gas 2 disertacion limpio

55
FUNDAMENTOS DE COMPORTAMIENTO DE FASES DEL GAS INTEGRATES: GARNICA BARAHONA BETTY HERRERA ESCOBAR DADWIN KICAÑO FLORES SONIA OQUENDO MAURICIO SILVIA QUENTA GONZALES VICTOR VALDA BARRIENTOS B. CAROLINA

Upload: miranda-vasques-isidro

Post on 15-Jan-2016

232 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Gas 2 Disertacion Limpio

FUNDAMENTOS DE COMPORTAMIENTO DE

FASES DEL GAS INTEGRATES: GARNICA BARAHONA BETTY

HERRERA ESCOBAR DADWIN

KICAÑO FLORES SONIA

OQUENDO MAURICIO SILVIA

QUENTA GONZALES VICTOR

VALDA BARRIENTOS B. CAROLINA

Page 2: Gas 2 Disertacion Limpio

INTRODUCCION Comportamiento de Fases

• Como El Petróleo Y El Gas Natural Son Producidos De Los Reservorios, Estos Son Susceptibles A Una Serie De Cambios De Presión, De Temperatura Y De La Composición.

• Tales Cambios Afectan El Comportamiento Volumétrico Y De Transporte De Estos Reservorios Y, Consecuentemente, Los Volúmenes De Petróleo Y Gas Producidos.

• El Comportamiento De Fases Es Usado Para Seleccionar El Método De Recuperación Y Diseñar Los Procesos De Recuperación.

Page 3: Gas 2 Disertacion Limpio

INTRODUCCIONComportamiento de Fases

DEFINICIONES:

FASE

• Una Parte Homogénea De Un Sistema Que Es Físicamente Distinta Y Separada De Otras Partes Del Sistema Por Limites Bien Definidos.

• Es Una Porción Del Sistema Que Tiene Propiedades Intensivas Homogéneas Y Están Rodeados De Una Superficie Física. Las Fases Son Sólido, Líquido Y Gas.

LAS FASES MAS IMPORTANTES QUE SE CUBREN EN UN RESERVORIO SON:

FASE LIQUIDA: PETRÓLEOS O CONDENSADOS

FASE GASEOSA :GASES NATURALES

Con Cambios De Presión Y Temperatura Algunos De Estos Hidrocarburos Simples Pasan De Una Fase A Otra En Forma Parcial O Total.

Page 4: Gas 2 Disertacion Limpio

INTRODUCCION Comportamiento de Fases

DEFINICIONES

Las Fases Tienen Propiedades Que Pueden Ser Intensivas O Extensivas.

• LAS PROPIEDADES INTENSIVAS Son Independientes De La Cantidad De Materia, Como La Densidad, El Factor De Compresibilidad.

• LAS PROPIEDADES EXTENSIVAS Son Dependientes De La Cantidad De Materia, Como El Volumen Y La Masa.

• LA TEMPERATURA Representa La Medida Física De La Energía Cinética De La Moléculas De Un Determinado Material En Este Caso Los Hidrocarburos.

• LA PRESIÓN Es Una Reflexión Del Número De Veces Que Las Moléculas Del Material Colisionan Con Las Paredes Del Recipiente Que Los Contiene, En Este Caso La Roca Reservorio.

• LAS FUERZAS INTERMOLECULARES Son Aquéllas Relacionadas Con La Atracción O Repulsión Entre Moléculas Del Material

Page 5: Gas 2 Disertacion Limpio

Comportamiento de Fases

DIAGRAMA DE FASES Los elementos químicos y las sustancias formadas por ellos salvo algunas excepciones, pueden existir en tres estados diferentes: sólido, líquido y gaseoso en dependencia de las condiciones de presión y temperatura en las que se encuentren y esto se debe básicamente a las fuerzas intermoleculares. El diagrama que representa el tránsito entre estos estados, se conoce como diagrama de fases

Page 6: Gas 2 Disertacion Limpio

DIAGRAMA DE FASES

Definiciones :• Punto triple:En este punto en la sustancia coexisten en equilibrio

los tres estados, está parcialmente solida, parcialmente líquida y parcialmente gaseosa.  Obsérvese que para valores de presión o temperatura mas bajas que el punto triple la sustancia en cuestión no puede existir en estado líquido y solo puede pasar desde sólido a gaseoso en un proceso conocido como sublimación.

• Punto crítico:El punto C indica el valor máximo de temperatura en el que pueden coexistir en equilibrio dos fases, y se denomina punto crítico. Representa la temperatura máxima a la cual se puede licuar el gas simplemente aumentando la presión. Gases a temperaturas por encima de la temperatura del punto crítico no pueden ser licuados por mucho que se aumente las presión. En otras palabras, por encima del punto crítico, la sustancia solo puede existir como gas.

.

Comportamiento de Fases

Page 7: Gas 2 Disertacion Limpio

DIAGRAMA DE FASES

Definiciones:Punto de ebulliciónEl punto de ebullición de una sustancia, es aquel valor de temperatura para el cual coexisten en equilibrio, los estados líquido y gaseoso a determinada presión. Los diferentes puntos de ebullición para las diferentes presiones corresponderían a la curva BC.Punto de fusiónEl punto de fusión de una sustancia, es aquel valor de temperatura para el cual coexisten en equilibrio, los estados líquido y sólido a determinada presión. Los diferentes puntos de fusión para las diferentes presiones corresponderían a la curva BD

Comportamiento de Fases

Page 8: Gas 2 Disertacion Limpio

COMPORTAMIENTO DE FASES

Definiciones :

• Puntos de Burbujeo: puntos en los cuales existe fase líquida con una parte infinitesimal de gas.

