facultad de medicina veterinaria y zootecnia bacteriología...

84
Facultad de Medicina Veterinaria y Zootecnia Bacteriología y Micología Veterinaria Antibióticos y mecanismos de resistencia Otoño 2012 M. en C. Gerardo Castillo

Upload: vuongthuy

Post on 01-Apr-2018

216 views

Category:

Documents


1 download

TRANSCRIPT

Facultad de Medicina Veterinaria y Zootecnia

Bacteriología y Micología VeterinariaAntibióticos y mecanismos de resistencia

Otoño 2012M. en C. Gerardo Castillo

ANTAGONISMO MICROBIANO : Inhibición del crecimiento o reducción en el número de una especie microbiana por una o mas especies microbiana diferente.

INDIRECTO: Alteración de la respuesta fisiológica del hospedero por la flora microbiana residente vs composición global de la flora microbiana.

DIRECTO: Interacción microbiana intraespecífica e

interespecífica

- Modificación de ácidos biliares- Inducción de respuesta inmunológica

- Estimulación del peristaltismo

- Disminución de sustratos esenciales- Competencia por los sitios de adherencia- Ambiente fisiológico restrictivo- Elaboración de una sustancia inhibitoria- Antibiosis

Descripción Cronológica de la Antibiosis

• 1877. Pasteur y asociados, observaron que el bacilo del Antrax, Bacillus anthracis, no crecía bien en orina contaminada con otro tipo de microorganismo.

Bac

terio

logí

a y

Mic

olog

ía V

eter

inar

ia. M

. en

C. G

erar

do C

astil

lo S

osa.

Descripción Cronológica de la Antibiosis

• 1929. A. Fleming (St. Mary’s Medical School, London). Observó que el hongo Penicillum notatum inhibía el crecimiento de Staphylococcus aureus.

Bac

terio

logí

a y

Mic

olog

ía V

eter

inar

ia. M

. en

C. G

erar

do C

astil

lo S

osa.

Descripción Cronológica de la Antibiosis

• 1939. Howard Florey y Ernst. B. Chain, (Oxford, England), purificaron la sustancia que Fleming mostró era un poderoso antimicrobiano, y confirmaron su identidad como Penicilina, la cual mostró ser altamente efectiva como agente terapéutico para ciertas infecciones bacterianas.

Bac

terio

logí

a y

Mic

olog

ía V

eter

inar

ia. M

. en

C. G

erar

do C

astil

lo S

osa.

Bac

terio

logí

a y

Mic

olog

ía V

eter

inar

ia. M

. en

C. G

erar

do C

astil

lo S

osa.

1943 - 1950. Selman A. Waksman(Microbiólogo, en Rutgers University), pionero del escrutinio sistemático de organismos, que habitan en el suelo, para su habilidad en la producción de antibióticos. Aisló el antibiótico Estreptomicinade una bacteria del suelo, Streptomyces griseus.

1943. La industria comenzó la producción en masa de la penicilina, siguiendo un cambio radical en el tratamiento terapéutico de muchas enfermedades infecciosas. La historia de la penicilina marca el comienzo del periodo de la microbiología llamado Era Antibiótica.

Antibiosis y Antibióticos• Antibiosis es la

interacción entre microorganismos que resulta en el daño, reducción o inhibición de la actividad en por lo menos uno de los miembros participantes.

• Antibiótico es una sustancia química producida por microorganismos la cual posee la capacidad para inhibir el crecimiento y aún destruir otro microorganismo. Incluye tanto a productos del metabolismo microbiano, como a sus contrapartes sintéticas.

Características generales de los fármacos antimicrobianos

Bac

terio

logí

a y

Mic

olog

ía V

eter

inar

ia. M

. en

C. G

erar

do C

astil

lo S

osa.

