fisicoquimica ii 2012

352

Click here to load reader

Upload: adalberto-vargas-soto

Post on 01-Jan-2016

98 views

Category:

Documents


8 download

TRANSCRIPT

Page 1: Fisicoquimica II 2012

Manuel Páez

UNIVERSIDAD DE CORDOBAFACULTAD DE CIENCIAS BÁSICAS

DEPARTAMENTO DE QUÍMICAPROGRAMA QUÍMICA

Curso: Fisicoquímica II

Manuel Páez

Page 2: Fisicoquimica II 2012

Manuel Páez

La Fisicoquímica (también llamada Química Física) es una subdisciplina de la química que estudia la materia empleando conceptos físicos y químicos.

En esta subdisciplina concurren diversas áreas, como la química, la física, la termodinámica, la electroquímica y la mecánica cuántica donde funciones matemáticas pueden representar interpretaciones a nivel molecular y atómico estructural.

Cambios en la temperatura, presión, volumen, calor y trabajo en los sistemas, sólido, líquido y/o gaseoso se encuentran también relacionados a estas interpretaciones de interacciones moleculares.

FÍSICOQUÍMICA

Page 3: Fisicoquimica II 2012

Manuel Páez

UNIDAD No.1 : TERMODINÁMICA DE SOLUCIONES

• Soluciones. Definición.•Potenciales Termodinámicos.•Solución ideal. Energía de Gibbs, entropía, entalpía y volumen de mezclado de una solución ideal. Potencial Químico de una solución ideal.•Ley de Raoult. Ley de Henry.•Equilibrio químico en una mezcla de gases ideales y reales. Dependencia de la constante de equilibrio con la temperatura.•Propiedades parciales. Volúmenes molares parciales. Relación entre las diferentes propiedades parciales.•Métodos para determinar las cantidades molares parciales: Analítico, grafico, gráficos de los interceptos, volumen molar aparente, volumen de mezcla.•Entalpía de mezcla. Entalpía de exceso. Calor integral de mezcla, calor diferencial de disolución, calor integral.•Propiedades coligativas. Ecuación de Clapeyron. Disminución de la presión de vapor. Disminución de la temperatura de congelación. Solubilidad. Aumento de la temperatura de ebullición. Presión osmótica.• Propiedades coligativas de soluciones electrolíticas. Teoría de Arrehenius de la disolución electrolítica. Ley de distribución de Nerst (coeficiente de

reparto).

Page 4: Fisicoquimica II 2012

Manuel Páez

TERMODINÁMICALa termodinámica es la rama de la física  que se dedica al estudio de las relaciones entre el calor y el resto de las formas de energía. Analiza, por lo tanto, los efectos de los cambios de temperatura, presión, densidad, masa y volumen en los sistemas a nivel macroscópico.

La termodinámica solamente es útil cuando se aplica a sistemas en equilibrio.

Si un sistema en equilibrio es perturbado, la termodinámica puede predecir el nuevo estado de equilibrio, pero no puede predecir como, que tan rápido o si se alcanzará ese estado de equilibrio.

Page 5: Fisicoquimica II 2012

Manuel Páez

Equilibrio Termodinámico

Mecánico Térmico

Material

Equilibrio de fases

Equilibrio químico

T T

dq

T T

P P

dV

P P

i i

dni

i i

Page 6: Fisicoquimica II 2012

Manuel Páez

SOLUCIÓN.

Una disolución es una fase cuya composición puede variar en forma continua entre ciertos límites.

Soluciones Gaseosas: fumarolas volcánicas (ej. solutos: HCl+CO2+SO2 ; solvente: H2O(g))

Soluciones Líquidas: fluidos hidrotermales (aguas termales) (solutos: K+, Ca 2+, Cl-, CO3

2-, SO42- ; solvente: H2O(l))

Soluciones Sólidas: corresponden a las “aleaciones”, es decir, a aquellos compuestos sólidos que no tienen composición constante.

Aleación artificial: Bronce (Cu+Sn)

Page 7: Fisicoquimica II 2012

Manuel Páez

Las soluciones son mezclas homogéneas de moléculas, átomos e iones de dos o más sustancias, entre las cuales existen interacciones físicas y frecuentemente químicas.

Las soluciones son mezclas homogéneas de moléculas, átomos e iones de dos o más sustancias, entre las cuales existen interacciones físicas y frecuentemente químicas.Bajo el nombre de interacciones físicas, se encuentran varios tipos de interacción molecular, que son casos particulares de interacciones electrostáticas. A saber: la atracción de orientación entre moléculas con dipolos constantes, la atracción inductiva entre moléculas con dipolo constantes y moléculas con dipolos inducidos y la atracción de dispersión entre moléculas con dipolos mutuamente inducidos, cuyos momentos oscilan alrededor de cero.

Page 8: Fisicoquimica II 2012

Uniones intermoleculares en agua a 30 °C

Interacción Tipo kJ/mol

Ión/dipolo Na+ ... H2O 60

Dipolo-Dipolo H2O...H2O (estructura del H2O) 20

Dipolo-Dipolo =CO...HN= (unión peptídica) 15

Dipolo-Dipolo inducido H2O...CH2= 10

Dipolo inducido-Dipolo inducido =H2C...CH2= (London) 4

Dipolo inducido-Dipolo inducido Ar...Ar (London) 4La interacción más importante en un proceso de mezclado es el enlace de hidrógeno, el cual se crea por la atracción electrostática del protón de una molécula hacia un anión o un átomo electronegativo(principal - mente hacia átomos de fluor, oxígeno, nitrógeno y cloro) de otra molécula.

Page 9: Fisicoquimica II 2012

Manuel Páez

En síntesis

Interacciones en solución

Fisicas y/o Químicas

Repulsión Intermolecular Atracción Intermolecular

Acción mutua de envolturaselectrónicas

+

Movimiento térmico

De esta manera se producen distancias medias de equilibrio entre las moléculas en movimiento: oscilatorio, rotatorio y de

desplazamiento episódico en la solución.

Compensan la atracción

Provocada Interacción de van de WaalsDipolo-dipolo, dipolodipolo-

Dipoloinducido,…

E proporcional r -6

Asociación o solvatación

Puentes de hidrógeno

Page 10: Fisicoquimica II 2012

POTENCIALES TERMODINÁMICOS

Si una solución a T y P constantes se forma espontáneamente de los componentes que la constituyen, su formación, está ligada a una disminución de la energía libre del sistema.

La magnitud de la energía libre G como potencial termodinámico, de una masa cualquiera de la solución es una función no solo de P y T, sino también de la masa total y composición de la solución. Esto se refiere a todos los potenciales termodinámicos y otras propiedades extensivas del sistema, es decir, las propiedades que son proporcionales a la masa de la solución.

Page 11: Fisicoquimica II 2012

Manuel Páez

POTENCIALES TERMODINÁMICOS EN SISTEMAS CERRADOS

P V

S T

U H F G

S V

T P

V S

T V

S P

V T

S P

T V

P S

T P

S V

P T

ECUACIONES DE MAXWELL

dU TdS PdV

dH TdS VdP

dA SdT PdV

dG SdT VdP

V SS V

U U

V S S V

S V

T P

V S

Los potenciales termodinámicos son magnitudes que tienen dimensión de energía y tienden a un mínimo, si los procesos en el sistema

transcurren bajo determinadas condiciones.

Page 12: Fisicoquimica II 2012

Manuel Páez

Los potenciales termodinámicos deducidos previamente no se pueden aplicar a sistemas abiertos ni a procesos irreversibles como una reacción química. Si la composición varía, el número de moles de sustancia es otra variable a considerar, por consiguiente se tiene que:

Así en el caso de una reacción química, lo que se hace es congelar la reacción y variar la composición del sistema de forma reversible modificando la composición en una cantidad dni

i ii

dU TdS PdV dn

i ii

dH TdS VdP dn

i ii

dA SdT PdV dn

i ii

dG SdT VdP dn

POTENCIALES TERMODINÁMICOS EN SISTEMAS ABIERTOS

Page 13: Fisicoquimica II 2012

RELACIÓN CUANTITATIVA DE LOS POTENCIALES TERMODINÁMICOS DE UNA

SOLUCIÓN CON RESPECTO A SU COMPOSICIÓN.

Hasta este momento, hemos visualizado el estudio de la Termodinámica de sistemas simples, con composición constante: por ejemplo, juntar anhidrita + agua para formar yeso. Todas esas fases involucradas tienen composición constante. Ahora bien, si queremos disolver una serie de componentes individuales en un líquido o en un gas, la composición del sistema variará, y por ende sus propiedades termodinámicas.

De acuerdo con la primera ley el cambio de la energía interna de un sistema cerrado puede ser convenientemente expresado, por la relación:

Lo cual significa que si se agrega cierta cantidad de calor a un sistema, durante un proceso no cíclico, para no contradecir la primera ley, este calor servirá para aumentar la energía interna del sistema y para realizar algún trabajo exterior.

Page 14: Fisicoquimica II 2012

Una solución no es un sistema cerrado de ahí que el primer principio de la termodinámica es necesario ampliarlo, ya que, la energía interna de una solución varía al ser absorbido o desprendido calor, realizando un trabajo y variando las masas de los componentes así:

O para un proceso de equilibrio en presencia sólo de trabajo de expansión

 

Page 15: Fisicoquimica II 2012

Pero µi = coeficiente de proporcionalidad, a que es igual ?

Para averiguarlo es conveniente fijar S y V con lo cual:

La modificación hecha al primer principio es extensiva a todos los potenciales termodinámicas con lo cual se obtiene,

Page 16: Fisicoquimica II 2012

Es decir el coeficiente es una derivada parcial de los potenciales termodinámicas respecto a la masa del i esímo componente, bajo ciertas restricciones.

Todas las derivadas parciales son iguales entres si.

De la definición del potencial químico como derivada parcial se desprende lo siguiente:

Si se agrega ( guardando las restricciones ) una mol de alguno de los componentes a una cantidad infinitamente grande de solución ( sin que se altere su composición total ) de una determinada composición el será igual al incremento del potencial termodinámico de referencia.

i

npTinVTinpSinVSii n

GnA

nH

nU

/,,/,,/,,/,,

Page 17: Fisicoquimica II 2012

Manuel Páez

En síntesis el Potencial Químico

Con el propósito de extender las ecuaciones fundamentales a sistemas cuya composición es variable, Gibbs definió el término potencial químico (μ), así:

Lo cual expresa la variación del potencial termodinámico de un componente i (en una fase o una mezcla o una solución) con respecto a ciertas restricciones.

Para una sustancia pura a temperatura y presión constantes, es igual a la energía libre molar de Gibbs:

Por convención como definición del potencial químico se adopta a la última igualdad, la cual tendrá diferentes formas concretas en dependencia del sistema que se estudie. Nuestra tarea consistirá en encontrar esas formas concretas.

Page 18: Fisicoquimica II 2012

Soluciones

Ideales

En una solución el componente que se encuentra en mayor proporción se denomina solvente y los que están en menor proporción se llaman solutos.

Infinitamente diluidas: 1-10 mM (se aproximan a la idealidad)Reales

0.1-10 M

Las interacciones moleculares soluto-solvente son de igual magnitud a las interacciones solvente-solvente y

soluto-soluto

El concepto de solución ideal, al igual que la ley de los gases ideales, es un concepto “límite”, que nos permite establecer

un marco de comparación

SOLUCION IDEAL

Page 19: Fisicoquimica II 2012

Manuel Páez

Podemos definir una solución ideal como aquella que no absorbe ni desprende calor durante el proceso de mezclado, y el volumen de la solución es igual a la suma de los volúmenes de los componentes líquidos (al disolverse no ocurre ni reducción ni aumento del volumen).

En otras palabras la entalpía H y el volumen V de las soluciones ideales son propiedades aditivas.

Page 20: Fisicoquimica II 2012

El cambio en la energía libre de Gibbs para la formación de una solución está relacionado con los potenciales químicos de los componentes como sigue:

Por consiguiente:Estas últimas expresiones sólo son ciertas, si su solución es una constante que a p constante sólo depende de la composición. En efecto la solución buscada es de la forma:

iii nG con

POTENCIAL QUÍMICO DE UNA SOLUCIÓN IDEAL.

Page 21: Fisicoquimica II 2012

Manuel Páez

Se ha propuesto que esta función para las soluciones ideales tiene la forma

La forma concreta que toma la expresión del potencial químico para una mezcla ideal.

Puesto que

Page 22: Fisicoquimica II 2012

Manuel Páez

Supóngase que:

Liquido 1

T, P 111 nG

Liquido 2

T, P 222 nG

Solución: 1 + 2

T, P

2211 nnG la pared

Quitamos

Pared removible

Estado inicial Estado finalDe manera que:

FUNCIONES TERMODINÁMICAS DE LA SOLUCIÓN IDEALSi dos líquidos son puestos en contacto, y tienden a formar espontáneamente una solución, entonces el proceso está caracterizado por una disminución de la energía libre.

Page 23: Fisicoquimica II 2012

Manuel Páez

Acabamos de estudiar que el para una solución ideal está dado por:

Entonces:

Escribiendo está expresión en términos de N total y de las xi se obtiene:

Page 24: Fisicoquimica II 2012

Manuel Páez

Generalizando para cualquier número de componentes:

o

0 1

La representación gráfica de esta ecuación, para una solución binaria se muestra a continuación.

Si

Por tanto los valores de

La gráfica es una función simétrica respecto a con un mínimo en 2/ix

Page 25: Fisicoquimica II 2012

Manuel Páez

La entropía y la entalpía se pueden deducir fácilmente, así:

Page 26: Fisicoquimica II 2012

Postula que la presión parcial de un componente por encima de la solución, es igual a la presión parcial del componente puro, por su fracción molar en la solución a esa temperatura, de tal forma que:

Mientras que la presión total sobre la solución está dada por la ley de Dalton

Además

Ley de Raoult

En síntesis se puede decir que una solución ideal se define como aquella que obedece la ley de Raoult a lo largo de todo el intervalo de composiciones y que adicionalmente cumple con:

Page 27: Fisicoquimica II 2012

Manuel Páez

Ley de HenryDEFINICIÓN. "La cantidad de gas disuelta en un liquido a una determinada temperatura es directamente proporcional a la presión parcial que ejerce ese gas sobre el liquido."

Mientras que en una disolución ideal la presión de vapor del componente presente en pequeñas concentraciones (el soluto) también cumple la ley de Roult, en soluciones reales existen desviaciones. No obstante, es conveniente suponer que la presión de vapor del soluto depende aproximadamente en forma lineal de la cantidad de soluto presente a bajas concentraciones. Esta suposición es el contenido de la ley de Henry, que establece que a bajas concentraciones la presión de vapor del soluto cumple la ley de Henry:PB = kH . XB

Los sistemas que obedecen la ley de Henry son menos ideales que los que cumplen la ley de Raoult y se denominan soluciones ideales diluidas.En una solución ideal diluida: •el solvente se aproxima a un comportamiento descrito por la Ley de Raoult•el soluto se aproxima a un comportamiento descrito por la Ley de Henry.

En una solución ideal diluida: •el solvente se aproxima a un comportamiento descrito por la Ley de Raoult•el soluto se aproxima a un comportamiento descrito por la Ley de Henry.

Page 28: Fisicoquimica II 2012

Manuel Páez

EJERCICIO RESUELTOenergíaenergía

Page 29: Fisicoquimica II 2012

Manuel Páez

PROBLEMAS PROPUESTOS

Page 30: Fisicoquimica II 2012

Manuel Páez

Page 31: Fisicoquimica II 2012

EQUILIBRIO QUÍMICO EN UNA MEZCLA DE EQUILIBRIO QUÍMICO EN UNA MEZCLA DE GASES REALES E IDEALES.GASES REALES E IDEALES.

1

1, , 1 , ,

.... 0j j j

P n T n T P n

G G GdG dT dP dn

T P n

1 , ,

0j i

j

ii i T P n

GdG SdT VdP dn

n

iPotencial químico

• Una reacción química alcanza el equilibrio cuando las concentraciones de todos los reactivos y productos permanece constante, a una cierta temperatura.

• Las velocidades de las reacciones directa e inversa son iguales al alcanzar el estado de equilibrio.

Condición de espontaneidad-equilibrio

Page 32: Fisicoquimica II 2012

0i idG SdT VdP dn

aA + bB cC + dD

Si estudiamos una reacción química a T y P constantes:

i idn d ( ) 0i i i idG dn d

0i i Condición de espontaneidad-equilibriopara reacciones químicas a T y P constantes, con W(PV)

Page 33: Fisicoquimica II 2012

Manuel Páez

Constante de Equilibrio de una ReacciónSea una reacción química: AA + BB + .... - MM - NN - .... = 0

La condición de equilibrio de una reacción química es:

Ahora ya podemos calcular el valor de i de cada reaccionante y producto, sea sustancia pura o solución:

La condición de equilibrio será:

Donde el valor de K de una reacción se puede calcular a partir de los valores de de las sustancias puras a la p y T de la reacción, que a su vez se pueden obtener a partir de gi(298,1).

0ii

i0ii alnRT

0alnRT ii0iiii

KRT

expa0ii

ii

0i

Page 34: Fisicoquimica II 2012

Manuel Páez

Constante de equilibrio a cualquier p y T

donde:

dppg

dTTg

)298,1(g)T,p(gT,1

298,1

T,p

T,1

rrrr

tablas

1) Variación de K con T:

dTTh

dTTg

dTsdTTg

gdT

298

T

298

rrT

298

T

298 rr

T

298 r

rrr sThg rr s

Tg

dTTh

dTTg

Tgd T

298 2r

T

298 2rr

dTTh

Tg

dT

298 2r

T

298

r

dTTh

R1

KlndT

298 2r

T

298

2981

T1

Rh

)298(Kln)T(Kln r

Suponiendo que hr no varía con T ecuación de Van’t Hoff

RT)T,p(g

expRT

)T,p(gexp

RTexpK rii

0ii

Page 35: Fisicoquimica II 2012

Manuel Páez

0cTh

rpr

En la ecuación de Van’t Hoff se ha supuesto que:

Sin embargo, en general:2

p cTbTacr

A) Reacción exotérmica hr <0 pendiente positiva ln K decrece al aumentar T

B) Reacción endotérmica hr >0 pendiente negativa ln K crece al aumentar T

Cuanto mayor es hr mayor es la variación de ln K con T

ln K

1/T1/298

0crp

2p cTbTac

r

Rhr

A

B

2981

T1

Rh

)298(Kln)T(Kln r

Page 36: Fisicoquimica II 2012

Manuel Páez

2) Variación de K con p:

dpvdpvdpvdpp

g Tp

T gasesr

Tp

T sólidosr

Tp

T r

Tp

T

r ,

,1 ,

,

,1 ,

,

,1

,

,1

2.1) sólidos y líquidos:

)1p(vdpv sólidos,r

T,p

T,1 sólidos,r este término es pequeño: ln K depende poco de p comparado con T

2.2) gases:

T,1j

T,pj

j

T,p

T,1 jj

T,p

T,1 gases,r f

flnRTdpvdpv

este término es pequeño en ambientes someros (superficial), pero puede ser importante en - condiciones de alta p de fluidos (modelos de cuencas)- condiciones de baja p de fluidos (zona no saturada)

Page 37: Fisicoquimica II 2012

Manuel Páez

EJERCICIO RESUELTO

)()()( 235 gClgPClgPCl

RT

TpgK r ),(

exp

Page 38: Fisicoquimica II 2012

Manuel Páez

Page 39: Fisicoquimica II 2012

Manuel Páez

reactivos

2981

T1

Rh

)298(Kln)T(Kln r

Page 40: Fisicoquimica II 2012

Manuel Páez

Page 41: Fisicoquimica II 2012

Manuel Páez

Page 42: Fisicoquimica II 2012

Manuel Páez

RELACIÓN ENTRE LOS POTENCIALES QUÍMICOS DE UN COMPONENTE EN DIFERENTES FASES.

