formes graves d’encéphalite herpé5que · activités et autonomie conservées 2 handicap faible...

25
Formes graves d’encéphalite herpé5que E5enne de Montmollin Service de médecine intensive et réanima5on infec5euse Hôpital Bichat – Claude Bernard, APHP, Paris

Upload: others

Post on 15-Oct-2020

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Formes graves d’encéphalite herpé5que · Activités et autonomie conservées 2 Handicap faible Incapable d’assurer les activités habituelles mais autonomie 3 Handicap modéré

Formes graves d’encéphalite herpé5que

E5enne de MontmollinService de médecine intensive et réanima5on infec5euse

Hôpital Bichat – Claude Bernard, APHP, Paris

Page 2: Formes graves d’encéphalite herpé5que · Activités et autonomie conservées 2 Handicap faible Incapable d’assurer les activités habituelles mais autonomie 3 Handicap modéré

Déclara'on d’intérêts de 2014 à 2019

• Intérêts financiers : aucun

• Liens durables ou permanents : aucun

• Interventions ponctuelles : Xenios, MSD

• Intérêts indirects : aucun

Page 3: Formes graves d’encéphalite herpé5que · Activités et autonomie conservées 2 Handicap faible Incapable d’assurer les activités habituelles mais autonomie 3 Handicap modéré

Epidémiologie

Granerod, Lancet Infect Dis 2010

www.thelancet.com/infection Vol 10 December 2010 835

Articles

Lancet Infect Dis 2010; 10: 835–44

This online publication has been corrected. The corrected version fi rst appeared at thelancet.com/infection on January 24, 2011

Published OnlineOctober 18, 2010DOI:10.1016/S1473-3099(10)70222-X

See Refl ection and Reactionpage 814

Centre for Infections, Health Protection Agency, London, UK (J Granerod MSc, H E Ambrose DPhil, J P Clewley PhD, A L Walsh MSc, D Morgan MD, Prof D W G Brown FRCPath, N S Crowcroft MD); St Vincent’s Hospital and University of New South Wales, Sydney, Australia (N W S Davies PhD); Plymouth Hospitals National Health Service Trust, Plymouth, UK (R Cunningham FRCPath); King’s College Hospital, London, UK (M Zuckerman FRCPath); Manchester Royal Infi rmary, Manchester, UK (K J Mutton MBBS); Institute of Infection and Global Health, University of Liverpool, Liverpool, UK (Prof T Solomon FRCP); Department of Neurology, Walton Neuroscience Centre NHS Foundation Trust, Liverpool, UK (T Solomon); University College Hospital, London, UK (K N Ward PhD); National Hospital for Neurology and Neurosurgery, London, UK (M P T Lunn FRCP); Department of Clinical Neurology, John Radcli! e Hospital, Oxford, UK (S R Irani MRCP, Prof A Vincent FRCPath); and Ontario Agency for Health Protection and Promotion, Toronto, Canada (N S Crowcroft)

Correspondence to: Julia Granerod, Health Protection Agency Centre for Infections,

Causes of encephalitis and di! erences in their clinical presentations in England: a multicentre, population-based prospective study Julia Granerod, Helen E Ambrose, Nicholas W S Davies, Jonathan P Clewley, Amanda L Walsh, Dilys Morgan, Richard Cunningham, Mark Zuckerman, Ken J Mutton, Tom Solomon, Katherine N Ward, Michael P T Lunn, Sarosh R Irani, Angela Vincent, David W G Brown, Natasha S Crowcroft, on behalf of the UK Health Protection Agency (HPA) Aetiology of Encephalitis Study Group

SummaryBackground Encephalitis has many causes, but for most patients the cause is unknown. We aimed to establish the cause and identify the clinical di! erences between causes in patients with encephalitis in England.