• Antibióticos pueden ser naturales o sintéticos– Naturales: ampicilina, estreptomicina,

gentamicina, tetraciclinas– Sintéticos: sulfamidas, trimetoprima,

cloranfenicol, ciprofloxacino

Características generales de los fármacos antimicrobianos

Características generales de los fármacos antimicrobianos

Bac

terio

logí

a y

Mic

olog

ía V

eter

inar

ia. M

. en

C. G

erar

do C

astil

lo S

osa.

• El agente debe tener actividad antimicrobiana eficaz y selectiva

• Ha de ser bactericida, mas que bacteriostatico• La bacteria no debe desarrollar resistencia al

medicamento• Su eficacia no debe ser reducida pro líquidos

corporales, exudados, proteínas plasmáticas o enzimas proteoliticas

• Debe ser eficaz por vía tópica, oral o parenteral• Es deseable que pueda producirse en grandes

cantidades y a bajo costo

Características de un antibiótico ideal

• Grupo de patógenos a los cuales afecta un antibiótico

• De amplio espectro• De espectro reducido

Espectro antimicrobiano

• Síntesis de la pared celularLas células bacterianas tienen una presión osmótica interna muy alta, por lo que necesitan una pared celular rígida que las proteja de la lisis. Muchos antibióticos interfieren con la síntesis del peptidoglucano que forma la pared celular.

• B – lactamicos• Penicilinas monobactams Cyclic glycopeptides• ampicilina aztreonam vancomicina• carbenicilina carbapenems actaplanina• cloxacilina imipenen ristocetina• mecillinam Inhibidores de B-lactamasa• methicilina ácido clavulanico• Cefalosporinas sulbactam

2nd generación tazobactamcefotetan

• cefoxitina• 3rd generación

cefotaximaceftriaxona

4ta Generacioncefepime

Bac

terio

logí

a y

Mic

olog

ía V

eter

inar

ia. M

. en

C. G

erar

do C

astil

lo S

osa.

Bac

terio

logí

a y

Mic

olog

ía V

eter

inar

ia. M

. en

C. G

erar

do C

astil

lo S

osa.

GENERACION (AÑO) RASGO ESTRUCTURAL

ANTIBIOTICO

Primera (1943-1968) Típicas Penicilina G ; N

Segunda (1960) AminopenicilinasAmpicilina Amoxicilina

Epicilina

Tercera (1971)Carboxipenicilinas

Sulfopenicilinas

Carbenicilina

Ticarcilina

Cuarta (1976) UreidopenicilinasAzlocilina

MezlocilinaPiperacilina

PENICILINAS (PENAMS)PENICILINAS (PENAMS)PENICILINAS (PENAMS)PENICILINAS (PENAMS)

Bac

terio

logí

a y

Mic

olog

ía V

eter

inar

ia. M

. en

C. G

erar

do C

astil

lo S

osa.

GENERACION (AÑO)

RASGO ESTRUCTURAL ANTIBIOTICO

Primera (1964)7-B-AcilaminoModificadas

Parenterales: CefalotinaCefazolina, Cefrapirina, CefradinaOrales: CefalexinaCefradina, Cefradoxil

Segunda (1973-1978)

7-alfa-metoxiModificadas

Parenterales:CafamandoleCefoxitina, Cefotetan, Cefuroxima Orales: Cefaclor, Cefuroxima

Tercera (1982) Aminotiazolil

Parenterales: Cefotaxima, Moxalactama, CeftriaxonaCeftazidinaOral: Cefipime

CEFALOSPORINAS (CEFEMS)

Bac

terio

logí

a y

Mic

olog

ía V

eter

inar

ia. M

. en

C. G

erar

do C

astil

lo S

osa.

Penicilina mata bacterias por interferencia con la habilidad de sintetizar la pared celular. Escherichia coli fue incubada con penicilina por 30 minutos. La bacteria se alarga pe ro no puede dividirse. Eventualmente se rompe la pared debilita da (ultimo panel).

Bac

terio

logí

a y

Mic

olog

ía V

eter

inar

ia. M

. en

C. G

erar

do C

astil

lo S

osa.