SISTEMA HETEROGÉNEO

El paso de la masa de un componente desde una fase (1) a otra fase (2), en equilibrio a P y T constantes, origina una variación del potencial isobárico dG del sistema, la cual consta de los potenciales isobáricos dG1 y dG 2 de ambas fases:

Ya que y con la condición de equilibrio

Entonces

La presente deducción se puede extender a una tercera fase y así sucesivamente.

Page 43: Fisicoquimica II 2012

Manuel Páez

En ausencia de equilibrio, el potencial isobárico del sistema a T y P constantes, disminuye. Por tanto

De aquí se deduce que si

0

Es decir, el componente pasa de la segunda fase a la primera, si su potencial químico en esta fase es mayor que en la primera

el potencial químico del componente en la segunda fase es menor que en la primera , entonces el componente pasará de la primera fase a la segunda.

Pero, si por el contrario,

Page 44: Fisicoquimica II 2012

Manuel Páez

De esta forma, el componente pasa espontáneamente de la fase en que su potencial químico es mayor, a la fase en la cual el potencial químico es menor. El paso continuará hasta el momento en que los potenciales químicos del componente en ambas fases sean iguales.

P

P

T

i i

Page 45: Fisicoquimica II 2012

Potencial químico estándar (101 kPa) en función de la temperatura

1. ¿Cómo definimos la fase más estable a cada temperatura?

2. ¿Qué significan los puntos de intersección entre dos rectas?

Page 46: Fisicoquimica II 2012

Criterio termodinámico de equilibrio de fases

En el equilibrio, el potencial químico de una sustancia es el mismo en toda la

muestra, independientemente del número de fases que estén presentes

1 2 3 4

1

2

3

4

Page 47: Fisicoquimica II 2012

Manuel Páez

Las propiedades extensivas de una solución no son por lo general aditivas, es decir, el valor de la propiedad no es igual a la suma de las propiedades de los componentes puros.

Se define la propiedad molar parcial como la derivada parcial de la propiedad extensiva respecto al número de moles del componente i, manteniendo T,P y n constantes.

Sea F alguna propiedad termodinámica extensiva de la mezcla, que depende de la presión, la temperatura y la composición.

Page 48: Fisicoquimica II 2012

Manuel Páez

Donde las derivadas parciales respecto a la composición reciben el nombre de propiedades molares parciales y están dadas por:

Cuya diferencial total es:

A temperatura y presión constantes

De esta construcción es evidente que el potencial químico es igual a la energía libre molar parcial de la i-ésima especie en solución.

Page 49: Fisicoquimica II 2012

Manuel Páez

iF

La propiedad molar parcial representa la contribución de la sustancia agregada a la propiedad de referencia en la solución.

Retomando, la construcción matemática, se puede escribir.

Integrando esta expresión dejando constantes, la relación entre las masas, se obtiene.

Esto indica que la propiedad total, escrita en esta forma es aditiva.

Al diferenciar la expresión anterior se obtiene.

Page 50: Fisicoquimica II 2012

Manuel Páez

Esta última expresión es verdad, si y sólo si:

Como el potencial químico es igual a la energía libre molar parcial de Gibbs y esta última es una propiedad molar parcial, entonces.

Para una solución binaria

Page 51: Fisicoquimica II 2012

Manuel Páez

En general para cualquier propiedad parcial molar se tiene

Esta ecuación muestra que las cantidades parciales molares no son independientes unas de otras de la composición y que la variación de una de ellas afecta a la otra, de modo que si:

Page 52: Fisicoquimica II 2012

Manuel Páez

En general, los posibles cambios en las propiedades molares parciales de una mezcla satisfacen individualmente, la ecuación de Gibbs-Duhem.

La determinación experimental de las propiedades molares parciales está basada en la transformación de la ecuación:

A la propiedad de mezcla

Page 53: Fisicoquimica II 2012

Manuel Páez

Considerando una mezcla binaria, y diferenciando con respecto a la fracción molar del componente 1:

Al volver a escribir en términos de o y después de remplazar el resultado anterior se obtiene:

Page 54: Fisicoquimica II 2012

Manuel Páez

1- Se determinan experimentalmente los Vm a partir de medidas de densidad de las soluciones, usando la ecuación:

Esto implica:

•Preparar soluciones por el método de pesada

•Determinar densidades por el método picnómetrico o de flotación magnética.

2- Se grafica VM contra y de ser posible se evalúa la pendiente. En ocasiones es mas sospechoso evaluar la pendiente manualmente a partir de los propios datos de la tabla de VM

vs , asi:

Page 55: Fisicoquimica II 2012

Manuel Páez

3- Evaluar y usando:

4- Realizar las graficas de Vs en una misma gráfica.

5- Verificar la ecuación de Gibbs – Duhem.

Page 56: Fisicoquimica II 2012

Manuel Páez

Si a T y P constantes a un volumen V0 de solvente, se le agregan cantidades sucesivas de soluto y se registra el volumen total, entonces es posible registrar una gráfica como la siguiente:

VM

V0

0

a

V-V0

n2

Volumen atribuido al soluto

Volumen atribuido al solvente

Se ve claramente que el volumen total aumenta al incrementar el número de moles del soluto, sin embargo no es posible asignar parte de este volumen al solvente y parte al soluto. A pesar de esto el volumen total de la solución en un punto cualquiera a puede considerarse arbitrariamente formado por dos partes:

V0: Debida al solvente puro, es decir, este volumen es el mismo para cualquier solución.

V-V0: Este es volumen debido al soluto

Page 57: Fisicoquimica II 2012

Manuel Páez

El volumen molar aparente del soluto se puede definir por la siguiente expresión, como:

Después de ciertas manipulaciones matemáticas se puede demostrar que el volumen molar aparente del soluto puede ser escrito en la siguiente forma:

No es lógico definir el volumen molar aparente respecto al solvente, puesto que para la misma solución no se puede considerar variable a V1 , que fue considerado constante desde el inicio.|

Puesto que:

Page 58: Fisicoquimica II 2012

Manuel Páez

Por tanto:

A dilución infinita:

Por tanto:

Lo que indica que a dilución infinita, los volúmenes molares aparentes son iguales a los volúmenes molares parciales del soluto.

Generalizando cualquier cantidad molar aparente del soluto puede ser definida por la ecuación:

Page 59: Fisicoquimica II 2012

Manuel Páez

Se había visto que:

De donde:

Al derivar parcialmente a n1, T y P constante se encuentra:

Page 60: Fisicoquimica II 2012

Manuel Páez

Haciendo lo mismo para el solvente se obtiene:

De tal forma que si se conocen las funciones analíticas de en función de n2 y n1 se puede evaluar

Page 61: Fisicoquimica II 2012

Manuel Páez

EJERCICIOS RESUELTOS

Page 62: Fisicoquimica II 2012

Manuel Páez

Page 63: Fisicoquimica II 2012

Manuel Páez

Page 64: Fisicoquimica II 2012

Manuel Páez

Page 65: Fisicoquimica II 2012

Manuel Páez

Page 66: Fisicoquimica II 2012

Manuel Páez

PROBLEMAS

Page 67: Fisicoquimica II 2012

Manuel Páez

Page 68: Fisicoquimica II 2012

En general, las disoluciones no se comportan como disoluciones ideales, solo en el caso en que la fracción molar del disolvente tienda a uno, disolución diluida ideal, su comportamiento se puede asemejar al de una disolución ideal.

0 lni i iRT a

Actividad=concentración efectiva Donde el coeficiente de actividad, es una medida de la discrepancia del comportamiento de la sustancia i respecto a la idealidad.

Disoluciones no ideales (reales)

Los modelos de solución no ideal tienen la misma expresión para el potencial químico que los de mezcla ideal, pero substituyendo xi por una cantidad llamada actividad ai:

iii xa

ideali

reali

ip

pa

i

Page 69: Fisicoquimica II 2012

En cualquier solución, la En cualquier solución, la actividad del actividad del solventesolvente es una fracción molar corregida es una fracción molar corregida

El valor de i se determina experimentalmente de la

relación de las presiones de vapor del solvente medidas en la solución (pi) y en el líquido puro (pi*)

ai = i. xi

idealii

reali

ipx

p

Page 70: Fisicoquimica II 2012

Manuel Páez

Las funciones de exceso se definen como la diferencia entre el valor de una propiedad termodinámica para una disolución real y el valor de esa misma propiedad para una disolución ideal en las mismas condiciones de temperatura, presión y composición.

En consecuencia, la energía libre de Gibbs de exceso, GE, se define como:

Funciones de Exceso

Las relaciones entre las funciones de exceso son idénticas a las existentes entre funciones totales:

y las derivadas parciales de las funciones de exceso extensivas son análogas a las funciones totales, por ejemplo:

Page 71: Fisicoquimica II 2012

Manuel Páez

Las funciones de exceso molares parciales se definen de manera análoga a las propiedades termodinámicas molares parciales. Entonces, si M es una propiedad termodinámica extensiva, la propiedad molar parcial de exceso, se define como:

y de acuerdo al teorema de Euler:

Page 72: Fisicoquimica II 2012

Manuel Páez

Page 73: Fisicoquimica II 2012

Manuel Páez

Page 74: Fisicoquimica II 2012

Manuel Páez

Page 75: Fisicoquimica II 2012

Manuel Páez

Page 76: Fisicoquimica II 2012

Manuel Páez

PROBLEMAS PROPUESTOS

Page 77: Fisicoquimica II 2012

Manuel Páez

CALOR DE MEZCLA

El proceso de disolución de un soluto en un solvente dado involucra un desprendimiento o una absorción de calor que se conoce como calor de mezcla.

Esta es una magnitud experimental y teniendo en cuenta que cada componente del sistema aporta un contenido propio de calor, se puede escribir:

Donde: Contenido inicial de calor del solvente puro

Contenido inicial de calor del soluto puro

Contenido de calor de la solución resultante

Page 78: Fisicoquimica II 2012

Manuel Páez

Pero:

Luego:

Ordenando:

Calor de mezcla : Es la entalpía resultante del proceso de mezcla del soluto y solvente menos el contenido de calor de los componentes puros.

Page 79: Fisicoquimica II 2012

Manuel Páez

• ENTALPIA DE EXCESO

Es el calor de mezcla por mol de solución.

• CALOR INTEGRAL DE MEZCLA O DE SOLUCIÓN

Es el calor de mezcla por mol de componente involucrado en la solución.

Page 80: Fisicoquimica II 2012

Manuel Páez

Físicamente, el valor numérico de es igual al calor absorbido por el sistema cuando se añade a T y P constantes, 1 mol de soluto puro a la cantidad suficiente de solvente puro como para formar una solución de la concentración deseada.

CALOR DIFERENCIAL DE SOLUCIÓN

Es el cambio en el contenido calorífico de la solución, por mol de soluto.

Page 81: Fisicoquimica II 2012

Manuel Páez

DISCUSIÓN SOBRE CALORES INTEGRALES Y DIFERENCIALES DE SOLUCIÓN

Para una disolución con 2 componentes, la magnitud

se denomina en el disolvente 1.

es una propiedad intensiva que depende de T, P y x2 , físicamente el valor numérico de es igual al calor absorbido por el sistema cuando se añade a T y P constantes 1 mol de 2 puro a la cantidad suficiente de A puro como para formar una disolución de la fracción molar deseada.

El limite de cuando . La magnitud

es igual al calor absorbido por el sistema cuando se disuelve 1 mol de soluto 2 en una cantidad infinita de disolvente a T y P constantes.

Page 82: Fisicoquimica II 2012

Manuel Páez

El calor integral de solución por mol de soluto supone la adición de 1 mol de soluto puro al disolvente puro para formar la solución, un proceso en el cual la x2 varía de cero hasta x2.

Suponga por el contrario que añadimos a T y P constantes 1 mol de soluto a un volumen infinito de solución cuya fracción molar para soluto es x2. La composición de la solución permanecerá constante durante este proceso. El cambio de entalpía para este proceso se denomina calor diferencial de solución de B en A.

MEDIDA Y CALCULO DE CALORES DE SOLUCIÓN CON BASE A MEDIDAS CALORIMETRICAS

El calor de mezcla se obtiene experimentalmente disolviendo n2 moles de soluto puro en n1 moles de solvente y registrando la variación de temperatura con un calorímetro adiabático, de manera que:

Page 83: Fisicoquimica II 2012

Manuel Páez

La entalpía de exceso se calcula a partir del calor de mezcla expresado por mol de solución.

Las graficas dan:

 

Page 84: Fisicoquimica II 2012

Manuel Páez

Calores diferenciales :

0 X2 1

1 X1 0

EComo

Si x1= 1 y x2 = 0 Si x1= 0 y x2 = 1

**

El calor diferencial es el intercepto (extremos ) de las rectas

Page 85: Fisicoquimica II 2012

Manuel Páez

Calor integral de solución : se obtiene a partir de los calores diferenciales. Como

Entonces:

En forma similar

Page 86: Fisicoquimica II 2012

Manuel Páez

La gráfica Vs X2

X2

Disminuye con el aumento de X2

Page 87: Fisicoquimica II 2012

Manuel Páez

SEGUNDO LABORATORIO: CALOR DE MEZCLAPara medir el calor de mezcla usaremos un calorímetro adiabático.

Un calorímetro adiabático: Es un vaso Dewar de doble pared al cual se le ha hecho vacío entre las paredes, y por el cual no entra ni sale radiación.

Como se trabajará calorimetría adiabática, entonces:

0ocalorimetrsistemaneto T

Entonces

ocalorimetrsistema

reacción ó mezclasistema)(sistema pC

Page 88: Fisicoquimica II 2012

Manuel Páez

Embudo o bureta

Termómetro

cc

COM

V

Ajusto los 10 voltios

Amperimetro

Escojo la escala de 10V

Resistencia

Calorímetro

Escojo la escala de 3 amperios

Fuente de poder

Page 89: Fisicoquimica II 2012

Manuel Páez

Calibración del calorímetro: Determinación de

• Se adiciona solvente al calorímetro a T cte

• Se registra la temperatura durante 30 segundos

• Se prende la fuente durante dos minutos, previamente acoplada al resto del equipo y se registra la temperatura hasta que el sistema retorne a T ambiente.

• Se realiza una curva de T vs tiempo, a fin de determinar

usando un procedimiento gráfico.

5. Adicionalmente, se registra la lectura que marca el amperímetro (ajustar a escala de 3 amperios) y del voltímetro (ajustar 10 voltios)

ncalibracio

PC

Con los datos previos de determina la capacidad calorífica del calorímetro, aplicando la ecuación:

ncalibracióelectrico pCtiVW

ncalibració tiV

C p

Page 90: Fisicoquimica II 2012

Manuel Páez

Determinación del sistema

1. Se introducen en el calorímetro 125 mL de agua destilada a constante.

2. Se adiciona una muestra de 2.25 g de KNO3

3. Se agita y se lee la temperatura hasta que su descenso sea constante

4. Se traza la gráfica de T vs tiempo y se determina mezcla Para calcular se aplica la ecuaciónsistema

mezclasistema pC

Page 91: Fisicoquimica II 2012

Manuel Páez

energíaEJERCICIO RESUELTO

Page 92: Fisicoquimica II 2012

Manuel Páez

Page 93: Fisicoquimica II 2012

Manuel Páez

PROBLEMAS

Page 94: Fisicoquimica II 2012

Manuel Páez

Page 95: Fisicoquimica II 2012

Manuel Páez

Las cuatro propiedades coligativas son:1. Disminución de la presión de vapor2. Aumento de la temperatura de ebullición3. Descenso de la temperatura de

fusión/congelación4. Presión osmótica

Muchas de las propiedades de las disoluciones verdaderas se deducen del pequeño tamaño de las partículas dispersas. En general, forman disoluciones verdaderas las sustancias con un peso molecular inferior a 104 dalton. Algunas de estas propiedades son función de la naturaleza del soluto (color, sabor, densidad, viscosidad, conductividad eléctrica, etc.). Otras propiedades dependen del disolvente, aunque pueden ser modificadas por el soluto (tensión superficial, índice de refracción, viscosidad, etc.).

Sin embargo, hay otras propiedades más universales que sólo dependen de la concentración del soluto y no de la naturaleza de sus moléculas. Estas son las llamadas propiedades coligativas. Las propiedades coligativas no guardan ninguna relación con el tamaño ni con cualquier otra propiedad de los solutos. Son función sólo del número de partículas y son resultado del mismo fenómeno: el efecto de las partículas de soluto sobre la presión de vapor del disolvente

Page 96: Fisicoquimica II 2012

Manuel Páez

Como el soluto es no volátil, la presión del vapor de la disolución (P)corresponderá a la presión de vapor del disolvente (P1).

L2

*1

L1

*1

*1

L1

*11

*1 xP)x1(PPxPPPP

¿Cuánto disminuye la presión de vapor al formarse la disolución?

Aplicación: determinación de pesos moleculares.

(pues el disolvente obedece la ley de Raoult)

La presión de vapor de la disoluciónes menor que la del disolvente puro.*

1L1

*1

L11

PP1x Como

PxPP

Estudiaremos disoluciones diluidas ideales (no electrolíticas) formadas por un disolvente volátil (1) y un soluto no volátil (2).

Page 97: Fisicoquimica II 2012

Dado que x1 es < 1, entonces ln x1 < 0

Entonces el potencial químico del solvente en solución es menor que la del solvente puro en la cantidad –RT ln x1 o sea que:

Para un componente puro y como:

Entonces:

Como la solución es ideal el potencial químico viene dado por:

Page 98: Fisicoquimica II 2012

Por consiguiente:

De acuerdo con este resultado (signo negativo), para las tres fases, a medida que aumenta la temperatura disminuye el potencial químico:

Por consiguiente a cualquier T:

O bien

Page 99: Fisicoquimica II 2012

Entonces la gráfica del potencial químico en función de la temperatura, tendrá pendiente negativa, ya que , por tanto:

Recordando que en el equilibrio:

Page 100: Fisicoquimica II 2012

Un análisis adicional, puede ser realizado según la expresión:

Una disminución en la presión produce una disminución del potencial químico que afecta tanto a la curva del líquido, como a la del sólido, ya que:

• Como el soluto es no volátil, en la solución gaseosa, no aparece en el vapor y la curva del vapor en la gráfica no se ve afectada.

