habitat diversity and postlarval benthic decapod crustacean … · habitats to support juvenile and...

1
Habitat diversity and postlarval benthic decapod crustacean assemblages in shallow waters of the Ría de A Coruña (NW Spain) Pallas, A., García-Calvo, B., Corgos, A., Freire, J., Godínez-Domínguez, E., Bernárdez, C. & Sampedro, P. 1 Departamento de Bioloxía Animal, Bioloxía Vexetal e Ecoloxía, Universidade da Coruña, Campus da Zapateira s/n, E-15071 A Coruña, Spain 1 Instituto Español de Oceanografía, Centro Oceanográfico de A Coruña, A Coruña Spain 38 th European Marine Biology Symposium. 8-12 September 2003. Universidade de Aveiro. Aveiro, Portugal INTRODUCTION. Distribution and abundance of postlarval phases of coastal benthic decapod crustaceans is related to multiple processes affecting both planktonic (larval supply and differential settlement) and benthic (differential mortality, habitat selection and denso-dependence) stages. The high diversity of decapod assemblages in coastal ecosystems results from the interaction between the above processes and the existing high environmental variability and habitat diversity. This study is an attempt to characterize patterns of habitat use and distribution of juvenile and adult stages of benthic postlarval decapod species in shallow bottoms, identifying the main environmental variables affecting these patterns. The comparative capacity of different habitats to support juvenile and adult diversity was also characterized. J A J A J A J A J A J A J A J A J A J A J A J A J A Paguridea 5 3 580,69 599,02 ** ** 2 2 219,33 169,74 ** 0,06 Pisidia longicornis 6 6 761,47 746,53 ** ** 4 3 158,72 181,19 ** ** Athanas nitescens 3 5 853,99 36,03 ** 0,03 3 3 346,98 263,11 0,05 ** Thoralus cranchii 3 4 557,14 664,91 ** ** 3 4 147,21 228,30 ** ** Hippolyte varians 5 3 591,01 471,58 ** ** 2 2 206,39 199,48 0,23 0,02 Pilumnus hirtellus 4 6 558,43 222,04 ** ** 2 4 221,59 139,13 0,08 0,02 Pilumnus spinifer 4 4 448,60 292,23 ** ** 4 2 119,22 77,20 ** ** Processa edulis 4 1 438,12 134,11 0,02 0,36 1 1 94,67 -47,64 0,07 0,31 Xantho pilipes 6 5 416,78 292,35 ** ** 1 -47,64 0,31 Xantho incisus 5 3 350,50 296,99 ** ** 1 1 -47,64 70,22 0,31 0,08 Hippolyte sp. 1 1 318,66 182,25 0,12 0,29 1 2 93,91 -11,34 0,82 ** Pirimela denticulata 6 2 424,29 103,93 ** 0,02 2 78,77 0,04 Porcellana platycheles 3 3 442,98 150,48 ** ** 1 -16,51 0,14 Palaemon longirostris 5 594,87 ** 2 -16,74 0,11 Galathea strigosa 6 348,89 ** 2 164,14 ** Eualus occultus 5 2 264,77 266,42 ** 0,05 Percentage 87,5 64,3 75,0 57,1 75,0 57,1 56,2 50,0 ** p < 0,01 42,9 36,4 42,9 54,5 42,9 45,5 ** p < 0,01 Variable included Variable included Variable not included Species not present in model (juveniles) in model (adults) in model Sampling site Habitat Sampling site Depth Exposure p ROCKY BOTTOMS KELP HOLDFASTS Depth Exposure Degrees of Freedom AIC Degrees of Freedom AIC p ANALYSIS. Generalized linear models (GLM) were employed to determine the weighted effect of the environmental conditions over the spatial patterns of the postlarval community. The best subsets procedure using the Akaike Information Criterion (AIC) was used to select the best model, and a normal log model was assumed. Null models were employed to extract common diversity patterns among variable combinations. Individual-based rarefaction curves (Gotelli and Graves, 1996), which generate comparative estimates of species number independently of the differences between sample size of the groups compared, were employed as a richness index. The probability of an interspecific encounter PIE (Hurlbert, 1971) was used as an evenness measure. The abundance levels for simulation were fixed SAMPLING. A stratified random survey was carried out along the coast of the Ria de A Coruña (Galicia, NW Spain) during the months of July and August 1998, using a suction sampler operated by divers. Three sampling sites along the main axis of the Ria were selected to identify the meso-scale variability and an array of sampling locations were defined within each site 1 KM CANABAL CANIDE PORTOCOBO 1 KM