Methods Patients of all ages and with symptoms suggestive of encephalitis were actively recruited for 2 years (staged start between October, 2005, and November, 2006) from 24 hospitals by clinical sta! . Systematic laboratory testing included PCR and antibody assays for all commonly recognised causes of infectious encephalitis, investigation for less commonly recognised causes in immunocompromised patients, and testing for travel-related causes if indicated. We also tested for non-infectious causes for acute encephalitis including autoimmunity. A multidisciplinary expert team reviewed clinical presentation and hospital tests and directed further investigations. Patients were followed up for 6 months after discharge from hospital.

Findings We identifi ed 203 patients with encephalitis. Median age was 30 years (range 0–87). 86 patients (42%, 95% CI 35–49) had infectious causes, including 38 (19%, 14–25) herpes simplex virus, ten (5%, 2–9) varicella zoster virus, and ten (5%, 2–9) Mycobacterium tuberculosis; 75 (37%, 30–44) had unknown causes. 42 patients (21%, 15–27) had acute immune-mediated encephalitis. 24 patients (12%, 8–17) died, with higher case fatality for infections from M tuberculosis (three patients; 30%, 7–65) and varicella zoster virus (two patients; 20%, 2–56). The 16 patients with antibody-associated encephalitis had the worst outcome of all groups—nine (56%, 30–80) either died or had severe disabilities. Patients who died were more likely to be immunocompromised than were those who survived (OR=3·44).

Interpretation Early diagnosis of encephalitis is crucial to ensure that the right treatment is given on time. Extensive testing substantially reduced the proportion with unknown cause, but the proportion of cases with unknown cause was higher than that for any specifi c identifi ed cause.

Funding The Policy Research Programme, Department of Health, UK.

Introduction Few high-quality population-based studies of encephalitis are done because the syndrome is rare. Worldwide, up to 85% of cases are of unknown cause, and there is concern about new and emerging triggers.1,2 Over the past decade, emerging viruses implicated in causing encephalitis include the Nipah virus, bat lyssaviruses, and avian infl uenza A H5N1.3–5 The case of West Nile virus in North America shows the potential for infections to become established in new regions if vectors are present, if avian hosts are susceptible, and if the environment is supportive.6 In the UK, cases of West Nile virus in human beings can pass undetected because the infection is not endemic and so clinicians might not consider this diagnosis.7 Furthermore, the contribution of recently described immune-mediated forms of encephalitis, such as those associated with voltage-gated potassium channels and the N-methyl-D-aspartate (NMDA) receptor antibodies,8–11 is unclear.

Encephalitis is associated with high morbidity and mortality. An estimated 700 cases of viral encephalitis

occur yearly in England, of which about 7% are fatal; however, both the incidence and case fatality are thought to be underestimated.1 If infection is not fatal, individuals often have severe physical, cognitive, emotional, be-havioural, and social di! culties.12 In the USA, the yearly national costs of patients taken to hospital with encephalitis-associated illness has been estimated at US$630 million.13 E" ective interventions exist for some causes of encephalitis. Vaccination against mumps, measles, and rubella has substantially reduced the number of encephalitis cases associated with these diseases.14 Of the viral causes, herpes simplex virus and varicella zoster virus have well established antiviral treatments, and immunomodulation is used to treat patients with acute disseminated encephalomyelitis (ADEM) or other immune-mediated encephalitides.15 Timely and appropriate treatment is crucial for improving acute encephalitis outcome; hence, rapid identifi cation of the cause is key.

We present the clinical and aetiological results of a prospective study of 203 patients with encephalitis in England. We aimed to establish the cause by a systematic

Causeinfec+euse42%

Causedysimmunitaire21%

Causeinconnue37%

203 patients > 16 ans2008-2009

Page 4: Formes graves d’encéphalite herpé5que · Activités et autonomie conservées 2 Handicap faible Incapable d’assurer les activités habituelles mais autonomie 3 Handicap modéré

Epidémiologie

Granerod, Lancet Infect Dis 2010

203 pa<ents > 16 ans2008-2009

www.thelancet.com/infection Vol 10 December 2010 835

Articles

Lancet Infect Dis 2010; 10: 835–44

This online publication has been corrected. The corrected version fi rst appeared at thelancet.com/infection on January 24, 2011