• Una solución congelada ó sólida, contiene tanto soluto como solvente entonces el potencial químico del solvente se disminuye para cada temperatura en una cantidad –RTlnx1 .

• Igualmente, en una solución líquida, el líquido contiene tanto soluto como solvente, por tanto el potencial químico del solvente, disminuye para cada temperatura en una cantidad –RTlnx1.

Esos cambios son los que se intentan mostrar por el trazo de la línea discontinua.

Como en la práctica, la presión de vapor del solvente en solución disminuye

Page 101: Fisicoquimica II 2012

Disminución en P resultado de la disminución en el potencial químico.

P

'bT

S

G

'CT

CT

bT

L

T

1 atmósfera

En el diagrama es obvio que si hay una disminución de la presión de vapor, entonces se da un aumento de y una disminución de .

Luego los puntos de intersección con las curvas para el sólido y el líquido se han desplazado.

Page 102: Fisicoquimica II 2012

La condición de equilibrio del disolvente en solución y disolvente sólido puro:La condición de equilibrio del disolvente en solución y disolvente sólido puro: Disolvente

en soluciónDisolvente en solución

Sólido no depende de la composición como variable

Sólido no depende de la composición como variable

Temperatura de congelación de la solución. (EQUIILIBRIO)

Temperatura de congelación de la solución. (EQUIILIBRIO)

Para solución Ideal:Para solución Ideal:

Reordenando:Reordenando:

Como para un sistema en equilibrio (Criterio termodinámico de equilibrio de fases), el potencial químico de una sustancia es el mismo en toda la muestra, independientemente del número de fases que estén presentes1 2 3 4

Liquido puro

Page 103: Fisicoquimica II 2012

La diferencia entre líquido puro y sólido puro es:

La diferencia entre líquido puro y sólido puro es:

Energía de Gibbs molar de fusión

Energía de Gibbs molar de fusión

Para la dependencia de T con x, hallamos la derivada total de la expresión anterior, a P cte.

Para la dependencia de T con x, hallamos la derivada total de la expresión anterior, a P cte.

Por la ecuación de Gibbs HelmholtzPor la ecuación de Gibbs Helmholtz

Page 104: Fisicoquimica II 2012

Se sustituye entoncesSe sustituye entonces

Disolvente puro @ T

Suponiendo ctte:Suponiendo ctte:

Disolvente puro con: Disolvente puro con:

Esta ecuación se puede resolver para 2 casos:

I) Todo el intervalo de composición

Page 105: Fisicoquimica II 2012

Si la Solución es diluida, entonces:Si la Solución es diluida, entonces:

La molalidad total de los solutos presentes: m=m2+m3+…, sea n y M el número de moles y el peso molecular del disolvente, entonces la masa de disolvente en n.M, luego:

yy

yy

entoncesentonces

Como ya se había vistoComo ya se había visto

II) Si la solución ideal es muy diluida respecto a todos los solutos

Page 106: Fisicoquimica II 2012

Sustituyendo:Sustituyendo: 00

Solución diluida

Solución diluida

entoncesentoncesIntegrando se tiene:

ECUACIÓN DEL DESCENSO DE LA

TEMPERATURA DE CONGELACIÓN

Integrando se tiene:ECUACIÓN DEL

DESCENSO DE LA TEMPERATURA DE

CONGELACIÓN

Donde:Donde:

-

-

Obsérvese que:

Page 107: Fisicoquimica II 2012

La condición de equilibrio del disolvente en solución con el vapor de disolvente puro:

La condición de equilibrio del disolvente en solución con el vapor de disolvente puro:

Temperatura de ebullición del solvente

Donde:Donde:

Page 108: Fisicoquimica II 2012

Si a un recipiente 1 cerrado por debajo con una membrana semipermeable (Cuero, pergamino, tejido animal o vegetal) en el cual se encuentra una solución acuosa de cierta sustancia, se coloca en otro recipiente 2 con agua, el agua pasará del recipiente 2 al recipiente 1.

h

1

22

1

Page 109: Fisicoquimica II 2012

Tal paso espontáneo del agua o de un solvente cualquiera a través de la membrana semipermeable a la solución se llama OSMÓSIS.

La fuerza por unidad de superficie que hace pasar al solvente a través de la membrana semipermeable a la solución y que se encuentra a la misma presión exterior se llama PRESIÓN OSMÓTICA.

A consecuencia de la ósmosis, el nivel de la solución en el recipiente 1 se eleva, creando una presión suplementaria que obstaculiza la ósmosis. A una altura h de la columna liquida en el recipiente 1, la presión suplementaria alcanza un valor tal que la ósmosis cesa, es decir, se crea un equilibrio entre la solución de concentración dada y el solvente puro, separados por la membrana semipermeable.

Page 110: Fisicoquimica II 2012

Ejerciendo una presión desde el exterior en el recipiente 1, se puede obligar a pasar el agua desde el recipiente 1 al 2, esta presión nuevamente es igual a la presión osmótica.

Por tanto, la presión osmótica es una presión hidrostática.

La presión osmótica se puede definir como la presión externa que debe ejercerse desde la solución para impedir el acceso del solvente hacia la solución.

La situación entonces es la siguiente:

El solvente y la solución, separadas por un tabique semipermeable y que se encuentran en equilibrio, son 2 fases, una cuyos componentes pueden pasar libremente de una fase a otra y debe tener el mismo potencial químico en ambas fases.

Page 111: Fisicoquimica II 2012

En un solvente puro el potencial químico del mismo es constante a temperatura y presión externa constante. En la solución, en cambio varia en dependencia de x1 y de:

Por tanto: 1121 , xP

Diferenciando *012

,2

11

,1

11

12

dPdP

xdx

dTxTP

1121

2

2

1

,1

Vn

V

Pn

G

PTPTx

PTTPx

aRT

x

1

1

,1

1 lnComo

Page 112: Fisicoquimica II 2012

Integrando

Sustituyendo en * 0211

1

1ln

dPVdx

TPx

aTR

O bien 11

1ln

12dx

TPx

a

V

RTdP

cteV 1Considerando que

1

1

12

12 1 11

2 lna

a

pp

ppad

V

RTdP

01

1

1

comolnp

paa

V

RTii

Page 113: Fisicoquimica II 2012

Como la solución es ideal, según la Ley de Raoult

Como: yy

Entonces se tiene que:

Como:Como:

Finalmente:Finalmente:óó

Donde:Donde:

1

1

ln xV

RT

21 1 xx

21

2221 1lnln

nn

nxxx

21 nnsi

1

21ln

n

nx

112211

VnVnVnV11

2

Vn

RTn

Page 114: Fisicoquimica II 2012

Manuel Páez

kf > keb

El descenso crioscópico es más acusado que el aumento ebulloscópico

• Determinación de pesos moleculares crioscopía• Anticongelantes, añadir sal a las carreteras, ...Aplicaciones

Constantes crioscópicas y ebulloscópicas

Disolvente

AcetonaBencenoAlcanforCCl4

CiclohexanoNaftalenoFenolAgua

Pto.fusión/ºC

95.355.5

179.8-236.5

80.5430

kf/Kkgmol-1

2.405.1239.729.820.16.947.271.86

Pto.ebull./ºC

56.280.120476.580.7

212.7182100

keb/Kkgmol-1

1.712.535.614.952.795.803.040.51

Page 115: Fisicoquimica II 2012

Manuel Páez

EJERCICIO RESUELTO

Page 116: Fisicoquimica II 2012

Manuel Páez

ConsiderandoW1=1000g

Y la condición límite

Pero si no empleamos esta condición, podemos obtener una expresión para f, válida en todo el intervalo de molalidades

Page 117: Fisicoquimica II 2012

Manuel Páez

Page 118: Fisicoquimica II 2012

Manuel Páez

Si suponemos que el solvente es el agua, la ecuación anterior toma la forma:

Page 119: Fisicoquimica II 2012

Manuel Páez

No tiene aproximación, los valores de f se medirán en el laboratorio, con el termómetro disponible, estarían entre los valores proporcionados por las siguientes ecuaciones:

Para encontrar el valor preciso de la molalidad a la cual la ley límite predice el valor de f dentro de los limites del error experimental, será necesario resolver la siguiente ecuación:

_

Page 120: Fisicoquimica II 2012

Manuel Páez

PROBLEMAS

Page 121: Fisicoquimica II 2012

PROPIEDADES COLIGATIVAS DE SOLUCIONES DE ELECTRÓLITOS

Según la teoría de la disociación electrolítica al disolverse en agua y en algunos otros disolventes polares, las sales, ácidos y bases se disocian parcial o totalmente en iones. Estos existen en la solución independientemente de que a través de ella pase o no una corriente eléctrica.

¿Qué efectos tendrá la disociación sobre las propiedades coligativas de las soluciones?

Van’t Hoft encontró experimentalmente, que los valores de

eran más altos para los electrólitos que para los no electrólitos, al comparar soluciones de la misma concentración.

yTT fb ,

Page 122: Fisicoquimica II 2012

Ademas, encontró que las propiedades coligativas aumentaban al aumentar la dilución y se acercaban a un límite a muy alta dilución.

Van’t Hoft expresó estos resultados para los electrólitos, de acuerdo con las ecuaciones:

Donde i se conoce como el factor de corrección de Van’t Hoft puesto que las mismas expresiones para los no electrólitos son:

Luego, igualando a la misma composición:

Por tanto esta cantidad mide el incremento en las propiedades coligativas que se observan para los electrólitos.

En la siguiente tabla se dan los valores de (congelación) y de i calculado según para varios electrólitos.

Page 123: Fisicoquimica II 2012

FACTORES DE CORRECCIÓN DE VAN´T HOFT PARA VARIOS ELECTRÓLITOS EN AGUA A PARTIR DE MEDICIONES DEL DESCENSO DEL PUNTO DE

CONGELACIÓN

Molalidad (m)

NaCl MgSO4 Pb(NO3)2 K3Fe(CN)6

 

Dilución infinita

3.72 2.00 3.72 2.00 5.58 3.00 7.44 4.00

0.001 3.66 1.97 3.38 1.82 5.37 2.89 7.10 3.82

0.01 3.60 1.94 2.85 1.53 4.90 2.63 6.26 3.36

0.1 3.48 1.87 2.25 1.21 3.96 2.13 5.30 2.85

1.0 3.47 1.81 2.02 1.09 2.44 1.13 ----- -----

 

iiKm

Tc

c 86.1

m

Tcm

Tcm

Tcm

Tc ii i i

Page 124: Fisicoquimica II 2012

CONCLUSIÓN

A dilución infinita i = número total de iones después de disociarse el electrólito fuerte al 100 %.

Fuera de la región diluida las ecuaciones deducidas para todas las propiedades coligativas, no son válidas, ya que según estas propiedades una solución de una sustancia X en un solvente, dará el mismo valor por la sustancia Y siempre que sus composiciones sean iguales. Sin embargo:

Esta situación puede indicar 2 aspectos:

1. Intensificación de las interacciones Soluto – Soluto.

2. Intensificacion de las interacciones Soluto – Solvente.

Page 125: Fisicoquimica II 2012

A continuación se puede establecer una medida de la desviación de la idealidad, tal como se hace para las soluciones binarias de no electrólitos con coeficientes de actividad. Esta desviación en términos de soluciones de electrólitos se mide mediante un nuevo término, el coeficiente osmótico, definido así:

Donde i es el factor de corrección de Van`t Hoft y j es el valor de i a dilución infinita.

Esta teoría también es aplicable a los equilibrios de disociación de electrolitos débiles.

Page 126: Fisicoquimica II 2012

Designemos por:

Encontremos ahora el número total medio de partículas (iones, moléculas) que se forman durante la disociación electrolítica de una molécula. Este número es por supuesto el coeficiente de corrección de Van`t Hoft.

Determinando el coeficiente i se puede calcular el grado de disociación , en este caso se deben conocer los coeficientes a+ y b-. Esta ecuación también se puede usar para encontrar i si se conoce

Page 127: Fisicoquimica II 2012

PROBLEMAS

1. Calcule la presión osmótica de una solución acuosa 0.1F de NaCl a 27 ºC.

2. Calcular el descenso del punto de congelación de una solución acuosa 1 m de Ca(NO3)2 que se halla disociado en 73.4 %.

3. Una solución 0.3 m de Ca(NO3)2 en agua se congela a –1.321 ºC. Calcule el grado de disociación a esa temperatura.

4. El descenso del punto de congelación de una solución acuosa 0.01 m de Mg(SO4) es de 0.0285 ºC . Calcule el porcentaje del grado de disociación de MgSO4. R=53%.

Page 128: Fisicoquimica II 2012

5. Si se tiene una solución acuosa 0.1m de un ácido HX disociado en 10 %. Cual será el descenso de la temperatura de congelación de la solución.

6. Una solución acuosa es 0.1 F de Pb(NO3)2 congela a –0.396 ºC. Calcular el porcentaje del grado de disociación de la solución.

Page 129: Fisicoquimica II 2012

LA LEY DE DISTRIBUCIÓN DE NERST O COEFICIENTE DE REPARTO.

En una mezcla de dos líquidos puros, insolubles o de solubilidad limitada, se forman dos capas: las cuales están compuestas de líquidos puros o por soluciones de ambos componentes.

Si se agrega a este sistema una tercera sustancia, soluble en ambos líquidos insolubles ( tercer componente) una vez alcanzado el equilibrio este tercer componente queda distribuido en ambas capas, formando soluciones de diferente composición.

La condición de equilibrio de la sustancia distribuida en ambas fases es:

Para una solución ideal se tiene:

Page 130: Fisicoquimica II 2012

Se ha encontrado que KD se cumple cuando las soluciones son muy diluidas y que al aumentar la concentración y con ello la desviación del comportamiento que predice la ley de Henry la relación dada por KD deja de ser constante e independiente de la concentración.

Es por ello que el coeficiente de distribución debe determinarse extrapolando a dilución infinita los resultados experimentales para la concentración de soluto en las 2 fases.

Se define entonces el coeficiente de reparto (KD) de una sustancia, también llamado coeficiente de distribución, o coeficiente de partición, como la razón entre las concentraciones de esa sustancia en las dos fases de la mezcla formada por dos disolventes inmiscibles en equilibrio. Por tanto, ese coeficiente mide la solubilidad diferencial de una sustancia en esos dos disolventes.

Donde es la concentración de la sustancia en el primer disolvente y, análogamente es la concentración de la misma sustancia en el otro disolvente.

Ix3IIx3

Page 131: Fisicoquimica II 2012

Cuando se añade CCl4 a una solución acuosa de I2 y se agita la mezcla, las soluciones resultantes se separan en capas al cabo de cierto tiempo. Es posible ver entonces que parte del Yodo se halla retirado de la solución acuosa puesto que la solución resultante de CCl4 desarrolla un color violeta característico.

El análisis de las soluciones, después de separar las capas, da como resultado la concentración de I2 en cada capa que se muestra a continuación. (T=20°C)

2.35 x 10-4 0.02 85.1

4.69 x 10-4 0.04 85.2

7.03 x 10-4 0.06 85.4

9.30 x 10-4 0.08 86.0

1.14 x 10-3 0.10 87.5

Para justificar la anterior afirmación, consideremos el siguiente ejemplo:

Sistema: I2 / CCl4 / H2O Soluto: I2 T=20°C

Page 132: Fisicoquimica II 2012

PREGUNTAS

• ¿Cuál es el valor de KD que usted reportaría?

• ¿Qué conclusión saca de estos resultados?

• Describa la técnica utilizada para determinar.

• El contenido de I2 en agua y CCl4

Por otro lado se debe aclarar que la forma simple expresada por la ley de distribución en la forma:

Eso significa que no es aplicable cuando se presentan fenómenos de asociación o disociación, ya que estos fenómenos dependen de la concentración total.

Page 133: Fisicoquimica II 2012

Considérese un soluto S que se asocia en la fase orgánica dando Sn

donde n es el grado de asociación; y se encuentra en forma monomérica en la fase acuosa .

De acuerdo con lo anterior en la fase ocurre el equilibrio:

COEFICIENTE DE REPARTO EN FENÓMENOS DE ASOCIACIÓN

La concentración [S] está relacionada con el coeficiente de reparto del soluto en la fase orgánica y la fase acuosa, mediante la expresión

Si se considera que la asociación es prácticamente completa, el numerador de esta expresión es igual a la [ ] analitica

Page 134: Fisicoquimica II 2012

Eliminando la especie de ambas expresiones se obtiene:

De donde despejando

Se obtiene :

][ mS

Lo que podría permitirnos usar el método gráfico

EJEMPLO

Conociendo gráficamente

Se evalúa y a partir de ella se obtiene KD

Page 135: Fisicoquimica II 2012

COEFICIENTE DE REPARTO EN FENÓMENOS DE ASOCIACIÓN O DISOCIACIÓN.

El caso general, en el que se asocia el ácido benzoico en la fase oleosa y se disocia en la fase acuosa se esquematiza en la figura

Se debe buscar una expresión adecuada que relacione la concentración del soluto en las dos fases y que pueda expresarse en términos de las especies formadas.

Page 136: Fisicoquimica II 2012

SÍNTESIS SOLUCIÓN ACUOSA

COMPUESTO ORGANICO (C.O)

SEPARACION SOLUBILIDAD DE SOLVENTES ORGANICOS

IMPOSIBLE DESTILACIÓN

PROCESO DE EXTRACCIÓN

DIVIDIR EL SOLVENTE EN

PORCIONES IGUALES

UNA SOLA EXTRACCIÓN

HACER A LA MUESTRA VARIAS

EXTRACCIONES

MENOS EFICIENCIA

MAS EFICIENTE

SENSIBLE CALOR

ALTO PUNTO DE EBULLICIÓN

APLICACIONES DE LA LEY DE DISTRIBUCIÓN.

Se usa para determinar la eficacia con la que un disolvente puede extraer un compuesto de un segundo disolvente -operación de uso muy frecuente en Química analítica y en Química orgánica. y en el estudio de la formación de complejos

Page 137: Fisicoquimica II 2012

Veamos como se desarrolla la extracción más eficiente. Supongamos que tenemos una muestra.

Una MUESTRA(v ml), constituida por un disolvente 1 que contiene Wg de soluto, se le adiciona l ml de un disolvente 2 para extraer parte de ese soluto; quedando el solvente 1 con W1 gr; quedando el primero con W-W1.

Page 138: Fisicoquimica II 2012

Si se realiza otra extracción de la solución con otra cantidad de l ml solvente 2, se descubre que quedan W2 g de soluto en solvente 1 y se tiene para la segunda extracción.

Sustituyendo W1 en W2, tenemos el soluto que queda despues de segundas extracciones sucesivas.