• Puntos de Rocío: puntos en los cuales existe fase gaseosa con una parte infinitesimal de líquido.

• Presión Cricondenbárica: máxima presión en la cual coexisten equilibradamente la fase líquida y la fase gaseosa.

• Temperatura Cricondentérmica: máxima temperatura en la cual coexisten equilibradamente la fase líquida y la gaseosa.

• Condensación Retrógrada: puede ser expresada desde dos ópticas, la condensación de líquido durante expansión de gas a temperatura constante o bien la condensación de líquido durante calentamiento de gas a presión constante.

Page 9: Gas 2 Disertacion Limpio

EL OBJETIVO DEL ESTUDIO DE FASES

ES LLEGAR A PREDECIR, CUANDO SE CONOCE LA COMPOSICIÓN

CONOCES LAS CANTIDADES DE LAS FASES EN EQUILIBRIO DEL SISTEMA, A CUALQUIER PRESIÓN Y TEMPERATURA.

EL ESTUDIO DEL COMPORTAMIENTO DE FASES SE DIVIDE EN DOS PARTES GENERALES:

CUALITATIVO Y CUANTITATIVO.

EN EL PRIMER CASO, SE ANALIZAN LOS DIFERENTES DIAGRAMAS DE PRESIÓN-TEMPERATURA, P-T, PRESIÓN-VOLUMEN, P-V, COMPOSICIÓN, ETC. EN EL SEGUNDO CASO, SE DESARROLLAN FÓRMULAS Y MÉTODOS PARA CALCULAR LA COMPOSICIÓN Y CANTIDADES DE LAS FASES DE UN

SISTEMA, A PRESIÓN Y TEMPERATURAS DADAS

Page 10: Gas 2 Disertacion Limpio

EL OBJETIVO DEL ESTUDIO DE FASES

EL COMPORTAMIENTO DE FASE DE LOS HIDROCARBUROS DEL RESERVORIO PETRÓLEO-GAS NATURAL DEPENDE DE LA PRESIÓN, DEL VOLUMEN OCUPADO Y DE LA TEMPERATURA. ESTE COMPORTAMIENTO DE FASE SE DESCRIBE MEDIANTE MEDICIONES DE LABORATORIO COMO ANALISIS PVT.

PARA COMPRENDER MEJOR EL COMPORTAMIENTO DE FASE DEL PETRÓLEO (MEZCLA COMPLEJA DE HIDROCARBUROS), SE COMENZARÁ POR DESCRIBIR EL EQUILIBRIO DE FASE DE UN HIDROCARBURO PURO, DE UNA MEZCLA BICOMPONENTE Y DE MEZCLAS MULTICOMPONENTES.

Page 11: Gas 2 Disertacion Limpio

HIDROCARBURO PURO

SI EL VOLUMEN OCUPADO POR ETANO SE AUMENTA, DESLIZANDO EL PISTÓN, LA PRESIÓN DISMINUYE HASTA QUE APARECE LA PRIMERA BURBUJA DE GAS (ESTE ES EL PUNTO DE BURBUJA)

AUMENTOS POSTERIORES EN EL VOLUMEN NO ORIGINAN CAMBIOS EN LA PRESIÓN, SOLO SE VAPORIZA MÁS LIQUIDO A TEMPERATURA CONSTANTE.

ESTA SITUACIÓN SE MANTIENE HASTA LA TOTAL VAPORIZACIÓN DEL LÍQUIDO (ESTE ES EL PUNTO DE ROCIÓ).

SI SE SIGUE AUMENTANDO EL VOLUMEN LA PRESIÓN DISMINUYE HIPERBÓLICAMENTE.

Page 12: Gas 2 Disertacion Limpio

EL COMPONENTE PURO

Page 13: Gas 2 Disertacion Limpio

EL COMPONENTE PURO: DIAGRAMA P-V

Page 14: Gas 2 Disertacion Limpio

HIDROCARBURO PUROSE MUESTRA UNA SERIE DE EXPANSIONES SIMILARES A LA DESCRITA, PERO A DIFERENTES TEMPERATURAS, LA FIGURA REPRESENTA EL DIAGRAMA TRIDIMENSIONAL PVT DEL ETANO.

La figura muestra las condiciones PVT, en las que el etano forma una fase liquida, gaseosa o ambas.El conjunto de los puntos de burbuja a distintas temperaturas forma la línea de burbuja, de igual forma la línea de rocío. Ambas se usen en el punto crítico, donde las propiedades de las fases liquida y gaseosa se asemejan.