Published OnlineOctober 18, 2010DOI:10.1016/S1473-3099(10)70222-X

See Refl ection and Reactionpage 814

Centre for Infections, Health Protection Agency, London, UK (J Granerod MSc, H E Ambrose DPhil, J P Clewley PhD, A L Walsh MSc, D Morgan MD, Prof D W G Brown FRCPath, N S Crowcroft MD); St Vincent’s Hospital and University of New South Wales, Sydney, Australia (N W S Davies PhD); Plymouth Hospitals National Health Service Trust, Plymouth, UK (R Cunningham FRCPath); King’s College Hospital, London, UK (M Zuckerman FRCPath); Manchester Royal Infi rmary, Manchester, UK (K J Mutton MBBS); Institute of Infection and Global Health, University of Liverpool, Liverpool, UK (Prof T Solomon FRCP); Department of Neurology, Walton Neuroscience Centre NHS Foundation Trust, Liverpool, UK (T Solomon); University College Hospital, London, UK (K N Ward PhD); National Hospital for Neurology and Neurosurgery, London, UK (M P T Lunn FRCP); Department of Clinical Neurology, John Radcli! e Hospital, Oxford, UK (S R Irani MRCP, Prof A Vincent FRCPath); and Ontario Agency for Health Protection and Promotion, Toronto, Canada (N S Crowcroft)

Correspondence to: Julia Granerod, Health Protection Agency Centre for Infections,

Causes of encephalitis and di! erences in their clinical presentations in England: a multicentre, population-based prospective study Julia Granerod, Helen E Ambrose, Nicholas W S Davies, Jonathan P Clewley, Amanda L Walsh, Dilys Morgan, Richard Cunningham, Mark Zuckerman, Ken J Mutton, Tom Solomon, Katherine N Ward, Michael P T Lunn, Sarosh R Irani, Angela Vincent, David W G Brown, Natasha S Crowcroft, on behalf of the UK Health Protection Agency (HPA) Aetiology of Encephalitis Study Group

SummaryBackground Encephalitis has many causes, but for most patients the cause is unknown. We aimed to establish the cause and identify the clinical di! erences between causes in patients with encephalitis in England.

Methods Patients of all ages and with symptoms suggestive of encephalitis were actively recruited for 2 years (staged start between October, 2005, and November, 2006) from 24 hospitals by clinical sta! . Systematic laboratory testing included PCR and antibody assays for all commonly recognised causes of infectious encephalitis, investigation for less commonly recognised causes in immunocompromised patients, and testing for travel-related causes if indicated. We also tested for non-infectious causes for acute encephalitis including autoimmunity. A multidisciplinary expert team reviewed clinical presentation and hospital tests and directed further investigations. Patients were followed up for 6 months after discharge from hospital.

Findings We identifi ed 203 patients with encephalitis. Median age was 30 years (range 0–87). 86 patients (42%, 95% CI 35–49) had infectious causes, including 38 (19%, 14–25) herpes simplex virus, ten (5%, 2–9) varicella zoster virus, and ten (5%, 2–9) Mycobacterium tuberculosis; 75 (37%, 30–44) had unknown causes. 42 patients (21%, 15–27) had acute immune-mediated encephalitis. 24 patients (12%, 8–17) died, with higher case fatality for infections from M tuberculosis (three patients; 30%, 7–65) and varicella zoster virus (two patients; 20%, 2–56). The 16 patients with antibody-associated encephalitis had the worst outcome of all groups—nine (56%, 30–80) either died or had severe disabilities. Patients who died were more likely to be immunocompromised than were those who survived (OR=3·44).

Interpretation Early diagnosis of encephalitis is crucial to ensure that the right treatment is given on time. Extensive testing substantially reduced the proportion with unknown cause, but the proportion of cases with unknown cause was higher than that for any specifi c identifi ed cause.

Funding The Policy Research Programme, Department of Health, UK.