Generalizando para n extracciones, se obtiene:Wn: gramos de soluto extraído

W: gramos de soluto contenidos en la muestra

v: ml de la muestra

l: ml solvente que va ha extraer

Page 139: Fisicoquimica II 2012

KD y W son constantes para un sistema y por tanto la magnitud

dependerá de l y n.

nW

EJEMPLO

Una solución acuosa contiene 0.2 g de aspirina (C9H8O4) en 50 ml de solución. A esta se le agregan 20 ml de eter y se agita la mezcla, dejando que se alcance el equilibrio a 25°C. A dicha temperatura KD= Ceter/Cagua = 4.7.

a. ¿Cuánta aspirina queda en la fase acuosa?

b. ¿Si la extracción se realizará con 2 porciones sucesivas de 10 ml de eter?

c. ¿Cuánta aspirina quedará sin extraer?

Page 140: Fisicoquimica II 2012

SOLUCIÓN LARGA

Sea x igual al número de moles de aspirina que se extraen con los 20 ml de eter. Luego:

Una solución acuosa contiene 0.2 g de aspirina (C9H8O4) en 50 ml de solución. A esta se le agregan 20 ml de eter y se agita la mezcla, dejando que se alcance el equilibrio a 25°C. A dicha temperatura KD= Ceter/Cagua = 4.7

a. ¿Cuánta aspirina queda en la fase acuosa?

b. ¿Si la extracción se realizará con 2 porciones sucesivas de 10 ml de eter?

c. ¿Cuánta aspirina quedará sin extraer?

a. La solución acuosa contiene:

b. Sea y = número de moles de aspirina primera porción de 10ml.

entonces:

00071805.0

5000111.0

207.4

xx

x

Page 141: Fisicoquimica II 2012

Quedan: 0.00111- 0.00054 = 0.00057 moles de aspirina

c. Sea z = número de moles segunda extracción.

SOLUCIÓN CORTA: En porcionesUna solución acuosa contiene 0.2 g de aspirina (C9H8O4) en 50 ml de solución. A esta se le

agregan 20 ml de eter y se agita la mezcla, dejando que se alcance el equilibrio a 25°C. A dicha temperatura KD= Ceter/Cagua = 4.7

a. ¿Cuánta aspirina queda en la fase acuosa?

b. ¿Si la extracción se realizará con 2 porciones sucesivas de 10 ml de eter? ¿Cuánta aspirina quedará sin extraer?

Page 142: Fisicoquimica II 2012

Manuel Páez

2.1-Equilibrio liquido-vapor para un sistema binario

2.2-Disolución ideal a temperatura constante (diagrama Pvs X). Regla de la palanca.

2.3-Disolución ideal a presión constante (diagrama T vs x).

2.4- Destilación fraccionada. Columna de destilación de burbujeo.

2.5-Destilación de las soluciones binarias miscibles (diagrama).

2.6-Equilibrio liquido-vapor. Diagrama T vs X

Page 143: Fisicoquimica II 2012

Equilibrio Termodinámico

Mecánico Térmico

Material

Equilibrio de fases

Equilibrio químico

T T

dq

T T

P P

dV

P P

i i

dni

i i

Page 144: Fisicoquimica II 2012

FASES Y TRANSICIONES DE FASEFASES Y TRANSICIONES DE FASE..

Fase: Porción homogénea de un sistema. Las propiedades macroscópicas intensivas son idénticas en cualquier punto del sistema

Sistema homogéneo:Formado por una fase.

Sistema heterogéneo:Formado por más de una fase.

Varios componentes Un solo componente(sustancia pura)

Page 145: Fisicoquimica II 2012

Transición de fase: Conversión de una fase en otra.

Page 146: Fisicoquimica II 2012

¿Cómo se alcanza el equilibrio material entre fases?

ii

dG = -SdT + VdP + 0 idn

Si el sistema está en equilibrio térmico y mecánico y lo suponemos constituido por dos fases:

0 i i i idn dn 0 i i idn

i i

i i idn dn dn

Fase Fase

dni

Equilibrio Material

Alcanzándose el equilibrio cuando el potencial químico en ambas fases es el mismo

i=i

Page 147: Fisicoquimica II 2012

EQUILIBRIO LÍQUIDO-VAPOR. CURVAS DE PRESIÓN DE VAPOR.EQUILIBRIO LÍQUIDO-VAPOR. CURVAS DE PRESIÓN DE VAPOR.

Sistema cerrado

gas liqT T

00

( , ) ( ) ln gas ii i

PT P T RT

P

Pi = Xi P gas liqT T

Equilibrio entre las fases

H2O (l) H2O (g)

Cuando la velocidad de evaporación iguala la velocidad de condensación

Si un recipiente cerrado, en el que previamente se ha hecho vacío, se llena parcialmente con una sustancia líquida A, ésta se evaporará parcialmente, (si está en cantidad suficiente para que el proceso no sea total), de modo que se alcanzará finalmente un estado de equilibrio en el que la presión reinante en el recipiente es la presión de vapor de la sustancia a la temperatura considerada, .

0Ap

Page 148: Fisicoquimica II 2012

a) Éter dietílico, b) benceno, c) agua, d) tolueno, e) anilina

Page 149: Fisicoquimica II 2012

Manuel Páez

Page 150: Fisicoquimica II 2012

Manuel Páez

Page 151: Fisicoquimica II 2012

Manuel Páez

La separación de mezclas líquidas se lleva a cabo en muchas industrias, centros de investigación, etc. Esto tiene suma importancia económica en casos como el fraccionamiento de los componentes del petróleo, proceso que se lleva a cabo en las refinerías.

La destilación del alcohol etílico es también un proceso de suma importancia que se efectúa para su purificación y concentración parcial en las destilerías, por lo que todo químico debe conocer los principios básicos que gobiernan estos procesos.

Page 152: Fisicoquimica II 2012

Manuel Páez

Aún cuando esto es una idealización, permite justificar, por ejemplo, la relación sencilla representada por la ley de Dalton, la cual plantea que:

La presión total de una mezcla de gases es igual a la suma de las presiones parciales de los componentes.

en los principios de la teoría cinético-molecular

El estudio del comportamiento de los gases ideales o sus disoluciones

se puede justificar apoyándose

y en la hipótesis de que las moléculas no interaccionan.

Recordemos que la presión parcial es la presión que ejerce un gas en una mezcla gaseosa y es igual a la que él ejercería si estuviese solo ocupando el

recipiente a esa temperatura.

Page 153: Fisicoquimica II 2012

Se puede anticipar una simplificación de comportamiento de las disoluciones líquidas en aquellos casos cuyos componentes se asemejan

por su estructura y por tener interacciones moleculares parecidas.

Dado que los líquidos solo existen como consecuencia de la interacción molecular cabría pensar que no existen disoluciones líquidas ideales.

Es obvio que estas no son más que un modelo físico que refleja simplificadamente la realidad objetiva.

Sin embargo, algunas disoluciones líquidas se comportan de forma suficientemente general y sencilla como para que sea válido denominarlas disoluciones ideales.

Page 154: Fisicoquimica II 2012

Manuel Páez

•Es aquella en la que cada molécula de los componentes en la mezcla es afectada por las mismas fuerzas, como si estuviesen en estado puro.

•Son disoluciones en las que las interacciones entre moléculas de los líquidos después de mezclados son de igual intensidad que las interacciones entre las moléculas de los líquidos puros.

Page 155: Fisicoquimica II 2012

Sus componentes pueden mezclarse entre sí en cualquier proporción, o sea, que la solubilidad de

cada uno de ellos en el otro es ilimitada.

No se consume ni libera energía al formar la disolución partiendo de sus componentes (sin variación térmica).

No hay cambio de volumen al formar la mezcla (sin variación

de volumen).

La naturaleza química de ambos líquidos deben ser muy semejantes.

Disoluciones Ideales

Ley de Raoult. La presión de vapor de un componente en una disolución (ideal) es igual a la presión de vapor de dicho componente puro (constante de proporcionalidad) por la fracción molar del mismo en la disolución.

Ley de Dalton. La  presión total de la mezcla es la suma de las presiones parciales de los componentes

Adicionalmente cumplen:

Page 156: Fisicoquimica II 2012

Manuel Páez

En la práctica las disoluciones muy diluidas se comportan como disoluciones ideales.

 Benceno-Tolueno Benceno – Xileno

 n-Hexano- n-Heptano (30 oC)

Bromuro de etilo-Yoduro de etiloCloruro de n-butilo – Bromuro de n-butilo (50oC)

Page 157: Fisicoquimica II 2012
Page 158: Fisicoquimica II 2012
Page 159: Fisicoquimica II 2012
Page 160: Fisicoquimica II 2012

..

Destilación fraccionada. Si la diferencia que hay entre los puntos de ebullición es demasiado pequeña para que una destilación simple resulte eficiente, es necesario recurrir a destilaciones repetidas. En la práctica se emplea una columna fraccionadora, a través de la cual se ponen en contacto en contracorriente una fase líquida descendente y una fase vapor ascendente.

Destilación simple. Se usa cuando la diferencia entre los puntos de ebullición de los componentes es grande, mayor de 80° C, o cuando las impurezas son sólidos disueltos en el líquido a purificar.

en.

La destilación es una de las principales técnicas para separar mezclas de líquidos

La separación se fundamenta en la diferencia de la presión de vapor de los diferentes componentes de la mezcla.

Al calentar la mezcla los componentes se evaporan para condensarse posteriormente y durante el proceso el vapor se enriquece con los componentes más volátiles

Page 161: Fisicoquimica II 2012

Los diagramas de fases de mezclas de líquidos volátiles se caracterizan porque el líquido tiene siempre diferente composición que el vapor, con excepción del punto correspondiente a la mezcla azeotrópica, lo cual permite explicar el procedimiento denominado destilación, con el objetivo de separar los componentes.

La destilación fraccionada es un proceso de vaporización y condensación sucesivas, mediante el cual se logra la separación de los componentes de una mezcla líquida.Se diferencia de la destilación simple en que esta  tiene un solo paso, lo que permite la separación de mezclas de temperatura de ebullición muy diferentes (los componentes).

Durante el proceso el vapor, a medida que asciende, se enriquece en el componente más volátil, y el líquido, a medida que desciende, aumenta su concentración en el componente menos volátil, por lo que la volatilidad de ambas fases aumenta de abajo hacia arriba, disminuyendo el punto de ebullición

Page 162: Fisicoquimica II 2012

La destilación fraccionada se lleva a cabo en las llamadas columnas de fraccionamiento, uno de cuyos tipos es el de platos, como se muestra en la figura.

En este tipo de columnas, cada plato contiene una mezcla líquida de composición creciente en el líquido más volátil y de punto de ebullición menor, por lo cual los vapores que se forman en cada uno pasan al líquido del plato superior a través de los bordes de la campana o sombrerete que actúa de cierre, se condensan parcialmente, mientras que dicho líquido entra en ebullición, forma a su vez vapores y el líquido que queda de concentración menor en el componente más volátil pasa a través del tubo de caída del líquido al plato inferior. Como resultado de lo anterior, el componente más volátil sale como vapor de lo alto de la columna y el componente menos volátil sale como líquido por la parte inferior de la columna.

Page 163: Fisicoquimica II 2012

La eficiencia de una columna de fraccionamiento se expresa en término de su número de platos teóricos.

Los platos son etapas de equilibrio donde se efectúa el intercambio de liquido con gas. Hay varias maneras de obtener el No de platos teóricos entre ellos están los métodos de McCabe-Thiele y Ponchon-Savarit, métodos muy largos, que puedes consultar en los libros Operaciones de transferencia de Masa de Robert E, Treybal y Métodos de Separacion de Henley.

Page 164: Fisicoquimica II 2012

Si se grafica la presión de vapor de la solución en función de la concentración de la fase liquida y del vapor, se tiene:

La línea MN representa la presión total para las distintas composiciones de la fase líquida y la curva MQN las correspondientes a la fase del vapor. Nótese que el líquido siempre tiene diferente composición que el vapor, exceptuándose los extremos en que ambos líquidos se encuentran puros, es decir, para todas las composiciones siempre se volatiliza más de un líquido que del otro. En este caso el componente A es más volátil que el B, pues tiene una p vapor mayor que B a la misma temperatura. De acuerdo con esto se observa que siempre el vapor tiene mayor proporción de A que en el líquido, es decir, el vapor en cada caso o instante es más rico que el líquido en el componente más volátil (Regla de Konovaloff). Para determinar la composición del líquido y la del vapor en equilibrio para el punto P, se debe trazar una línea horizontal que una la curva del líquido y la del vapor a la presión correspondiente; esta línea se denomina línea de conexión o línea de enlace. Se trazan perpendiculares que unan estas rectas en la abcisa (eje de las composiciones) y se lee la composición, tanto para el vapor como para el líquido.

P/ 1.      ¿Cómo se determina la composición del vapor en equilibrio con la mezcla líquida de composición conocida igual a xA = 0,5?2.      ¿Cómo se determina el valor de PT de la mezcla en el ejemplo anterior3.      Si partiéramos de que X’A = 0,5 ¿cuál sería la composición del líquido en equilibrio?

Page 165: Fisicoquimica II 2012

Consideremos una mezcla liquida inicial de composición xO respecto al componente B a t1, xv es el contenido del componente B en el vapor, xL es el contenido del componente B en el liquido. Que la mezcla liquida inicial conste de m moles de ambos componentes. Con y designamos la cantidad de vapor formado, con m – y la cantidad de liquido residual, con mxo la cantidad total del componente B en la mezcla original (x es la fracción molar).

a

oxvxA B

b

1t

V

L

Lx

y

yma

CT º

Las cantidades (masas) de las fases liquida y gaseosa coexistentes (equilibrio L – V) se pueden determinar gráficamente, con ayuda de la Regla de la Palanca.

Page 166: Fisicoquimica II 2012

La deducción de la regla de la palanca se fundamenta en dos expresiones

de conservación de la masa:

En primer lugar, tratándose de una solución bifásica, la suma de las

fracciones de las fases presentes debe ser la unidad: 1 LV xx

En segundo lugar, las masas de los componentes

(A y B) deben coincidir con la masa total de la

solución. 00mxmxmx LLVV a

oxvxA B

b

1t

V

L

Lx

y

yma

CT º

Lo

LvLvLoLvo xx

xx

y

mxxyxxmxymyxmx

Sin embargo, para obtener una expresión de la regla de la palanca

relacionada con la gráfica, se razona como sigue: De acuerdo al balance

material la masa del componente B en la solución inicial debe ser igual a

la suma las masas en el vapor y en el liquido, es decir:

Las soluciones simultáneas de estas dos ecuaciones dan:

LV

VL xx

xxm

0

LV

LV xx

xxm

0

Page 167: Fisicoquimica II 2012

Restando una unidad de ambos miembros de la igualdad, obtenemos la fórmula de la ley de la palanca, en términos gráfico así:

b

a

vapordecantidad

liquidodeCantidad

b

a

xx

xx

xx

xx

y

ym

b

a

xx

xx

xx

xxxx

xx

xx

xx

xx

y

y

y

m

oL

vo

Lo

ov

Lo

ov

Lo

LoLv

Lo

Lo

Lo

Lv

La relación entre las cantidades de L y de V ( las dos fases conjugadas) en equilibrio es igual a la relación entre los segmentos opuestos de la línea de conexión que ella forma con la línea que expresa la composición total de la mezcla.

Page 168: Fisicoquimica II 2012

En general, la regla de la palanca se puede enunciar como:

100xenlacedelínealadetotallongitud

opuestopalancadebrazofasedePorcentaje

Se puede aplicar la regla de la palanca en cualquier región de dos fases de

un diagrama de fases binario.

Se utiliza para calcular la fracción relativa o porcentual de una fase en una

mezcla de dos fases.

Los extremos de la palanca indican la composición de cada fase (es decir,

la concentración química de los distintos componentes)

Page 169: Fisicoquimica II 2012

Desde el punto de vista práctico los gráficos de temperatura de ebullición vs. composición a p = cte tienen una mayor utilidad que las de T = cte.

En este caso la curva MQN está por encima de la MN. Los puntos situados por encima de MQN corresponden al vapor y los situados por debajo de MN al líquido. El líquido A tiene una temperatura de ebullición menor que el B, su presión  vapor es mayor.En estas curvas, en general, no es fácil deducir las de las correspondientes en los diagramas de p vapor vs composición, no obstante, se tiene que siempre tendrá menor temperatura de ebullición el componente o la mezcla de mayor presión de vapor y esto hace que la gráfica se invierta.La forma de analizar la composición del líquido y el vapor es similar a la explicada anteriormente.

En el gráfico se observa que el líquido cuando hierve tendrá un vapor más rico en el componente más volátil y el líquido residual se irá haciendo más rico en el menos volátil.P/1. ¿Qué representa la curva MN? ¿Y la curva MQN?2. En este gráfico ¿qué componente es más volátil? ¿por qué?

Page 170: Fisicoquimica II 2012

Cuando se mezclan 2 líquidos totalmente miscibles y la presión se mantiene constante, el punto de ebullición de la solución depende de la composición.

Se presentan tres casos típicos próximos al comportamiento de los sistemas reales.

TT T

X X X

VVV

L L LVL

VL VL

Comportamiento proximo al ideal

Desviación (-) de la ley de Raoult

Desviación (+) de la ley de Raoult

aazeotropicMezcla)a )b )c

aazeotropicMezcla

Page 171: Fisicoquimica II 2012

a) La mezcla se puede separar por destilación.

b) y c) No

Son aquellas en los que la composición de la fase liquida es igual a la de la fase de vapor.

Para las soluciones que obedecen la ley de Raoult, las curvas T – X pueden construirse según los datos de cálculo. Pero si una mezcla muestra desviaciones de la ley de Raoult, la curva puede construirse conforme a los datos experimentales.

Page 172: Fisicoquimica II 2012

No obstante, si estas desviaciones son muy grandes, en las curvas P – X (ó T – X) pueden aparecer un máximo o un mínimo de acuerdo con el hecho de que estas soluciones manifiestan desviaciones positivas o negativas. En los puntos donde ocurre un máximo o un mínimo la curva del liquido obligatoriamente tocará la curva del vapor. Tal punto en que las composiciones del vapor y del líquido son iguales se denomina punto azeotropico. La mezcla hierve como un todo y separarla mediante destilación resulta imposible.

Durante el proceso de destilación el vapor va enriqueciéndose con el componente mas volátil.

