la temperatura. Nótese que en este caso la temperatura

de referencia es de 293 (K).

Page 29: Influencia de los balances microscópicos en el diseño de ... · del óxido de propileno, de forma similar a la reacción con el óxido de etileno. No obstante, mientras que la producción

29

1.2. Mallado del modelo.

El mallado de la geometría se realiza con objeto de obtener un modelo discretizado.

Existen diverosos tipos de malla: elementos lineales, superficies, plano medio y 3D. En función

de la geometría considerada, se hará uso de uno u otro.

COMSOL Multiphysic’s permite generar la malla automáticamente, de acuerdo a los

módulos de física empleados, o bien generarla manualmente. En los casos en los que el modelo

matemática involucra múltiples módulos de física (problema de multi-física, del inglés,

multiphysic’s), la malla hibrida es, por lo general, la opción más recomendable. En este modelo

en particular, se ha creado una malla cartografiada (del inglés, Mapped mesh). Esta técnica de

mallado es útil en los casos en los que la geometría es sencilla, además de que permite controlar

la distribución de los elementos cuadriláteros. En la siguiente Figura se muestra el mallado de la

geometría:

Figura 11. Mallado del reactor tubular.

Como se puede observar en la Figura 9, se ha aumentado el número de nodos en la entrada

al reactor y en la pared lateral del mismo ya que son zonas en donde los gradientes de

concentración y temperatura más se pueden acentuar. Esto se debe principalmente a las

condiciones no isotermas en las que opera el reactor. Las estadísticas de la malla se detallan en la

siguiente Tabla:

Page 30: Influencia de los balances microscópicos en el diseño de ... · del óxido de propileno, de forma similar a la reacción con el óxido de etileno. No obstante, mientras que la producción

30

Tabla 5. Estadísticas de la malla y de las simulaciones.

Elementos cuadriláteros

10 000

Elementos límite

500

Grados de libertad

71760

Área de la malla (m²)

0.850

Calidad elemento medio 0.505

Tiempo de computación promedio (s /simulación)

35

1.3. Demás resultados de las simulaciones.

Los demás resultados del resto de simulación llevadas a cabo en COMSOL Multiphysic’s

se detallan a continuación en forma de Tabla:

Condiciones adiabáticas:

Tabla 6. Conversión obtenida en las distintas condiciones de entrada

L(m) 𝑛𝐴,𝑖𝑛(mol /s) 𝑇𝑖𝑛(K) Conversión

3.96 1.58 299.21 0.472

4.30 3.97 302.88 0.728

3.37 3.25 298.12 0.330

2.10 4.89 299.98 0.223

2.78 0.21 301.04 0.402

4.54 2.08 301.74 0.718

2.00 0.10 298.00 0.181

2.00 0.10 303.00 0.342

2.00 5.00 298,00 0.167

2.00 5.00 303,00 0.302

5.00 0.10 298.00 0.665

5.00 0.10 303.00 0.727

5.00 5.00 298.00 0.552

5.00 5.00 303.00 0.743

Page 31: Influencia de los balances microscópicos en el diseño de ... · del óxido de propileno, de forma similar a la reacción con el óxido de etileno. No obstante, mientras que la producción

31

Condiciones isotermas:

Tabla 7. Conversión obtenida en las distintas condiciones de entrada.

L(m) 𝑛𝐴,𝑖𝑛(mol /s) 𝑇𝑖𝑛(K) Conversión

3.96 1.58 299.21 0.19

4.30 3.97 302.88 0.27

3.37 3.25 298.12 0.15

2.10 4.89 299.98 0.11

2.78 0.21 301.04 0.16

4.54 2.08 301.74 0.25

2.00 0.10 298.00 0.09

2.00 0.10 303.00 0.14

2.00 5.00 298.00 0.10

2.00 5.00 303.00 0.14

5.00 0.10 298.00 0.21

5.00 0.10 303.00 0.31

5.00 5.00 298.00 0.21

5.00 5.00 303.00 0.31

Condiciones con refrigeración:

Tabla 8. Conversión obtenida en las distintas condiciones de entrada.

