gases de efecto invernadero

25
GASES DE EFECTO INVERNADERO INTRODUCCION: La atmósfera, por el hecho de ser muy transparente para la luz visible pero mucho menos para la radiación infrarroja, produce para la superficie terrestre el mismo efecto que el techo de cristal produce en un invernadero; la luz solar, que llega sin grandes obstáculos hasta el suelo, lo calienta, dando lugar a que emita rayos infrarrojos (ondas caloríficas), los cuales, a diferencia de los rayos de luz, son absorbidos en gran parte por el vidrio o la atmósfera. Al final la cantidad de energía emitida al espacio tiene que ser la misma que la absorbida, pero la superficie terrestre tiene que alcanzar la temperatura en que ambos flujos se equilibran, la cual es más alta en presencia de una atmósfera (en un planeta) o de techos de cristal (en un invernadero; aunque en realidad el cristal de un invernadero protege de la pérdida de calor más porque interrumpe la circulación del aire, que porque sea opaco a los rayos infrarrojos). Es importante señalar que el efecto invernadero afecta a todos los cuerpos planetarios del sistemas solar dotados de atmósfera, porque aunque no todos los gases absorben

Upload: nilobalcazarhuapaya

Post on 18-Jun-2015

810 views

Category:

Documents


6 download

TRANSCRIPT

GASES DE EFECTO INVERNADERO

INTRODUCCION:

La atmósfera, por el hecho de ser muy transparente para la luz visible pero mucho menos para la radiación infrarroja, produce para la superficie terrestre el mismo efecto que el techo de cristal produce en un invernadero; la luz solar, que llega sin grandes obstáculos hasta el suelo, lo calienta, dando lugar a que emita rayos infrarrojos (ondas caloríficas), los cuales, a diferencia de los rayos de luz, son absorbidos en gran parte por el vidrio o la atmósfera. Al final la cantidad de energía emitida al espacio tiene que ser la misma que la absorbida, pero la superficie terrestre tiene que alcanzar la temperatura en que ambos flujos se equilibran, la cual es más alta en presencia de una atmósfera (en un planeta) o de techos de cristal (en un invernadero; aunque en realidad el cristal de un invernadero protege de la pérdida de calor más porque interrumpe la circulación del aire, que porque sea opaco a los rayos infrarrojos).

Es importante señalar que el efecto invernadero afecta a todos los cuerpos planetarios del sistemas solar dotados de atmósfera, porque aunque no todos los gases absorben radiación infrarroja, en ninguna de esas atmósfera faltan los que sí lo hacen. En la Tierra el efecto invernadero es responsable de un exceso de 33 °C de la temperatura superficial (15 °C de valor medio) sobre la temperatura de emisión (–18 °C), pero en Marte la diferencia es de tan sólo 3 °C y en Venus la diferencia alcanza los 466 °C.

El efecto invernadero es un fenómeno natural, pero la alusión frecuente a él en relación con el calentamiento global hace creer a algunos que es en sí indeseable, y una consecuencia reciente de la contaminación atmosférica. Hay que aclarar que el calentamiento no es atribuido a la simple existencia, sino al aumento del efecto invernadero por encima de sus valores anteriores. Además, la causación del clima y de

su variación temporal depende de otros factores, aunque la comunidad científica general está considerando ahora que el calentamiento actual, cuya existencia misma algunos niegan, se debe en su mayor parte a esta causa

La temperatura de nuestro planeta es perfecta para la vida. Ni demasiada fría, como Venus el termino efecto invernadero hace referencia al fenómeno por el cual la Tierra se mantiene caliente y también al calentamiento general del planeta. Para mantener las condiciones ambientales optimas para la vida es indispensable que entendamos las relaciones complejas que se establecen entre la Tierra y la atmósfera.

Nuestra TierraLa Tierra es como una isla de vida en medio del espacio vacío. Los científicos no creen que exista vida en otro punto del sistema solar. En cambio, las condiciones de nuestro país son perfectas. No le falta ni aire ni agua y el Sol nos proporciona luz y calor.Nuestro planeta esta rodeado por la atmósfera. Se trata de una fina capa de gases (principalmente de oxigeno y nitrógeno) que se extiende hasta unos 700 km. por sobre de la superficie terrestre. Es en la atmósfera, que mantiene el planeta caliente donde se producen todos los fenómenos climatológicos. Esta capa contiene también otros elementos químicos: nitrógeno, carbono y sofre, transferido constantemente a la Tierra y aprovechados por los seres vivos.Las temperaturas de nuestro planeta son las mas adecuadas para que los animales y las plantas sobrevivan y se reproduzcan. Las temperaturas varían según la zona de la Tierra, des del frío de los casquetes polares hasta el calor extremo de la selva tropical y el desierto. Pero los seres vivos se han adaptado a todas las condiciones ambientales y podemos encontrar vida casi a todo el planeta.Des del espacio se pueden ver los indicios del clima de la Tierra. La rotación del planeta y las diferencias de temperatura provocan movimientos de aire sobre la superficie terrestre. Así se forman el viento, las nubes y la lluvia. Las nubes transportan las lluvias que llenan los ríos y los lagos. La temperatura del planeta hace que el agua se mantenga en estado liquido. Si hiciera demasiado frío, el agua se helaría y si hiciera demasiado calor, se transformaría en vapor de agua.