Page 173: Fisicoquimica II 2012

A Tb la composición del componente 2 está dada por:

.;112

122212 puroslosdevapordepresionP

PPPP

xPxPxP iatmL

atm

Para determinar la se procede así:2y

1212

2222

.PxPP

xPPP

yT

De tal manera que el procedimiento es el siguiente:

1. Buscar las constantes A, B y C de la ecuación de Antonie.

.tan,log purasciassusambasparaCt

BAP

2. Buscar los puntos de ebullición de los puros para definir el rango de operación.

Para una mezcla en su Tb la presión de vapor total es igual a la presión atmosférica. Si se asume un comportamiento ideal, se tiene:

221121 PxPxPPPPP atmatmT

Page 174: Fisicoquimica II 2012

3. Despejar P de (1) y reemplazar t, de tal manera que para una temperatura especifica existen 2 presiones de vapor.

4. Hallar la composición de la fase liquida usando:

5. Hallar:

6. Construir una tabla de:

7. Dibujar la grafica de t contra x2.

8. Discutir el resultado.

2

11

P

Pt

12

12 PP

PPx atm

1212

2222

.PxPP

xPPP

yT

t

vx2

Lx2

Page 175: Fisicoquimica II 2012

Soluciones Reales: Desviaciones de la ley de Raoult

Desviaciones positivas Desviaciones negativas

Interacciones intermoleculares < queinteracciones en el líquido puro

ideali iP P

Interacciones intermoleculares > queInteracciones en líquido puro

ideali iP P

Proceso endotérmico, H > 0 Proceso exotérmico, H < 0

Page 176: Fisicoquimica II 2012

Soluciones Reales: Soluciones infinitamente diluidas

XB = 0 XB = 1

PB

PA = PA . XA

Solvente Ley de Raoult

PB = kH . XB

PB = k’H . m

Soluto Ley de Henry

Soluciones infinitamente diluidaskH

PA

XA= 1 XA = 0

Solución diluida ideal:

Ley de Henry

Solución diluida ideal:

Ley de Raoult

Page 177: Fisicoquimica II 2012

Disoluciones no ideales (reales)

En general, las disoluciones no se comportan como disoluciones ideales, solo en el caso en que la fracción molar del disolvente tienda a uno, disolución diluida ideal, su comportamiento se puede asemejar al de una disolución ideal.

En el caso de disoluciones no ideales el potencial químico es:

0 lni i iRT a

Actividad=concentración efectiva

ai = Pireal

Pi*

a = γi χi el coeficiente de actividad, γi es una medida de la discrepancia del comportamiento de la sustancia i respecto a la idealidad.

Page 178: Fisicoquimica II 2012

Equilibrio liquido-vapor para un sistema binario

Page 179: Fisicoquimica II 2012
Page 180: Fisicoquimica II 2012

Manuel Páez

Solucíón

EJERCICIOS RESUELTOS

Page 181: Fisicoquimica II 2012

Manuel Páez

Page 182: Fisicoquimica II 2012

Manuel Páez

SOLUCION: Usa la ecuación de Antonie para hallar la presión de los puros a 100ºC

Ct

BAP

log

Page 183: Fisicoquimica II 2012

Punto de ebullición, Benceno:80 °CBromobenceno:156 °C

Ct

BAP

log

2

11

P

Pt

12

12 PP

PPx atm

1212

2222

.PxPP

xPPP

yT

1)

2)

3)

Constantes en la ecuación de AntoineSustancia A B CBenceno 6.9056 1211.033 220.79

Bromobenceno 5,881747 6571,377 365,2812

Despeje t de la ecuación de Antonie y encuentre p1 y p2 puros. Luego aplique los pasos 2 y 3.

Donde la presión esta en mmHg y la temperatura en °C.

Page 184: Fisicoquimica II 2012

Manuel Páez

Page 185: Fisicoquimica II 2012

Manuel Páez

Page 186: Fisicoquimica II 2012

Manuel Páez

Page 187: Fisicoquimica II 2012

Manuel Páez

Page 188: Fisicoquimica II 2012

Manuel Páez

Page 189: Fisicoquimica II 2012

Manuel Páez

Clases de sistemas: sistemas de un componente, sistemas de dos componentes

Destilación de líquidos inmiscibles y parcialmente miscibles.Diagramas de fases Sólido-Líquido(diagramas de fases para sistemas

reactivos, miscibilidad del estado sólido: miscibilidad parcial en el estado

sólido).Equilibrio gas –sólido. Presión de vapor de sales hidratadas

Sistemas simples Análisis térmico.

Diagramas de fase Sólido-líquido para sistemas más complejos.Sistemas de tres componentes.

Diagramas de fase triangulares. Líquidos parcialmente miscibles. Solubilidad de sales

Efecto del ión común: Método de los residuos húmedos.

Page 190: Fisicoquimica II 2012

Manuel Páez

DIAGRAMA DE FASES•Son representaciones gráficas a varias temperaturas, presiones y composiciones de las fases que están presentes en un sistema de materiales. En condiciones de equilibrio (suponen condiciones de enfriamiento lento)

Son utilizados para conocer:

- Las fases presentes para cada temperatura y composición- Solubilidades a diferentes temperaturas de un componente en otro- Temperatura de solidificación, etc.

• Una fase es una región espacial donde la composición es homogénea.• Una fase de una sustancia es una forma de la materia que es uniforme en su composición química y estado físico en todos sus puntos

Page 191: Fisicoquimica II 2012

Manuel Páez

Regla de las fases de Gibbs

Relaciona el # de propiedades intensivas para un sistema químicamente no reactivo, que se encuentra en equilibrio heterogéneo con el número de fases existentes y el número de componentes presentes.

Page 192: Fisicoquimica II 2012

Cuando en el sistema ocurren r reacciones químicas, el número de variables independientes se reducen

F = C – P + 2 - rSi además existen relaciones estequiométricas o de conservación de la electroneutralidad, el número de variables intensivas independientes es menor

F = C – P + 2 - r - a

Mezcla gaseosa : N2, H2 y NH3: C = 3, F = 1, GL = 3 - 1 +2 = 4 T , P, X1 y X2

NH3 con catalizador para establecer el equilibrio 2NH3 N2 +3 H2

C = 3 F = 1 r = 1 a = 1 [X(H2) = 3X(N2)]

GL = 3 – 1 + 2 – 1 - 1 = 2 T, P

r: Reacciones químicas que vinculan los componentesa= otras relaciones estequiométricas o de presiones

Page 193: Fisicoquimica II 2012

El número de grados de libertad es el número de variables independientes que debe fijarse de manera arbitraria para establecer el estado intensivo de cualquier sistema.

Dos factores externos son los que normalmente se toman en cuenta a saber la temperatura y la presión, en consecuencia:

En el caso particular de las aleaciones, puesto que la presión, excepto las muy altas, influyen muy poco en el número de fases en los estados sólido y liquido.

Dado que el número de grados de libertad (C) no puede ser menor que cero y no puede ser expresado por un número fraccionario, entonces:

PCF 2

01 PC

PCF 1

Page 194: Fisicoquimica II 2012

De donde:

Es decir, el número de fases en la aleación que se encuentra en estado de equilibrio, no puede ser mayor que el número de componentes mas la unidad.

La regla de las fases se ha deducido para el estado de equilibrio si el número de fases no corresponde a la condición enunciada, entonces la aleación se encuentra en estado de desequilibrio, por tanto, en un sistema binario se pueden encontrar en equilibrio no mas de tres fases, en un sistema ternario, no más de 4, etc.

Si en equilibrio se encuentra el número máximo de fases, el número de grados de libertad es igual a cero. Este equilibrio se llama invariante.

1CP

Page 195: Fisicoquimica II 2012

Manuel Páez

ANALISIS DEL DIAGRAMA DE FASES DE SISTEMAS DE UN COMPONENTE

• Es similar en todas las sustancias• Sólo varía la disposición• Línea de sublimación desde el cero absoluto hasta el punto triple• Coexisten las tres fases• Línea de vaporización: desde el punto triple al crítico• Punto crítico: confusión delas fases liquida y gaseosa• La presión en cada una de las líneas de sublimación y vaporización es la presión de vapor del sólido y del líquido a esa temperatura.• El punto crítico delimita la zona de gas de la zona de vapor• Vapor licúa al enfriarlo•Gas no licúa al enfriarlo• Línea de fusión: desde el punto triple sin límite superior conocido• Las líneas indican la coexistencia de dos fases ó transiciones de fase.

Page 196: Fisicoquimica II 2012

Manuel Páez

Diagrama de fases del agua

Page 197: Fisicoquimica II 2012

Manuel Páez

Transición de fase: Conversión de una fase en otra.

Page 198: Fisicoquimica II 2012

G G

dG dG Cambio infinitesimal

S dT V dP S dT V dP

P

P

P

T

i i

i id d

Para una sustancia pura G

ECUACIÓN DE CLAPEYRONEn el equilibrio de las fases 1 y 2 de un cuerpo puro se cumple que:

Page 199: Fisicoquimica II 2012

Como el proceso de cambio de fase se realiza a T y P constantes

HS

T

S dT V dP S dT V dP

( ) ( ) S S dT V V dP

dP S

dT V

dP H

dT T VEcuación de Clapeyron

P

P

T

Page 200: Fisicoquimica II 2012

dP H

dT T V

líquido gasH 0

V 0

Curva de pendiente positiva

dP

dT

sólido líquidoH 0

V 0

En general,curva de pendiente positiva

dP

dT

Excepciones: H2O, Ga, Bi V < 0 curva de pendiente negativa

sólido gasH 0

V 0

Curva de pendiente positiva

dP

dT

La pendiente es mayor que en el resto de transiciones porque V es pequeño

Page 201: Fisicoquimica II 2012

APLICACIÓN DE LA ECUACIÓNAPLICACIÓN DE LA ECUACIÓN DE CLAPEYRONDE CLAPEYRON

Equilibrio líquido-vapor y sólido-vapor

g l gV V V V

y si el gas se comporta como gas ideal

2

g

dP H H P H

dT RTT V TV

2

lnd P H

dT RT

Ecuación de Clausius-Clapeyron

dP H

dT T V

2 2

1 12

ln P T

P T

dTd P H

RTsi T pequeño

H=cte

2

1 2 1

1 1ln

P H

P R T T

Page 202: Fisicoquimica II 2012

Equilibrio sólido-líquido

Importante No puede aplicarse la ec. de Clausius-Clapeyron,

Si la ecuación de Clapeyron (VVg)

dP H

dT T V

2 2

1 1

P T

P T

HdP dT

T V

La elevada pendiente de esta línea, implica que si P no cambia de forma considerable, la variación de T será muy pequeña

22 1

1

lnfus

fus

THP P

TV

si H y V cte

en el rango de T y P

Page 203: Fisicoquimica II 2012

CASO A.

purosliquidosParaC

Tx

R

HP

linealmenteaproximadaTT

xR

H

P

P

T

dT

R

HPd

T

T

P

P ;1

ln

;11

lnln 121

2

2

2

1

2

1

EJERCICIO

El calor medido de vaporización del agua en el intervalo de temperaturas entre 90ºC y 100ºC es 542 cal/g. Calcúlese la presión de vapor del agua a 90ºC siendo el vapor de mas de 100.00ºC a 76 cm.

Me dan datos agrupados de p vs T, o el ejercicio da explícitamente los datos que se requieren

Formas de trabajo con la ecuación de Clausius-Clapeyron

Page 204: Fisicoquimica II 2012

Cuando ello ocurre la expresión dada se deriva con respecto la temperatura, así:

VT

Haigualasey

dT

dPdespejaSe

PdT

dP

dT

PdxDTC

T

A

dT

Pd

303.2

ln

303.2

12

log2

Este procedimiento corrige el error introducido por la suposición de comportamiento ideal. Eso significa que en principio se podrá calcular el valor del a cualquier temperatura.

H

CASO B. Me dan los datos compilados en una ecuación de la forma

2log DTCTBT

AP

Page 205: Fisicoquimica II 2012

EJERCICIO

La presión de vapor del cloro liquido en Cm de Hg se puede representar por la expresión:

El volumen especifico del gas de cloro en su punto de ebullición es 269.1 cc/g y el del liquido es aproximadamente 0.7 cc/g. Calcúlese el calor de vaporización del cloro liquido en cal/g en su punto de ebullición, 239.05K.

SOLUCIÓN

252 1034.110206.191635.98.1414

log TxTxT

P

g

cal

dT

dPVVTHtoPor

cm

grado

atm

dT

dPebullicióndepuntoelEn

dT

dPx

PdT

Pdx

dT

Pd

LVV 3.68:tan

76

04398.0

05.239

:

303.2

1ln

303.2

1log

Page 206: Fisicoquimica II 2012

EQUILIBRIO SÓLIDO – LIQUIDO

La ecuación de Clapeyron es:

mf

f

m

m

m

mm

m

mmm

m

m

mm

Pm

Pm

f

f

T

TV

HP

p

fusión

fusión

T

Tx

V

HP

Luego

T

T

T

TT

T

TTT

T

T

entoncespequeñoesTTentefrecuentemComo

T

T

V

HPP

entoncesPyTdentesindependiecasisonVyHSi

T

dTxdPEntonces

V

S

dT

dP

m

mfusiónfusión

:

1lnlnln

:,

ln

:,

:

´´´´

´

´

12

1

2

`2

1

Page 207: Fisicoquimica II 2012

EFECTO DE LA PRESIÓN SOBRE LA PRESIÓN DE VAPOR

Si mediante algún medio se introduce un gas inerte al equilibrio previamente alcanzado por un liquido o un sólido con su con su vapor, se variará la presión del vapor saturado a temperatura constante de cada fase para dP.

Para dos fases A y B en equilibrio se tiene que:

PoyntingH.J.deecuaciónladeformala;

constanteatemperatur

T

M

M

MM

P

P

V

V

dP

dP

adPVdPV

dd

Así que para mantener el equilibrio los cambios de presión en las dos fases deberán ser inversamente proporcionales a los volúmenes molares específicos respectivos.

Page 208: Fisicoquimica II 2012

L

ML

o

VoM

LM

V

ML

L

V

o

caVoTL

dPRT

V

P

dP

RT

PV

V

V

dP

dP

P

RTVvapordeesiónPliquidoelsobreejercidaPPVLCASO

;Pr;;:

Debido a que el efecto de la PT sobre el liquido es pequeña, entonces se puede sustituir la ecuación anterior por:

atmosferaPatmosferaPmol

litrosVUnidades

PPPPPPPRT

V

P

P

oM

L

oVV

ML

o

V

;;:

;; 0

Po= Presión del vapor saturado de liquido y el vapor bajo la acción de la ausencia de gas inerte.

P = Presión total después de adicionar gas inerte.

Page 209: Fisicoquimica II 2012

EJERCICIO

La presión de vapor verdadera del agua es 23.76 mm a 25ºC. Calcule la PV cuando se evapora agua en un espacio que contenga un gas insoluble a 1 atmósfera de presión, suponiendo un comportamiento ideal.

NOTA:

g

ccVo

mol

lVaguadelespecificovolumenomolarVolumenV M

especificoM

LM

L 1018.0:

Page 210: Fisicoquimica II 2012

Manuel Páez

PROBLEMAS PROPUESTOS

Page 211: Fisicoquimica II 2012

SISTEMA DE DOS COMPONENTES. Equilibrio líquido - líquido en mezclas binarias

0 mezcla

A B A BA B A BG n n G n G n G

0 mezcla

A B A BA BG G G G Para 1 mol de mezcla

Cuando dos líquidos se mezclan en diferentes proporciones a ciertas condiciones de T y P, y se producen dos fases liquidas de diferente concentración que están en equilibrio termodinámico, entonces se tiene el fenómeno de equilibrio liquido-liquido.

Page 212: Fisicoquimica II 2012

0 mezcla

A B A BA BG G G G

1 Fase 2 Fases

En la ecuación adjunta se observa para cada mol de mezcla se cumple que:

Page 213: Fisicoquimica II 2012

( ) mezcla

A B A BA BH H X H X H

( ) mezcla

A B A BA BS S X S X S

En general 0 mezcla

S

0 mezcla

G

¿Por qué 2 líquidos son miscibles a una P, T y composición y no en otras condiciones?

mezcla mezcla mezcla

G H T S

0 mezcla

H

0 mezcla

H

mezcla mezcla

H T S

Page 214: Fisicoquimica II 2012

Aunque mezcla

H y mezcla

S no varíen mucho con T,

aún a P constante, cuando varía T se puede producir un cambio en el signo de Gmezcla. Pudiéndose obtener diagramas de fase liquido-liquido diversos

Temperatura inferior de cosolubilidad

Temperatura superior de cosolubilidad

Page 215: Fisicoquimica II 2012

Destilación de líquidos inmiscibles y parcialmente

misciblesLa miscibilidad parcial a bajas temperaturas implica por lo general, aunque no siempre, un azeótropo de ebullición mínima.

La miscibilidad parcial implica que al mezclarse los dos componentes tienen mayor tendencia a evaporarse que en una solución ideal. Esta tendencia puede conducir a un máximo en la curva presión de vapor-composición y por consiguiente a un mínimo en la curva temperatura de ebullición-composición.Si se disminuye la presión en el sistema indicado, todas las temperaturas de ebullición disminuyen, se desplazan hacia abajo. A presiones suficientemente bajas, las curvas de las temperaturas de ebullición se intersecarán con las curvas de solubilidad liquido-liquido.

Page 216: Fisicoquimica II 2012

El resultado se indica en la figura, que es una representación esquemática del sistema n-butanol-agua a 1 atm de presión.

La figura anterior presenta varias carácterísticas: Si se aumenta la temperatura de un líquido homogeneo, punto a en tA se forma un vapor de composición b.Este comportamiento es bastante común; sin embargo, si se enfría este vapor y alcanza el punto c, condensado consistirá de dos capas líquidas, ya que c está en la región de dos líquidos.Así, el primer destilado obtenido de la destilación del líquido homogéneo a se separará en dos capas líquidas con las composiciones d y e. Un comportamiento análogo presentan las mezclas con composiciones en la región L1

Page 217: Fisicoquimica II 2012
Page 218: Fisicoquimica II 2012
Page 219: Fisicoquimica II 2012

Ejercicio Sistema Fenol-agua

Se prepara un sistema que contiene 24% en peso de fenol y 76% en peso de agua

En el equilibrio se tiene 2 fases líquidas que coexisten (punto d)

La fase líquida (capa superior) contiene 11% de fenol en agua (punto b)

La capa inferior contiene 63% fenol (punto c)

Pesos relativos de las dos fases en el punto d se calculan como:

Las longitudes dc y bd pueden medirse con una regla o de la siguiente forma:

bd longitud

dc longitud

B fase de peso

A fase de peso

Tc

20 40 60 80 100

Fenol en agua (% peso)

Tem

pera

tura

(0 C

)

b d c

66.8

Fenol 11% Fenol 63%

Una fase líquida

Dos fases líquidas

Page 220: Fisicoquimica II 2012

Tc

20 40 60 80 100

Fenol en agua (% peso)

Tem

pera

tura

(0 C

)

b d c

66.8

Fenol 11% Fenol 63%

Puesto que b = 11%, c = 63% y d = 24%

1

3

13

39

1124

2463

bd

dc

Por cada 10 g de sistema líquido en equilibrio (punto d) la proporción de cada fase es:

7,5 g de FASE A y 2,5 g de FASE B

Una fase líquida

Dos fases líquidas

Page 221: Fisicoquimica II 2012

Aplicación de la regla de las fases de Gibbs al sistema fenol-agua

Región de una fase (F=1) , GL =3 , como Presión = constante F =2 (temperatura y concentración)

Región de dos fases (F=2), GL = 2, como Presión = constante, F =1

(solo la temperatura, pues la composición de las dos fases es fija de acuerdo a los puntos extremos de la línea de enlace, puntos b y c a 50oC)

Uso de los diagramas de fases de este tipo: formulación de soluciones farmacéuticas de dos componentes

Page 222: Fisicoquimica II 2012

SISTEMA DE TRES COMPONENTES

Page 223: Fisicoquimica II 2012

Manuel Páez

Un diagrama triangular consiste en un triángulo equilátero, en el que cada uno de los vértices representa un componente puro. Cada lado representa la fracción (en peso o molar) de un componente: 100% en el vértice correspondiente al componente puro y 0% en otro vértice)

Un punto interno del triángulo representa una mezcla cuya composición se obtiene trazando líneas paralelas a los lados del triángulo. El corte de estas líneas con los lados del triángulo proporciona las fracciones de cada componente.