L(m) 𝑛𝐴,𝑖𝑛(mol /s) 𝑇𝑖𝑛(K) Conversión

3.96 1.58 299.21 0.40

4.30 3.97 302.88 0.72

3.37 3.25 298.12 0.28

2.10 4.89 299.98 0.17

2.78 0.21 301.04 0.23

4.54 2.08 301.74 0.68

2.00 0.10 298.00 0.05

2.00 0.10 303.00 0.17

2.00 5.00 298.00 0.14

2.00 5.00 303.00 0.25

5.00 0.10 298.00 0.29

5.00 0.10 303.00 0.80

5.00 5.00 298.00 0.47

5.00 5.00 303.00 0.90

Page 32: Influencia de los balances microscópicos en el diseño de ... · del óxido de propileno, de forma similar a la reacción con el óxido de etileno. No obstante, mientras que la producción

32

La conversión se ha obtenido de acuerdo a:

𝑋𝐴 =𝐹𝐴,𝑖𝑛 − 𝐹𝐴,𝑜𝑢𝑡

𝐹𝐴,𝑖𝑛

(28)

Donde:

𝐹𝐴 = ∫ �̇�

𝜕𝜗

. (−𝐷𝐴∇𝐶𝐴 + 𝐶𝐴𝑢) 𝑑𝑠

(29)

; en donde 𝒏 es el vector normal a la dirección del contorno 𝜗 considerado, 𝐶𝐴 (mol/m³)

es la concentración de la especie A, u es la velocidad de flujo y 𝐷𝐴(m²/s) es la difusividad de la

misma.

1.4. Modelo matemático de dispersión.

En este apartado se muestra la deducción de la expresión del modelo de dispersión,

empleada para comparar los resultados obtenidos mediante un método numérico y poder observar

el error cometido.

Partiendo de la ecuación de conservación de materia:

𝐷𝐴

1

𝑟(

𝜕𝐶𝐴

𝜕𝑟) + 𝐷𝐴 (

𝜕2𝐶𝐴

𝜕2𝑟) + 𝐷𝐴

𝜕2𝐶𝐴

𝜕2𝑧− 2𝑈 (1 − (

𝑟

𝑅)

2

)𝜕𝐶𝐴

𝜕𝑧+ 𝑟𝐴 = 0

(30)

Asumiendo que la variación radial es despreciable frente a la variación longitudinal, se

tiene que:

𝐷𝐴

𝜕2𝐶𝐴

𝜕2𝑧− 2𝑈

𝜕𝐶𝐴

𝜕𝑧+ 𝑟𝐴 = 0

(31)

Considerando el caso de una reacción con una cinética de orden uno, y condiciones

isotermas:

Page 33: Influencia de los balances microscópicos en el diseño de ... · del óxido de propileno, de forma similar a la reacción con el óxido de etileno. No obstante, mientras que la producción

33

𝐷𝐴

𝜕2𝐶𝐴

𝜕2𝑧− 2𝑈

𝜕𝐶𝐴

𝜕𝑧− 𝑘𝐶𝐴 = 0

(32)

La ecuación (32) es una ecuación diferencial de segundo orden y con solución analítica.

La resolución se lleva a cabo mediante el planteamiento de la ecuación característica y la

obtención de las soluciones linealmente independientes que satisfagan las condiciones de

contorno establecidas en el problema.

𝑚2 −2𝑈

𝐷𝐴𝑚 −

𝑘

𝐷𝐴= 0

(33)

De donde se obtiene que:

𝐶𝐴(𝑧) = 𝐶1 exp(𝑚1𝑧) + 𝐶2exp (𝑚2𝑧)

(34)

Con

𝑚1 =

2𝑈𝐷𝐴

+ √4𝑈2

𝐷𝐴2 +

4𝑘𝐷𝐴

2

(35)

𝑚2 =

2𝑈𝐷𝐴

− √4𝑈2

𝐷𝐴2 +

4𝑘𝐷𝐴

2

(36)

Aplicando las condiciones de contorno, que vienen dadas en la Tabla 1 del presente

trabajo, se obtiene un sistema de ecuaciones tal que:

𝐶1 + 𝐶2 = 𝐶𝐴𝑂

𝐶1𝑚1 exp(𝑚1𝐿) + 𝐶2𝑚2 exp(𝑚2𝐿) = 0

(37)

Nótese que se trata de las mismas condiciones para el caso de un recipiente del tipo

cerrado-cerrado.