Introduction Few high-quality population-based studies of encephalitis are done because the syndrome is rare. Worldwide, up to 85% of cases are of unknown cause, and there is concern about new and emerging triggers.1,2 Over the past decade, emerging viruses implicated in causing encephalitis include the Nipah virus, bat lyssaviruses, and avian infl uenza A H5N1.3–5 The case of West Nile virus in North America shows the potential for infections to become established in new regions if vectors are present, if avian hosts are susceptible, and if the environment is supportive.6 In the UK, cases of West Nile virus in human beings can pass undetected because the infection is not endemic and so clinicians might not consider this diagnosis.7 Furthermore, the contribution of recently described immune-mediated forms of encephalitis, such as those associated with voltage-gated potassium channels and the N-methyl-D-aspartate (NMDA) receptor antibodies,8–11 is unclear.

Encephalitis is associated with high morbidity and mortality. An estimated 700 cases of viral encephalitis

occur yearly in England, of which about 7% are fatal; however, both the incidence and case fatality are thought to be underestimated.1 If infection is not fatal, individuals often have severe physical, cognitive, emotional, be-havioural, and social di! culties.12 In the USA, the yearly national costs of patients taken to hospital with encephalitis-associated illness has been estimated at US$630 million.13 E" ective interventions exist for some causes of encephalitis. Vaccination against mumps, measles, and rubella has substantially reduced the number of encephalitis cases associated with these diseases.14 Of the viral causes, herpes simplex virus and varicella zoster virus have well established antiviral treatments, and immunomodulation is used to treat patients with acute disseminated encephalomyelitis (ADEM) or other immune-mediated encephalitides.15 Timely and appropriate treatment is crucial for improving acute encephalitis outcome; hence, rapid identifi cation of the cause is key.

We present the clinical and aetiological results of a prospective study of 203 patients with encephalitis in England. We aimed to establish the cause by a systematic

Page 5: Formes graves d’encéphalite herpé5que · Activités et autonomie conservées 2 Handicap faible Incapable d’assurer les activités habituelles mais autonomie 3 Handicap modéré

Méningo-encéphalite herpé1que

• Incidence : 0.2-0.4 cas / 100 000 habitants

• Répartition bimodale :

• < 5 ans

• 50-70 ans

• Pas de « terrain favorisant » le + souvent...

• Pas de variation saisonnière, sex ratio = 1

• Physiopathologie : Réactivation virus HSV-1 (90%)

Granerod, Lancet Infect Dis 2010

Page 6: Formes graves d’encéphalite herpé5que · Activités et autonomie conservées 2 Handicap faible Incapable d’assurer les activités habituelles mais autonomie 3 Handicap modéré

Méningo-encéphalite herpétique

• Manifestations cliniques variées et non spécifiques +++• Garder un niveau de suspicion élevé

• Prodromes fréquents• Fièvre, céphalées, malaise, nausées, vomissements

• Suivi de symptômes encéphaliques dans les jours qui suivent

Sabah, BMJ 2012Bradshaw, neurotherapeuIcs 2016

• Crise convulsive (30%)• Troubles du comportement (25%)• Troubles de conscience (15%)• Confusion / désorientation (15%)

MoIfs de consultaIonles + fréquents

Page 7: Formes graves d’encéphalite herpé5que · Activités et autonomie conservées 2 Handicap faible Incapable d’assurer les activités habituelles mais autonomie 3 Handicap modéré

MEH et réanima-onQui est admis en réanima-on?

• Indications d’hospitalisation• GCS ≤ 13 ou agitation

• Crise(s) convulsive(s)

• Défaillance extra-neurologique

• Admission réa/USC• 60-70%

• Causes d’admission en réanimation de 259 MEH• Troubles de conscience : 50%

• Crise convulsive : 26% Recommandations SPILF, Stahl, Med Mal 2017Raschilas, Clin Infect Dis 2002

Oud, J Clin Med Res 2019Jaquet, Intensive Care Med 2019

Page 8: Formes graves d’encéphalite herpé5que · Activités et autonomie conservées 2 Handicap faible Incapable d’assurer les activités habituelles mais autonomie 3 Handicap modéré

