ficha de aprendizaje de semiconductores

19
Ficha de aprendizaje de semiconductores. Procedimiento: 1- Leer el documento proporcionado por el docente. 2- Desde el punto de vista de su constitución, mencione cuales son los tipos de Diodos que existen. Diodo zener Diodo túnel Diodo schottky Diodos rectificadores Fotodiodos Diodo LED 3- Dibuje y explique cada curva característica de cada tipo de diodo. Diodo Zener: La corriente en la región Zener tiene una dirección opuesta a la de un diodo polarizado directamente. El diodo Zener es un diodo que ha sido diseñado para trabajar en la región Zener. Diodo Túnel: Los diodos túnel se utilizan con frecuencia en los circuitos osciladores, con el fin de contrarrestar la resistencia propia del circuito y minimizar la amortiguación de la onda a través del tiempo.

Upload: loreana-gomez

Post on 23-Jul-2015

288 views

Category:

Education


1 download

TRANSCRIPT

Ficha de aprendizaje de semiconductores.

Procedimiento: 1- Leer el documento proporcionado por el docente. 2- Desde el punto de vista de su constitución, mencione cuales son los tipos de Diodos que existen.

Diodo zener Diodo túnel Diodo schottky Diodos rectificadores Fotodiodos Diodo LED

3- Dibuje y explique cada curva característica de cada tipo de diodo.

Diodo Zener: La corriente en la región Zener tiene una dirección opuesta a la de un diodo polarizado directamente. El diodo Zener es un diodo que ha sido diseñado para trabajar en la región Zener.

Diodo Túnel: Los diodos túnel se utilizan con frecuencia en los circuitos osciladores, con el fin de contrarrestar la resistencia propia del circuito y minimizar la amortiguación de la onda a través del tiempo.

Diodo Schottky: Son dispositivos que tienen una caída de voltaje

directa (VF) muy pequeña, del orden de 0.3 V o menos. Operan a muy altas velocidades y se utilizan en fuentes de potencia, circuitos de alta frecuencia y sistemas digitales. Reciben también el nombre de diodos de recuperación rápida (Fast recovery) o de portadores calientes.

Diodo Rectificador: Construido con una unión PN este tipo de diodo normalmente los que están hechos de silicio soportan elevadas temperaturas siendo su resistencia muy baja y la corriente de tensión inversa muy pequeña por lo que se pueden construir diodos de pequeñas dimensiones. Algunas de sus aplicaciones son: fuentes de alimentación, como en televisores, aparatos de rayos X y microscopios electrónicos.

Fotodiodo: Son dispositivos semiconductores construidos con una unión PN, sensible a la incidencia de la luz visible e infrarroja. Para su buen funcionamiento se deberá polarizar inversamente.

Diodo LED: Un diodo de este tipo presenta un comportamiento muy parecido al de un diodo rectificador pero su tensión de umbral se encuentra entre 1,3 y 4v dependiendo del color de diodo.

4. Dibuje los símbolos de diferentes tipos de diodos que existen, y diga para que se utiliza la flecha, señale el nombre de las terminales.

Diodo zener

Diodo túnel

Diodo schottky

Diodos rectificadores

Fotodiodos

Diodo LED

1. ¿A qué estructura cristalina obedecen los átomos de los materiales semiconductores? La estructura cristalina de los semiconductores es en compleja pero puede visualizarse mediante superposición de estructuras más sencillas. La estructura más común es la del diamante, común a los semiconductores Si y Ge, y la del Zinc-Blenda que es la del Arseniuro de Galio. En estas redes cristalinas cada átomo se encuentra unido a otros cuatro mediante enlaces covalentes con simetría tetraédrica. Se requiere que posean unas estructuras cristalinas únicas, o sea, que sea monocristal. 2. De qué forma los átomos del Si o del Ge tienden a adquirir la estructura atómica estable? Creando enlaces covalentes, es decir, cada átomo vecino comparte un electrón con el átomo central. De esta forma, el átomo central parece tener 4 electrones adicionales, sumando un total de 8 electrones en su órbita de valencia. En realidad, los electrones dejan de pertenecer a un sólo átomo, ya que ahora están compartidos por átomos adyacentes. 3. ¿Qué nombre recibe un átomo que pierde electrones y un átomo que gana electrones? Un átomo que pierde electrones recibe el nombre de átomo trivalente. Un átomo que gana electrones recibe el nombre de átomo pentavalente. 4. ¿Cómo podemos producir la ruptura de los enlaces covalentes en un cristal Semiconductor. Qué es lo que ocurre cuando se produce dicha ruptura? Fenómenos de ruptura: Cuando el campo eléctrico llega a ser extremadamente intenso (≥ 100 Kv/cm^-1), el semiconductor sufre