Page 34: Influencia de los balances microscópicos en el diseño de ... · del óxido de propileno, de forma similar a la reacción con el óxido de etileno. No obstante, mientras que la producción

34

De la resolución del sistema de ecuaciones (37) permite obtener el valor de las constantes

𝐶1 y 𝐶2. Así pues, sustituyendo los valores en (34) queda:

𝐶𝐴(𝑧) = 𝐴1(exp(𝑚1𝑧) + 𝐴2exp (𝑚2𝑧)

(38)

En donde:

𝐴1 = 𝐶𝐴𝑂 (1 −𝑚1 exp(𝑚1𝐿) + 𝑚2 exp(𝑚2𝐿)

𝑚1 exp(𝑚1𝐿))

(39)

𝐴2 =𝐶𝐴𝑂𝑚1 exp(𝑚1𝐿) + 𝑚2exp (𝑚2𝐿)

𝑚1exp (𝑚1𝐿)

(40)

𝑚1 =

2𝑈𝐷𝐴

+ √4𝑈2

𝐷𝐴2 +

4𝑘𝐷𝐴

2

(41)

𝑚2 =

2𝑈𝐷𝐴

− √4𝑈2

𝐷𝐴2 +

4𝑘𝐷𝐴

2

(42)

; en donde U es la velocidad superficial del fluido (m/s), k es la constante cinética de

reacción (1/s), 𝐷𝐴 es la difusividad efectiva del reactivo A y que se determina en base a [16]

(m²/s)

Page 35: Influencia de los balances microscópicos en el diseño de ... · del óxido de propileno, de forma similar a la reacción con el óxido de etileno. No obstante, mientras que la producción

35

ANEXO 2. LA FUNCIÓN DE INTERPOLACIÓN.

Con objeto de evaluar la conversión obtenida con el mínimo coste posible, es necesario

relacionar la conversión con las principales variables de operación (longitud de reactor,

temperatura de entrada y caudal molar de entrada de la especie A). Esto es, 𝑋𝐴 = 𝑓(𝐿, 𝑇𝑖𝑛, 𝑛𝐴,𝑖𝑛),

Para ello, es posible recurrir a superficies de interpolación. El método requiere de un

conjunto de puntos que se ajustan por medio de polinomios y términos de funciones base (del

inglés, ‘basis function terms’). El modelo que se obtiene se denomina sustituido (“surrogate”).

El hecho de emplear la función de interpolación y no el módulo de optimización propio que viene

incorporado en COMSOL Multiphysic’s es debido a que, como en toda optimización, es necesario

calcular derivadas. En este sentido, el modelo ‘surrogado’ es una suma de polinomios y funciones

continuas en 𝑅𝑛, por lo que el cálculo de los jacobianos es sencillo en la medida de lo posible.

Por otro lado, debido al número de simulaciones realizadas (42 en total, 14 por cada caso de

estudio), el implementar el módulo de optimización de COMSOL Multiphysic’s en el modelo

original puede conllevar múltiples problemas, desde convergencia debido al punto inicial dado

hasta elevados tiempos de computación.

La secuencia de pasos que se deben seguir para obtener la superficie de interpolación se

detalla a continuación:

▪ Obtener n puntos contenidos en el rango de las variables independientes, 𝒙𝒊 𝑖 =

1, … , 𝑛 donde cada 𝒙𝒊 es un vector de dimensión d. Para este caso se han tomado un

total de 10 puntos. En la siguiente Figura se muestra el resultado gráfico.

Figura 12. Malla de puntos obtenida para la interpolación para el caso de tres variables.

Nótese que la representación en el plano de tres variables no es posible. Las líneas

discontinuas que aparecen son una proyección sobre el plano de 𝑋𝐴. A continuación, se muestran

las superficies obtenidas tras haber implementado la función de interpolación para los tres casos

de estudio:

𝑛𝑎

,𝑖𝑛

(𝑚𝑜

𝑙

𝑠)

L (m)

Page 36: Influencia de los balances microscópicos en el diseño de ... · del óxido de propileno, de forma similar a la reacción con el óxido de etileno. No obstante, mientras que la producción

36

Condiciones isotermas:

Figura 13. Superficies obtenidas en el modelo sustituido (“surrogate”). ISOTERMO. Superior

izquierda, conversión frente a caudal molar de entrada y longitud del reactor; superior derecha,

conversión frente a Temperatura y caudal molar de entrada; inferior, conversión frente a temperatura y

longitud del reactor.