Page 224: Fisicoquimica II 2012

Manuel Páez

Page 225: Fisicoquimica II 2012

ANALISIS DE LOS DIAGRAMAS DE ESTADO

Los diagramas de estado se construyen experimentalmente y la regla de las fases se emplea para el análisis de los datos experimentales.

Para construir los diagramas de estado se emplea el método de análisis térmico y el método de saturación o solubilidad. Para el estudio de las transformaciones en el estado sólido se emplean diferentes métodos de análisis físico – químico, metalografico, por difracción de R – X, dilatometrico, magnético.

Los diagramas de estado de los sistemas de dos componentes pueden ser reducidos a unos cuantos tipos fundamentales en dependencia del estado estructural de la aleación después de la solidificación a saber: Mezclas mecánicas, soluciones sólidas y combinaciones químicas.

Page 226: Fisicoquimica II 2012

CONSTRUCCIÓN DE UN DIAGRAMA DE ESTADO

Para construir un diagrama de estado se trazan las distintas curvas de solidificación o de enfriamiento correspondientes a diversas concentraciones con sus valores iniciales y finales ti y tf de solidificación y se llevan a una grafica de temperatura frente a composición.

ESTADODEDIAGRAMA

BL

NCONGELACIÓDE

FINALESPUNTOS

ICASHIPOEUTEPTAE TICASHIPEREUTECBE

CT º CT ºTOENFRIAMIEN

DECURVA

1

5

4

3 2

100

0

60

40

80

20

AL

TIEMPO

SOLIDUSLINEA

LIQUIDUSLINEA

NCONGELACIÓDE

INICIALESPUNTOS

A

B

%0

%100

At2t

BtBt

At

m

n

Ct

1t

3t

4t´m

´n

X Z

Page 227: Fisicoquimica II 2012

PUNTO EUTECTICO

La solución se encuentra en equilibrio con dos fases cristalinas, una de las cuales esta enriquecida con respecto a la solución por el primer componente y la otra por el segundo componente. El punto eutectico es el punto inferior de ambas curvas de cristalización.

PUNTO PERITECTICO

La solución se encuentra en equilibrio con dos fases cristalinas. Este se diferencia del eutectico en que ambos cristales en equilibrio con la solución, están enriquecidos por el mismo componente. El punto peritectico es el punto inferior de la curva al comienzo de la cristalización de una de las fases y el punto superior de la segunda cristalización.

Page 228: Fisicoquimica II 2012

INTERPRETACIÓN

1. La temperatura de enfriamiento de A disminuye hasta tA donde se detiene. Justo en la parte horizontal:

Eso significa que para conservar las dos fases no se puede variar arbitrariamente ninguna variable del sistema. Después de la cristalización de A, se reinicia la disminución de la temperatura. Igual sucede con (2).

2. La curva (2) se diferencia de la curva (1). La curva (2) baja hasta t1, ahí comienza el proceso de cristalización (punto inicial de congelación). En el intervalo entre t1 y tc cristaliza el componente A. Justo aquí:

eso significa que para la conservación de las dos fases se puede variar arbitrariamente la temperatura o el contenido porcentual de uno de los componentes de la aleación. A la temperatura tc cesa de bajar la temperatura, lo que corresponde a la finalización de la solidificación.

02111 FCGL

12121 FCGL

Page 229: Fisicoquimica II 2012

3. La porción de metal liquido que solidifica a tc tiene una composición constante, ejemplo: 40%B y 60%A = composición eutectica.

4. En todas las demás aleaciones cristaliza el primer componente en exceso respecto a la composición eutectica.

5. La cristalización del componente en exceso continua hasta que la parte liquida no sea iguala la composición eutectica.

6. Las curvas de enfriamiento 2, 3 y 4 muestra que todas las aleaciones en el sistema A –B solidifican a una temperatura constante tc.

7. En la aleación de composición eutectica cristaliza simultáneamente los componentes A y B,

justo aquí: en este punto el equilibrio es invariante.0312

1

FCGL

Page 230: Fisicoquimica II 2012

8. Para determinar la composición de la fase liquida, que se encuentra en equilibrio con los cristales del componente A a cualquier temperatura, que está entre las líneas de liquidas y de solidus, por ejemplo: t3 y t4, es necesario trazar por el punto de temperatura dado t3 y t4 una línea paralela al eje de concentración hasta su intersección con la línea de liquidus y entonces los puntos de intersección m y n indicarán la composición de la fase liquida. Esta línea paralela al eje de concentración recibe el nombre de CONODAS.

9. El diagrama de estado permite determinar también la proporción cuantitativa de fase y componentes estructurales que se encuentran en equilibrio a distintas temperaturas. Para esto se emplea la regla de la palanca. De acuerdo a esta regla, para determinar la cantidad volumétrica de fase (componente estructural) es necesario dividir el segmento opuesto a la composición de la fase dada entre la longitud de la CONODA.

Page 231: Fisicoquimica II 2012

Así, en una aleación que contiene 20% de B a la t3 la cantidad de fase liquida (L) es :

La masa de los cristales del componente A en la misma aleación se determina por la relación entre el segmento t3m, opuesto a la composición del componente A (punto m´ )y la longitud de la CONODA.

´

´3

mm

mtL

´3

mm

mtA

XZ

YZA

Y la cantidad eutectica se determina de la relación:

XZ

XY

SiAlZnSnSbPb ,,

Después de la solidificación la aleación tiene una estructura de cristales A + eutectica (A + B). Para determinar la cantidad de componentes estructurales se traza la línea X y Z (CONODA). Entonces la cantidad de cristales primarios son:

Este tipo de diagrama de estado se encuentra rara vez, por ejemplo en los sistemas:

Page 232: Fisicoquimica II 2012

Manuel Páez

Page 233: Fisicoquimica II 2012

CLASIFICACIÓN DE LOS EQUILIBRIOS SÓLIDO – LIQUIDO DE DOS COMPONENTES

Cada diagrama de fase condensado se puede considerar compuesto de una combinación de cierto numero de otros tipos y este es el único que tiene lugar en ciertos sistemas; en otros hay una combinación de los mismos, dando un diagrama completo mas complejo.

Los sistemas de dos componentes condensados se clasifican primero según la miscibilidad de las fases liquidas y estas a su vez de acuerdo con la naturaleza de las fases sólidas que cristalizan desde la solución.

Page 234: Fisicoquimica II 2012

DIAGRAMAS DE EQUILIBRIO DE FASES

• Tipos más importantes de diagramas de fases:

• Componentes completamente solubles en estado líquido: • Completamente solubles en estado sólido (tipo I) • Insolubles en estado sólido: la reacción eutéctica (tipo II) • Parcialmente solubles en estado sólido: la reacción eutéctica (tipoIII) • Formación de una fase intermedia de fusión congruente (tipo IV) • La reacción peritéctica (tipo V)

• Componentes parcialmente solubles en estado líquido: la reacción monotéctica (tipo VI).

• Componentes insolubles en estado líquido e insolubles en estado sólido (tipo VII).

• Transformaciones en estado sólido: • Cambio alotrópico • Orden-desorden • La reacción eutectoide • La reacción peritectoide

Page 235: Fisicoquimica II 2012

• Tipo I: Dos metales completamente solubles en los estados líquido y sólido: como los dos metales son completamente solubles en el estado sólido, el único tipo de fase sólida formada será una solución sólida sustitucional. Los dos metales tendrán generalmente el mismo tipo de estructura cristalina y diferirán en sus radios atómicos en menos del 8%.

Page 236: Fisicoquimica II 2012

El diagrama consta de dos puntos, dos líneas y tres áreas:

• Los puntos TA y TB representan los puntos de fusión de los dos metales puros.• La línea superior se llama línea liquidus y la inferior se llama solidus.• El área por encima de la línea liquidus es una región monofásica (solución líquida homogénea). El área por debajo de la línea de solidus es también una región unifásica (solución sólida homogénea). Entre la línea de solidus y liquidus hay una región bifásica (mezcla de una solución líquida y una sólida).

Liquidus: temperatura a la cual el líquido empieza a solidificar en condiciones de equilibrioSolidus: temperatura durante la solidificación de una aleación a la cual solidifica la última parte de la fase líquida

Las aleaciones no tienen una temperatura de solidificación (o fusión) definida. Solidifican en un rango de temperaturas.

Page 237: Fisicoquimica II 2012

A partir de los diagramas de fases se obtiene también la composición química de cada fase a una temperatura específica:• Si la aleación contiene sólo una fase, la composición de esta fase es igual a la composición de la aleación.• Si la aleación tiene dos fases, la composición se encuentra así:

A partir de los diagramas de fase se obtiene la cantidad de cada fase con respecto a la masa total de la aleación utilizando la regla de la palanca.

• Se traza una línea vertical que representa la aleación y una línea horizontal a la temperatura requerida.

• La línea vertical dividirá a la horizontal en dos partes cuyas longitudes son inversamente proporcionales a la cantidad de las fases presentes.

Page 238: Fisicoquimica II 2012
Page 239: Fisicoquimica II 2012

Equilibrio de masas:

Page 240: Fisicoquimica II 2012

Aplicación de la regla de las fases:

Page 241: Fisicoquimica II 2012

Microestructuras:

Page 242: Fisicoquimica II 2012

Tipo II: Dos metales completamente solubles en estado líquido y completamente insolubles en estado sólido:• Cada metal disminuye el punto de fusión del otro.• La línea liquidus debe mostrar un mínimo, conocido como punto eutéctico.

El diagrama está formado por cuatro áreas:• El área arriba de la línea liquidus es una solución líquida homogénea de una sola fase, ya que los dos metales son solubles en estado líquido.• Las áreas restantes son de dos fases.• En estas aleaciones ocurre la reacción eutéctica:• La reacción eutéctica se da a una temperatura fija llamada temperatura eutéctica.• Un sólido eutéctico tiene una forma diferente a las otras fases de la aleación, por lo que se considera una fase del material: se solidifican alternativamente A y B puros, resultando una mezcla muy fina (mezcla eutéctica)

Page 243: Fisicoquimica II 2012

Etapas en el enfriamientolento de una aleación80A-20B

Page 244: Fisicoquimica II 2012

Microestructuras:

Ejemplo diagrama de fase del sistema aluminio-silicio:

Page 245: Fisicoquimica II 2012

Tipo III: dos metales completamente solubles en el estado líquido, pero sólo parcialmente solubles en el estado sólido.

•Cuando la solubilidad es parcial, el diagrama de fase es diferente:• La línea de solubilidad describe cuánto de un componente puede disolverse en otro.• Al cruzar la línea de solubilidad durante el enfriamiento se da la precipitación de una de las fases.• En estas aleaciones ocurre también la reacción eutéctica.

Varias microestructuras características de distintas regiones:

Page 246: Fisicoquimica II 2012

Ejemplo diagrama de fase del sistema estaño-plomo:

Page 247: Fisicoquimica II 2012

Tipo IV: La fase intermedia de fusión congruente.•Cuando una fase cambia en otra isotérmicamente (a temperatura constante) y sin ninguna modificación en composición química, se dice que es un cambio de fase congruente o una transformación congruente.• Las fases intermedias son congruentes porque son únicas y se presentan entre las fases terminales en un diagrama de fase.• Si la fase intermedia tiene un reducido intervalo de composición, como sucede en los compuestos intermetálicos y los compuestos intersticiales, entonces se representa en el diagrama con una línea vertical y se indica con la fórmula del compuesto.

El sistema consiste en dos sustancias que forman un compuesto intermedio (es decir un compuesto que funde para dar un liquido de la misma composición del sólido) su diagrama de fases tendrá la apariencia que se muestra en la Fig.dada para el sistema NaF-MgF2 .

Page 248: Fisicoquimica II 2012

Tipo V: la reacción peritéctica.

• En la reacción peritéctica un líquido y un sólido reaccionan isotérmicamente para formar un nuevo sólido al enfriarse.• La reacción peritéctica se expresa como: Líquido + sólido1→sólido2

Fase intermedia de fusióncongruente

Diagrama de equilibrio que muestra una aleación intermedia que es uncompuesto intermetálico estequiométrico (AxBy) donde x e y están definidos Diagrama de equilibrio Ti-Ni que muestra varios compuestos intermetálicos el

TiNi es un compuesto intermetálico no estequiométrico (AxBy) donde x e y no están definidos, el compuesto se representa como un campo (solución sólida secundaria)

Page 249: Fisicoquimica II 2012

Diagrama de fase que muestra la formación de una fase intermedia de fusión incongruente por una reacción peritéctica:

Microestructuras del sistema peritéctico:

Page 250: Fisicoquimica II 2012

Ejemplo diagrama de fase del sistema hierro-Fe3C:

Page 251: Fisicoquimica II 2012

Tipo VI: dos líquidos parcialmente solubles en el estado líquido: la reacción monotéctica.

• Hasta ahora se ha supuesto que había solubilidad completa en estado líquido, sin embargo es posible que sobre cierto intervalo de composición se formen dos soluciones líquidas no miscibles entre sí.• La reacción monotéctica se expresa como: Líquido1→líquido2 + sólido

El punto C se conoce como punto monotéctico

Enfriamiento

Page 252: Fisicoquimica II 2012

• Tipo VII: dos metales insolubles en el estado líquido y sólido.

• Ejemplo diagrama de fase del sistema aluminio-plomo:

Page 253: Fisicoquimica II 2012

TRANSFORMACIONES EN ESTADO SÓLIDO

• Alotropía: diversos metales pueden existir en más de un tipo de estructura cristalina, dependiendo de la temperatura. El hierro, el estaño, el manganeso y el cobalto son algunos ejemplos.

•Transformación orden-desorden: al formarse una solución sólida de tipo sustitucional los átomos de soluble generalmente no ocupan ninguna posiciónespecífica, sino que están distribuidos al azar en la estructura reticular del solvente. Se dice que la aleación está en una condición “desordenada”. Algunas de estas soluciones si se enfrían lentamente sufren un arreglo de los átomos.

Page 254: Fisicoquimica II 2012

• La reacción eutectoide: semejante a la reacción eutéctica, pero no incluye al líquido:

Sólido1→sólido2 + sólido3

Enfriamiento

• La reacción peritectoide: semejante a la peritéctica, pero no incluye el líquido.

Sólido1+ sólido2→sólido3 Enfriamiento

Page 255: Fisicoquimica II 2012

Resumen de las posibles reacciones de un diagrama en equilibrio:

Page 256: Fisicoquimica II 2012

Manuel Páez

UNIDAD No. 4: CINÉTICA QUIMICA.

Page 257: Fisicoquimica II 2012

Manuel Páez

CINETICA QUÍMICALa cinética química es una rama de la

fisicoquímica que se dedica al estudio de las regularidades que tiene lugar en los procesos químicos durante el curso de una reacción química con el tiempo. En dependencia de los factores que influyen sobre esta incluyendo los mecanismos o etapas por las cuales los reaccionantes se transforman en productos.

La cinética química es un medio esencial para la investigación y desarrollo de nuevos procesos químicos.

Page 258: Fisicoquimica II 2012

PROBLEMA DE LA CINETICA QUIMICA

Es encontrar la forma de la ley de velocidad que le permita diseñar, operar controlar y optimizar reactores de la industria química como también la formulación cuantitativa de la reactividad química.

OBJETIVOS DE LA CINETICA QUIMICA

-Identificar y acoplar las reacciones químicas con el propósito de obtener información sobre las velocidades de las reacciones individuales.

- Identificar y determinación las etapas intermedios de una reacción

- Determinar la ley de velocidad de una reacción química.

-Determinar de modo directo e indirecto las velocidades de las etapas individuales.

OBJETO DE LA CINETICA QUIMICA

Estudiar la evolución en el tiempo de los sistemas que reaccionan químicamente, al medir e interpretar la velocidad de reacción, la información obtenida suministra la base cuantitativa en que se fundamentan las teorías de la reactividad química.

Page 259: Fisicoquimica II 2012

Manuel Páez

Toda reacción química puede dar lugar a métodos termodinámicos o cinéticos de análisis.

Para aplicar el método termodinámico, se requiere que la reacción cumpla con los requisitos:

• Posea una constante termodinámica elevada• Posea una cinética favorable (rápida)• Su estequiometría sea conocida El estudio termodinámico permite conocer la posición en la cual la

reacción alcanzará el equilibrio.

En la aplicación del método cinético (basado en medidas de velocidad de reacción):

• Para nada es importante el valor de la constante de equilibrio• Es independiente de la estequiometría de la reacción• Se pueden usar en reacciones que no servirían para un método

termodinámico (mecanismo complejo e irreversibles)

Page 260: Fisicoquimica II 2012

Manuel Páez

En el estudio de cualquier reacción química: A + B C + D, caben dos regiones de estudio nítidamente diferenciadas:

concentración

Los métodos cinéticos trabajan en la región cinética, en la que la velocidad de reacción depende proporcionalmente de la concentración ó de cualquier propiedad física.

Page 261: Fisicoquimica II 2012

Manuel Páez

2 H2 + O2 2 H2O H2 2 H

H + O2 HO + O

HO + H2 H2O + H

O + H2 HO + H

Fase gaseosamonomolecular

bimolecular

bimolecular

bimolecular

Toda reacción química está formada por una serie de procesos intermedios en las que participan tanto moléculas de sustancias iniciales como átomos individuales, radicales iones, átomos y moléculas excitadas que surgen al iniciarse las reacciones y en su transcurso.

La cinética de las etapas, constituye el fundamento de la cinética química y el nivel mas elevado de conocimiento sobre la reactividad química.

Page 262: Fisicoquimica II 2012

Manuel Páez

Seguimiento de una reacción

• Métodos químicos:– Se utiliza una reacción química para evaluar la

concentración de un componente.– Requiere extraer una muestra y luego “detener” la

reacción para poder evaluar la concentración.– Limitados al caso de reacciones relativamente lentas.

• Métodos físicos:– Se monitorea la variación de una propiedad física:

• Cambios de presión.• Absorción UV, V, IR, Raman, RMN, etc.• Polarización de la luz.

Page 263: Fisicoquimica II 2012

Manuel Páez

Ocurrencia de las reacciones químicasTeoría de las colisiones.

Teoría del Complejo Activado

• Hacia 1920 se propone la primera teoría de cómo ocurre una reacción química: teoría de las colisiones

• Hacia 1935 se amplía la teoría anterior con la teoría del complejo activado o del estado de transición.