una “ruptura” en la cual la corriente exhibe un comportamiento “desbocado” o “galopante”. La ruptura ocurre debido a la multiplicación de portadores (es decir que el número de electrones y huecos que pueden participar en el flujo de corriente se incrementa).

5. ¿Cómo se origina la corriente eléctrica en un Semiconductor?

Como consecuencia del movimiento independiente de dos tipos de portadores de cargas móviles y sus cargas son de signo opuesto: Electrones y huecos.

6. Explica cuál es la diferencia en cuanto al comportamiento eléctrico entre los conductores. Semiconductores y aislantes? Conductores: Se dice que un cuerpo es conductor eléctrico cuando puesto en contacto con un cuerpo cargado de electricidad transmite ésta a todos los puntos de su superficie. Son conductores eléctricos aquellos materiales que tienen electrones de valencia relativamente libres. Semiconductores: Un semiconductor es una sustancia que se comporta como conductor o como aislante dependiendo del campo eléctrico en el que se encuentre, capaz de conducir la electricidad mejor que un aislante, pero peor que un metal. El elemento semiconductor más usado es el silicio. La característica común a todos ellos es que son tetravalentes Aislantes: Tienen la función de evitar el contacto entre las diferentes partes conductoras y proteger a las personas frente a las tensiones eléctricas deben tener una resistencia muy elevada. 7. ¿Cuáles son los portadores de corriente en los materiales Semiconductores? Los electrones y los huecos reciben el nombre de portadores. En los semiconductores, ambos tipos de portadores contribuyen al paso de la corriente eléctrica. 8. ¿Cómo es el Sentido de la corriente de huecos respecto al movimiento de huecos? Los electrones se mueven en una dirección, los huecos o agujeros se mueven en sentido inverso. Por tanto, el mecanismo de conducción de un elemento semiconductor consiste en mover cargas negativas (electrones) en un sentido y cargas positivas (huecos o agujeros) en sentido opuesto. Barrera de potencia repele los huecos de la región P

9. ¿Cómo es el sentido de la corriente de electrones respecto al movimiento de electrones? Los electrones de la región N se repelen alejándose de la unión PN. 10. ¿A qué se debe la corriente total que atraviesa a un semiconductor? A la unión PN polarizada en directo ya que presenta una resistencia eléctrica muy pequeña. 11. Los huecos existen en sustancias conductoras y en los aislantes? Los conductores son materiales que disponen de electrones libres. Los aislantes carecen de electrones libres. 12. ¿Qué se entiende por concentración de portadores? Añadir impurezas a un semiconductor Pueden producirse dos situaciones:

1. Añadir impurezas de tipo n a un semiconductor Intrínseco (sin dopar), para formar un semiconductor Extrínseco (tipo n), produce que los huecos disminuyan.

2. Añadir impurezas de tipo p a un semiconductor Intrínseco (sin dopar), para formar un semiconductor Extrínseco (tipo n), produce que disminuya la cantidad de electrones libres.

13. ¿Qué es dopar? Método para obtener electrones para el transporte de electricidad el cual consiste en añadir impurezas al semiconductor o doparlo. La diferencia del número de electrones de valencia entre el material dopante (tanto si acepta como si confiere electrones) y el material receptor hace que crezca el número de electrones de conducción negativos (tipo n) o positivos (tipo p). 14. ¿Qué diferencia existe entre un semiconductor extrínseco y otro intrínseco? Extrínseco: es aquel que se puede dopar para tener un exceso de electrones libres o un exceso de huecos. Aquí encontraremos dos tipos de unión y son la unión tipo p y la unión tipo n. Intrínseco: un semiconductor intrínseco es un semiconductor puro, cuando se le aplica una tensión externa los electrones libres fluyen