Condiciones adiabáticas:

Page 37: Influencia de los balances microscópicos en el diseño de ... · del óxido de propileno, de forma similar a la reacción con el óxido de etileno. No obstante, mientras que la producción

37

Figura 14. Superficies obtenidas en el modelo sustituido (“surrogate”) ADIABÁTICO.

Superior izquierda, conversión frente a caudal molar de entrada y longitud del reactor; superior derecha,

conversión frente a Temperatura y caudal molar de entrada; inferior, conversión frente a temperatura y

longitud del reactor.

Condición reactor con refrigeración:

Figura 15. Superficies obtenidas en el modelo sustituido (“surrogate”) CON

REFRIGERACIÓN. Superior izquierda, conversión frente a caudal molar de entrada y longitud del

reactor; superior derecha, conversión frente a temperatura y caudal molar de entrada; inferior, conversión

frente a temperatura y longitud del reactor.

Page 38: Influencia de los balances microscópicos en el diseño de ... · del óxido de propileno, de forma similar a la reacción con el óxido de etileno. No obstante, mientras que la producción

38

▪ Aplicar el interpolador (30) para cada combinación de puntos de la malla generada

para obtener n ecuaciones lineales. Resolver el sistema resultante de (m x n )

variables, añadiendo m restricciones para completar el sistema:

𝑦𝑖 = ∑ 𝑎𝐾𝜋𝐾(𝑥𝑖) + ∑ 𝑏𝑗𝜑(𝑥𝑖 − 𝑥𝑗)

𝑛

𝑗=1

𝑚

𝑘=1, 𝑖 = 1, … , 𝑛

∑ 𝑏𝑗𝜋𝑘(𝑥𝑗)

𝑛

𝑗=1

= 0 , 𝑖 = 1, … , 𝑛

(43)

Las restricciones adicionales se deben a que el sistema de por sí posee (n + m) variables,

que se corresponden con los coeficientes 𝑎𝐾 y 𝑏𝑗. Por tanto, es necesario añadir m restricciones

que compatibilicen el sistema.

En donde 𝜑 es la función base (del inglés, ‘basis function’) y se ha tomado, para este

caso, igual a la norma Euclídea al cubo; 𝑥𝑗 es el vector de los n puntos de las variables

independientes; 𝑦𝑖 es el valor que toma la variable dependiente para cada combinación de puntos

de la malla generada; 𝜋𝐾(𝑥𝑖) es el conjunto de polinomios en x de grado G. En este caso: d = 3,

G = 1 por lo que el conjunto toma la forma:

𝜋1(𝑥) = 1, 𝜋2(𝑥) = 𝑥1, 𝜋3(𝑥) = 𝑥2

(44)

▪ Obtener los coeficientes 𝑎𝐾 y 𝑏𝑗.

En la siguiente Tabla se muestran los valores obtenidos de 𝑎𝐾 y 𝑏𝑗 para cada caso de

estudio realizado. La combinación de las variables independientes se encuentra, en forma de

Tabla, en A.3.

Page 39: Influencia de los balances microscópicos en el diseño de ... · del óxido de propileno, de forma similar a la reacción con el óxido de etileno. No obstante, mientras que la producción

39

Tabla 9. Coeficientes de ajuste para la superficie de interpolación.

Condiciones Adiabáticas Condiciones Isotermas Condiciones con refrigeración

𝑎𝐾 𝑏𝑗 𝑎𝐾 𝑏𝑗 𝑎𝐾 𝑏𝑗

0.145 -0.002929 0.0208 3.4E-04 -0.190 0.003912

0.132 0.006752 0.0483 1.6E-03 0.134 -0.001719

-0.022 -0.001772 -0.0005 -1.9E-04 0.042 -0.002643

-0.000762 -2.7E-04 -0.002199

0.001016 6.2E-04 -0.002985

0.001194 -1.3E-03 0.002417

-0.000662 6.1E-06 0.002552

0.000307 -5.1E-04 -0.000464

0.002039 5.1E-04 0.002723

-0.001474 -3.9E-04 -0.000368

0.002134 -1.2E-04 -0.002684

-0.002215 3.1E-04 0.000704

-0.000294 -7.5E-05 -0.000270

-0.003333 -5.1E-04 0.001026

Page 40: Influencia de los balances microscópicos en el diseño de ... · del óxido de propileno, de forma similar a la reacción con el óxido de etileno. No obstante, mientras que la producción

40

ANEXO 3. CORRELACIONES DEL ANÁLISIS ECONÓMICO.