Bac

terio

logí

a y

Mic

olog

ía V

eter

inar

ia. M

. en

C. G

erar

do C

astil

lo S

osa.

MECANISMO DE ACCION

• Inhibición de la síntesis de la pared bacteriana

• Peptidoglicanos (N-acetilglucosamina y N-acetilmurámico )

• Transpeptidación– Proteínas fijadoras de penicilinas

• Bacterias en crecimiento y sintetizando la pared celular.

•BACTERICIDAS

Amoxicilina

Ampicilina

Bac

terio

logí

a y

Mic

olog

ía V

eter

inar

ia. M

. en

C. G

erar

do C

astil

lo S

osa.

GRUPO : GLUCOPEPTIDICOS

NATURALEZA QUIMICA: Antibióticos glucopeptídicos, heptapéptidos con siete anillos aromáticos en sus grupos laterales

ANTIBIOTICOS : Vancomicina, Ristocetina, Actinoidina

MECANISMO DE ACCION: Previenen la polimerización del complejo fosfodisacarido-pentapeptido-lípido durante la segunda etapa de la biosíntesis de la pared celular. Se une fuertemente el péptido que contiene D-alanil-Dalanina al extremo carboxilo libre.

EFECTO FISIOLOGICO ANTIBACTERIANO: Lisis celular, alteración de la permeabilidad de la membrana, inhibe selectivamente la síntesis de RNA.

ESPECTRO DE ACCION: Varias especies de Gram-positivos: Staphilococcuss ,

Streptococcus , Clostridium , Actinomyces , Lactobacillus.

• Síntesis de Proteínas• Antibióticos que interactúan con el ribosoma bacteriano 70S

interrumpiendo la síntesis de proteínas bacterianas.

• Aminoglucósidosamikacinaapramicinafortimicinagentamicinaisepamicinakanamicinaneomicinanetilmicinaestreptomicinatobramicina

• Tetraciclinas• Cloranfenicol• Espectinomicina• Lincosamidas• Macrolidos

eritromicinaespectrogramina B

GRUPO : AMINOGLUCOSIDOS

NATURALEZA QUIMICA: De azucares o Amino azucares, anillos aliciclicos de 6 miembros con sustituyentes amino o hidroxilos.

ANTIBIOTICOS : Estreptamidas: Estreptomicina, Desoxiestreptaminas: Neomicinas, Kanamicinas, Gentamicinas, sisomicinas, Tobramicinas, Paromocinas, Ribostamicina, Butirosinas, Higromicina, Lividomicinas, Amikacina.

MECANISMO DE ACCION: Interferencia con la biosintesis de proteínas causando errores en la lectura del RNAm por la unión a subunidades ribosomalesbacterianas.

EFECTO FISIOLOGICO ANTIBACTERIANO: Bloqueo ribosomático, lectura errónea en la traducción acumulación de RNA ribosomal, acumulación de proteínas erróneas, alteraciones en la síntesis de DNA, RNA, poliamidas y mononucleótidos, daño en la membrana, alteración en la composición y permeabilidad de la membrana.

ESPECTRO DE ACCION: En terobacterias, Pseudomonas aeruginosa, Legionella, Campylobacter, Mycoplasma

Anillo ciclohexano

Bac

terio

logí

a y

Mic

olog

ía V

eter

inar

ia. M

. en

C. G

erar

do C

astil

lo S

osa.

Gentamicina

MODELO PARA LA ACCION BACTERICIDA DE LOS AMINOGLUCOSIDOS

1) Una baja cantidad de antibiótico penetra por un mec anismo desconocido a la célula donde su contacto con ribosomas alargando cadenas peptídicascausa lectura errónea.

2) Algunas de las proteínas erróneas son incorporad as a la membrana creando canales que permiten penetración del antibi ótico y así iniciar un proceso auto catalítico de incrementar la penetraci ón, lectura errónea y formación de canales.