MEH et réanimationDonnées cliniques et paracliniques à l’admission

Jaquet, Intensive Care Med 2019

259 paBents > 18 ans2007-2017

47 réas françaises

Page 9: Formes graves d’encéphalite herpé5que · Activités et autonomie conservées 2 Handicap faible Incapable d’assurer les activités habituelles mais autonomie 3 Handicap modéré

MEH et réanimationDonnées cliniques et paracliniques

Jaquet, Intensive Care Med 2019

Page 10: Formes graves d’encéphalite herpé5que · Activités et autonomie conservées 2 Handicap faible Incapable d’assurer les activités habituelles mais autonomie 3 Handicap modéré

Méningo-encéphalite herpétiqueLes pièges de la ponction lombaire

ENCEPHALITICA study group, unpublished data

Whole cohortn=266

WBC < 5/mm3 42 (16%)

CSF protein < 0.4g/L 30 (13%)

WBC < 5/mm3 AND CSF protein < 0.4g/L 9 (3%)

Negative PCR on 1st CSF testing 10 (4%)

Normal CSF AND negative PCR 2 (1%)

PCR+ PCR-

0

2

4

6

8

10

Delaybetw

een1stsym

ptom

and

CSFPCR

tes=ng,days

Page 11: Formes graves d’encéphalite herpé5que · Activités et autonomie conservées 2 Handicap faible Incapable d’assurer les activités habituelles mais autonomie 3 Handicap modéré

Méningo-encéphalite herpétiqueLes pièges de la ponction lombaire

ENCEPHALITICA study group, unpublished data

1st PCR +

n=256

1st PCR -

n=10p

Coexisting conditions

Chronic steroid treatment 18 (7.1) 2 (20) 0.13

HIV + 6 (2.4) 1 (10) 0.14

Clinical presentation

Focal sign at admission 34 (13.5) 3 (30) 0.14

Seizures at admission 87 (34) 7 (70) 0.07

CSF analysis

WBC < 5/mm3 37 (14.5) 5 (50) <.01

CSF protein < 0.4g/L 27 (12) 3 (33.3) 0.06

Diagnostic and therapeutic management

Time from CSF analysis to cerebral MRI, d 2 [1 ; 7] 1 [0 ; 2] 0.06

Time from CSF analysis to ACV treatment, d 0 [0 ; 0] 2 [1 ; 5] <.01

Page 12: Formes graves d’encéphalite herpé5que · Activités et autonomie conservées 2 Handicap faible Incapable d’assurer les activités habituelles mais autonomie 3 Handicap modéré

Méningo-encéphalite herpétiqueApports de l’IRM

• IRM anormale dans 80-100% des cas• Examen à réaliser en 1ère intention ++

• Atteinte préférentielle :• Partie médiale du lobe temporal• Insula• Cortex frontobasal / Cortex cingulaire

• Lésions unilatérales dans 2/3 des cas

• Lésions hyper-intenses en T2 et FLAIR

Bertrand, Med Mal Infect 2017

Page 13: Formes graves d’encéphalite herpé5que · Activités et autonomie conservées 2 Handicap faible Incapable d’assurer les activités habituelles mais autonomie 3 Handicap modéré

Méningo-encéphalite herpétiqueApports de l’IRM

Chow, Clin Infect Dis 2015

Cingulum

Insula

Temporal lobe

Page 14: Formes graves d’encéphalite herpé5que · Activités et autonomie conservées 2 Handicap faible Incapable d’assurer les activités habituelles mais autonomie 3 Handicap modéré

Méningo-encéphalite herpétiqueApports de l’EEG

• Très sensible mais très peu spécifique• Ralentissement fronto-temporal, occipital• Décharges périodiques

Sutter, Clin Neurophysio 2014

Page 15: Formes graves d’encéphalite herpé5que · Activités et autonomie conservées 2 Handicap faible Incapable d’assurer les activités habituelles mais autonomie 3 Handicap modéré