Costes capitales

Correlaciones recipiente

Coste capital de referencia 10

Log 𝐶𝑃𝑜 = 𝐾1 + 𝐾2 log(𝑉) + 𝐾3log (𝑉)2

𝐾1 = 3.5565

𝐾2 = 0.3776

𝐾3 = 0.0905

(45)

Coste capital11 𝐶𝑃 = 𝐶𝑃𝑜(𝐵1 + 𝐵2𝐹𝑃𝐹𝑀).

𝐵1 = 2.25

𝐵2 = 1.82

𝐹𝑃 = 1.00

𝐹𝑀 = 3.60

𝑓𝐴𝑁𝑈𝐴𝐿 =𝑖(1 + 𝑖)𝑛

(1 + 𝑖)𝑛 − 1

i = 0.10

n = 8

CEPCI (2001) = 397.0

CEPCI (2006) = 500.0

CEPCI (2016) = 556.8

(46)

Correlaciones

intercambiador de calor

Coste capital de referencia 12

Log 𝐶𝑃𝑜 = 𝐾1 + 𝐾2 log(Á𝑟𝑒𝑎) + 𝐾3log (Á𝑟𝑒𝑎)2

𝐾1 = 3.7803

𝐾2 = 0.8360

𝐾3 = 0.0349

(47)

Coste capital 13 𝐶𝑃 = 𝐶𝑃𝑜(𝐵1 + 𝐵2𝐹𝑃𝐹𝑀)

𝐵1 = 1.74

𝐵2 = 1.55

𝐹𝑃 = 1.00

𝐹𝑀 = 2.75

𝑓𝐴𝑁𝑈𝐴𝐿 =𝑖(1 + 𝑖)𝑛

(1 + 𝑖)𝑛 − 1

i = 0.10

n = 8

CEPCI (2001) = 397.0

CEPCI (2006) = 500.0

CEPCI (2016) = 556.8

(48)

10 De acuerdo con [14]. 11 De acuerdo con [14]. 12 De acuerdo con [14]. 13 De acuerdo con [14].

Page 41: Influencia de los balances microscópicos en el diseño de ... · del óxido de propileno, de forma similar a la reacción con el óxido de etileno. No obstante, mientras que la producción

41

Costes de los servicios externos

Condiciones isotermas

Coste servicios externos

𝐶𝑈𝑇 = 𝐶𝐴𝑅 . 𝑚𝑎𝑔𝑢𝑎

𝑚𝑎𝑔𝑢𝑎 =𝑄𝑒𝑙𝑖𝑚𝑖𝑎𝑑𝑜

𝐶𝑃𝐶𝑂∆𝑇; ∆𝑇 = 10

𝑄𝑒𝑙𝑖𝑚𝑖𝑎𝑑𝑜 = ∆𝐻. (−𝑟𝐴)

(36)

(37)

(38)

Condiciones con refrigeración

Coste servicios externos

𝐶𝑈𝑇 = 𝐶𝐴𝑅𝑚𝑎𝑔𝑢𝑎

𝑚𝑎𝑔𝑢𝑎 = 0.50 kg/s

(39)

(40)

Page 42: Influencia de los balances microscópicos en el diseño de ... · del óxido de propileno, de forma similar a la reacción con el óxido de etileno. No obstante, mientras que la producción

42

ANEXO 4. APLICACIÓN CON CARÁCTER EDUCACIONAL PARA LA

INGENIERÍA DE REACCIONES QUÍMICAS.

COMSOL Multiphysic’s permite diseñar aplicaciones gracias a la herramienta

“Application Builder” que está implementado en la propia interfaz de COMSOL, de donde se

puede acceder una vez se haya generado el modelo. En este sentido, se ha diseñado una aplicación

con carácter educacional a modo de material lectivo complementario para la asignatura de Diseño

de Reactores I del Grado en Ingeniería Química. Con esta aplicación, los alumnos pueden ver

sobre una geometría de un reactor tubular la variación radial y longitudinal de la concentración,

la temperatura y la conversión durante una reacción de primer orden y con refrigeración.