CANABAL CANIDE PORTOCOBO according to the combination of three micro-scale variables: wave exposure, depth and habitat type. Four replicates were taken in each location. according to the sample with lowest abundance to allow the comparison among samples. Both evenness and rarefaction were estimated using EcoSim software (Gotelli and Entsminger, 2001), which uses a Monte Carlo procedure, and 1000 replicate simulations were performed for each estimate. Rocky Bottoms Pisidia longicornis Athanas nitescens Thoralus cranchii Hippolyte varians Pilumnus spp. Processa edulis Xantho spp. Pirimela denticulata Porcellana platycheles Palaemon spp. Galathea strigosa Eualus occultus Kelp Holdfasts 100 50 0 50 100 50 0 50 100 60 40 20 0 20 40 20 0 20 40 20 0 20 40 60 5 0 5 10 20 10 0 10 20 30 5 0 5 10 5 0 5 10 15 0 5 10 15 0 2 4 6 8 4 2 0 2 4 4 2 0 2 4 10 5 0 5 10 15 6 4 2 0 2 6 4 2 0 2 4 2 0 2 4 0,2 0,0 0,2 0,4 0,6 0,4 0,2 0,0 0,2 0,0 0,2 0,4 0,6 0,00 0,04 0,08 0,12 0,0 0,1 0,2 0 1 2 3 Por t ocobo Can ide Can ab al E x po sed Sheltered Dep th 0 De pth 1 De p th 2 H ol dfast s No. Ind / holdfast Juveniles Adults P o rto c ob o Ca nide Can aba l Expo sed Shel t ered D e pth 0 Dep th 1 D e pt h 2 C ob b l es Juveniles Adults Rock surfaces No. Ind / m 2 LITERATURE CITED. Gotelli, N.J. & Graves, G.R. (1996) Null models in ecology. Smithsonian Institution Press. Washington. Hurlbert, S.M. (1971) The non-concept of species diversity. A critique and alternative parameters. Ecology 52: 577-586 Gotelli, N.J. & Entsminger, G.L. (2001). EcoSim: Null models software for ecology. Version 7.0. Acquired Intelligence Inc. & Kesey-Bear. http://homepages.together.net/~gentsmin/ecosim.htm The GLM results for kelp holdfast samples showed a lower effect of all the factors on juvenile and adult patterns, with no observable differences among variables. A high proportion of the models obtained for this group of samples were not significant. This suggests that the influence of environmental conditions could be attenuated inside kelp holdfasts. These results, altogether with the ontogenic distribution patterns of the species found in holdfasts as well as the significant differences observed in diversity between them and rocky habitats, suggest that holdfasts are used as a temporary shelter rather than a nursery habitat. hypothesis that these areas constitute essential nursery habitats for benthic species. A lower specific diversity was found for adults than for juveniles in nearly all cases (Fig. 1). This difference was more pronounced in Canabal (the most external sampling site). Evenness values for both stages were high (Average PIE > 0.65) in most sampling locations (Table 1). The most internal site (Portocobo) presented a higher homogeneity in richness and evenness values for adults than for juveniles. The most abundant species occurred in higher density for juvenile over adult stages in most cases (Fig. 2). All adults belonged to species also found for juveniles. Three main patterns of juvenile and adult distribution were identified: species without adult presence in the sampled area, such as Galathea strigosa; species that remain in the same area, but with observable ontogenic habitat shifts, which is the case of Eualus occultus and species that keep similar habitat use patterns along the life cycle, e.g. Pisidia longicornis. Although all the tested variables showed an important effect on the distribution of decapod species, variability in spatial patterns is mainly due to habitat type, which is a micro-scale operating factor. Meso-scale variability related to sites along the Ria, as well as other micro-scale factors, i.e. depth and wave exposure, have a lower effect on spatial distribution of post-recruits. Sandy bottom coverage was significant only in sheltered areas of one sampling site and therefore GLM was not fitted. The diversity and evenness found in this habitat were very low due to the dominance of the Paguridea. Early juveniles of this group showed an average density of 427 Ind/m 2 (Fig. 3), reaching 1227 Ind/m 2 at 10 m deep. Data found support