Méningo-encéphalite herpétiquePrise en charge en réanimation

• Traitement spécifique• Aciclovir 10mg/kg/8h dose initiale

• Adaptation dose pour nephrotroxicité 20%

• Pas de TDM d’aciclovir réalisé

• Durée 21 [21-21] jours bien que seulement 20% d’immunodéprimés

Jaquet, Intensive Care Med 2019

Page 16: Formes graves d’encéphalite herpé5que · Activités et autonomie conservées 2 Handicap faible Incapable d’assurer les activités habituelles mais autonomie 3 Handicap modéré

Méningo-encéphalite herpétiqueEvolution en réanimation

Jaquet, Intensive Care Med 2019

Page 17: Formes graves d’encéphalite herpé5que · Activités et autonomie conservées 2 Handicap faible Incapable d’assurer les activités habituelles mais autonomie 3 Handicap modéré

Méningo-encéphalite herpétiquePronostic

Jaquet, Intensive Care Med 2019

• Mortalité J90 : 17%

• Mais pronostic fonctionnel J90• mRS > 2 : 71% +++• Endpoint plus pertinent

0 Aucun symptôme

1Pas d’incapacité en dehors des symptômesActivités et autonomie conservées

2Handicap faibleIncapable d’assurer les activités habituelles mais autonomie

3Handicap modéréBesoin d’aide mais marche possible sans assistance

4Handicap modérément sévèreMarche et gestes quotidiens impossibles sans aide

5Handicap majeurAlitement permanent, incontinence et soins de nursingpermanent

6 Décès

Score de Rankin modifié (mRS)

Page 18: Formes graves d’encéphalite herpé5que · Activités et autonomie conservées 2 Handicap faible Incapable d’assurer les activités habituelles mais autonomie 3 Handicap modéré

Méningo-encéphalite herpétiquePronostic

Jaquet, Intensive Care Med 2019

0−2

3

4−5

6

0−2

3

4−5

6

ICU discharge Day 90ICU discharge Day 90

6(14%)

4 - 5(48%)

3(29%)

0 - 2(10%)

0 - 2(18%)

3(40%)

4 - 5(24%)

6(17%)

Page 19: Formes graves d’encéphalite herpé5que · Activités et autonomie conservées 2 Handicap faible Incapable d’assurer les activités habituelles mais autonomie 3 Handicap modéré

Méningo-encéphalite herpétiquePronostic à long terme

-2 0 1 2 50

10

20

30

40

Yearsfromstudyinclusion

Frequency,%

Hospitaladmissiontoaneurologydepartment

HSV-1

Control

-2 0 1 2 50

20

40

60

80

100

Employement

Yearsfromstudyinclusion

Frequency,%

HSV-1

Control

-2 0 1 2 50

10

20

30

40

Disabilitypension

Yearsfromstudyinclusion

Frequency,%

HSV-1

Control

Hansen, Clinical Epidemiology 2020

Page 20: Formes graves d’encéphalite herpé5que · Activités et autonomie conservées 2 Handicap faible Incapable d’assurer les activités habituelles mais autonomie 3 Handicap modéré

Méningo-encéphalite herpétiqueFacteurs pronostiques

Raschilas, Clin Infect Dis 2002Jaquet, Intensive Care Med 2019

!e association between direct ICU admission and outcome is consistent with previously published data on patients with all-cause encephalitis admitted to the ICU [26]. Of note, recent guidelines recommend early ICU admission for patients with all-cause encephalitis pre-senting with a score on the GCS inferior or equal to 13, seizure(s) and/or non-neurological organ failure [25]. We hypothesize that direct ICU admission, as compared to initial admission to the hospital wards, enables for faster diagnosis (i.e., CSF analysis, EEG, and brain MRI), early initiation of intravenous acyclovir, and management of major intracranial complications that are associated with outcome, i.e., cerebral edema, hydrocephalus, and refrac-tory seizures [27, 28]. Moreover, ICU admission may facilitate the use of non-invasive neuromonitoring (e.g., continuous EEG) for detection of seizures. Interestingly, the use of invasive monitoring and ICP-targeted thera-pies was infrequent in our study, reflecting the current practice that most patients with encephalitis are man-aged in general ICUs [11].