A continuación, se muestra la interfaz gráfica de la aplicación. Los datos de entrada

aparecen a la izquierda, e incluye la geometría del reactor (diámetro y longitud), la cinética de

reacción (parámetros cinéticos), los datos termodinámicos (capacidades caloríficas y entalpía de

referencia) y las condiciones iniciales (temperatura de entrada, caudal molar de entrada de A,

temperatura de entrada del refrigerante y caudal volumétrico total). Los resultados aparecen sobre

la ventana Results, de donde se pueden obtener los perfiles y superficies de la temperatura y la

conversión a lo largo del reactor, así como la conversión final a la salida obtenida mediante (28).

Page 43: Influencia de los balances microscópicos en el diseño de ... · del óxido de propileno, de forma similar a la reacción con el óxido de etileno. No obstante, mientras que la producción

43

Figura 16. Interfaz de la aplicación generada con la herramienta Application Builder de

COMSOL Multiphysic’s.

Page 44: Influencia de los balances microscópicos en el diseño de ... · del óxido de propileno, de forma similar a la reacción con el óxido de etileno. No obstante, mientras que la producción

44

8. REFERENCIAS

[1] D. Chemical, «Dow Propilenglicol USP/EP,» 2000.

[2] D. Chemical, «Dow Propilenglicol USP/EP,» 2000.

[3] M.W.Forkner, «Union Carbide Chemicals & Plastics Technology». U.S.

Patente 5,260,495, Nov. 1993.

[4] D. C. U. Midland, «A Guide to Glycol Form,» 1981.

[5] D. C. U. Midland, «A Guide to Glycols Form,» 1981.

[6] M. Mileno, H. Mori, N. J. y J. Kasai, «Showa Denko K.K.». U.S. Patente

4.160, 116, 3 Jul 1993.

[7] G. Fernandez, «Apertura de oxaciclopropanos,» 2009. [En línea].

Available: http://quimicaorganica.net.

[8] F. Scholnick, H. Monroe, E. Saffese y N. Wrigley, «Am. Oil Chem Soc.,»

1967.

[9] DowChemical, «A Guide to Glycols Form,» 2000.

[10] C. W. Chiu, «Catalytic conversion of glycerol to propylene glycol:

Synthesis and technology assement,» Columbia, 2006.

[11] T. Furusawa, H. Nishimura y T. Miyauchi, J.Chem.Jpm, 1969.

[12] S. Fogler, «Radial Effects in Tubular Reactors,» de Elements of Chemical

Reaction Engineering, 2006, pp. 558-561.

[13] A. Chauvel y G. Lefebvre, «Synthesis of propylene glycol by hydration of

propylene oxide,» de Petrochemical Process Technical and Economic

Characteristics, Paris, Editions Technip, 1989, p. 26.

[14] R. Turton, R. Bailie, W. B. Whiting y J. A. Shaeiwitz, Analysis, Synthsis,

and Design of Chemical Processes, Boston: Prentice Hall, 2009.

[15] «National Institute of Standards and Technology,» [En línea]. Available:

http://www.nist.gov.

Page 45: Influencia de los balances microscópicos en el diseño de ... · del óxido de propileno, de forma similar a la reacción con el óxido de etileno. No obstante, mientras que la producción

45

[17] «Intratec Solutions, LLC,» Abril 2009. [En línea]. Available:

http://intratec.us/chemical-markets/propylene-oxide. [Último acceso: Mayo 2016].

[18] R. Rice y D. D. DUONG, Applied mathematics and modeling for chemical

engineers, Hoboken, 2012.

Page 46: Influencia de los balances microscópicos en el diseño de ... · del óxido de propileno, de forma similar a la reacción con el óxido de etileno. No obstante, mientras que la producción

46

PLANOS

Page 47: Influencia de los balances microscópicos en el diseño de ... · del óxido de propileno, de forma similar a la reacción con el óxido de etileno. No obstante, mientras que la producción

47

PLANOS

A continuación, se muestra un esquema de la geometría del modelo, que incluye al reactor

adiabático y al reactor refrigerado.

Figura 17. Modelo de la geometría para un modelo 2D con un eje de simetría. A la izquierda, modelo

para un reactor con camisa refrigerante; a la derecha, modelo para un reactor adiabático.

El haber incluir el aislante en el esquema del reactor adiabático anterior es solo de carácter

opcional, ya que no es necesario tenerlo en cuenta para llevar a cabo la simulación. No obstante,

sí que se deberá incluir en el análisis económico.