hacia el terminal positivo de la batería y los huecos hacia el terminal negativo de la batería. 15. Diferencia entre impurezas donadoras y aceptoras? Tipos de impurezas: Los donadores: Son elementos que tienen cinco electrones en su órbita de valencia, tales como el arsénico y el fósforo. Los aceptores: Tienen tres electrones en su órbita de valencia, tales como el indio, el boro y el aluminio. 16. ¿Qué nombre recibe un semiconductor al que se ha dopado con impurezas donadoras? Tipo de impurezas que entregan electrones portadores (negativos) se los denomina donadores o del tipo N. 17. ¿Dónde existe una mayor concentración de huecos en un semiconductor dopado con impurezas donadoras o en un semiconductor dopado con impurezas aceptadoras? Existe una mayor concentración de huecos en un semiconductor dopado con impurezas aceptoras. 18. La mayor parte de los iones que se producen en un semiconductor tipo P al (aplicarle) comunicarle energía a qué se deben? ¿Qué tipo de iones son? Se debe a los huecos y son de tipo positivo 19. ¿De qué está constituida una unión P-N?

En una unión entre un semiconductor p y uno n, los huecos de la zona p pasan por difusión hacia la zona n y los electrones de la zona n pasan a la zona p.

En la zona de la unión, huecos y electrones se recombinan, quedando una estrecha zona de transición con una distribución de carga debida a la presencia de los iones de las impurezas y a la ausencia de huecos y electrones.Se crea, entonces un campo eléctrico que produce corrientes de desplazamiento, que equilibran a

las de difusión. A la diferencia de potencial correspondiente a este campo eléctrico se le llama potencial de contacto V0

20. ¿Cuándo decimos que una unión P-N está en equilibrio? Una unión p-n se encuentra en equilibrio termodinámico cuando se encuentra a una temperatura uniforme y no actúan sobre ella factores externos que aporten energía. 21. Diferencia entre portadores mayoritarios y minoritarios? En los portadores minoritarios las partículas cuánticas son encargadas del transporte de corriente eléctrica que se encuentran en menor proporción en un material semiconductor dopado como tipo N o tipo P.

Los portadores mayoritarios se encargan de transportar la corriente eléctrica que un material semiconductor tiene en exceso, ya sea un material de tipo P, o uno de tipo N.

22. ¿Quiénes son los portadores mayoritarios y minoritarios en el lado P de una unión P-N? Portadores mayoritarios son los huecos y los minoritarios son los electrones. 23. De quién depende la concentración de portadores mayoritarios y minoritarios. De la corriente dependerá de que tan contaminado esté el material.

24. ¿Por qué se caracteriza la carga espacial?

Es el lugar de los procesos fundamentales, de rectificación, absorción y

emisión de luz, etc., que ocurren en las diversas clases de dispositivos

de unión.

25. Explica brevemente cómo se forma la carga espacial? Para el cálculo de la carga que hay en la unión, supondremos las siguientes aproximaciones:

- Unión abrupta y dopados uniformes

- Toda la carga de la zona de carga espacial es fija (se debe a las impurezas ionizadas), no hay carga debida a electrones o huecos (aproximación de deplexión o vaciamiento)

- Todas las impurezas están ionizadas

Hay el mismo número de cargas negativas (impurezas aceptadoras ionizadas) que de cargas positivas (impurezas donadoras ionizadas) en la zona de carga espacial.

26. La acumulación de cargas fijas en la zona de unión qué origina? El campo eléctrico no sería nulo en las zonas neutras. 27. ¿A qué llamamos barrera de potencial o potencial de contacto? Tensión que hay entre los extremos de la zona de deplexión. Esta tensión se produce en la unión pn, ya que es la diferencia de potencial entre los iones a ambos lados de la unión. En un diodo de silicio es aproximadamente de 0,7 V. 28. Entre qué valores oscila la barrera de potencial? 0.2V cuando el semiconductor es de Germanio y 0.7 cuando es de Silicio 29. ¿Qué es lo que ocurre en cuanto a los portadores mayoritarios una vez creada la barrera de potencial? La tensión que aparece entre las zonas, llamada barrera de potencial, se opone a la ley de difusión, puesto que el potencial positivo que se va creando en la zona N repele a los huecos que se acercan de P, y el potencial negativo de la zona P repele a los electrones de la zona N. Cuando ambas zonas han perdido cierta cantidad de portadores mayoritarios que se han recombinado, la barrera de potencial creada impide la continuación de la difusión y por tanto la igualación de las concentraciones de ambas zonas. 30. ¿Cuál es la diferencia esencial entre la corriente de arrastre y la corriente de difusión? Corriente de arrastre (o deriva): debida a un campo eléctrico. Corriente de difusión: debida a la diferencia de concentración de portadores. 31. Por qué se origina la corriente de arrastre?