the hypothesis that these bottoms are essential recruitment habitats for this group. A similar pattern in the composition of parameters included in the most parsimonious models (GLM) was found between juveniles and adults on rocky bottoms (Table 2). In both cases habitat type was the most frequent variable in models for the most abundant species (87.5% for juveniles; 64.3% for adults), while wave exposure shows the lowest percentage of occurrence in models for both juveniles (56.2%) and adults (50%). Paper available at www.udc.es/dep/bave/jfreire/home.htm RESULTS. Shallow bottoms of the Ria de A Coruña show a wide diversity of habitats and support a highly abundant and diverse community of decapods. Our results support the Fig. 1. Rarefaction diversity curves. The Y axis represents the expected richness for a given sample size (no. of individuals) Fig. 2. Densities of juveniles and adults of the most abundant species in different sites, exposure levels, depths and habitats Table 2. GLM models for rocky bottoms and kelp holdfasts Fig. 3. Densities of juveniles and adults of the group Paguridea in different sites, exposure levels, depths and habitats Portocobo Canide Canabal Sandy Holdfasts Cobbles Rock surfaces Sandy Holdfasts Cobbles Rock surfaces Sandy Holdfasts Cobbles Rock surfaces 10 m 0 m 5 m 10 m 0 m 5 m HABITAT Juveniles Adults DEPTH Juveniles Adults 0 5 10 15 20 25 10 30 50 70 90 110 130 150 0 5 10 15 20 25 10 30 50 70 90 110 130 150 0 5 10 15 20 25 10 30 50 70 90 110 130 150 0 5 10 15 20 25 10 30 50 70 90 110 130 150 0 5 10 15 20 25 10 30 50 70 90 110 130 150 0 5 10 15 20 25 10 30 50 70 90 110 130 150 170 0 5 10 15 20 25 10 30 50 70 90 110 130 0 5 10 15 20 25 10 30 50 70 90 110 0 5 10 15 20 25 10 30 50 70 90 110 130 150 170 0 5 10 15 20 25 10 30 50 70 90 110 130 0 5 10 15 20 25 10 30 50 70 90 110 0 5 10 15 20 25 10 30 50 70 90 110 130 150 Average PIE Variance PIE Average PIE Variance PIE Depth 0 0,525 0,00137 0,762 0,00026 Depth 1 0,839 0,00018 0,689 0,00044 Depth 2 0,206 0,00155 0,693 0 Depth 0 0,861 0,0002 0,859 0 Depth 1 0,795 0,0007 0,690 0,00086 Depth 2 0,760 0,00069 0,664 0,00036 Depth 0 0,870 0,00016 0,853 0 Depth 1 0,886 0,00017 0,816 0,00023 Depth 2 0,870 0,00021 0,805 0,00021 Juveniles Adultos 118 169 137 Abund. level Average PIE Variance PIE Average PIE Variance PIE Depth 0 0,525 0,00137 0,762 0,00026 Depth 1 0,839 0,00018 0,689 0,00044 Depth 2 0,206 0,00155 0,693 0 Depth 0 0,861 0,0002 0,859 0 Depth 1 0,795 0,0007 0,690 0,00086 Depth 2 0,760 0,00069 0,664 0,00036 Depth 0 0,870 0,00016 0,853 0 Depth 1 0,886 0,00017 0,816 0,00023 Depth 2 0,870 0,00021 0,805 0,00021 Juveniles Adultos 118 169 137 Abund. level Average PIE Variance PIE Average PIE Variance PIE Sandy 0,021 0,00026 Holdfasts 0,566 0,00046 0,715 0 Cobbles 0,451 0,00184 0,836 0,00005 Rock surfaces 0,858 0,00014 0,716 0,0007 Holdfasts 0,790 0,00023 0,774 0 Cobbles 0,739 0,00094 0,667 0,00106 Rock surfaces 0,856 0,00024 0,741 0,00048 Holdfasts 0,860 0,00008 0,844 0 Cobbles 0,861 0,00026 0,851 0,00006 Rock surfaces 0,902 0,00009 0,815 0,0001 Abund. level Juveniles Adultos Portocobo Canide Canabal 143 138 148 Average PIE Variance PIE Average PIE Variance PIE Sandy 0,021 0,00026 Holdfasts 0,566 0,00046 0,715 0 Cobbles 0,451 0,00184 0,836 0,00005 Rock surfaces 0,858 0,00014 0,716 0,0007 Holdfasts 0,790 0,00023 0,774 0 Cobbles 0,739 0,00094 0,667 0,00106 Rock surfaces 0,856 0,00024 0,741 0,00048 Holdfasts 0,860 0,00008 0,844 0 Cobbles 0,861 0,00026 0,851 0,00006 Rock surfaces 0,902 0,00009 0,815 0,0001 Abund. level Juveniles Adultos Portocobo Canide Canabal 143 138 148 50 0 50 100 150 200 250 300 350 400 450 Portoc obo Cani de C anabal Exp o sed She lte red Dept h 0 D e pt h 1 Depth 2 C obbl es Juveniles Adults Ro ck s u rf ace s No. Ind / m 2 San dy Table 1. Evenness values 2: 8-12 m 1: 3-5 m 0: Intertidal DEPTH Kelp (Saccorhiza polyschides) holdfasts Cobble and boulder pools Flat rock surfaces covered with algae Rocky bottoms Sandy bottoms HABITAT TYPE Sheltered Exposed WAVE EXPOSURE SPAIN 43ºN 42º 8º W 50 km P O R T U G A L Ría de A Coruña