Las dos líneas, la de puntos de burbuja y la de puntos de rocio, se proyectan en el plano PT como una única curva denominada presión de vapor, que termina en el punto crítico

Page 15: Gas 2 Disertacion Limpio

EL COMPONENTE PURO: CARACTERISTICAS

A TEMPERATURA FIJA, DOS FASES COEXISTEN A LA PRESION DE VAPOR

CURVA DE PUNTOS DE ROCÍO Y BURBUJAS COINCIDENTES EN DIAGRAMA

P-T

MÁXIMA TEMPERATURA PARA DOS FASES: TC

MÁXIMA PRESIÓN PARA DOS FASES: PC Punto critico

Page 16: Gas 2 Disertacion Limpio

DIAGRAMA DE FASES-PARA SISTEMA BINARIO

CUANDO APARECEN VARIAS SUSTANCIAS, LA REPRESENTACIÓN DE LOS CAMBIOS DE FASE PUEDE SER MÁS COMPLEJA. UN CASO PARTICULAR, EL MÁS SENCILLO, CORRESPONDE A LOS DIAGRAMAS DE FASE BINARIOS. AHORA LAS VARIABLES A TENER EN CUENTA SON LA TEMPERATURA Y LA CONCENTRACIÓN, NORMALMENTE EN MASA. EN UN DIAGRAMA BINARIO PUEDEN APARECER LAS SIGUIENTES REGIONES:

• SÓLIDO PURO O SOLUCIÓN SÓLIDA

• MEZCLA DE SOLUCIONES SÓLIDAS

• MEZCLA SÓLIDO - LÍQUIDO

• ÚNICAMENTE LÍQUIDO, YA SEA MEZCLA DE LÍQUIDOS INMISCIBLES (EMULSIÓN), YA SEA UN LÍQUIDO COMPLETAMENTE HOMOGÉNEO.

• MEZCLA LÍQUIDO - GAS

• GAS (LO CONSIDERAREMOS SIEMPRE HOMOGÉNEO, TRABAJANDO CON POCAS VARIACIONES DA ALTITUD).

Page 17: Gas 2 Disertacion Limpio

SISTEMA BINARIO: DIAGRAMA P-T Y P-X-Y

Page 18: Gas 2 Disertacion Limpio

SISTEMAS DE DOS COMPONENTESLA PARTE CORRESPONDIENTE A LA ZONA DE VAPOR Y DE LÍQUIDO SON

SIMILARES A LAS DE UN SOLO COMPONENTE. SIN EMBARGO, LA PARTE CORRESPONDIENTE A LA

ZONA DE DOS FASES DIFIERE DE LA DE UN SOLO COMPONENTE EN EL SENTIDO QUE LA PRESIÓN

VARIA CON EL VOLUMEN, AUMENTANDO SU VALOR A MEDIDA QUE EL SISTEMA PASA DEL PUNTO

DE ROCÍO AL PUNTO DE BURBUJA.

Temperatura

Pre

sión

Curva Pto. Burbuja

Curva pto. Rocío2 fases

x1, y1

Pa

Pa

PC1

PC2

T1s T2

s

T2s

T1s

0 1

Page 19: Gas 2 Disertacion Limpio

SISTEMAS DE DOS COMPONENTES

ESTO ES DEBIDO A QUE LA COMPOSICIÓN DEL LÍQUIDO Y

DEL VAPOR VARÍA CONTINUAMENTE AL PASAR EL SISTEMA A TRAVÉS DE LA REGIÓN DE DOS FASES.

EN EL PUNTO DE ROCÍO, LA COMPOSICIÓN DEL VAPOR ES PRÁCTICAMENTE LA COMPOSICIÓN DEL

SISTEMA, SOLO QUE EXISTE UNA CANTIDAD INFINITESIMAL DE LÍQUIDO, RICO EN EL VOLÁTIL A MEDIDA QUE SE CONDENSA MÁS LÍQUIDO, SU COMPOSICIÓN CAMBIA AUMENTANDO EL COMPONENTE MÁS VOLÁTIL (Y POR CONSIGUIENTE AUMENTANDO LA

PRESIÓN DE VAPOR) HASTA QUE LA COMPOSICIÓN DEL LÍQUIDO ES IGUAL A LA DEL SISTEMA EN

EL PUNTO DE BURBUJA.

Page 20: Gas 2 Disertacion Limpio

SISTEMAS DE DOS COMPONENTES

• ESTUDIEMOS EL COMPORTAMIENTO DE UNA MEZCLA TAL COMO LA DE METANO Y PENTANO AL 50%. EN LA FIGURA SE MUESTRAN LAS CURVAS DE PRESIÓN DE VAPOR DE LOS COMPONENTES PUROS EN EL PLANO P-T

Page 21: Gas 2 Disertacion Limpio

SISTEMAS DE DOS COMPONENTES

SE PARTE DE UN ESTADO LÍQUIDO POR ENCIMA DE LA ENVOLVENTE PUNTO A´, Y SE DISMINUYE LA PRESIÓN. AL ALCANZAR LA CURVA DE PUNTOS DE BURBUJA, EL PUNTO A, TIENE TODAVÍA UNA COMPOSICIÓN 50 % ETANO Y 50 % PENTANO, PERO SI CONTINUA HACIA ABAJO, LAS PRIMERAS BURBUJAS DE GAS ESTARÁN MAS ENRIQUECIDAS EN ETANO, EL COMPONENTE MÁS VOLÁTIL.

A MEDIDA QUE LA PRESIÓN DESCIENDA Y EL GAS SE LIBERE, EL GAS AUMENTARÁ SU PORCENTAJE EN PENTANO HASTA QUE SOBRE LA CURVA DE PUNTOS DE ROCIO SE RECONSTITUYA UN GAS CUYA MEZCLA ES AL 50 %.

LA FORMA DE LA ENVOLVENTE VARÍA SI EL PORCENTAJE DE ETANO Y PENTANO NO ES DEL 50 %.

Diagrama de fases para una mezcla 50 % metano y 50 %

pentano.