Producida por dos tipos de portadores de carga, a saber: Electrones Libres, como en el caso de los conductores. Electrones que saltan entre enlaces atómicos incompletos, ( huecos )

32. ¿Cuál es el sentido convencional de la corriente de arrastre y el de la corriente de difusión? Arrastre: movimiento de las cargas cuando se aplica un campo eléctrico al material semiconductor. Cuando las cargas son aceleradas por el campo eléctrico se producen que aumentan la energía térmica la cual va a fomentar el movimiento de las cargas en forma no aleatoria. La difusión no depende del valor absoluto de la concentracion Difusión: se mueven en sentido del gradiente de concentración, van de regiones de mayor concentración a regiones de menor concentración para favorecer el equilibrio de las cargas; este movimiento genera una corriente proporcional al gradiente de concentración. La difusión no depende del valor absoluto de la concentracion 33. Teniendo en cuenta la contestación a la pregunta anterior a quién es debida la corriente que atraviesa a una unión P-N equilibrada? uando se aplica un campo electrico a un semiconductor se establece una corriente de electrones de la BC que viajan en sentido contrario al campo electrico por tener carga negativa y, al mismo tiempo, se establece una corriente de huecos que viajan en el sentido del campo por ser cargas positivas. Conviene aclarar que ambas corrientes se suman aunque sus respectivos portadores viajan en sentido opuesto, ya que tambien son opuestas las cargas y el sentido convencional de la corriente es el mismo para ambas. Por tanto, la corriente es bipolar porque se debe a dos tipos de portadores de polaridad distinta. 34. ¿Cuántos tipos de polarización existen en una unión P-N? ¿Cuáles son? Directa o inversamente 35. Al polarizar directa o inversamente una unión P-N se crean dos campos eléctricos. ¿Por qué se crean? Se crean la barrera de potencial ya que hay un flujo de electrones.

36. Al polarizar directamente una unión P-N. Cuál es el efecto conjunto de los campos eléctricos originados y al polarizar inversamente? Su campo eléctrico o bien el tamaño de esta Disminuye la barrera de potencial de la zona de carga espacial, permitiendo el paso de la corriente de electrones a través de la unión; es decir, el diodo polarizado directamente conduce la electricidad. Se produce cuando se conecta el polo positivo de la pila a la parte P de la unión P - N y la negativa a la N.

Polarización inversa de la unión P – N el polo negativo de la batería se conecta a la zona p y el polo positivo a la zona n, lo que hace aumentar la zona de carga espacial, y la tensión en dicha zona hasta que se alcanza el valor de la tensión de la batería

37. ¿Cuáles corrientes se originan al polarizar directamente una unión P-N Corriente de difusión 38. ¿A qué se deben estas corrientes? Se mueven en sentido del gradiente de concentración, van de regiones de mayor concentración a regiones de menor concentración para favorecer el equilibrio de las cargas; 39. ¿A qué es Igual y por qué la corriente total que atraviesa una unión P-N directamente polarizada? A una corriente eléctrica constante hasta el final. Porque está cediendo electrones libres a la zona n y atrayendo electrones de valencia de la zona p 40. ¿Cuál es mayor, la corriente de arrastre o la de difusión, por qué? En un semiconductor en circuito abierto con gradiente de concentración, se producirá un corriente de difusión que daría lugar a iones, concentración de carga y consecuentemente un campo eléctrico que daría lugar a una corriente de arrastre, que en el equilibrio anularía la de difusión, dando lugar a una corriente total nula, esto es, en el

equilibrio la tendencia a la difusión se compensa con la tendencia al arrastre. 41. Podemos disminuir tanto como queramos la zona de unión? Sí se puede llegar a lograr, y esto lo conseguimos a dotarlo. 42. ¿Por qué no existe corriente de difusión en una unión P-N Inversamente polarizada? Porque la unión P-N, solo deja circular la corriente I cuando esta entre

por el lado P y la detiene del lado N, al estar polarizado en inversa la

corriente I estaría entrando por el lado N, esto quiere decir que esta se

detiene y por lo tanto no genera ninguna corriente I.