Upload: others

Post on 17-Oct-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Habitat diversity and postlarval benthic decapod crustacean … · habitats to support juvenile and adult diversity was also characterized. JA J A JA JA J A J A J A JA J A JA J A

Habitat diversity and postlarval benthic decapod crustacean assemblages in shallow waters of the Ría de A Coruña (NW Spain)

Pallas, A., García-Calvo, B., Corgos, A., Freire, J., Godínez-Domínguez, E., Bernárdez, C. & Sampedro, P.1

Departamento de Bioloxía Animal, Bioloxía Vexetal e Ecoloxía, Universidade da Coruña, Campus da Zapateira s/n, E-15071 A Coruña, Spain1 Instituto Español de Oceanografía, Centro Oceanográfico de A Coruña, A Coruña Spain

38th European Marine Biology Symposium. 8-12 September 2003. Universidade de Aveiro. Aveiro, Portugal

INTRODUCTION. Distribution and abundance of postlarval phases of coastal benthic decapod crustaceans is related to multiple processes affecting both planktonic (larval supply and differential settlement) and benthic (differential mortality, habitat selection and denso-dependence) stages. The high diversity of decapodassemblages in coastal ecosystems results from the interaction between the above processes and the existing high environmental variability and habitat diversity. This study is an attempt to characterize patterns of habitat use and distribution of juvenile and adult stages of benthic postlarval decapod species in shallow bottoms, identifying the main environmental variables affecting these patterns. The comparative capacity of different habitats to support juvenile and adult diversity was also characterized.