Page 22: Gas 2 Disertacion Limpio

DIAGRAMA DE FACES-SISTEMA TERNARIO-HACIENDO VARIAR LA PRESION

C3 C3

nC5 C3

C1

Gas

p=14.7 psia

C1

nC5

Gas

2-phase

Liquid

p=380 psiaC3 nC5

C1

C3

Gas

2-phase

Liquid

p=500 psia

C1

Gas

2-phase

Liquid

nC5p=1500 psia

2-phase

Liquid

C1

nC5

Gas

p=2000 psia

C1

nC5 C3

Liquid

p=2350 psia

Page 23: Gas 2 Disertacion Limpio

LOS SISTEMAS DE HIDROCARBUROS QUE SE PRESENTAN NATURALMENTE EN YACIMIENTOS

DE PETRÓLEO Y GAS, ESTÁN COMPUESTOS DE UNA GRAN VARIEDAD DE COMPONENTES, QUE

INCLUYEN NO SÓLO HIDROCARBUROS DE LA SERIE PARAFINADA, SINO MUCHOS OTROS COMPONENTES DE OTRAS SERIES. EL COMPORTAMIENTO DE ESTOS SISTEMAS EN LA REGIÓN DE VAPOR-LÍQUIDO,

ES MUY SIMILAR A LOS SISTEMAS BINARIOS. POR SUPUESTO, LOS DIAGRAMAS BIDIMENSIONALES

DE PRESIÓN-COMPOSICIÓN Y TEMPERATURA-COMPOSICIÓN, YA NO SE APLICAN EN ESTOS

CASOS. EL COMPORTAMIENTO DE FASES DE SISTEMAS MULTICOMPONENTES DE HIDROCARBUROS,

DEPENDE DE LA COMPOSICIÓN Y DE LAS PROPIEDADES DE LOS COMPONENTES INDIVIDUALES.

LAS CARACTERÍSTICAS DE LOS DIAGRAMAS P-V Y P-T, SON SIMILARES A LOS DE LOS SISTEMAS

DE DOS COMPONENTES.

MEZCLA MULTICOMPONENTES

Page 24: Gas 2 Disertacion Limpio

EN LA FIGURA SE MUESTRA EL DIAGRAMA P-T PARA UNA MEZCLA MULTICOMPONENTE CON UNA COMPOSICIÓN ESPECIFICA EN GENERAL. ESTOS

DIAGRAMAS P-T DE MEZCLA MULTICOMPONENTE SIRVEN PARA:

1.- CLASIFICAR LOS RESERVORIOS

2.- CLASIFICAR LA PRODUCCIÓN NATURAL DE LOS SISTEMAS DE HIDROCARBUROS

3.- DESCRIBIR EL COMPORTAMIENTO DE FASE DE LOS SISTEMAS DE HIDROCARBUROS.

SISTEMAS MULTICOMPONENTES

Page 25: Gas 2 Disertacion Limpio

CLASIFICACION DE LOS RESERVORIOS

EN GENERAL, LOS RESERVORIOS SON CONVENIENTEMENTE CLASIFICADOS EN LAS BASES DE LA UBICACIÓN DEL PUNTO QUE REPRESENTA LA PRESIÓN INICIAL DE RESERVORIO PI, Y LA TEMPERATURA T CON RESPECTO AL DIAGRAMA DE PRESIÓN-TEMPERATURA DEL FLUIDO DE RESERVORIO.

POR LO TANTO, LOS RESERVORIOS PUEDEN SER CLASIFICADOS DENTRO DE BÁSICAMENTE DOS TIPOS QUE SON:

RESERVORIOS DE PETRÓLEO. SI LA TEMPERATURA DEL RESERVORIO TR, ES MENOR QUE LA TEMPERATURA CRÍTICA TC, DEL FLUIDO DEL RESERVORIO.RESERVORIOS DE GAS. SI LA TEMPERATURA DEL RESERVORIO TR, ES MAYOR QUE LA TEMPERATURA CRÍTICA TC, DEL FLUIDO DEL RESERVORIO.

Page 26: Gas 2 Disertacion Limpio

RESERVORIOS DE GAS

En general si la temperatura del reservorio Tr, es mayor que la temperatura crítica Tc, del sistema de hidrocarburos, el reservorio es clasificado como un reservorio de gas natural.

Sobre las bases de sus diagramas de fases y las condiciones de reservorio, los gases naturales pueden ser clasificado en

Gas Condensado – RetrogradoGas Condensado Cerca al Punto CriticoGas HúmedoGas Seco

Page 27: Gas 2 Disertacion Limpio

GAS CONDENSADO - RETROGRADO

Considere las condiciones iniciales del reservorio de gas retrógrado, el punto 1 (fase vapor, presión encima del punto de rocio Sup.)

A medida que la presión de reservorio disminuye isotérmicamente, debido a la producción, desde el punto 1 al punto 2.

Esto provoca que la atracción entre las moléculas de los componentes livianos y pesados se vayan distanciando. A medida que ocurre esto, la atracción entre las moléculas de componentes más pesados sea más efectiva y asi el líquido empiece a condensarse.

Page 28: Gas 2 Disertacion Limpio

RESERVORIO DE GAS CONDENSADO CERCA AL PUNTO CRITICO

Si la temperatura del reservorio Tr está cerca de la Temperatura Crítica Tc.

El comportamiento volumétrico de esta categoría de gas natural es descrita a través de la declinación de presión isotérmica (línea 1-3).

Debido a que las líneas de calidad convergen en el punto crítico, una rápida restitución de líquidos ocurrirá inmediatamente debajo del punto de rocío mientras la presión es reducida al punto 2.