Page 48: Influencia de los balances microscópicos en el diseño de ... · del óxido de propileno, de forma similar a la reacción con el óxido de etileno. No obstante, mientras que la producción

48

ANÁLISIS ECONÓMICO

Page 49: Influencia de los balances microscópicos en el diseño de ... · del óxido de propileno, de forma similar a la reacción con el óxido de etileno. No obstante, mientras que la producción

49

ANALÍSIS ECONÓMICO.

La optimización de las condiciones de operación debe realizarse en base a un análisis

económico de cada proceso considerado con el objetivo de encontrar la solución óptima. En este

caso, el coste asociado a cada proceso, o caso de estudio, está referido al coste por kilogramo de

óxido de propileno. En este trabajo, se ha seguido el algoritmo de cálculo de costes [14], por lo

que el coste del procesado del óxido de propileno ha tenido en cuenta el coste capital, los costes

asociados a las materias primas y los costes referidos a los servicios externos. Evidentemente, un

análisis más exhaustivo comprendería realizar un análisis económico global de todo el proceso

incluyendo la ingeniería de detalle, pero queda fuera del alcance de este proyecto. En la siguiente

Tabla se muestran los parámetros y consideraciones tomadas para el análisis económico.

Tabla 10. Parámetros y consideraciones para el análisis económico

Reactor Adiabático

Coste total de procesado, TAC

($/año)

𝐓𝐀𝐂 = 𝐂𝐀𝐏𝐄𝐗 + 𝐎𝐏𝐄𝐗

CAPEX = 𝑪𝒑. 𝒇𝑨𝑵𝑼𝑨𝑳

OPEX = 𝑪𝑼𝑻 + 𝑪𝑹𝑴

(12)

Coste capital (𝐶𝑝)14

𝐶𝑝 = 𝑓(𝑉𝑚, 𝑃, 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙)

(13)

Coste servicios externos (𝐶𝑈𝑇)

𝐶𝑈𝑇 = 𝑓(Á𝑟𝑒𝑎)

(14)

Coste materias primas15 (𝐶𝑅𝑀) 𝐶𝑅𝑀 = 1195 (

$

𝑡𝑜𝑛) . 𝑚𝑃𝑂 (15)

Reactor Isotermo

Coste total de procesado, TAC

($/año)

𝐓𝐀𝐂 = 𝐂𝐀𝐏𝐄𝐗 + 𝐎𝐏𝐄𝐗

CAPEX = 𝑪𝒑. 𝒇𝑨𝑵𝑼𝑨𝑳

OPEX = 𝑪𝑼𝑻 + 𝑪𝑹𝑴

(16)

Coste capital (𝐶𝑝)16

𝐶𝑝 = 𝑓(Á𝑟𝑒𝑎𝑚 , 𝑃, 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙)

(17)

Coste servicios externos (𝐶𝑈𝑇)

𝐶𝑈𝑇 = 𝐶𝐴𝑅 . 𝑓(𝑚𝑎𝑔𝑢𝑎)

𝑚𝑎𝑔𝑢𝑎 = 𝑓(𝑄𝑒𝑙𝑖𝑚𝑖𝑛𝑎𝑑𝑜)

(18)

Coste agua de refrigeración (𝐶𝐴𝑅)

0.06 $/kg (19)

Coste materias primas(𝐶𝑅𝑀) 𝐶𝑅𝑀 = 1195 ($

𝑡𝑜𝑛) . 𝑚𝑃𝑂 (20)

14 De acuerdo con las correlaciones dadas en [14]. 15 De acuerdo con [17] 16 De acuerdo con las correlaciones dadas en [14].