J A J A J A J A J A J A J A J A J A J A J A J A J A

Paguridea 5 3 580,69 599,02 ** ** 2 2 219,33 169,74 ** 0,06

Pisidia longicornis 6 6 761,47 746,53 ** ** 4 3 158,72 181,19 ** **

Athanas nitescens 3 5 853,99 36,03 ** 0,03 3 3 346,98 263,11 0,05 **

Thoralus cranchii 3 4 557,14 664,91 ** ** 3 4 147,21 228,30 ** **

Hippolyte varians 5 3 591,01 471,58 ** ** 2 2 206,39 199,48 0,23 0,02

Pilumnus hirtellus 4 6 558,43 222,04 ** ** 2 4 221,59 139,13 0,08 0,02

Pilumnus spinifer 4 4 448,60 292,23 ** ** 4 2 119,22 77,20 ** **

Processa edulis 4 1 438,12 134,11 0,02 0,36 1 1 94,67 -47,64 0,07 0,31

Xantho pilipes 6 5 416,78 292,35 ** ** 1 -47,64 0,31

Xantho incisus 5 3 350,50 296,99 ** ** 1 1 -47,64 70,22 0,31 0,08

Hippolyte sp. 1 1 318,66 182,25 0,12 0,29 1 2 93,91 -11,34 0,82 **

Pirimela denticulata 6 2 424,29 103,93 ** 0,02 2 78,77 0,04

Porcellana platycheles 3 3 442,98 150,48 ** ** 1 -16,51 0,14

Palaemon longirostris 5 594,87 ** 2 -16,74 0,11

Galathea strigosa 6 348,89 ** 2 164,14 **

Eualus occultus 5 2 264,77 266,42 ** 0,05

Percentage 87,5 64,3 75,0 57,1 75,0 57,1 56,2 50,0 ** p < 0,01 42,9 36,4 42,9 54,5 42,9 45,5 ** p < 0,01

Variable included Variable included Variable not included Species not present in model (juveniles) in model (adults) in model

Sampling siteHabitat Sampling

site Depth Exposure p

ROCKY BOTTOMS KELP HOLDFASTS

Depth Exposure Degrees of Freedom AICDegrees of

Freedom AIC p

ANALYSIS. Generalized linear models (GLM) were employed to determine the weighted effect of the environmental conditions over the spatial patterns of the postlarval community. The best subsets procedure using the Akaike Information Criterion (AIC) was used to select the best model, and a normal log model was assumed. Null models were employed to extract common diversity patterns among variable combinations. Individual-based rarefaction curves (Gotelli and Graves, 1996), which generate comparative estimates of species number independently of the differences between sample size of the groups compared, were employed as a richness index. The probability of an interspecific encounter PIE (Hurlbert, 1971) was used as an evenness measure. The abundance levels for simulation were fixed

SAMPLING. A stratified random survey was carried out along the coast of the Riade A Coruña (Galicia, NW Spain) during the months of July and August 1998, using a suction sampler operated by divers. Three sampling sites along the main axis of the Ria were selected to identify the meso-scale variability and an array of sampling locations were defined within each site

1 KM

CANABAL

CANIDE

PORTOCOBO

1 KM

CANABAL

CANIDE

PORTOCOBO

according to the combination of three micro-scale variables: wave exposure, depth and habitat type. Four replicates were taken in each location.

according to the sample with lowest abundance to allow the comparison among samples. Both evenness and rarefaction were estimated using EcoSim software (Gotelli and Entsminger, 2001), which uses a Monte Carlo procedure, and 1000 replicate simulations were performed for each estimate.

Rocky Bottoms

Pisidialongicornis

Athanasnitescens

Thoraluscranchii

Hippolytevarians

Pilumnusspp.

Processaedulis

Xantho spp.

Pirimeladenticulata

Porcellanaplatycheles

Palaemonspp.