Este comportamiento puede ser justificado por el hecho de que varias líneas de calidad son cruzadas muy rápidamente por una reducción de presión isotérmica.

Page 29: Gas 2 Disertacion Limpio

RESERVORIO DE GAS CONDENSADO CERCA AL PUNTO CRITICO

Se muestra la curva de encogimiento de liquido para reservorios de gas condensado cerca al punto critico.

En el punto donde los líquidos cesan de restituir y empieza a encogerse otra vez, el reservorio va de la región retrógrada a la región normal de vaporización.

Page 30: Gas 2 Disertacion Limpio

RESERVORIO DE GAS HUMEDOLa temperatura del reservorio Tr, está por encima de la cricondenterma Tct de la mezcla de HC..

El fluido de reservorio permanecerá siempre en la región de fase vapor a medida que el reservorio es depletado isotérmicamente, a lo largo de la línea vertical A-B.

Mientras el gas producido fluye hacia la superficie, sin embargo, la presión y la temperatura del gas declinará. Si el gas entra a la región de dos fases, una fase líquida condensará fuera del gas y es producido en los separadores de superficie.

Por tal razón nunca se integran las dos fases en reservorio (solo gas)

Page 31: Gas 2 Disertacion Limpio

RESERVORIO DE GAS HUMEDO

Los reservorios de gas húmedo son caracterizados por las siguientes propiedades

Relación gas petróleo entre 60000 y 100000 scf/STB

Gravedad del petróleo en tanque, mayor 60 oAPI

El líquido es color blanco agua.

A condiciones de separador caen en la región de las dos fases

Metano entre 75 y 90 % mol

Page 32: Gas 2 Disertacion Limpio

RESERVORIO DE GAS SECO

La mezcla de HC existe como gas en el reservorio y en las facilidades de superficie.

El único líquido asociado con el gas de un reservorio de gas seco es el agua..

Usualmente un sistema que tiene una relación gas-petróleo mayor que 100000 scf/STB es considerado un gas seco.

El gas es mayoritariamente metano (% C1 >95 %)

Page 33: Gas 2 Disertacion Limpio

comportamiento retrogrado de mezclas de hidrocarburos

ALGUNAS MEZCLAS DE HIDROCARBUROS EXISTEN NATURALMENTE A UNA TEMPERATURA ENTRE LA CRÍTICA Y LA CRICONDERTÉRMICA COMO SE OBSERVA EN LA FIG. 1 (ISOTERMA ABD). A LA PRESIÓN DEL PUNTO A, LA MEZCLA SE ENCUENTRA EN FASE GASEOSA Y AL DISMINUIR LA PRESIÓN ISOTÉRMICAMENTE SE ALCANZA EL PUNTO DE ROCÍO. DENTRO DEL ÁREA RAYADA LA DISMINUCIÓN DE PRESIÓN PRODUCE CONDENSACIÓN EN PARTE DE LA MEZCLA. A ESTE FENÓMENO SE LE LLAMA CONDENSACIÓN RETROGRADA ISOTÉRMICA, PARA DIFERENCIARLO DEL FENÓMENO NORMAL DONDE LA CONDENSACIÓN OCURRE POR COMPRESIÓN DEL GAS. LA ZONA DE CONDENSACIÓN RETRÓGRADA ESTÁ DELIMITADA POR LOS PUNTOS DE MÁXIMA TEMPERATURA DE LAS LÍNEAS DE ISOCALIDAD.

A TEMPERATURAS ENTRE LA CRÍTICA Y LA CRICONDERTÉRMICA SE OBSERVAN (FIG. 1) DOS PRESIONES DE ROCÍO: RETRÓGRADA Y NORMAL. SIGUIENDO LA LÍNEA DE AGOTAMIENTO DE LA PRESIÓN ABD, A LA PRESIÓN DE ROCÍO RETRÓGRADO (B) LA CANTIDAD INFINITESIMAL DE LÍQUIDO SE FORMA POR UN CAMBIO DE FASES DE GAS A LÍQUIDO Y A LA PRESIÓN DE ROCÍO NORMAL (D), POR UN CAMBIO DE FASES DE LÍQUIDO A GAS. PARA UN GAS CONDENSADO, LA PRESIÓN DE ROCÍO NORMAL ES MENOR QUE 0 LPCM

Page 34: Gas 2 Disertacion Limpio

FACTORES FÍSICOS QUE CONTROLAN EL COMPORTAMIENTO DE FASES

Los fluidos obtenidos en superficie de estos yacimientos, son el resultado de cambios termodinámicos que sufre la mezcla original de hidrocarburos en su trayectoria desde el yacimiento hasta el sistema de separación en la superficie.

Cuatro factores físicos controlan el comportamiento de fases de mezclas de hidrocarburos:

• PRESIÓN

• TEMPERATURA

• ATRACCIÓN MOLECULAR

• REPULSIÓN MOLECULAR

Page 35: Gas 2 Disertacion Limpio

La presión y la atracción molecular tienden a mantener las moléculas juntas, de esta manera, mientras mayor sean estas fuerzas mayor es la tendencia de los hidrocarburos a aumentar su densidad.

Las fuerzas de atracción molecular son directamente proporcionales a la masa de las moléculas e inversamente proporcionales a la distancia entre las mismas.

Temperatura y la repulsión molecular tienden a dispersar las moléculas.