Page 264: Fisicoquimica II 2012

Teoría de las colisionesSe basa en la idea de que para que una reacción tenga lugar, las moléculas de los reactivos deben chocar entre si, de ahí que:

“La velocidad de reacción es proporcional al número de colisiones producidas por unidad de tiempo entre las moléculas de los reactivos”.

De acuerdo con esta teoría, cualquier factor que haga aumentar la frecuencia con la que tienen lugar dichas colisiones, deberá aumentar la velocidad de la reacción ( o lo que es lo mismo su constante cinética).

Sin embargo no todas las colisiones que tienen lugar entre las moléculas de los reactivos van a dar lugar a productos, ya que no todas las colisiones son efectivas.

Sin así fuera las reacciones entre sustancias líquidas o disueltas serían rápidas, ya que en esos estados, el número de choques puede ser muy grande y en la práctica muy pocas reacciones tienen lugar a muy altas velocidades.

La mayoría son relativamente lentas debido a que muchas de las colisiones producidas no son efectivas y no se traducen en la formación de los productos.

Page 265: Fisicoquimica II 2012

Manuel Páez

Para que las colisiones sean efectivas hay dos aspectos importantes que deben cumplirse:

A)Las molécula, átomos e iones de las especies reaccionantes deben tener una energía mínima necesaria (energía de activación), dado que casi todas las reacciones implican una ruptura de enlaces que requieren un aporte energético.

B) La orientación relativa de las especies que colisionan debe ser la adecuada para que la interacción sea efectiva.

Veamos la reacción de formación del HI a partir de I2 e H2

Page 266: Fisicoquimica II 2012

Teoría del complejo activado

Las moléculas de los reactivos se aproximan dando lugar a un estado intermedio, de transición, de alto contenido energético al que se llama complejo activado.

Para que se forme dicho complejo activado los reactivos han de absorber una energía: Energía de activación.

- El complejo activado es muy inestable por su elevada energía y se descompone de forma casi instantánea en los productos de la reacción.

- Cuanto mayor sea la energía de activación menor será la velocidad de la reacción, por lo que esta etapa de la reacción será la que decidirá en parte la velocidad de la misma.

Page 267: Fisicoquimica II 2012

Manuel Páez

El complejo activado es unaasociación transitoria muy inestable, ya que su energía es superior a las moléculas de reactivo y producto

Page 268: Fisicoquimica II 2012

Manuel Páez

La energía de activación es la energía mínima necesaria para que se produzca una reacción química.

Perfil de una reacción

Page 269: Fisicoquimica II 2012

Manuel Páez

1. Velocidad de reacción

Se define como la variación de la concentración existente de una sustancia por unidad de tiempo.

Para la reacción general:

Existe:

Para los reactivos una velocidad de desaparición.

El signo (-) indica que la concentración de los reactivos disminuye al crecer el tiempo.

dt

dC

tV

tiempodeunidad

iónconcentracladevariación

1dDcCbBaA

dtdC

Vydt

dCV B

BdA

Ad

Para estudiar la cinética de las reacciones químicas introduciremos dos conceptos:

0 20 40 60 80 1000

20

40

60

80

100

Sustrato

Producto

% C

once

ntra

ción

tiempo

Page 270: Fisicoquimica II 2012

2. Postulado Fundamental de la Cinética

...][][][)( FBAkV T

k = constante de velocidad de reacción. = orden de reacción respecto al componente A. = orden de reacción respect al componente B. + +…+ = orden total de reacción.

a A + b B+...c C + d D

Únicamente en los casos en que la reacción transcurre en una sola etapa el orden de la reacción para la sustancia dada coincide con el coeficiente estequiométrico.

Es importante notar que el orden la reacción es igual al coeficiente estequiométrico para todas las reacciones que transcurren muy despacio en las condiciones infinitamente cercanas al estado de equilibrio químico, independientemente de que en las condiciones alejadas del equilibrio puedan pasar por una serie de etapas intermedias.

En el caso general se puede admitir que la velocidad de la reacción química es directamente proporcional a las concentraciones de las sustancias reaccionantes con ciertos exponentes, denominados orden de reacción.

Page 271: Fisicoquimica II 2012

Manuel Páez

Comentarios sobre v =k[A][B][F]

• k no depende de la composición …– pero depende de T, P, número de fases.

• Los órdenes pueden ser enteros o fraccionarios.• Los órdenes no necesariamente son iguales a

los coeficientes estequiométricos.• Los órdenes deben determinarse

experimentalmente.

Page 272: Fisicoquimica II 2012

Factores que modifican la velocidad de reacción

• Naturaleza de los reactivos.

Hay sustancias que reaccionan más rápidamente que otras: El hierro se oxida más fácilmente al aire y sin embargo el oro no.

Las sustancias cuyos átomos están unidos por enlaces covalentes reaccionan más lentamente que las unidas por enlace iónico.

• Estado físico de los reactivosLas reacciones son más rápidas si los reactivos son gaseosos o

están en disolución que si están en estado sólido. En el estado gaseoso es mayor el número de choques entre las moléculas, lo cual favorece que la velocidad de reacción sea mayor.

En reacciones heterogéneas, la superficie de contacto influye en la velocidad de reacción. Las sustancias en estado sólido, dependiendo del grado de división, aumentaran su velocidad de reacción. La madera arde mejor en virutas que en un tronco.

Las reacciones en disolución acuosa, en general, son muy rápidas.

Page 273: Fisicoquimica II 2012

La velocidad de la reacción se incrementa al aumentar la concentración de los reactivos, ya que aumenta el número de partículas por unidad de volumen y produce un aumento del número de choques entre ellos.

Concentración de los reactivos

Page 274: Fisicoquimica II 2012

Ecuación de ArrheniusEcuación de Arrhenius

k = A . e –Ea/RT

factor pre-exponencial o factor de frecuencia

Ea = energía de activaciónR = constante de los gasesT = temperatura absoluta

Constantede velocidad

factor exponencial o factor de Boltzmann

Temperatura de la reacciónExperimentalmente se demuestra que al elevar la temperatura se produce un aumento en la velocidad de reacción. Por regla general, al incrementar la temperatura de una reacción en 10ºC la velocidad se duplica.

Arrhenius, en 1889 propuso una ecuación relacionando la constante de velocidad con la temperatura:

RTEATk a- ln)(ln • Ecuación fenomenológica.• Válida para una gran cantidad de reacciones en un

rango limitado de T.

Page 275: Fisicoquimica II 2012

Con catalizador

Sin catalizador

Ecuación de Arrhenius

Page 276: Fisicoquimica II 2012

Energía de activaciónEnergía de activación(Ea)(Ea)

A + B

P

Trayectoria de la reacción

Ene

rgía Ea-1

Ea1

E

Ea1 = Ea de la reacción directaEa-1 = Ea de la reacción inversa

E = Ea1 – Ea-1

(reacciones elementales)

A + B Productos

Es la energía cinética mínima que Es la energía cinética mínima que deben alcanzar los reactivos para deben alcanzar los reactivos para

que la reacción sea efectiva y que la reacción sea efectiva y evolucione a los productosevolucione a los productos

Page 277: Fisicoquimica II 2012

Manuel Páez

¿Qué información nos brinda Ea?

• Ea > 0 indica una reacción que se acelera al aumentar la temperatura.

• Ea < 0 indica una reacción que se desacelera al aumentar la temperatura.

• Cuanto mayor es Ea el cambio de k es más significativo.

121

2 11ln

TTRE

kk a

Page 278: Fisicoquimica II 2012

Manuel Páez

Desviaciones de la ley de Arrhenius

• En amplios intervalos de T se observan desviaciones a la ley de Arrhenius:– la gráfica de Arrhenius no da lineal.– el factor pre-exponencial depende de la

temperatura.

• Para explicar estas desviaciones debemos conocer con mayor detalle cómo ocurre una reacción química.

Page 279: Fisicoquimica II 2012

El concepto de energía de activación esta asociado al concepto de complejo

activado

En reacciones catalizadas, la formación del complejo activado

requiere menos energía

Ea

Transcurso de la reacción

Complejoactivado

Reactivos

H>0

En

ergí

a

Productos

Ea

Reacción no catalizada

Reacción catalizada

Page 280: Fisicoquimica II 2012

Efecto de los catalizadores El catalizador es un sustancia que cambia la velocidad de una

reacción química y que no se modifica durante su acción. No aparece en la ecuación estequiométrica

No tiene efecto sobre la posición de equilibrio

Afecta a la reacción directa(1) y a la reacción inversa(2)

Da una trayectoria alternativa con menor energía de activación

Una pequeña cantidad de catalizador es suficiente para producir una reacción considerable.

El catalizador no inicia la reacción: sólo acelera una reacción que se producía lentamente. Aumentan la velocidad de reacción de 10 a 1012 veces.

k1cat > k1

k2cat > k2 Se pueden clasificar en:

Positivos: aumentan la velocidad de reacción

Negativos: disminuyen la velocidad de reacción.

Page 281: Fisicoquimica II 2012

Energía de activación

Ene

rgía

Transcurso de la reacción

Complejoactivado

Reactivos H<0

Energía de activación

Transcurso de la reacción

Complejoactivado

Reactivos

H>0

Ene

rgía

Reacción exotérmica Reacción endotérmica

Productos

Productos

E.A

E.A

Los catalizadoresnegativos aumentan laenergía de activación

Los catalizadorespositivos disminuyenla energía de activación

E.A sin catalizadorE.A con catalizador negativo

E.A con catalizador positivo

Catálisis. Diagrama de energías

Page 282: Fisicoquimica II 2012

Tipos de catálisis• Catálisis homogénea. El catalizador está en la misma fase

que la mezcla de reacción. Por ejemplo, un ácido en una solución, o un gas en una mezcla gaseosa.

• Catálisis heterogénea. El catalizador está en una fase distinta de la mezcla de reacción. Por ejemplo, un catalizador metálico (sólido) en una mezcla gaseosa.

• Catálisis positiva: el catalizador aumenta la velocidad de reacción.

• Catálisis negativa: el catalizador disminuye la velocidad de la reacción.

Un tipo especial de catálisis es la realizada en los seres vivos a través de las enzimas

Page 283: Fisicoquimica II 2012

Manuel Páez

ESTUDIO MATEMATICO DE LA CINETICA DE LAS REACCIONES

Los conceptos de velocidad y postulado fundamental, previamente vistos son equivalentes , por ello se usarán combinándolos en el estudio de las siguientes reacciones:

I- REACCIONES IRREVERSIBLESEn las reacciones irreversibles, homogéneas y en sistema cerrado, en que todas las variables permanecen constantes excepto la concentración de los reactivos, la ley diferencial de la velocidad frecuentemente toma la forma en dependencia de:

1. Interviene solo un reactivo de concentración variable.

Esta ecuación diferencial presenta diversas soluciones en dependencia de la magnitud n, así.

nKCdtdC

Page 284: Fisicoquimica II 2012

Reacción de orden cero (n = 0)

KtCCó

KtCCKdtdCtC

C

Pendiente = K

t

C

Reacción de primer orden (n = 1)

Pendiente = K

t

lnC

C

CKtóKtCC

KtCC

KtC

CKdt

C

dCtC

C

lnlnln

lnln

ln

Page 285: Fisicoquimica II 2012

Reacciones de orden mas elevado (n > 1)

KtCC

nEjemplo

KtCCn

KtCCn

Ktn

C

KtdCCKtC

dC

nn

nn

C

C

n

C

C

nC

Cn

112:

11

1

1

1

1

1

11

11

1

Pendiente = K

t

1/C

Page 286: Fisicoquimica II 2012

Manuel Páez

2. Intervienen 2 o mas reactivos de concentraciones variables: A + B productos.Supongamos que en el tiempo t = 0 se tienen a moles de la sustancia A y b moles de la sustancia B. Supongamos que en el tiempo t han reaccionado x moles de A siendo a su vez el reactivo limite (R.L),es decir, al transcurrir el tiempo permanecen sin reaccionar a – x moles de A y b – x moles de B. Si designamos con V el volumen del sistema, la ley diferencial de velocidad toma la forma:

BA nn

Vxb

Vxa

KVdt

xad

BA nn VVVK

K ´

1

122´

B

ABAnn n

nnnnnSidtK

xbxa

dxBA

con

tK

xbaxab

ab´ln

1

Integrando se obtiene:

Page 287: Fisicoquimica II 2012

Como el volumen del sistema no varia, entonces se puede introducir en una nueva constante.

En este caso la ecuación toma la forma:

Integrando:

Haciendo:

BA nn VV

VKK ´

1

122´

B

ABAnn n

nnnnnSidtK

xbxa

dxBA

Kdt

xbxa

dx

abAAaAbax

BaAbxSi

xaBxbAxb

B

xa

A

xbxa

11

10:

11

Veamos como se obtiene

Page 288: Fisicoquimica II 2012

Sustituyendo (**) e (*), es tiene:

O mejor:

De donde:

abaab

aBBa

ab

aBa

ab

b

ab

abBa

ab

b

11

1

baB

1

abKa

b

xb

xaó

tKxba

xab

abtK

b

xb

a

xa

ab

dtKxb

dx

abxa

dx

abdtKdx

xbxaab

dtKdxxbabxaab

dtKdxxb

B

xa

A

txx

lnln

´ln1

´lnln1

´11

´111

´1111

´

Page 289: Fisicoquimica II 2012

Las reacciones de orden superior a 2 se presentan raramente, ahora bien, se han observado casos en que nA = 2 y nB = 1, o en que nA = nB = nC =1.

Aquí las correspondientes ecuaciones de velocidad integradas pueden formularse fácilmente como soluciones correctas.

Page 290: Fisicoquimica II 2012

Manuel Páez

PROBLEMAS

Page 291: Fisicoquimica II 2012

Manuel Páez

Page 292: Fisicoquimica II 2012

Manuel Páez

SOLUCION AL PROBLEMA ANTERIOR

Page 293: Fisicoquimica II 2012

Manuel Páez

Page 294: Fisicoquimica II 2012

Manuel Páez

SOLUCION GRAFICA

Page 295: Fisicoquimica II 2012

Manuel Páez

Page 296: Fisicoquimica II 2012

Por definición el tiempo de vida media es el tiempo necesario para que reaccione la mitad de la concentración de los reactivos iniciales.

Para una reacción de orden 1, es:

Luego:

2;ln

1

CCcuandot

C

C

tK

2ln1

2

1ln

1

KK

Tiempo de vida media

Page 297: Fisicoquimica II 2012

Manuel Páez

Datación por Carbono-14Datación por Carbono-14

La datación por carbono-14 es un procedimiento para determinar la edad de ciertos objetos arqueológicos que tengan un origen biológico con una antigüedad de hasta cerca de 60.000 años. Se utiliza para fechar cosas tales como: huesos, madera, fibras vegetales que fueron creadas en un pasado relativamente reciente por actividades humanas. 

En cuanto los organismos vegetales o animales mueren, cesa el intercambio por carbono-14 con la atmósfera y cesa también el reemplazo de carbono de sus tejidos. Desde ese momento el porcentaje de C14 de la materia orgánica muerta comienza a disminuir, ya que se transmuta en N14 y no es reemplazado.

La masa de C14 de cualquier fósil disminuye a un ritmo exponencial que es conocido. Se sabe que a los 5730 años de la muerte de un ser vivo la cantidad de C14 en sus restos fósiles se ha reducido a la mitad y que a los 57300 años es de tan solo el 0,01% del que tenía cuando estaba vivo. Sabiendo la diferencia entre la proporción de C14 que debería contener un fósil si aún estuviese vivo (semejante a la de la atmósfera en el momento en que murió) y la que realmente contiene, se puede conocer la fecha de su muerte de forma bastante exacta.

Page 298: Fisicoquimica II 2012

Para medir la cantidad de carbono 14 restante en un fósil, los científicos incineran un fragmento pequeño para convertirlo en gas de dióxido de carbono. Se utilizan contadores de radiación para detectar los electrones emitidos por el decaimiento de carbono 14 en nitrógeno. La cantidad de carbono 14 se compara con la de carbono 12, forma estable del carbono, para determinar la cantidad de radiocarbono que se ha desintegrado y así datar el fósil.

Se sabe que todas las reacciones de desintegración radiactiva transcurren bajo una cinética de primer orden, entonces para la desintegración del carbono 14, se tiene:

Donde Nf/No es el porcentaje de carbono-14 en la muestra en relación con la cantidad en el tejido vivot1/2 es el “período de vida media” del C14 =5730 años

Nf = C14 final del fósil, No= C14 original del tejido vivo Nf = C14 final del fósil, No= C14 original del tejido vivo

Cuánta antigüedad tendrá un fósil que contiene un 10% de C14 en relación con una muestra viva

1041 10.20968.15730

963.02ln

1

añosañosk

0104

0

ln10.20968.1

1ln

1

N

N

añosN

N

kt

añosañosN

N

kt 19040)10.0ln(

10.20968.1

1ln

1104

0

EJEMPLO

Page 299: Fisicoquimica II 2012

Puesto que:

Poniendo en forma logarítmica la expresión anterior, tenemos:

La grafica de , tiene la forma de una línea recta

2/; CCcuandot

1

1

11

1 12

1

1112

1

11

n

n

nn

n

CnKCCnK

CnnK

n

ln11

12lnln

1

CVs lnln

Cln

112

ln1

nK

n

1 nPendiente

ln Constituyéndose así en un método para determinar el orden de reacción.

Para una reacción de n–ésimo orden, donde:

11

11

1

11nn CCnK

t

Page 300: Fisicoquimica II 2012

II- Reacciones opuestas o reversiblesReacciones que se producen en ambos sentidos y por lo general conducen a un estado de equilibrio Vdirecta = Vinversa

A

B

Tiempo

[ ]

A Bk1

k-1

k1 [A] = k-1 [B]

Kk

k

A

B

1

1

][

][

constantes de velocidad directa e inversa

constante de equilibrio

d(A)/dt = - k1 (A) + k-1 (B) = 0

Page 301: Fisicoquimica II 2012

Manuel Páez

Cuando una reacción es reversible, generalmente su velocidad de reacción se puede expresar como la diferencia de la velocidad de reacción del sentido directo y del sentido inverso.

Orden Primer 21 x)(b(a-x)-kkdt

x)d(a -BA

eq

eq

k

bakLkk

xLL

t

1

)(ln1

21

DCBA cckcckDCBA ´2

´1´Vdt

x)-d(a-Orden Segundo

cero.son Dy C de las que mientras a iguales

son By A de iniciales moles las :0en t que Asumiendo

22

21 x-k(a-x)k

dtdx

a

Page 302: Fisicoquimica II 2012

Manuel Páez

ln1

:essolución Cuya

21

12

2121

-x)(mm-x)(mm

mm)tk(k

1

Con 2,1 keq

)keqa(keqm

Page 303: Fisicoquimica II 2012

Manuel Páez

Deducción de las ecuaciones integradas de las Reacciones

opuestas o reversibles de primer orden

Page 304: Fisicoquimica II 2012

Manuel Páez

Page 305: Fisicoquimica II 2012

Manuel Páez

Page 306: Fisicoquimica II 2012

Manuel Páez

Page 307: Fisicoquimica II 2012

Manuel Páez

Deducción de las ecuaciones integradas de las Reacciones

opuestas o reversibles segundo orden

Tarea

Page 308: Fisicoquimica II 2012

Reacciones en las cuales el producto de una de las etapas elementales es el reactante de la siguiente

A B C

k2 >>> k1 k2 <<< k1

k1 k2

A C

B

Tiempo

[ ]

A C

B

Tiempo

[ ]

III- Reacciones consecutivas o en series

Page 309: Fisicoquimica II 2012

• Reacciones complejas compuestas por reacciones (a) de iniciación; (b) de propagación, y (c) de terminación.