Page 50: Influencia de los balances microscópicos en el diseño de ... · del óxido de propileno, de forma similar a la reacción con el óxido de etileno. No obstante, mientras que la producción

50

Reactor refrigerado

Coste total de procesado, TAC

($/año)

𝐓𝐀𝐂 = 𝐂𝐀𝐏𝐄𝐗 + 𝐎𝐏𝐄𝐗

CAPEX = 𝑪𝒑. 𝒇𝑨𝑵𝑼𝑨𝑳

OPEX = 𝑪𝑼𝑻 + 𝑪𝑹𝑴

(21)

Coste capital (𝐶𝑝)17

𝐶𝑝 = 𝐶𝑃,𝐻𝐸 + 𝐶𝑃,𝑉

𝐶𝑝,𝑉 = 𝑓(𝑉𝑚, 𝑃, 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙)

𝐶𝑝,𝐻𝐸 = 𝑓(Á𝑟𝑒𝑎𝑚 , 𝑃, 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙)

(22)

Coste servicios externos (𝐶𝑈𝑇) 18

𝐶𝑈𝑇 = 𝐶𝐴𝑅 . 𝑓(𝑚𝑎𝑔𝑢𝑎) (23)

Coste materias primas (𝐶𝑅𝑀) 𝐶𝑅𝑀 = 1195 (

$

𝑡𝑜𝑛) . 𝑚𝑃𝑂 (24)

Costes capitales

Correlaciones recipiente

Coste capital de referencia 19

Log 𝐶𝑃𝑜 = 𝐾1 + 𝐾2 log(𝑉) + 𝐾3log (𝑉)2

𝐾1 = 3.5565

𝐾2 = 0.3776

𝐾3 = 0.0905

(45)

Coste capital20 𝐶𝑃 = 𝐶𝑃𝑜(𝐵1 + 𝐵2𝐹𝑃𝐹𝑀).

𝐵1 = 2.25

𝐵2 = 1.82

𝐹𝑃 = 1.00

𝐹𝑀 = 3.60

𝑓𝐴𝑁𝑈𝐴𝐿 =𝑖(1 + 𝑖)𝑛

(1 + 𝑖)𝑛 − 1

i = 0.10

n = 8

CEPCI (2001) = 397.0

CEPCI (2006) = 500.0

CEPCI (2016) = 556.8

(46)

Correlaciones

intercambiador de calor

Coste capital de referencia 21

Log 𝐶𝑃𝑜 = 𝐾1 + 𝐾2 log(Á𝑟𝑒𝑎) + 𝐾3log (Á𝑟𝑒𝑎)2

𝐾1 = 3.7803

𝐾2 = 0.8360

𝐾3 = 0.0349

(47)

17 De acuerdo con las correlaciones dadas en [14]. 18 De acuerdo con Anexo 1. 19 De acuerdo con [14]. 20 De acuerdo con [14]. 21 De acuerdo con [14].

Page 51: Influencia de los balances microscópicos en el diseño de ... · del óxido de propileno, de forma similar a la reacción con el óxido de etileno. No obstante, mientras que la producción

51

Coste capital 22 𝐶𝑃 = 𝐶𝑃𝑜(𝐵1 + 𝐵2𝐹𝑃𝐹𝑀)

𝐵1 = 1.74

𝐵2 = 1.55

𝐹𝑃 = 1.00

𝐹𝑀 = 2.75

𝑓𝐴𝑁𝑈𝐴𝐿 =𝑖(1 + 𝑖)𝑛

(1 + 𝑖)𝑛 − 1

i = 0.10

n = 8

CEPCI (2001) = 397.0

CEPCI (2006) = 500.0

CEPCI (2016) = 556.8

(48)

Costes de los servicios externos

Condiciones isotermas

Coste servicios externos

𝐶𝑈𝑇 = 𝐶𝐴𝑅 . 𝑚𝑎𝑔𝑢𝑎

𝑚𝑎𝑔𝑢𝑎 =𝑄𝑒𝑙𝑖𝑚𝑖𝑎𝑑𝑜

𝐶𝑃𝐶𝑂∆𝑇; ∆𝑇 = 10

𝑄𝑒𝑙𝑖𝑚𝑖𝑎𝑑𝑜 = ∆𝐻. (−𝑟𝐴)

(36)

(37)

(38)

Condiciones con refrigeración

Coste servicios externos

𝐶𝑈𝑇 = 𝐶𝐴𝑅𝑚𝑎𝑔𝑢𝑎

𝑚𝑎𝑔𝑢𝑎 = 0.50 kg/s

(39)

(40)

22 De acuerdo con [14].

Page 52: Influencia de los balances microscópicos en el diseño de ... · del óxido de propileno, de forma similar a la reacción con el óxido de etileno. No obstante, mientras que la producción

52

Page 53: Influencia de los balances microscópicos en el diseño de ... · del óxido de propileno, de forma similar a la reacción con el óxido de etileno. No obstante, mientras que la producción

53