El efecto invernadero

Se denomina efecto invernadero al fenómeno por el cual determinados gases, que son componentes de una atmósfera planetaria, retienen parte de la energía que el suelo emite por haber sido calentado por la radiación solar. Afecta a todos los cuerpos planetarios dotados de atmósfera. De acuerdo con el actual consenso científico, el efecto invernadero se está viendo acentuado en la Tierra por la emisión de ciertos gases, como el dióxido de carbono y el metano, debida a la actividad económica humana.

Este fenómeno evita que la energía solar recibida constantemente por la Tierra vuelva inmediatamente al espacio, produciendo a escala planetaria un efecto similar al observado en un invernadero

No todos los componentes de la atmósfera contribuyen al efecto invernadero, Los gases de invernadero absorben los fotones infrarrojos emitidos por el suelo calentado por el sol. La energía de esos fotones no basta para causar reacciones químicas — para romper enlaces covalentes — sino que simplemente aumenta la energía de rotación y de vibración de las moléculas implicadas. El exceso de energía es a continuación transferido a otras moléculas, por las colisiones moleculares, en forma de energía cinética, es decir de calor, aumentando la temperatura del aire. De la misma forma, la atmósfera se enfría emitiendo energía infrarroja cuando se producen las correspondientes transiciones de estado vibracional y rotacional en las moléculas hacia niveles menores de energía. Todas esas transiciones requieren cambios en el momento dipolar de las moléculas (es decir, modificaciones de la separación de cargas eléctricas en sus enlaces polares) lo que deja fuera de este papel a los dos gases principales en la composición del aire, nitrógeno (N2) y oxígeno (O2), cuyas moléculas, por estar formadas por dos átomos iguales, carecen de cualquier momento dipolar

En lo que respecta al efecto invernadero, se está produciendo un incremento espectacular del contenido en anhídrido carbónico en la atmósfera a causa de la quema indiscriminada de combustibles fósiles, como el carbón y la gasolina, y de la destrucción de los bosques tropicales. Así, desde el comienzo de la Revolución Industrial, el contenido en anhídrido carbónico de la atmósfera se ha incrementado aproximadamente en un 20 %. La consecuencia previsible de esto es el aumento de la temperatura media de la superficie de la Tierra, con un cambio global del clima que afectará tanto a las plantas verdes como a los animales. Las previsiones más catastrofistas aseguran que incluso se producirá una fusión parcial del hielo que cubre permanentemente los Polos, con lo que muchas zonas costeras podrían quedar sumergidas bajo las aguas. Sin embargo, el efecto invernadero es un fenómeno muy complejo, en el que intervienen un gran número de factores, y resulta difícil evaluar tanto el previsible aumento en la temperatura media de la Tierra, como los efectos de Aún cuando no es posible cuantificar las consecuencias de éste fenómeno, la actitud más sensata es la prevención. El obtener un mayor rendimiento de la energía, así como el utilizar energías renovables, produciría una disminución del consumo de combustibles fósiles y, por lo tanto, de nuestro aporte de anhídrido carbónico a la atmósfera. Esta prevención también incluiría la reforestación, con el fin de aumentar los medios naturales de eliminación de anhídrido carbónico. En cualquier caso, lo importante es ser conscientes de cómo, en muchas ocasiones, nuestras acciones individuales tienen influencia tanto sobre la atmósfera como sobre la habitabilidad del planeta.

Consecuencias:Conocemos las consecuencias que podemos esperar del efecto invernadero para el próximo siglo, en caso de que no vuelva a valores más bajos:

Aumento de la temperatura media del planeta. Aumento de sequías en unas zonas e inundaciones en otras. Mayor frecuencia de formación de huracanes. Progresivo deshielo de los casquetes polares, con la consiguiente subida de los

niveles de los océanos. Incremento de las precipitaciones a nivel planetario pero lloverá menos días y

más torrencialmente. Aumento de la cantidad de días calurosos, traducido en olas de calor.

La capa de ozonoEL ozono es un gas cuyas moléculas están formadas por tres átomos de oxígeno(O3), uno más que las moléculas de oxígeno que respiramos. La capa de ozono se fue engrosando a medida que fue aumentando la cantidad de oxígeno. Esto es así porque su formación se debe a reacciones químicas entre el oxígeno y los rayos ultravioletas.En la atmósfera, el ozono se concentra en un estrecha franja de la estratosfera, entre los 20 y 40 kilómetros de altura, formando la llamada capa de ozono, un elemento decisivo para la vida en el planeta. En efecto, la capa de ozono es para los seres vivos como un paraguas protector frente a los peligrosísimos rayos ultravioletas. Si estas radiaciones alcanzaran la superficie terrestre sin pasar por el filtro del ozono, causarían

entre otros muchos efectos dañinos, la destrucción del fitoplacton, base de todas las cadenas alimentarias del océano, por lo que peligrarían todos los organismos marinos; en el hombre, la radiación ultravioleta causaría un debilitamiento general del sistema inmunológico, importantes daños en la vista, y un aumento de casos de cáncer de piel.En 1974, dos científicos estadounidenses Sherwood Rowland y Mario Molina descubrieron que los CFC, sustancias muy utilizadas en la industria, destruyen el ozono.Rowland y Molina fueron atacados por las empresas productoras, pero pocos años después se detectó que con la llegada de la primavera, el espesor de la capa de ozono sobre la Antártida era anormalmente delgado y se comprobó que la causa era el uso de CFC. En 1987, 40 países industrializados pactaron en Montreal la reducción de la producción de CFC en un 50% en el año 2000. En 1990 la Argentina firmó el protocolo.