• Los intermediarios son radicales libres. Se forman en la etapa de iniciación; dan origen a otros, conservando su número, en las etapas de propagación, y se cancelan en la etapa de terminación.

HBr2BrH 22 HBr2BrH 22 Ejemplo clásico de química en fase gaseosa:

IV- Reacciones en cadena

Reacciones consecutivas con un equilibrio

k1, k-1 >> k2A + B I Ck2

k-1

k1

Page 310: Fisicoquimica II 2012

Propagación

Terminación

3k2BrH 3k

2BrH

BrH 2

BrH 2

2k2HBr 2k

2HBr HHBr HHBr

BrHBr BrHBr

2kHBrH 2kHBrH

1kBrBr 1kBrBr2Br2Br

Br2Br 1k2

Br2Br 1k2 Iniciación

ka (H2) (Br2)1/2

kb + (HBr)/(Br2)v =Ley de velocidad

Page 311: Fisicoquimica II 2012

Manuel Páez

CINÉTICA DE LAS REACCIONES EXPRESADAS EN TÉRMINOS DE PROPIEDADES FÍSICAS

Page 312: Fisicoquimica II 2012

Manuel Páez

Analicemos el problema en términos no específicos. Consideremos la reacción general:

Con concentraciones iniciales de reactivos a, b, etc, y de productos f, g, etc. En cualquier instante t, las concentraciones pueden ser expresadas en función de la “variable de reacción”

Sea F la propiedad física a medir, la cual se expresar como:

GmFmBmAm gfba

xmgxmfxmbxma gfba ,,,

GFBAM fFFFFF

Page 313: Fisicoquimica II 2012

Manuel Páez

Donde FM abarca todas las constantes que influyen en F incluidas las debidas al recipiente y al medio.

Supóngase que cada F especifica es proporcional a la concentración molar de la sustancia en referencia, con lo cual:

alidadproporciondeconstantessonγφ,β,α,donde

;

;

xmgFxmfF

xmbFxmaF

gGfF

bBaA

Es evidente que en los instantes 0, t e (admitiendo que A es el reactivo en referencia), tenemos:

Page 314: Fisicoquimica II 2012

Manuel Páez

am

mga

m

mfa

m

mbFF

xmgxmfxmbxmaFF

gfbaFF

a

g

a

f

a

bM

gfbaMt

M

Ya que cuando se abra consumido todo el reactivo de referencia, entonces: a = max

O también obsérvese de la reacción estequiometrica que ma requiere mb moles para reaccionar, entonces a moles de A requieren:

t

ntesucesivameasiyconsumirseparaBdemolesam

mx

a

b

Page 315: Fisicoquimica II 2012

Manuel Páez

A partir de las relaciones anteriores se puede deducir lo siguiente:

Lxma

mmmmxma

FF

LxmmmmxFF

Lma

mmmmma

FF

abagf

at

bagft

abagf

a

Donde L es una constante, no necesariamente determinable.

Ahora podemos deducir:

Page 316: Fisicoquimica II 2012

Manuel Páez

a. La fracción del reactivo A existente en el instante t.

Lo que se consigue: multiplicando la tercera expresión anterior por ma y dividiendo por L, así:

Y al despejar a de la primera expresión, así:

Por consiguiente reemplazando:

a

xma

Adeinicialesmoles

reaccionarAdemoles a

sin

xma

L

FFma

a

L

FFma a

FF

FF

FFm

L

L

FFm

a

xma t

a

taa

Page 317: Fisicoquimica II 2012

Manuel Páez

b. Fracción del reactivo B existente en el instante t

Pero: Además:

Luego:

xb

m

b

xmb

Bdeinicialesmoles

reaccionannoqueBdemoles bb

1

L

FFx t FF

a

mL a

FF

FF

b

a

m

m

FFm

aFF

b

mL

FF

b

mx

b

m

b

xmb

t

a

b

a

tb

tbbb

1

1

11

Page 318: Fisicoquimica II 2012

Manuel Páez

c. La fracción del reactivo A consumido hasta el instante t.

Ahora:

De donde

Con estas relaciones se pueden rescribir las ecuaciones de velocidades integradas, así:

a

xm

Adeinicialesmoles

reaccionanqueAdemoles a

L

FFma a

L

FFx t

FF

FF

FFm

L

L

FFm

a

xm t

a

taa

Page 319: Fisicoquimica II 2012

Manuel Páez

Para n = 0:

a

FF

FFKt

FFm

aFFmKt

a

FFmLperom

L

FFKt

xmKtaxmaKt

aC

xmaCsiCCKt

t

a

ta

aa

t

aa

a

:;

Para n = 1 :

FF

FFKt

a

xmaKt

C

CKt ta

lnlnln

Page 320: Fisicoquimica II 2012

Manuel Páez

Para n = 2 :

Ktxmaa

xmKt

xmaa

xmaa

KtCC

CCKt

CC

a

a

a

a

11

Luego:

Por consiguiente:

t

t

ta

ta

a

a

FF

FF

aFFm

L

L

FF

a

m

xmaa

xm

1

KtFF

FF

a t

t

1

Page 321: Fisicoquimica II 2012

CINETICA DE LAS REACCIONES EN TERMINOS DE LA PRESIÓN

Si la reacción:

Transcurre en la fase gaseosa, entonces es posible usar la presión del sistema para evaluar el avance de la reacción.

De ahí que la presión parcial de cada componente esta dada por:

Ya que no existen presiones negativas.

gGfFbBaA

ii iPP

Page 322: Fisicoquimica II 2012

Donde:

: Presión total inicial

vi : Son los coeficientes estequiométricos que son positivos para los productos y negativos para los reactivos.

: Coordenadas de reacción

Como la presión total del sistema reaccionante está dad por la ley de Dalton, es posible expresar esta ley en términos de las coordenadas de reacción, así:

iiiiT PPP

iP

Page 323: Fisicoquimica II 2012

Despejando se obtiene:

Por consiguiente:

Esta expresión permite transformar la presión total del sistema reaccionante, en la presión parcial de cada componente Ai

i

T iPP

i

iTiii

PPPP

Page 324: Fisicoquimica II 2012

La presión es proporcional al concentración entonces las ecuaciones integradas de velocidad en términos de presiones toman la forma (fase gaseosa):

KtPP

KtCC

KtPPktCC

1111

Page 325: Fisicoquimica II 2012

Mecanismos de reacción

Mecanismo: Secuencia particular de etapas elementales que explican cualitativa y cuantitativamente el comportamiento cinético observado y la reacción global

Los mecanismos en varias etapas presentan intermediarios de reacción.

Especie altamente reactiva

No aparecen en las ecuaciones globales. Se generan en una etapa y se consumen en la siguiente

Rápidamente alcanzan una concentración baja y constante (aproximación de estado estacionario)

Page 326: Fisicoquimica II 2012

Manuel Páez

Criterios para el planteamiento de un mecanismo de reacción

1. Consistencia con los resultados experimentales: Un mecanismo es correcto cuando es consistente con todos los datos de velocidad conocidos.

2. Todas la etapas elementales de un mecanismo de reacción deben ser monomoleculares, bimoleculares ó trimoleculares.

3. Viabilidad energética: En un mecanismo en que están implicados átomos y radicales, aquel proceso que sea exotérmico o el menos endotérmico es muy probable que sea un paso importante en la reacción. El enlace más débil de la molécula es el que se rompe.

4. Principio de reversibilidad microscópica: Para una reacción elemental, la reacción inversa ocurre en la dirección opuesta por el mismo camino.

5. Consistencia con reacciones análogas ó similares: Esta analogía debe manejarse con cuidado.

Page 327: Fisicoquimica II 2012

Etapa elemental y Molecularidad

Etapa elemental: cada una de las reacciones que forman parte del mecanismo de reacción de una determinada reacción química compleja

2 O3 3 O2

O3 O2 + O.

O. + O3 2 O2

Mec

anis

mo k1 monomolecular

k-1 bimolecular

k2 bimolecular

k1

k-1

k2

Reacción global

Molecularidad:: número de moléculas, átomos o iones que participan como reactivos en una etapa elemental de un mecanismo postulado. No puede ser 0 o fraccionaria. El orden de la reacción elemental respecto de cada reactivo es igual a su coeficiente estequiométrico en dicha reacción.

Page 328: Fisicoquimica II 2012

Orden de reacción y molecularidad

ORDEN no es igual a MOLECULARIDAD

ORDEN

Magnitud empírica determinada a partir de la

ley de velocidad

v = k [A]a [B]b

n = a + b

MOLECULARIDAD

Número de moléculas, átomos o iones que

participan como reactivos en una etapa elemental en un mecanismo postulado

El orden de reacción coincide con la molecularidad cuando la reacción se realiza en

una sola etapa, es decir, sin un mecanismo involucrado

Page 329: Fisicoquimica II 2012

Manuel Páez

Velocidad de las reacciones simples

En el caso de las reacciones simples, el orden de reacción de cada especie coincide con su

molecularidad y velocidad viene dada por

MPMBA

AAA

DCBA

BA

2

]][][[

][

]][[

][

2

MBAkv

Akv

BAkv

Akv

Page 330: Fisicoquimica II 2012

Mecanismos de reacción

Reacciones elementales

Una de la reacciones (etapas) es la mas lenta de todas las que conforman el mecanismo

Etapa determinante de la velocidad de la reacción global

2A + 2B C + 2D

Mecanismo propuesto

2A I

I + B C + I2

I2 + B 2D

Reacción global

k1

k -1

k2

k3

Etapa mas lenta

V = k2 [I] [B]

Está constituido

Page 331: Fisicoquimica II 2012

Manuel Páez

Aproximación cinética al equilibrio• El equilibrio químico no implica la ausencia de reacción.• Cuando hay equilibrio las reacciones directa e inversa

ocurren a la misma velocidad.• Por ejemplo, para una reacción con estequiometría

A(g) B(g) en fase gaseosa tendríamos

Page 332: Fisicoquimica II 2012

Manuel Páez

Aproximación cinética al equilibrio

BA

eqeq BkAk ][][P

][BkvPP

Inicialmente, la velocidad directa es grande y la inversa es nula.Por este motivo la concentración de A disminuye y la de B aumenta.Esto hace que la velocidad directa disminuya y la inversa aumente.Eventualmente las velocidades se igualan.

ceq

eq Kk

kA

BP

][

][

][Ak

Page 333: Fisicoquimica II 2012

Manuel Páez

Reacciones complejasIntermediarios y catalizadores

• Ej. considerar una reacción R P con el siguiente mecanismo:

R + C I + C

I P• R= reactivo (se consume). P= producto (se

produce). C= catalizador (no se consume ni se produce, pero está siempre presente en el medio). I= intermediario (no se consume ni se produce, sólo está presente mientras ocurre la reacción).

Page 334: Fisicoquimica II 2012

Manuel Páez

Mecanismo y estequiometría

• El mecanismo debe ser compatible con la estequeometría (sumando las etapas).

• El mecanismo debe predecir la ley de velocidad observada.

• El mecanismo debe predecir correctamente la dependencia de v con T.

322 22 SOSOO Estequeometría

322

22 22

SONOSONO

NONOO

Mecanismo

Page 335: Fisicoquimica II 2012

Manuel Páez

Ejemplo de Mecanismo: Reacciones en Cadena

• Reacciones complejas compuestas por reacciones (a) de iniciación; (b) de propagación, y (c) de terminación.

• Los intermediarios son radicales libres. Se forman en la etapa de iniciación; dan origen a otros, conservando su número, en las etapas de propagación, y se cancelan en la etapa de terminación.

HBr2BrH 22 HBr2BrH 22

Ejemplo clásico de química en fase gaseosa:

Page 336: Fisicoquimica II 2012

Manuel Páez

Propagación

Terminación

3k2BrH 3k

2BrH

BrH 2

BrH 2

2k2HBr 2k

2HBr HHBr HHBr

BrHBr BrHBr

2kHBrH 2kHBrH

1kBrBr 1kBrBr2Br2Br

Br2Br 1k2

Br2Br 1k2 Iniciación

HBrBrH 222

Page 337: Fisicoquimica II 2012

Manuel Páez

Ley de velocidad y mecanismo

Reacción

CA

CB

BAk

k

2

1

Mecanismo

][][

][][][

][][

2

21

1

BkdtCd

BkAkdtBd

AkdtAd

• La ley se puede deducir del mecanismo. • Sólo si el mecanismo propuesto es correcto la ley predicha coincide con el experimento.• Clave: para las etapas simples los órdenes de reacción coinciden con la molecularidad de cada reactivo.

Sist. de ecdiferenciales

Page 338: Fisicoquimica II 2012

Manuel Páez

Solución exacta

k1=1; k2=10

Tiempo

0.0 0.5 1.0 1.5 2.0

Co

nce

ntr

acio

nes

0.0

0.2

0.4

0.6

0.8

1.0

1.2

[A]/[A]0

[B]/[A]0

[C]/[A]0

tktk

tktk

tk

ekekkk

AC

eekk

kAB

eAA

12

21

1

111

2121

0

12

10

0

k1=10; k2=1

Tiempo

0.0 0.5 1.0 1.5 2.0

Co

nce

ntr

acio

nes

0.0

0.2

0.4

0.6

0.8

1.0

1.2

[A]/[A]0

[B]/[A]0

[C]/[A]0

Page 339: Fisicoquimica II 2012

Manuel Páez

Soluciones aproximadasEstado estacionario

• Se supone que la concentración de los intermediarios (radicales libres) no cambia con el tiempo

• Se utiliza la hipótesis anterior para expresar la velocidad de aparición de un producto en función de la concentración de especies estables.

0][][][

21 BkAkdtBd

][][][

12 AkBkdtCd

v

Page 340: Fisicoquimica II 2012

Manuel Páez

Ejemplos

][][1]][[

222

22122 BrHBrk

BrHkvHBrBrH

]][[ 2 2222 IHkvHIIH

22322 ]][[ 22 NOOkvSOOSO NO

]][][[+

]][[ 222

222

2212222

HIOHk

IOHkvIOHHIOH

Page 341: Fisicoquimica II 2012

Manuel Páez

Soluciones aproximadasHipótesis de pre-equilibrio I

Reacción CA CB

BAk

kk

2

11 /

Mecanismo

Sistema de ecuaciones diferenciales

][][

][][][][

][][][

2

211

11

BkdtCd

BkBkAkdtBd

BkAkdtAd Hay que resolver el

sistema de ecuaciones diferenciales.Otra opción es utilizarla hipótesis de estado estacionario para B.Otra es asumir que el primer paso está enequilibrio.

Page 342: Fisicoquimica II 2012

Manuel Páez

Hipótesis de pre-equilibrio II

][][

2 BkdtCd

1

11][

][

kk

KAB

Pero si hay cuasi-equilibrio en la 1ra etapa

][][

][][

1

12

12

Akk

kdtCd

AKkdtCd

Notar que la hipótesis de pre-equilibrioes un caso particular de la hipótesis delestado estacionario.

Page 343: Fisicoquimica II 2012

Manuel Páez

Teorías sobre la reactividad química

• La teoría debe explicar– Que la velocidad de la reacción aumenta al aumentar

la concentración de reactivos.– Que la velocidad de la reacción aumenta al aumentar

la temperatura.

• Los modelos simples permiten descripciones cualitativas.– Colisiones de esferas duras.– Teoría del estado de transición.

• Los modelos más exactos requieren la implementación de estudios computacionales.

Page 344: Fisicoquimica II 2012

Manuel Páez

Teorías sobre la reactividad química

• Colisiones moleculares– Elásticas– Inelásticas (transferencia

de energía)– Reactivas

• Cuantas más moléculas hay, mayor es la probabilidad de que colisionen.

• ¿Cómo podemos estudiar las colisiones entre moléculas?

Page 345: Fisicoquimica II 2012

Manuel Páez

Teoría de las colisiones de esferas duras

• En vez de analizar la dinámica sobre la verdadera superficie de energía potencial asume que:– Las moléculas son esferas rígidas.– No interaccionan entre sí excepto cuando sus

superficies se tocan.– Si la colisión supera una cierta energía

mínima hay reacción.– Si la colisión no supera la energía mínima no

hay reacción.

Page 346: Fisicoquimica II 2012

Manuel Páez

Teoría de las colisiones de esferas duras

reactivascolisiones

defracción

tiempodeunidadpor

colisionesdenumero

reacción

develocidad

]][[8

21

22 BATk

dNZ BABAB

BA

BA

mmmm

2

BAAB

ddd

Factor de Boltzman

]exp[ RTEf a

Page 347: Fisicoquimica II 2012

Manuel Páez

Fracción de colisiones efectivas

]exp[ RTEf a

Page 348: Fisicoquimica II 2012

Manuel Páez

Teoría de las colisiones de esferas duras

]][[]exp[8

21

22 BARTETk

dNv aB

AB

TfZv AB

]exp[8

21

22 RTETk

dNk aB

ABcol

¿Es consistente con Arrhenius?

Page 349: Fisicoquimica II 2012

Manuel Páez

Limitaciones de la teoría de colisiones de esferas duras

• Las moléculas interaccionan aun estando a cierta distancia.

• Las moléculas no son esféricas.• La efectividad de una colisión no depende sólo de la

energía sino también de la orientación.

Page 350: Fisicoquimica II 2012

Manuel Páez

La teoría del estado de transición

• Puede deducirse de dos formas– Termodinámica: Eyring. Es la demostración

más intuitiva y la más sencilla.– Dinámica: Wigner. Es la demostración más

correcta y muestra claramente las limitaciones de la teoría.

– La velocidad de reacción es proporcional a la concentración de complejo activado.

Page 351: Fisicoquimica II 2012

Manuel Páez

La teoría del estado de transición

PABBA kK 2*

Reacción:

PBA

Eyring asume que hay un cuasi-equilibrio entre los reactivos y el complejoactivado y que luego este complejo activado se descompone para darproductos

]][[][

BAAB

K

][2 ABkv ]][[2 BAKkv

Page 352: Fisicoquimica II 2012

Manuel Páez

La teoría del estado de transición

RTGK*0

exp

]][[expexp*0*0

2 BAkv RTHRS

hTkk B2

RTHRSK*0*0

expexp

]][[expexp*0*0

BAhTk

v RTHRSB

kTST

¿Es consistente con Arrhenius?¿Cuál es el sentido de H# y S#?