3) El antibiótico intracelular eventualmente alcanza una concentración que bloquea la iniciación de los ribosomas para preveni r síntesis de proteínas posteriores.

4) La letalidad resulta de la irreversibilidad de e ste bloqueo, penetración y probablemente de la irreversibilidad de la iniciaci ón de ribosomas iniciantes

EFECTO INHIBITORIO MULTIFACTORIAL DE LA ESTREPTOMICINA

-Unión a la subunidad 30S-Involucra a las proteínas S12, S3 y S5-Distorsiona las uniones codon-anticodon resultando en lectura errónea

-Causa error de lectura en una base por codon-Usualmente en la primera base (5’ terminal)-U es leido como C o A-C es leído como A o U-A y G no son leidos erróneamente, pero influyen en la lectura errónea de pirimidinas internas-Bases puricas son mas resistente a las lecturas erróneas que las pirimidinas

Bac

terio

logí

a y

Mic

olog

ía V

eter

inar

ia. M

. en

C. G

erar

do C

astil

lo S

osa.

GRUPO : TETRACICLINASNATURALEZA QUIMICA: Sistemas de anillos fusionados, derivados de acetato y/o

propionato

ANTIBIOTICOS : Típicas: Tetraciclina, Clorotetraciclina, Minociclina, Doxiciclina

Atípicas: 6-Thiatetraciclina, Chelocardina, Anhidrotetraciclina,

Anhidroclorotetraclina 4-epi-anhidroclorotetraciclina

MECANISMO DE ACCION:TIPICAS: Interferencia con la biosíntesis de proteínas por inhibición de la fijación

enzimática del aminoacil- RNAt en la subunidad ribosomal bacteriana 30S

EFECTO FISIOLOGICO ANTIBACTERIANO: Típicas : Bacteriostático, detienen el

crecimiento celular por inhibición de la síntesis de las proteínas

Atípicas: Bactericidas, inhibición rápida de la incorporación de percusores de varias macromoléculas, alteración en la permeabilidad por la desorganización en la estructura de la membrana citoplásmica, lisis celular posiblemente por estimulación de la hidrólisis de la mureina

ESPECTRO DE ACCION: Típicas : amplio espectro

Atípicas: Amplio espectro sobre microorganismos resistentes a tetraciclinas típicas

Bac

terio

logí

a y

Mic

olog

ía V

eter

inar

ia. M

. en

C. G

erar

do C

astil

lo S

osa.

Tetraciclina

Bac

terio

logí

a y

Mic

olog

ía V

eter

inar

ia. M

. en

C. G

erar

do C

astil

lo S

osa.

CLORANFENICOL

NATURALEZA QUIMICA : D(-)-threo-2-dicloroacetamido 1-p-nitrofenil-1-propan-1,3 diol

MECANISMO DE ACCION: Unión a subunidad 50S, inhibe la reacción de la peptidiltransferasa, orienta de manera errónea el área que contiene Aminoacil- RNAt

EFECTO FISIOLOGICO ANTIBACTERIANO :

Bacteriostático/ Bactericida; inhibición de la síntesis de proteína

ESPECTRO DE ACCION : Amplio espectro vs. muchos Gram (+) y Gram (-), Bacteriostático vs. S. aureus y enterobacterias, bactericida vs. S. pneumoniae, H. influenzae, N. meningiditis. Segunda elección

GRUPO: MACROLIDOS O MACROCICLOLACTONIDOSGRUPO: MACROLIDOS O MACROCICLOLACTONIDOSGRUPO: MACROLIDOS O MACROCICLOLACTONIDOSGRUPO: MACROLIDOS O MACROCICLOLACTONIDOS

NATURALEZA QUIMICA : anillos macrolidos derivados del propiato condensación con azucares derivados de glucosa.ANTIBIOTICOS : Eritromicina, Azitromicina, Tilosina, Claritromicina