Calentamiento del planetaAlgunos de los gases que producen el efecto invernadero, tienen un origen natural en la atmósfera y, gracias a ellos, la temperatura superficial del planeta a permitido el desarrollo de los seres vivos. De no existir estos gases, la temperatura media global seria de unos 20ºC bajo cero, el lugar de los 15ºC sobre cero de que actualmente disfrutamos. Pero las actividades humanas realizadas durante estos últimos siglos de revoluciones industriales, y especialmente en las ultimas décadas, han disparado la presencia de estos gases y han añadido otros con efectos invernadero adicionales, Es un hecho comprobado que las temperatura superficial de la Tierra está aumentando a un ritmo cada vez mayor. Si se continua así, la temperatura media de superficie terrestre aumentara 0,3ºC por década. Esta cifra, que parece a simple vista no excesiva, puede ocasionar, según los expertos grandes cambios climáticos en todas las regiones terrestres. La década de los años ochenta a sido la mas calurosa desde que empezaron a tomar mediciones globales de la temperatura y los científicos están de acuerdo en prever que, para el año 2020, la temperatura haya aumentado en 1,8ºC.

Hace demasiado calor...

Sí, demasiado calor como para que nosotros, los seres humanos, estemos tan tranquilos. Porque no estamos hablando sólo de un aumento de las temperaturas, sino de un cambio global que puede llegar a ser muy peligroso.

Pero no todo es tan malo: la causa de este calentamiento es la propia actividad humana. Por lo tanto, de nosotros depende detenerlo.

Entre el 1º y el 10 de diciembre de 1997, ciento sesenta países se reunieron en Kioto, Japón, para discutir sobre los cambios en el clima de la Tierra. Pero, ¿qué importancia tiene conocer cuántos grados aumentará la temperatura ambiente, dónde va a llover Actualmente, estamos frente a un nuevo cambio climático, pero esta vez provocado por la actividad humana. La industria, los automóviles, los grande cultivos y la manutención de ganados, todo aquello que permite la supervivencia de los 5 mil millones de seres humanos que poblamos el planeta, provoca también grandes cambios. Uno de ellos, quizás el más preocupante, es el calentamiento global de la Tierra, provocado por un aumento del efecto invernadero.

Las consecuencias del Calentamiento GlobalEl clima en la Tierra es muy difícil de predecir, porque existen muchos factores para tomar en cuenta: lluvia, luz solar, vientos, temperatura... Por eso, no se puede definir exactamente qué efectos acarreará el Calentamiento Global. Pero, al parecer, los Una primera consecuencia, muy posible, es el aumento de las sequías: en algunos lugares disminuirá la cantidad de lluvias. En otros, la lluvia aumentará, provocando inundaciones.Una atmósfera más calurosa podría provocar que el hielo cerca de los polos se derritiera. La cantidad de agua resultante elevaría el nivel del mar. Un aumento de sólo 60 centímetros podría inundar las tierras fértiles de Bangladesh, en India, de las cuales dependen cientos de miles de personas para obtener alimentos. Las tormentas tropicales podrían suceder con mayor frecuencia.

En la década de los 70, muchas personas comenzaron a darse cuenta de los cambios que estaba sufriendo la Tierra. Al estudiarlos, pudieron observar cuán frágil es el medio ambiente, y lo mucho que los seres humanos dependemos de él. Poco a poco, todos nos dimos cuenta de que no era posible seguir contaminando el agua, la tierra y el aire: la contaminación no iba a desaparecer por sí sola. Además, muchas actividades humanas estaban afectando al clima de una manera muy, muy peligrosa.En 1992, las Naciones Unidas realizaron la Primera Convención sobre el Cambio Climático. Desde 1980, científicos y representantes de diversos países se habían estado reuniendo para determinar cómo se producía este cambio y qué se podía hacer para frenarlo. Los resultados se dieron a conocer en la Cumbre de la Tierra, realizada en Río de Janeiro, Brasil, en 1992. El acuerdo fue firmado por 154 países.¿Qué plantea el Acuerdo de Río? La necesidad de frenar el cambio climático, reduciendo las emisiones de gases de invernadero. Esto significa disminuir la cantidad de combustibles fósiles utilizados (petróleo, gas natural, carbón), y proteger los bosques (ellos atrapan y consumen el dióxido de carbono). También significa disminuir nuestro consumo de energía, y buscar otras fuente energéticas que no produzcan gases de invernadero (energía solar, energía del viento, del agua o de las olas del mar).La Convención promueve el estudio y la investigación científica, para descubrir nuevas formas de acabar con el efecto invernadero. También se plantea la necesidad de intercambiar tecnología e ideas entre los países, promoviendo ayuda mutua. Además, se reconoce que existen áreas en el mundo que son muy especiales y delicadas (islas, montañas, ríos) y que deben ser especialmente protegidas de los cambios en el clima.