El comportamiento regular de los hidrocarburos es el de pasar de fase gaseosa a líquida por aumento de presión y/o disminución de temperatura y el de pasar de fase líquida a gaseosa por disminución de presión y/o aumento de temperatura.

Page 36: Gas 2 Disertacion Limpio

• ES DIFÍCIL IMAGINAR LA "DISOLUCIÓN" DE UN LÍQUIDO EN UN GAS A PRESIÓN ATMOSFÉRICA PUES EN EL MISMO VOLUMEN EN QUE EL GAS TIENE APENAS 1 MOLÉCULA, UNA FASE LÍQUIDA PUEDE CONTENER CIENTOS DE MOLÉCULAS.

• SIN EMBARGO EN LOS GASES A MUY ALTA PRESIÓN (200 Ó MÁS KG/CM2) LAS DISTANCIAS MOLECULARES SON TAN PEQUEÑAS QUE EL GAS Y EL LIQUIDO PASAN A TENER CANTIDADES SIMILARES DE MOLÉCULAS POR UNIDAD DE VOLUMEN Y ES PERFECTAMENTE RAZONABLE ACEPTAR QUE UNA FASE GASEOSA EN ESAS CONDICIONES PUEDE DISOLVER MOLÉCULAS MÁS PESADAS.

• POR ESTO CUANDO LA PRESIÓN DISMINUYE POR DEBAJO DE LA PRESIÓN DE ROCÍO, LAS FUERZAS DE ATRACCIÓN ENTRE LAS MOLÉCULAS LIVIANAS Y PESADAS DISMINUYE DEBIDO A QUE LAS MOLÉCULAS LIVIANAS SE APARTAN MUCHO DE LAS PESADAS. YA QUE LA ATRACCIÓN ENTRE LAS MOLÉCULAS DE LOS COMPONENTES PESADOS SE HACE MÁS EFECTIVA PRODUCIENDO SU CONDENSACIÓN.

Page 37: Gas 2 Disertacion Limpio

GAS CONDENSADO - RETROGRADOSi la temperatura del reservorio Tr está entre la Temperatura Crítica Tc y la cricondenterma Tct del fluido.

Considere las condiciones iniciales del reservorio de gas retrógrado, el punto 1 (fase vapor, presión encima del punto de rocio)

A medida que la presión de reservorio disminuye isotérmicamente, debido a la producción, desde el punto 1 al punto 2.

Esto provoca que la atracción entre las moléculas de los componentes livianos y pesados se vayan distanciando. A medida que ocurre esto, la atracción entre las moléculas de componentes más pesados sea más efectiva y asi el líquido empiece a condensarse.

Page 38: Gas 2 Disertacion Limpio

GAS CONDENSADO - RETROGRADO

Este proceso de condensión retrograda continua con la disminución de presión hasta que la condensación de liquido alcanza su máximo en el punto 3.

Futura reducción en la presión, permite que las moléculas pesadas comiencen el proceso normal de vaporización, en el punto 4.

El proceso de vaporización continúa hasta que la presión de reservorio alcance la presión de curva de rocío inferior. Esto significa que todo el líquido que se formó debe vaporizarse porque el sistema es esencialmente todo vapor en el punto de rocío más bajo.

Page 39: Gas 2 Disertacion Limpio

GAS CONDENSADO - RETROGRADO

Las características físicas asociadas a este categoría son:

Relación gas-petróleo entre 8000 a 70000 scf/STB.

Gravedad del condensado mayor a 50º API

El líquido en el tanque es usualmente es blanco agua ligeramente coloreado.

La figura muestra una curva de encogimiento de líquido típico para un sistema de condensado. En la mayoría de los reservorios de gas condensado, el volumen de líquido de condensado rara vez excede más del 15 al 19% del volumen poral.

Page 40: Gas 2 Disertacion Limpio

EQULIBRIO VAPOR-LIQUIDO

DE ACUERDO CON LA TEORÍA CINÉTICA, HAY UN CONTINUO PASO DE MOLÉCULAS DE LA SUPERFICIE DEL LÍQUIDO AL ESPACIO LIBRE QUE SE ENCUENTRA SOBRE ÉL. AL MISMO TIEMPO MOLÉCULAS DE VAPOR REGRESAN A LA SUPERFICIE DEL LÍQUIDO A UNA RATA QUE DEPENDE DE LA CONCENTRACIÓN DEL VAPOR. A MEDIDA QUE LA CONCENTRACIÓN DE MOLÉCULAS DE VAPOR SE INCREMENTA, SE VA ESTABLECIENDO UNA CONDICIÓN DE EQUILIBRIO ENTRE EL LÍQUIDO Y EL VAPOR Y SE LLEGA A ÉL CUANDO LA RATA DE EVAPORACIÓN ES EXACTAMENTE IGUAL A LA RATA DE CONDENSACIÓN.

LA PRESIÓN EJERCIDA POR LA FASE VAPOR EN EQUILIBRIO CON LA FASE LIQUIDA SE CONOCE COMO LA PRESIÓN DE VAPOR. LA PRESIÓN DE VAPOR DE EQUILIBRIO DEPENDE NO SOLO DE LA TEMPERATURA SINO TAMBIÉN DE LA NATURALEZA DE LOS COMPONENTES Y LA COMPOSICIÓN EN CADA UNA DE LAS FASES.