Brain MRI is recommended for the management of patients with suspected encephalitis, irrespective of severity [12, 25]. It enables for faster diagnosis in atypical cases and may have a prognostic value. In line with a pre-vious smaller study conducted in non-ICU patients with probable or confirmed HSE [29], our study shows that extensive brain lesions to more than three cerebral lobes on initial MRI were associated with a worse outcome. Another study reported that restricted di"usion on brain MRI portends poor outcome in HSE [6], but unfortu-nately, this information was not collected for the present study. Finally, mechanical ventilation at admission was also associated with outcome, likely simply reflecting the severity of patients included in our cohort [5].

Atypical clinical and biological findings were not infre-quent in our study. Overall, 6% of patients presented with strictly normal CSF analysis (i.e., leucocyte count < 5/mm3 and proteins levels < 0.5#g/L) at admission, sug-gesting that normal CSF analysis on the first LP does not rule out HSE diagnosis. Hence, acyclovir treatment

Fig. 1 Distribution of modified Rankin scale scores according to independent predictors of poor outcome

Page 21: Formes graves d’encéphalite herpé5que · Activités et autonomie conservées 2 Handicap faible Incapable d’assurer les activités habituelles mais autonomie 3 Handicap modéré

Méningo-encéphalite herpétiqueFacteurs associés au retard de traitement

Poissy, Clin Microbiol Infect 2009

ENCEPHALITICA study group, unpublished data

variableDelay ≤ 1 day

n=239

Delay > 1 day

n=23p

Age, years 63.1 [52.8 ; 72.9] 70.3 [62.1 ; 74.8] 0.08

WBC < 5/mm3 34 (14.1) 6 (27.3) 0.10

Negative 1st PCR 3 (1.2) 7 (31.8) <.01

Temp <38.1 °C 52 (23.2) 7 (31.8) 0.33

Delay > 1 day

RR 10 [4.8 – 20.9] if negative PCR

Page 22: Formes graves d’encéphalite herpé5que · Activités et autonomie conservées 2 Handicap faible Incapable d’assurer les activités habituelles mais autonomie 3 Handicap modéré

Méningo-encéphalite herpétiqueFacteurs associés au retard de traitement

ENCEPHALITICA study group, unpublished data

0 1 2 3 4 5 60

20

40

60

80

mRSatacutehospitaldischarge

Freq

uency,%

PCR+

PCR-

Page 23: Formes graves d’encéphalite herpé5que · Activités et autonomie conservées 2 Handicap faible Incapable d’assurer les activités habituelles mais autonomie 3 Handicap modéré

• Rechute de symptômes encéphali3ques au décours d’une encéphalite à HSV• Troubles du comportement• Epilepsie

• 14/54 (26%) => ⚠ Beaucoup de cas pédiatriques• Dont 9 NMDA-R et 5 sans Ac retrouvé• Evolu3on souvent favorable sous immunothérapie

• Délai médian 31 [25 – 49] jours

• Y penser en cas d’évolu3on défavorable d’une MEH bien traitée ++

Encéphalites dysimmunitaires post-HSV

Armangue, Lancet Neurol 2018

Page 24: Formes graves d’encéphalite herpé5que · Activités et autonomie conservées 2 Handicap faible Incapable d’assurer les activités habituelles mais autonomie 3 Handicap modéré

En conclusion•Maladie rare, mais bien caractérisée

• Pièges connus• Signes frustes chez sujet âgé et immunodéprimé• LCR peut être trompeur, cytologie et PCR

• Performance de l’IRM en cas de tableau atypique

•Mortalité non négligeable

• Pronostic fonctionnel mauvais +++

Page 25: Formes graves d’encéphalite herpé5que · Activités et autonomie conservées 2 Handicap faible Incapable d’assurer les activités habituelles mais autonomie 3 Handicap modéré

En conclusion• Peu de facteurs pronostiques modifiables identifiés• Délai hôpital – ACV a réduire au maximum• Garder un niveau de suspicion diagnostique élevé

• Intérêt d’un filière spécifique?• Suivi à long terme• Dépistage et rééducation des séquelles neurocognitives