Sube el nivel del marSi la Tierra se calentar, los glaciares de las montañas y los casquetes del hielo del polo Norte y de la Antártida se fundirían. Si no se para de calentamiento en general el nivel del mar puede subir entre 20 y 40 cm a principios del siglo viniente, y luego aumentara aun mas.Un incremento minúsculo del nivel del mar podría tener consecuencias catastróficas, especialmente por algunos países. Holanda, por ejemplo, ha ganado gran parte de su territorio a las aguas y muchas zonas se encuentran por debajo del nivel del mar. Si el agua subiera inundaría todos estos territorios o bien obligaría el país a construir unos

diques de contención que representarían un gasto muy elevado. Las islas Maldivas, al océano Indico, también se encuentran a un nivel muy bajo. solo que el mar subiera un metro, las islas desaparecerian por debajo de las aguas. Si el aumento del nivel del mar fuera 4 y 8 metros, las consecuencias serian aun mas catastróficas.

Todos los habitantes de este planeta, estamos obligados a tomar medidas para detener el cambio climático y el aumento del efecto invernadero. Aunque las grandes decisiones, tomadas por los gobiernos de los países, son fundamentales, hay muchas formas de ayudar a la descontaminación que están a nuestro alcance.

LOS OBJETIVOS QUE TRATAREMOS DE ALCANZAR A PARTIR DE ESTE TRABAJO DE INVESTIGACION ES TOMAR

CONCIENCIA DE LO SIGUIENTE

Hemos de dejar de utilizar los CFC. Podemos sustituir los aerosoles, la fuente principal de estos gases, por pulverizadores que no perjudiquen el medio ambiente. También podemos encontrar métodos para reciclar o destruir los CFC que provienen de otras fuentes.

El metano procedente de los excrementos del ganado se puede reciclar en una planta química para producir energía.

Podemos plantar un árbol.

En casa, recordar no malgastar la energía eléctrica.

Podemos poner un buen aislante en el tejado y doble cristal en las ventanas para reducir los escapes del calor, con la cual cosa se necesita menos energia para mantener la casa caliente.

Utilizar un sistema de calefacción que aprovecha la energía al máximo y necesita mas energía para producir calor.

También podemos reducir el consumo de combustibles de los automóviles. Actualmente un coche desprende cada año cuatro veces su peso en dióxido de carbono. Si se diseñan modelos mas ligeros i aerodinámicos con motores de bajo consumo pueden llegar a consumir solo 1/3 parte de la energía que necesita un coche actual. Ya se han fabricado algunos automóviles que gastan menos de 2,8 litros por cada 100 kilómetros.

Apaga las luces cada vez que se salga de una pieza; los electrodomésticos i aparatos de bajo consumo. Las bombillas de bajo consumo pueden durar ocho veces mas y gastan solo 1/5 parte de la energía que necesita una bombilla normal. No dejar el televisor o el equipo de música encendidos cuando no lo usemos.

No dejar correr el agua caliente cuando se lava.

También puedes dar nuevos usos a las botellas. Recicla el vidrio, los plásticos y el papel. A demás así podemos salvar muchos arboles.

Recuerda siempre que cada minuto los seres humanos emitimos 48 mil toneladas de dióxido de carbono a la atmósfera. Y todos podemos ayudar a disminuir esta cantidad.

MARCO TEORICO

Se denominan gases de efecto invernadero (GEI) o gases de invernadero a los gases cuya presencia en la atmósfera contribuye al efecto invernadero. Los más importantes están presentes en la atmósfera de manera natural, aunque su concentración puede verse modificada por la actividad humana, pero también entran en este concepto algunos gases artificiales, producto de la industria. Esos gases contribuyen más o menos de forma neta al efecto invernadero por la estructura de sus moléculas y, de forma sustancial, por la cantidad de moléculas del gas presentes en la atmósfera. De ahí que por ejemplo, el SF6, sea una eficaz molécula de EI, pero su contribución es absolutamnte ínfima al EI.

Gases implicados de efecto invernadero

Espectro de absorción en el infrarrojo del conjunto de la atmósfera (abajo) y de gases específicos. De algunos se marcan solamente los centros de sus bandas de absorción (De Graedel & Crutzen, 1993).

Vapor de agua (H2O). El vapor de agua es un gas que se obtiene por evaporación o ebullición del agua líquida o por sublimación del hielo. Es el que más contribuye al efecto invernadero debido a la absorción de los rayos infrarrojos. Es inodoro e incoloro y, a pesar de lo que pueda parecer, las nubes

o el vaho blanco de una cacerola o un congelador, vulgarmente llamado "vapor", no son vapor de agua sino el resultado de minúsculas gotas de agua líquida o cristales de hielo.

Dióxido de carbono (CO2) óxido de carbono (IV), también denominado dióxido de carbono, gas carbónico y anhídrido carbónico, es un gas cuyas moléculas están compuestas por dos átomos de oxígeno y uno de carbono. Su fórmula química es CO2.