MECANISMO DE ACCION: Unión a subunidad 50S adyacente al centro de peptidiltransferasa y bloquean el pasaje de la cadena peptidil naciente por el túnel de salida, bloquean el ensamblaje de 50S por unión al RNAr 23S, sobrelapan la unión del cloranfenicol

EFECTO FISIOLOGICO ANTIBACTERIANO : Bacteriostático

ESPECTRO DE ACCION : Gram (+), Gram (-), Micoplasmas, Clamidias, Ricketsias y Treponemas, Amplio espectro

Eritromicina

Bac

terio

logí

a y

Mic

olog

ía V

eter

inar

ia. M

. en

C. G

erar

do C

astil

lo S

osa.

Síntesis de Ácidos Nucleicos

Antibióticos que pueden interrumpir la síntesis de ácidos nucleicos en diferentes vías de manera directa (eg quinolonas sobre la DNA girasa) o indirecta (e.g sulfonamidas sobre el metabolismo del ácido fólico).

Nitro-imidazoles

metronidazol

Quinolonas:

Fluoroquinolonas

esparfloxacin

Sulfonamidas

trimethoprim-sulphamethoxazole

Ansamicinas:

Rifampicina

Bac

terio

logí

a y

Mic

olog

ía V

eter

inar

ia. M

. en

C. G

erar

do C

astil

lo S

osa.

GRUPO : QUINOLONAS

NATURALEZA QUIMICA: Análogos de 1,8- Naphthiridinas : Ac. Nalidixico

ANTIBIOTICOS : Enoxacina, Norfloxacina, Ciprofloxacina, Ofloxacin,

Aminofloxacin, Difloxacin.

MECANISMO DE ACCION: Inhibición de la síntesis de DNA por interferencia con la subunidad A de la DNA girasa

EFECTO FISIOLOGICO ANTIBACTERIANO: Bactericida, disminución en la introducción de superenrollamiento negativo, inducción de la respuesta SOS, disminución de la habilidad de la célula para reparar el daño al DNA, interferencia con la replicación, recombinación, trascripción y segregación cromosómica. Antagonismo con la síntesis de RNA y proteínas, filamentación celular continua, Muerte celular rápida.

ESPECTRO DE ACCION: Enterobacterias, Pseudomonas aeruginosa, Micobacterias, Bacterias Anaeróbicas.

Bac

terio

logí

a y

Mic

olog

ía V

eter

inar

ia. M

. en

C. G

erar

do C

astil

lo S

osa.

QUINOLONAS

Bac

terio

logí

a y

Mic

olog

ía V

eter

inar

ia. M

. en

C. G

erar

do C

astil

lo S

osa.

Bac

terio

logí

a y

Mic

olog

ía V

eter

inar

ia. M

. en

C. G

erar

do C

astil

lo S

osa.

GRUPO : ANSAMICINAS

NATURALEZA QUIMICA: Macrociclos cerrados con union amida.

ANTIBIOTICOS : Rifamicina B, rifampin (rifampicina)

MECANISMO DE ACCION: Inhibición de la RNA polimerasa dependiente de DNA.

EFECTO FISIOLOGICO ANTIBACTERIANO: Suspensión de la formación de la cadena inicial de la síntesis de RNA, bacteriostatico.

ESPECTRO DE ACCION: Micobacterias, Listeria monocytogenes, Enterococos Streptococcus pyogenes (+ penicilina), Neisseriameningitidis (profilaxis), Neisseria gonorrheae (+ eritromicina, bactericida); Clostridium difficile (+ vancomicina), Serratia marcescens, Bacteroides fragilis, Chlamydia trachomatis

Bac

terio

logí

a y

Mic

olog

ía V

eter

inar

ia. M

. en

C. G

erar

do C

astil

lo S

osa.