Page 41: Gas 2 Disertacion Limpio

EQULIBRIO VAPOR-LIQUIDO

• SE HA TOMADO UN COMPUESTO A CUYO PUNTO DE EBULLICIÓN,

CONSTA DE DOS CURVAS QUE TERMINAN EN PUNTOS IGUALES TA O

TB . LA CURVA INFERIOR CORRESPONDE A LA TEMPERATURA DE

EBULLICIÓN DE LA MEZCLA LÍQUIDA EN FUNCIÓN DE LA COMPOSICIÓN DE LA FASE LÍQUIDA Y LA CURVA SUPERIOR A LA TEMPERATURA DE CONDENSACIÓN DE LA MEZCLA GASEOSA EN FUNCIÓN DE LA COMPOSICIÓN DE LA FASE GASEOSA O DE VAPOR.

• A LA PRIMERA SE LE CONOCE COMO LÍNEA DE PUNTOS DE BURBUJA MIENTRAS A LA SEGUNDA LÍNEA DE PUNTOS DE ROCÍO.

• EL MANEJO DE LAS CURVAS ES EL SIGUIENTE: ESTANDO EL SISTEMA LÍQUIDO - VAPOR EN EQUILIBRIO PARA UNA TEMPERATURA DADA T ,

LA COMPOSICIÓN DE LA FASE LÍQUIDA ES XA FRACCIÓN MOLA DEL

COMPUESTO A, LA COMPOSICIÓN DE LA FASE GASEOSA O FASE

VAPOR ES YA FRACCIÓN MOLAR DEL COMPUESTO A. LAS

COMPOSICIONES TANTO DEL LÍQUIDO COMO DEL VAPOR ESTÁN DEFINIDAS PARA LOS PUNTOS C Y D.

• EL SIGNIFICADO FÍSICO DE ESTOS PUNTOS ES QUE LA FASE LÍQUIDA

DE UNA COMPOSICIÓN XA, TIENE UNA TEMPERATURA DE EBULLICIÓN

QUE CORRESPONDE A LA DEL PUNTO C Y EL VAPOR QUE SE ESTÁ DESPRENDIENDO EN ESE MOMENTO TIENEN UNA COMPOSICIÓN

DADA POR EL PUNTO D O SEA YA .

Page 42: Gas 2 Disertacion Limpio

EQULIBRIO VAPOR-LIQUIDO• LOS DIAGRAMAS DE PUNTO DE EBULLICIÓN SON ESPECÍFICOS

PARA UNA PRESIÓN TOTAL DEFINIDA. A MAYORES PRESIONES LA REGIÓN ENTRE LAS CURVAS DE LAS DOS FASES SE ESTRECHAN, COMO SE APRECIA EN LA FIGURA 6-2 PARA LA MEZCLA BINARIA BUTANO - HEPTANO.

• LA DETERMINACIÓN EXPERIMENTAL DE LAS CURVAS IMPLICA PROCESOS FÍSICO - QUÍMICOS BASTANTE COMPLICADOS; PARA ALGUNOS CASOS, DENTRO DE CIERTOS RANGOS Y CONSIDERANDO UN COMPORTAMIENTO IDEAL DE LAS SOLUCIONES SE PUEDEN DETERMINAR POR APLICACIÓN DE LA LEY DE RAOULT.

• LA LEY DE RAOULT ESTABLECE QUE PARA UNA TEMPERATURA DADA, LA PRESIÓN PARCIAL DE UN COMPONENTE DE UNA MEZCLA IDEAL ES IGUAL A LA FRACCIÓN MOLAR DE ESE COMPONENTE MULTIPLICADA POR LA PRESIÓN DE VAPOR EN SU ESTADO PURO A LA TEMPERATURA DADA.

TOMANDO LA SOLUCIÓN O MEZCLA BINARIA DE LOS COMPUESTO A Y B, LAS PRESIONES PARCIALES PUEDEN SER

REPRESENTADAS POR “PA” Y “PB” RESPECTIVAMENTE, A LA

VEZ:

Page 43: Gas 2 Disertacion Limpio

CUALQUIER MEZCLA IDEAL O NO IDEAL, EN CADA UNA DE LAS DOS FASES PARA QUE ESTÉ EN EQUILIBRIO ES NECESARIO:

TV = TL

PV = PL

IV = I

L

DETERMINACIÓN DE PROPIEDADES

EQUILIBRIO LÍQUIDO - VAPOR

Li

Vi ff ˆˆ

iLi

Li

Li

iVi

Vi

Vi

xff

yff

ˆ

ˆ

En resumen: Relación fundamental

Donde:

Page 44: Gas 2 Disertacion Limpio

RELACIONES DE EQUILIBRIO LÍQUIDO - VAPOR FUNDAMENTALES

i

iVi

Vi

Li

Li

i xy

ff

K

º( , , , )

Li i

i i iVi

K f P T x y

P

PK

oii

i

( , )oi

i

PK f P T

P

( , , , )Li

i i iVi

K f P T x y

Relación Fundamental:

1ª Relación General:

•Presiones bajas y Mezclas Reales:

•Presiones bajas y Mezclas Ideales:

2ª Relación General:

Page 45: Gas 2 Disertacion Limpio

3ª RELACIONES SEMIEMPÍRICAS: KI = F(P, T)

· CORRELACIÓN DE MCWILLIAMS: PARA HIDROCARBUROS

P, EN PSIAS; T, EN ºR;

CONSTANTES AT Y AP EN TABLA 2-4 (WANKAT)