Metano (CH4)El metano (del griego methy vino, y el sufijo -ano[1] ) es el hidrocarburo alcano más sencillo, cuya fórmula química es CH4.

Cada uno de los átomos de hidrógeno está unido al carbono por medio de un enlace covalente. Es una sustancia no polar que se presenta en forma de gas a temperaturas y presiones ordinarias. Es incoloro e inodoro y apenas soluble en agua en su fase líquida.

En la naturaleza se produce como producto final de la putrefacción anaeróbica de las plantas. Este proceso natural se puede aprovechar para producir biogás. Muchos microorganismos anaeróbicos lo generan utilizando el CO2 como aceptor final de electrones.

Constituye hasta el 97% del gas natural. En las minas de carbón se le llama grisú y es muy peligroso ya que es fácilmente inflamable y explosivo.

El metano es un gas de efecto invernadero relativamente potente que podría contribuir al calentamiento global del planeta Tierra ya que tiene un potencial de calentamiento global de 23; pero que su concentración es bajísima.[2] Esto significa que en una media de tiempo de 100 años cada kg de CH4 calienta la Tierra 23 veces más que la misma masa de CO2, sin embargo hay aproximadamente 220 veces más dióxido de carbono en la atmósfera de la Tierra que metano por lo que el metano contribuye de manera menos importante al efecto invernadero.

Óxidos de nitrógeno (NOx)El término óxidos de nitrógeno (NxOy) se aplica a varios compuestos químicos binarios gaseosos formados por la combinación de oxígeno y nitrógeno. El proceso de formación más habitual de estos compuestos inorgánicos es la combustión a altas temperaturas, proceso en el cual habitualmente el aire es el comburente.

Ozono (O3)El ozono (O3), es una sustancia cuya molécula está compuesta por tres átomos de oxígeno, formada al disociarse los 2 átomos que componen el gas de oxígeno. Cada átomo de oxígeno liberado se une a otra molécula de oxígeno (O2), formando moléculas de Ozono (O3).

Clorofluorocarbonos (artificiales)El clorofluorocarburo, clorofluorocarbono o clorofluorocarbonados (denominados también ClFC) es cada uno de los derivados de los hidrocarburos saturados obtenidos mediante la sustitución de átomos de hidrógeno por átomos de flúor y/o cloro principalmente.

Debido a su alta estabilidad fisicoquímica y su nula toxicidad, han sido muy usados como líquidos refrigerantes, agentes extintores y propelentes para aerosoles. Fueron

introducidos a principios de la década de los años 1930 por ingenieros de General Motors, para sustituir materiales peligrosos como el dióxido de azufre y el amoníaco.

Se llama Efecto Invernadero al proceso por el que ciertos gases de la atmósfera retienen gran parte de la radiación infrarroja emitida por la Tierra y la reemiten de nuevo a la superficie terrestre calentando la misma. Estos gases han estado presentes en la atmósfera en cantidades muy reducidas durante la mayor parte de la historia de la Tierra.10

Aunque la atmósfera seca está compuesta prácticamente por nitrógeno (78,1%), oxígeno (20,9%) y argón (0,93%), son gases muy minoritarios en su composición como el dióxido de carbono (0,035%), el ozono y otros los que desarrollan esta actividad radiativa. Además, la atmósfera contiene vapor de agua (1%) que también es un gas radiativamente activo, siendo con diferencia el gas natural invernadero más importante. El dióxido de carbono ocupa el segundo lugar en importancia.3

La denominada curva Keeling muestra el continuo crecimiento de CO2 en la atmósfera desde 1958. Recoge las mediciones de Keeling en el observatorio del volcán Mauna Loa. Estas mediciones fueron la primera evidencia significativa del rápido aumento de CO2 en la atmósfera y atrajo la atención mundial sobre el impacto de las emisiones de los gases invernadero.11

El efecto invernadero es esencial para la vida del planeta: sin CO2 ni vapor de agua (sin el efecto invernadero) la temperatura media de la Tierra sería unos 33 °C menos, del orden de 18 °C bajo cero, lo que haría inviable la vida.12

Actualmente el CO2 presente en la atmósfera está creciendo de modo no natural por las actividades humanas, principalmente por la combustión de carbón, petróleo y gas natural que está liberando el carbono almacenado en estos combustibles fósiles y la deforestación de la selva pluvial que libera el carbono almacenado en los árboles. Por tanto es preciso diferenciar entre el efecto invernadero natural del originado por las actividades de los hombres (o antropogénico).10

La población se ha multiplicado y la tecnología ha alcanzado una enorme y sofisticada producción de forma que se está presionando muchas partes del medio ambiente terrestre siendo la Atmósfera la zona más vulnerable de todas por su delgadez. Dado el reducido espesor atmosférico la alteración de algunos componentes moleculares básicos que también se encuentran en pequeña proporción supone un cambio significativo. En concreto, la variación de la concentración de CO2, el más importante de los gases invernadero de la atmósfera. Ya se ha explicado el papel básico que estos gases tienen como reguladores de la temperatura del Planeta.13

Los gases invernadero permanecen activos en la atmósfera mucho tiempo, por eso se les denomina de larga permanencia. Eso significa que los gases que se emiten hoy permanecerán durante muchas generaciones produciendo el efecto invernadero. Así del CO2 emitido a la atmósfera: sobre el 50% tardará 30 años en desaparecer, un 30% permanecerá varios siglos y el 20% restante durará varios millares de años.14