43. Aunque no existe corriente de difusión al polarizar

inversamente una unión P-N, existe corriente de arrastre. ¿Cómo

podemos aumentar esta corriente?

Podemos aumentar esta corriente al aumentar la Tensión. 44. Crees que existe una tensión inversa máxima en una unión P-N. O como no existe corriente de difusión puede aguantar cualquier tensión inversa que se le aplique a la unión? Sí ya que se le aplica mucha corriente de arrastre.

45. ¿Qué diferencia existe entre los electrodos ánodo y cátodo de un diodo semiconductor? El cátodo es el electrodo en el cual entra la corriente positiva proveniente del electrolito El ánodo es el electrodo en el cual, la corriente positiva pasa hacia el

electrolito.

46. ¿Qué es la curva característica de un diodo semiconductor?

Es la representación Gráfica de cómo se van dando los valores (Voitaje,

corriente directa, e Inversa) en el diodo esto desde su punto de

arranque hasta de Ruptura.

47. Explica la diferencia fundamental ante el comportamiento de un diodo polarizado directamente o inversamente? Diodo Polarizado en Directa Funciona como un interruptor cerrado.

Dejando circular la corriente

Diodo Polarizado en Inversa Funciona como un interruptor abierto.

O sea solo deja pasar o circular la corriente de arrastre.

48. ¿Qué entiendes por tensión umbral? La tensión de umbral es la tensión que se le deberá aplicar al diodo para vencer su diferencia de potencial 49. ¿Es constante la resistencia de un diodo semiconductor? ¿Por qué? No porque esta depende de cómo este conectado ya que podría ser en directa o en inversa 50. ¿Qué diferencia existe entre la resistencia estática y la dinámica en un diodo semiconductor? Resistencia Estática Es la relación Ánodo - Cátodo entre la corriente que atraviesa el diodo semiconductor. Resistencia Dinámica: Se refiere a la variación que se da de la tensión relación Ánodo – Cátodo y ésta refleja la resistencia que se presenta en el diodo a través de toda la conducción 51. ¿Cómo es la resistencia directa frente a la inversa en un diodo? Resistencia Directa: La resistencia en este caso es muy baja. Y funciona

como un interruptor cerrado.

Resistencia Inversa al contrario es muy alta y ésta funciona como si

fuera un interruptor abierto.

52. ¿Qué le pasaría a un diodo que sobrepasará cualquiera de sus valores Máximos permisibles?

Un diodo al sobre pasar cualquiera de sus valores máximos permisible

se quemaría

53. ¿Son todos los diodos semiconductores iguales? ¿De qué factores fundamentales dependen? Claro que no y dependen de fectores fundamentales como del uso que se les vaya a dar , también de su conexión que sea directa – inversa y de su resistencia. 54. ¿Qué es un rectificador?

Es un diodo el cual da paso a la corriente en un sentido yla bloquea en

el otro. Y también convierte la tensión.

55. ¿Cuántos tipos de rectificadores existen? Existen 4 tipos de rectificadores y estos son:

Media Onda

Onda Completa

Doble Onda

De Puente

56. ¿De qué elementos consta un rectificador de onda media? Un rectificador consta de un semiconductor y una resistencia.

57. ¿Con qué circuitos podemos conseguir un rectificador de onda completa?

Con un puente de diodos.

58. ¿Qué ventajas presenta el rectificador en puente frente al rectificador llamado de doble onda? Son económicos ya que no necesita un transformador de toma

intermedia.

Se puede lograr que los diodos soporten menor tensión inversa al

encontrarse inversamente polarizados.