VÁLIDA PARA: -70 ºC<T<200 ºC ; Y 14.7 PSIA<P<870.1 PSIA

· OTRAS CORRELACIONES

T, EN ºR; PARA UNA DETERMINADA PRESIÓN Y COMPONENTE

CONSTANTES AI EN HOLLAND

Pa

Pa

PaaTa

Ta

K PPPT

TT 322

162

21 lnln

34

2321

3/1/ TaTaTaaTK iiii

Relaciones de Equilibrio Líquido - Vapor Fundamentales

Page 46: Gas 2 Disertacion Limpio

3ª RELACIONES SEMIEMPÍRICAS: KI = F(P, T)· CORRELACIÓN DE WHITSON Y TORP: CRITERIO DE PRESIÓN DE

CONVERGENCIA

DONDE: P = PRESIÓN DEL SISTEMA, PSIG (MANOMÉTRICA)PK = PRESIÓN DE CONVERGENCIA, PSIG (MANOMÉTRICA)T = TEMPERATURA DEL SISTEMA, °RΩI = FACTOR ACÉNTRICO DEL COMPONENTE ITCI= TEMPERATURA CRÍTICA DEL COMPONENTE I, ºRPCI= PRESIÓN CRÍTICA DEL COMPONENTE I, PSIA

MC7+ = PESO MOLECULAR DEL C7+

ΓC7+ = GRAVEDAD ESPECÍFICA DEL C7+

A1 = 6124.3049A2 = –2753.2538A3 = 415.42049

Relaciones de Equilibrio Líquido - Vapor Fundamentales

Page 47: Gas 2 Disertacion Limpio

4ª MÉTODOS GRÁFICOS: GRÁFICOS AGA, CAMPBELL

Relaciones de Equilibrio Líquido - Vapor Fundamentales

( , , )i kK f P T P

Page 48: Gas 2 Disertacion Limpio

POR ECUACIONES DE ESTADO:

SEGÚN:

SE CALCULA POR LAS EC.:

• REDLICH - KWONG

• SOAVE

• PENG - ROBINSON

• BENEDIC- WEB- RUBBIN

• LEE KESLER

Estimación de la Constante de Equilibrio: Ki

( , , , )Li

i i iVi

K f P T x y

Page 49: Gas 2 Disertacion Limpio

COEFICIENTE DE FUGACIDAD, PARA LAS DOS FASES:

REGLA DE MEZCLADO:

Ki, por Ec. de Redlich - Kwong

ZB

A

A

B

B

BA

BZZB

B iiii 1ln2)ln()1(ln

ci

cii

ci

cii

C

iii

C

iii

TTPP

B

TT

PPA

BxB

AxA

ABZBBAZZ

//

08664.0

/

/42748.0

0)(

5.2

1

2

1

223

Mezclas que forman soluciones ideales

Page 50: Gas 2 Disertacion Limpio

SEGÚN LAS RELACIONES:

RELACIÓN GENERAL: EC. CHAO-

SEADER

PARA P BAJAS:

COEFICIENTE DE ACTIVIDAD :SE EVALÚA CON LAS ECS.:

• HILDEBRAND, PARA LA EC. DE CHAO-SEADER

• NRTL, PARA MEZCLAS PARCIALMENTE POLARES

• VAN LAAR, PARA MEZCLAS PARCIALMENTE POLARES

• WILSON, PARA MEZCLAS POLARES

• UNIFAC, PARA MEZCLAS POLARES Y NO POLARES (C. GRUPOS)

• UNIQUAC, PARA MEZCLAS POLARES Y NO POLARES (C. GRUPOS)

Ki, para mezclas no ideales

Vi

Lii

iK º

P

PK

oii

i

Page 51: Gas 2 Disertacion Limpio

Diagrama de Fases Líquido - Vapor

Mezcla Líquido - Vapor

Page 52: Gas 2 Disertacion Limpio

EJEMPLO DE EQULIBRIO VAPOR-LIQUIDO

• EJEMPLO 6-1

• PARA UNA SERIE DE TEMPERATURAS, LAS PRESIONES DE VAPOR DEL BENCENO Y DEL TOLUENO SE DAN EN LA TABLA SIGUIENTE..SUPONIENDO QUE ESTOS COMPUESTOS OBEDECEN A LA LEY DE RAOULT Y QUE LA PRESIÓN TOTAL PARA ESTOS LÍQUIDOS ES DE UNA ATMÓSFERA ELABORAR EL DIAGRAMA DE TEMPERATURA -COMPOSICIÓN PARA ESTE SISTEMA.

Page 53: Gas 2 Disertacion Limpio

EQULIBRIO VAPOR-LIQUIDO• SOLUCIÓN: SE APLICAN LAS ECUACIONES (6-4) Y (6-7) PARA

DETERMINAR LAS FRACCIONES MOLARES TANTO EN LA FASE LÍQUIDA COMO LA FASE VAPOR.

• SE PARTE DE LA TEMPERATURA A LA CUAL SE REPORTAN LOS VALORES DE LOS DOS COMPUESTOS

• PARA 180°F, PA = 811 Y PB = 314

• APLICANDO LA ECUACIÓN ( 4-4 ) : XA POA + (1 - XA ) PO

B

• XA 811 + ( 1- XA ) 314 = 760 ===È X = 0,897

• CON LA ECUACIÓN (6-7) :

•  

Page 54: Gas 2 Disertacion Limpio

• CALCULANDO EN FORMA SIMILAR PARA LAS DEMÁS TEMPERATURA OBTENEMOS LA SIGUIENTE TABLA:

Page 55: Gas 2 Disertacion Limpio

GRACIAS POR SU

ATENCIÓN!