La concentración de CO2 atmosférico se ha incrementado desde la época preindustrial (año 1.750) desde un valor de 280 ppm a 379 ppm en 2005. Se estima que 2/3 de las emisiones procedían de la quema de combustibles fósiles (petroleo, gas y carbón) mientras un 1/3 procede del cambio en la utilización del suelo (Incluida la deforestación). Del total emitido solo el 45% permanece en la atmósfera, sobre el 30% es absorbido por los océanos y el restante 25% pasa a la biosfera terrestre. Por tanto no solo la atmósfera está aumentando su concentración de CO2, también está ocurriendo en los océanos y en la biosfera.

Incrementos en la atmósfera

de los cinco gases responsables del 97% del efecto invernadero antropogénico en el periodo 1976-2003.

Los denominados gases de efecto invernadero o gases invernadero, responsables del efecto descrito, son:

Vapor de agua (H2O). Dióxido de carbono (CO 2 ).

Metano (CH4).

Óxidos de nitrógeno (NOx).

Ozono (O3).

Clorofluorocarbonos (CFCl3).

Gases de Efecto Invernadero afectados por actividades humanas

Descripción CO2 CH4 N2O CFC-11 HFC-23 CF4

Concentración pre industrial 280 ppm 700 ppb 270 ppb 0 0 40 ppt

Concentración en 1998 365 ppm 1.745 ppb 314 ppb 268 ppt 14 ppt 80 ppt

Permanencia en la atmósfera

de 5 a 200 años 12 años 114 años 45 años 260 años 50.00 años

Fuente: ICCP, Clima 2001, La base científica, Resumen técnico del Informe del Grupo de Trabajo I,

Historia del conocimiento científico del Efecto Invernadero

Fue alrededor de 1975-1980 cuando los científicos comenzaron a tener suficientes evidencias del efecto que los GEI estaban ocasionando al clima. Disponían de herramientas, conocimientos y técnicas suficientes para iniciar el estudio en profundidad del complejo sistema climático: satélites para observar la Tierra, redes mundiales de toma de temperaturas, vientos, precipitaciones y corrientes, así como ordenadores de gran potencia para desarrollar modelos climáticos. Entonces los científicos vislumbraron un posible cambio climático de dramáticas consecuencias. La opinión pública comenzó a conocer el problema alertada por los grupos ecologistas, los gobiernos se plantearon el problema e iniciaron acuerdos internacionales empujados por los resultados cada vez más inquietantes que los científicos iban desarrollando.20

El desarrollo del conocimiento de los GEI y del cambio climático ha seguido un largo camino de evolución científica que se resume a continuación:20

En 1824 Joseph Fourier consideró que la Tierra se mantenía templada porque la atmósfera retiene el calor como si estuviera bajo un cristal. El fue el primero en emplear la analogía del invernadero.

En 1859 John Tyndall descubrió que el CO2, el metano y el vapor de agua bloquean la radiación infrarroja.

Svante Arrhenius , Premio Nobel de Química, en 1896 calculó como el CO2 intercepta en la atmósfera la radiación infrarroja y concluyó que la duplicación de la cantidad de este gas en la atmósfera subiría la temperatura media del planeta entre 5-6 °C. También determinó que en un planeta más caliente habría mayor evaporación del agua del oceano que incrementaría la concentración de vapor de agua en la atmósfera que a su vez bloquearía más energía infrarroja aumentando el efecto invernadero. Por contra también vió que habría más nubes y que por el efecto albedo reflejarían más rayos solares lo que enfriaría el planeta. Estas retroalimentaciones, aún hoy con las potentes herramientas de procesamiento, son difíciles de manejar.

Guy Stewart identificó en 1938 que el incremento del 10% del CO2 en la atmósfera, observado desde 1890 a 1938 (años de revolución industrial basada en la combustión del carbón) podría estar relacionado con la tendencia al calentamiento observado en el mismo período.

En 1958 Charles Keeling empezó a medir de forma precisa las concentraciones de CO2 en la atmósfera. Gracias a los nuevos instrumentos de medida en solo dos años tomó suficientes medidas que mostraban el aumento continuado del CO2 en el aire. En 1960 presentó la curva Keeling.

El primer modelo estadístico de evolución del clima fue desarrollado en 1970 por Klauss Hasselmannn del Instituto Max Planck

Calentamiento actual y cambio climático producido por los GEI

El cambio climático está sucediendo y los humanos contribuimos diariamente a incrementarlo. En los 100 años últimos la temperatura media global del planeta ha aumentado 0,7 ° C, siendo desde 1975 el incremento de temperatura por década de unos 0,15 ° C . En lo que resta de siglo, según el IPCC, la temperatura media mundial aumentará en 2-3 ° C . Este aumento de temperatura supondrá para el planeta el mayor cambio climático en los últimos 10.000 años y será difícil para las personas y los ecosistemas adaptarse a este cambio brusco.21

En los 400.000 años anteriores, según conocemos por los registros de núcleos de hielo, los cambios de temperatura se produjeron principalmente por cambios de la órbita de la Tierra alrededor del Sol. En el tiempo actual, los cambios de temperatura se están originando por los cambios en el dióxido de carbono de la atmósfera. En los últimos 100 años, las concentraciones atmosféricas de CO2 han aumentado en un 30% debido a la combustión antropogénica de los combustibles fósiles. El aumento constante del CO2 atmosférico ha sido el responsable de la mayor parte del calentamiento. Este calentamiento no puede ser explicado por causas naturales: las mediciones de los satélites no muestran variaciones de entidad en la energía procedente del Sol en los últimos 30 años; las tres grandes erupciones volcánicas producidas en 1963, 1982 y 1991 han generado aerosoles que reflejaban la energía solar, lo cual produjo cortos periodos de enfriamiento.