Galatheastrigosa

Eualusoccultus

Kelp Holdfasts

100

50

0

50

100

50

0

50

100

6040200

2040

20

0

20

40

20

0

20

40

60

5

0

5

10

20100

102030

5

0

5

10

5

0

5

10

15

0

5

10

15

0

2

4

6

8

4

2

0

2

4

4

2

0

2

4

10505

1015

6

4

2

0

2

642024

2

0

2

4

0,2

0,0

0,2

0,4

0,6

0,4

0,2

0,0

0,2

0,0

0,2

0,4

0,6

0,00

0,04

0,08

0,12

0,0

0,1

0,2

0

1

2

3

PortocoboCanideCanabalExposedShelteredDepth 0Depth 1Depth 2HoldfastsNo

. Ind

/ hol

dfas

t Juveniles

AdultsPortocoboCanideCanabalExposedShelteredDepth 0Depth 1Depth 2Cobbles

Juveniles

Adults

Rock

surfaces

No. In

d/ m

2

LITERATURE CITED.Gotelli, N.J. & Graves, G.R. (1996) Null models in ecology. Smithsonian Institution Press. Washington.Hurlbert, S.M. (1971) The non-concept of species diversity. A critique and alternative parameters. Ecology 52: 577-586Gotelli, N.J. & Entsminger, G.L. (2001). EcoSim: Null models software for ecology. Version 7.0. Acquired Intelligence Inc. & Kesey-Bear. http://homepages.together.net/~gentsmin/ecosim.htm

The GLM results for kelp holdfast samples showed a lower effect of all the factors on juvenile and adult patterns, with no observable differences among variables. A high proportion of the models obtained for this group of samples were not significant. This suggests that the influence of environmental conditions could be attenuated inside kelp holdfasts. These results, altogether with the ontogenic distribution patterns of the species found in holdfasts as well as the significant differences observed in diversity between them and rocky habitats, suggest that holdfasts are used as a temporary shelter rather than a nursery habitat.

hypothesis that these areas constitute essential nursery habitats for benthic species.

A lower specific diversity was found for adults than for juveniles in nearly all cases (Fig. 1). This difference was more pronounced in Canabal (the most external sampling site). Evenness values for both stages were high (Average PIE > 0.65) in most sampling locations (Table 1). The most internal site (Portocobo) presented a higher homogeneity in richness and evenness values for adults than for juveniles.

The most abundant species occurred in higher density for juvenile over adult stages in most cases (Fig. 2). All adults belonged to species also found for juveniles. Three main patterns of juvenile and adult distribution were identified: species without adult presence in the sampled area, such as Galathea strigosa; species that remain in the same area, but with observable ontogenic habitat shifts, which is the case of Eualus occultus and species that keep similar habitat use patterns along the life cycle, e.g. Pisidia longicornis.

Although all the tested variables showed an important effect on the distribution of decapod species, variability in spatial patterns is mainly due to habitat type, which is a micro-scale operating factor. Meso-scale variability related to sites along the Ria, as well as other micro-scale factors, i.e. depth and wave exposure, have a lower effect on spatial distribution of post-recruits.

Sandy bottom coverage was significant only in sheltered areas of one sampling site and therefore GLM was not fitted. The diversity and evenness found in this habitat were very low due to the dominance ofthe Paguridea. Early juveniles of this group showed an average density of 427 Ind/m2 (Fig. 3), reaching 1227 Ind/m2 at 10 m deep. Data found support the hypothesis that these bottoms are essential recruitment habitats for this group.

A similar pattern in the composition of parameters included in the most parsimonious models (GLM) was found between juveniles and adults on rocky bottoms (Table 2). In both cases habitat type was the most frequent variable in models for the most abundant species (87.5% for juveniles; 64.3% for adults), while wave exposure shows the lowest percentage of occurrence in models for both juveniles (56.2%) and adults (50%).

Paper available at www.udc.es/dep/bave/jfreire/home.htm

RESULTS. Shallow bottoms of the Ria de A Coruña show a wide diversity of habitats and support a highly abundant and diverse community of decapods. Our results support the

Fig. 1. Rarefactiondiversity curves. TheY axis represents theexpected richness fora given sample size(no. of individuals)

Fig. 2. Densities of juveniles and adults of the most abundantspecies in different sites, exposure levels, depths and habitats

Table 2. GLM models for rocky bottoms and kelp holdfasts

Fig. 3. Densities ofjuveniles and adults ofthe group Paguridea in different sites, exposurelevels, depths andhabitats

Portocobo

Canide

Canabal

Sandy Holdfasts Cobbles Rock surfacesSandy Holdfasts Cobbles Rock surfacesSandy Holdfasts Cobbles Rock surfaces 10 m0 m 5 m 10 m0 m 5 m