59. Los siguientes esquemas representan a circuitos rectificadores. Teniendo en cuenta que a los diodos se les considera como ideales, es decir. RD = 0. RI=∞ y que la señal que se aplica a cada rectificador es la que aparece a su izquierda. Determínese para cada circuito los oscilogramas de la tensión de salida, así como los de tensión Inversa que soporta cada diodo.

-2 voltios

-6 voltois

-1 voltio

-2 voltios 60. ¿Qué diferencia existe respecto a la constitución de un diodo rectificador y un diodo zener? Un diodo Rectificador en directa soporta una corriente que es la misma

en cuanto a la dirección a la flecha de su símbolo además el diodo

rectificador convierte la corriente alterna a corriente continua o sea de

CA a CD. En cambio el diodo zener es un regulador de voltaje se

reconoce por que va siempre polarizado a la inversa

61. ¿Cuál es el origen del efecto zener?

El efecto zener se basa en la aplicación de tensiones inversas que

originan, debido a la característica constitución de los mismos, fuertes

campos eléctricos que causan la rotura de los enlaces entre los átomos

dejando así electrones libres capaces de establecer la conducción. Su

característica es tal que una vez alcanzado el valor de su tensión

inversa nominal y superando la corriente a su través un determinado

valor mínimo, la tensión en bornes del diodo se mantiene constante e

independiente de la corriente que circula por él

62. En qué consiste el efecto de avalancha.

Efecto avalancha (diodos poco dopados). En polarización inversa se

generan pares electrón-hueco que provocan la corriente inversa de

saturación; si la tensión inversa es elevada los electrones se aceleran

incrementando su energía cinética de forma que al chocar con

electrones de valencia pueden provocar su salto a la banda de

conducción. Estos electrones liberados, a su vez, se aceleran por efecto

de la tensión, chocando con más electrones de valencia y liberándolos a

su vez. El resultado es una avalancha de electrones que provoca una

corriente grande. Este fenómeno se produce para valores de la tensión

superiores a 6 V.

63. Compara las curvas de un diodo zener y de un diodo rectificador.

Diodo Zener Diodo rectificador 64. ¿Qué se entiende por un estabilizador de tensión? Mantener constante el voltaje de salida.

65. ¿Cuál es la función de la resistencia R^ que aparece en los circuitos estabilizadores? Es una Resistencia Variable.

66. ¿Por qué la zona de carga espacial de un diodo túnel es muy estrecha? Esto sucede como consecuencia del gran número de átomos con

impurezas que contiene.

67. Por qué el diodo túnel tiene una zona dentro de su curva característica denominada de resistencia negativa. Esta zona ¿En qué puntos queda definida? Queda definida entre los puntos Vp y Vv

68. A partir de qué punto dentro de la curva característica del túnel, este se comporta como el resto de todos lo diodos ya estudiados? Un aumento de la polarización directa más allá del Vp es causa de que

la corriente de diodo túnel disminuya rápidamente hasta un valor de

Iv (Corriente de Valle) en Vv. Pasado el punto Vv el diodo túnel se

comporta como un diodo normal.

69. Necesita el túnel mucha tensión Inversa para conducir en

Inverso?

No. El diodo túnel no necesita mucha tensión inversa para conducir en

inverso.

70. El diodo LED está constituido por materiales semiconductores? Constituido por semiconductores, como el Arseniuro de Galio (As Ga)

o bien el fósforo de Galio (P Ga).

71. ¿En qué tipo de polarización emite radiaciones infrarrojas el LED? El LED emite radiaciones infrarrojas en polarización Directa 72. Con qué dispositivo pasivo podemos asociar al diodo varicap? Lo podemos asociar al dieléctrico de un condensador.

73. ¿Cuál es la diferencia fundamental de un diodo varicap frente a los otros diodos? Se diferencia de otros diodos ya que la zona de transición se caracteriza por la ausencia de cargas.

74. El siguiente circuito mantiene una tensión constante a la salida aunque se produzcan variaciones de la tensión de alimentación o de la carga, de ahí que se les denomine estabilizador de tensión. Se pide que se determine la corriente que circula por el zener, por Rs y por RL. en los siguientes casos.

V=20

I=80mA

R=250ohms

V/R = 80mA

2/80mA = 25