FUTURO DEL CALENTAMIENTO GLOBAL

El calentamiento atmosférico actual es inevitable, estando producido por las emisiones de gases invernadero pasadas y actuales. 150 años de industrialización y de emisiones han modificado el clima y continuará repercutiendo en el mismo durante varios cientos de años, aun en la hipótesis de que se redujeran las emisiones de gases de efecto invernadero y se estabilizara su concentración en la atmósfera.22 El IPCC en su informe de 2007 manifiesta: Hay un alto nivel de coincidencia y abundante evidencia respecto a que con las políticas actuales de mitigación de los efectos del cambio climático y con las prácticas de desarrollo sostenible que aquellas conllevan, las emisiones mundiales de GEI seguirán aumentando en los próximos decenios.23 Una de las estimaciones de futuro de la Agencia Internacional de la Energía en un informe de 2.009 pasa de 4 t de emisión de CO2 por persona en 1990, a 4,5 t en 2.020 y a 4,9 t en 2.030. Esto

significaría que el CO2 emitido y acumulado desde 1890, pasaría de 778 Gt en 1990, a 1.608 Gt en 2.020 y a 1.984 Gt en 2.030.24

Las consecuencias del cambio climático provocado por las emisiones de GEI se estudian en modelos de proyecciones realizados por varios institutos meteorológicos. Algunas de las consecuencias recopiladas por el IPCC son las siguientes:25

En los próximos veinte años las proyecciones señalan un calentamiento de 0,2 °C por decenio.

Las proyecciones muestran la contracción de la superficie de hielos y de nieve. En algunas proyecciones los hielos de la región ártica prácticamente desaparecerán a finales del presente siglo. Esta contracción del manto de hielo producirá un aumento del nivel del mar de hasta 4-6 m.

Habrá impactos en los ecosistemas de tundra, bosques boreales y regiones montañosas por su sensibilidad al incremento de temperatura; en los ecosistemas de tipo Mediterráneo por la disminución de lluvias; en aquellos bosques pluviales tropicales donde se reduzca la precipitación; en los ecositemas costeros como manglares y marismas por diversos factores.

Disminuirán los recursos hídricos de regiones secas de latitudes medias y en los trópicos secos debido a las menores precipitaciones de lluvia y la disminución de la evapotranspiración, y también en áreas surtidas por la nieve y el deshielo.

Se verá afectada la agricultura en latitudes medias, debido a la disminución de agua.

La emisión de carbono antropógeno desde 1750 está acidificando el océano, cuyo pH ha disminuido 0,1. Las proyecciones estiman una reducción del pH del océano entre 0,14 y 0,35 en este siglo. Esta acidificación progresiva de los océanos tendrá efectos negativos sobre los organismos marinos que producen caparazón.

Para John Theodore Houghton, fundador del Centro Hadley y copresidente del grupo de evaluación científica del IPCC en sus primeros tres informes, está admitido que se producirá un daño generalizado por el aumento del nivel del mar y olas de calor, por inundaciones y sequías más frecuentes e intensas. El cambio climático antropogénico afectará seriamente a las próximas generaciones y a los ecosistemas mundiales. Su incidencia podría limitarse significativamente si se emprendiera una acción conjunta mundialde reducción de emisiones . Sería aconsejable mantener el incremento de la temperatura global solo en 2 °C por encima de la temperatura del periodo preindustrial, para ello la concentración de CO2 no debería superar las 450 ppm (hoy sobre 390 ppm). Esto implica que en 2050 las emisiones mundiales de CO2 deben reducirse al 50% del nivel de 1990 (actualmente están 15% por encima de ese nivel). En las dos próximas décadas también debería interrumpirse la deforestación tropical, responsable del 20% de las emisiones de gases de tipo invernadero.26

Para Nicholas Stern, ex jefe del Servicio Económico del Gobierno del Reino Unido y ex economista jefe del Banco Mundial, para no superar 450 ppm de concentración

atmosférica de CO2, se requerirá una reducción de las emisiones mundiales anuales de unas 50 gigatoneladas de CO2 equivalente en la actualidad a 35 gigatoneladas en 2030 y a 20 gigatoneladas en 2050. Para comprender el nivel del esfuerzo que se requiere, en la actualidad, las emisiones anuales por habitante son 12 toneladas en la Unión Europea, 23 toneladas en los Estados Unidos, 6 toneladas en China y 1,7 toneladas en la India. En 2050 la población mundial se estima será de 9.000 millones, y las emisiones anuales por habitante se deberían reducir a dos toneladas de CO2 equivalente de media, para que el total anual mundial sea de 20 gigatoneladas. Aunque la industrialización de los países desarrollados desde el siglo XIX es la causante de los niveles actuales de GEI, son los países en desarrollo los más vulnerables a las consecuencias del cambio climático. Los países ricos deben apoyar financieramente a los países en desarrollo para que ejecuten planes de crecimiento económico con poco carbono y frenar la deforestación en sus países. Según los últimos cálculos el mundo en desarrollo para ajustarse al cambio climático precisa de los países ricos anualmente 100.000 millones de dólares para la adaptación y otros 100.000 millones para la mitigación de aquí al 2020.27