HABITAT

Juveniles Adults

DEPTH

Juveniles Adults

0

5

10

15

20

25

10 30 50 70 90 110 130 150

0

5

10

15

20

25

10 30 50 70 90 110 130 150

0

5

10

15

20

25

10 30 50 70 90 110 130 150

0

5

10

15

20

25

10 30 50 70 90 110 130 150

0

5

10

15

20

25

10 30 50 70 90 110 130 150

0

5

10

15

20

25

10 30 50 70 90 110 130 150 170

0

5

10

15

20

25

10 30 50 70 90 110 130

0

5

10

15

20

25

10 30 50 70 90 110

0

5

10

15

20

25

10 30 50 70 90 110 130 150 170

0

5

10

15

20

25

10 30 50 70 90 110 130

0

5

10

15

20

25

10 30 50 70 90 110

0

5

10

15

20

25

10 30 50 70 90 110 130 150

Average PIE

VariancePIE

Average PIE

VariancePIE

Depth 0 0,525 0,00137 0,762 0,00026Depth 1 0,839 0,00018 0,689 0,00044Depth 2 0,206 0,00155 0,693 0Depth 0 0,861 0,0002 0,859 0Depth 1 0,795 0,0007 0,690 0,00086Depth 2 0,760 0,00069 0,664 0,00036Depth 0 0,870 0,00016 0,853 0Depth 1 0,886 0,00017 0,816 0,00023Depth 2 0,870 0,00021 0,805 0,00021

Juveniles Adultos

118

169

137

Abund.level Average

PIEVariance

PIEAverage

PIEVariance

PIE

Depth 0 0,525 0,00137 0,762 0,00026Depth 1 0,839 0,00018 0,689 0,00044Depth 2 0,206 0,00155 0,693 0Depth 0 0,861 0,0002 0,859 0Depth 1 0,795 0,0007 0,690 0,00086Depth 2 0,760 0,00069 0,664 0,00036Depth 0 0,870 0,00016 0,853 0Depth 1 0,886 0,00017 0,816 0,00023Depth 2 0,870 0,00021 0,805 0,00021

Juveniles Adultos

118

169

137

Abund.levelAverage

PIEVariance

PIEAverage

PIEVariance

PIESandy 0,021 0,00026

Holdfasts 0,566 0,00046 0,715 0Cobbles 0,451 0,00184 0,836 0,00005

Rock surfaces 0,858 0,00014 0,716 0,0007Holdfasts 0,790 0,00023 0,774 0Cobbles 0,739 0,00094 0,667 0,00106

Rock surfaces 0,856 0,00024 0,741 0,00048Holdfasts 0,860 0,00008 0,844 0Cobbles 0,861 0,00026 0,851 0,00006

Rock surfaces 0,902 0,00009 0,815 0,0001

Abund. level

Juveniles Adultos

Portocobo

Canide

Canabal

143

138

148

Average PIE

VariancePIE

Average PIE

VariancePIE

Sandy 0,021 0,00026Holdfasts 0,566 0,00046 0,715 0Cobbles 0,451 0,00184 0,836 0,00005

Rock surfaces 0,858 0,00014 0,716 0,0007Holdfasts 0,790 0,00023 0,774 0Cobbles 0,739 0,00094 0,667 0,00106

Rock surfaces 0,856 0,00024 0,741 0,00048Holdfasts 0,860 0,00008 0,844 0Cobbles 0,861 0,00026 0,851 0,00006

Rock surfaces 0,902 0,00009 0,815 0,0001

Abund. level

Juveniles Adultos

Portocobo

Canide

Canabal

143

138

148

500

50100150200250300350400450

PortocoboCanideCanabalExposedShelteredDepth 0Depth 1Depth 2

Cobbles

Juveniles

AdultsRock

surfaces

No. In

d/ m

2

Sandy

Table 1. Evenness values

2: 8-12 m1: 3-5 m0: Intertidal

DEPTH

Kelp (Saccorhiza polyschides) holdfasts

Cobble and boulder pools

Flat rock surfacescovered with algaeRocky

bottoms

Sandy bottomsHABITAT TYPE

Sheltered

Exposed

WAVEEXPOSURE

SPAIN43ºN

42º

8º W 7º

50 km

POR

TUG

AL

Ría de A Coruña