Fatih Birol, economista jefe de la Agencia Internacional de Energía, señala la importancia de los países emergentes, pues con las políticas actuales, las estimaciones de la Agencia Internacional de Energía proyectan un crecimiento anual de la demanda de energía primaria global del 1,6% mundial hasta 2030, de 11.730 millones de toneladas equivalentes de petróleo (Mtep) a 17.010 Mtep (un incremento del 45% en apenas 20 años). China e India requerirán la mitad de este incremento, y los países no miembros de la OCDE en conjunto supondrán el 87% del incremento del CO2, pasando su demanda total de energía mundial del 51% en la actualidad a suponer el 62% del total en 2030. También para él, es imprescindible una importante transformaciónen del sector energético. Hasta ahora la larga vida útil de gran parte de sus infraestructuras causa una lenta sustitución de sus equipos, lo que motiva que el empleo de tecnologías eficientes se demore. Los sectores público y privado deben aceptar la necesidad de inversiones adicionales y el retiro temprano de instalaciones inadecuadas, para acelerar el proceso y reducir las emisiones, especialmente en centrales de energía y en equipos. Los gobiernos deben dirigir esta transformación y orientar el consumo mediante medidas claras de tarificación, incluida la tarificación por emisiones de carbono. La energía renovable desempeñará un papel importante. Se calcula que la generación global de electricidad basada en energías renovables se duplicará entre 2006 y 2030.

GASES DE EFECTO INVERNADERO EN LA REGION ICA

Los gases del efecto invernadero que dañan nuestro medio ambiente son generados, en gran medida, por el transporte público o privado; es por esto que en esta época de viajes la contaminación se incrementa. Clima de Cambios te da algunos tipos para disminuir tu contaminación.

Sin embargo, debes recordar que este incremento en viajes también significa una mayor contaminación de nuestro ambiente, causados por los gases de efecto invernadero que emiten este tipo de vehículos.

En ese sentido, si has pensado viajar en bus o algún vehículo particular, recuerda que en tu ciudad, o cerca a esta, también existen diversos entornos y lugares naturales para disfrutar este verano.

cuidado del ambiente y el turismo dentro de tu ciudad. Estas son algunas ventajas de lo que podría llamarse "turismo ecológico local

CONCLUSIONES:

Con el aumento en la emisión de gases que generan el fecto invernadero (bioxido de carbono, metano, vapor de agua, oxido nitroso), estaremos engrosando la capa atmosférica y con ello las radiaciones solares quedarán atrapadas en dicha capa atmosférica, calentando la superficie terrestre, generando el aumento de 0.74 grados centígrados suficientes para que se derritan los glaciares, alterar la diversidad de especies en dichos lugares, además de las frecuentes inundaciones del continente arrazando con poblaciones, y generando climas extremosos.

ENTROPIA DE EFECTO INVERNADERO

En realidad, la dilatación libre es irreversible, perdemos el control del medio ambiente una vez que abrimos la llave. Hay sin envergo, una diferencia de entropía, entre los estados de equilibrio inicial y final, pero no podemos calcularla con la ecuación, por que esta relación se aplica únicamente a trayectorias reversibles; si tratamos de usar la ecuación, tendremos inmediatamente la facultad de que

Q = 0 para la dilatación libre - además - no sabremos como dar valores significativos de T en los estados intermedios que no son de equilibrio. La entropía, como todas las variables de estado, dependen sólo de los estados del sistema, y debemos estar preparados para calcular el cambio en la entropía de procesos irreversibles, conociendo sólo los estados de principio y al fin. Consideraremos dos ejemplos: Dilatación libre: Dupliquemos el volumen de un gas, haciendo que se dilate en un recipiente vacío, puesto que no se efectúa reacción alguna contra el vacío, y, como el gas se encuentra encerrado entre paredes no conductoras,. por la primera ley se entiende que o:donde y se refieren a los estados inicial y final (de equilibrio). Si el gas es ideal, depende únicamente de la temperatura y no de la presión o el volumen, y la ecuación implica queEntonces, ¿Cómo calcularemos Sf - Si para estos estados?, lo haremos determinando una trayectoria reversible (cualquier trayectoria reversible) que conecte los estados y f, para así calcular el cambio de entropía de la trayectoria. En la dilatación libre, un

trayecto reversible conveniente (suponiendo que se trate de un gas ideal) es una dilatación isotérmica de VI a Vf (=2Vi). Esto corresponde a la dilatación isotérmica que se lleva a cabo entre los puntos a y b del ciclo del Carnot.