GRUPO : SULFONAMIDAS

NATURALEZA QUIMICA: Análogos estructurales, relacionadas con el acido para-aminobenzoico

ANTIBIOTICOS : Sulfamidas, trimetoprima

MECANISMO DE ACCION: Inhibición de la síntesis del acido fólico compitiendo con el acido p-aminobenzoico

EFECTO FISIOLOGICO ANTIBACTERIANO: Inhibición de la síntesis de purinas y pirimidinas

ESPECTRO DE ACCION: Bacterias que afectan el aparato respiratorio, infecciones oportunistas

Bac

terio

logí

a y

Mic

olog

ía V

eter

inar

ia. M

. en

C. G

erar

do C

astil

lo S

osa.

TIPOS DE RESISTENCIA BACTERIANA

1.- Natural ó Endógena• Mutaciones espontáneas

2.- Adquirida ó Exógena• Plásmidos• Fagos

Bac

terio

logí

a y

Mic

olog

ía V

eter

inar

ia. M

. en

C. G

erar

do C

astil

lo S

osa.

Resistencia Bacteriana

Causas desencadenantes:

• Automedicación

• Falta de cumplimiento de la indicación médica

• Prescripción facultativa incorrecta:Dosis inapropiadas del fármaco Uso abusivo de antibióticos

• Enfermedades inmunosupesoras. ej: la resistencia generada por la tuberculosis, en los enfermos de SIDA

• Contacto de las bacterias con el ambiente hospitalario

Bac

terio

logí

a y

Mic

olog

ía V

eter

inar

ia. M

. en

C. G

erar

do C

astil

lo S

osa.

Mecanismos bioquímicos de resistencia

� Inactivación enzimática ó modificación del antibiótico

�Modificación del sitio blanco �Mecanismos de Expulsión (Bombas de

expulsión) o Reducción de la permeabilidad celular a antibióticos.

�Creación de un proceso o enzima alternativa a la inhibida.

Bac

terio

logí

a y

Mic

olog

ía V

eter

inar

ia. M

. en

C. G

erar

do C

astil

lo S

osa.

Plásmido con genes

de resistencia a

antibióticos

Mecanismos de resistencia a antibióticos

Bombas de expulsión

PBP

Modificación de las dianas

Producción de enzimas

Alteración en la permeabilidad

Walsh, 2003; Marin y Gudiol, 2003

Bac

terio

logí

a y

Mic

olog

ía V

eter

inar

ia. M

. en

C. G

erar

do C

astil

lo S

osa.

• Bombeo del fármaco al exterior de la célula cuando este ha penetrado– Translocasas en la membrana

plasmática– Bombas de eflujo– Relativamente inespecíficas– E. coli, P. aeruginosa, S. aureus

Mecanismos de resistencia a fármacos

Bac

terio

logí

a y

Mic

olog

ía V

eter

inar

ia. M

. en

C. G

erar

do C

astil

lo S

osa.

• Modificación del blanco• Modificaciones de rRNA 23s• D-alanina-D-alanina por D-alanina-D-

lactato del peptidoglicano en enterococos: resistencia a vancomicina

• Mycobacterium tuberculosis mutaciones en su RNA polimerasa, resistencia a rifampicina

Mecanismos de resistencia a fármacos

Bac

terio

logí

a y

Mic

olog

ía V

eter

inar

ia. M

. en

C. G

erar

do C

astil

lo S

osa.

Modificación del sitio blanco

Bac

terio

logí

a y

Mic

olog

ía V

eter

inar

ia. M

. en

C. G

erar

do C

astil

lo S

osa.

Figura 1. Mecanismo de la resistencia a la ciproflo xacina. (A) La ciprofloxacinainteractúa con la girasa, e inhibe su actividad enzi mática. (B) Una mutación en cualquiera de ambos genes, gyrA o gyrB, puede cambiar la estructura que conforma la girasa y reducir la afinidad del enzima por la ciprof loxacina. Esto resulta en una incapacidad del antibiótico para inhibir la girasa, y la célula se vuelve resistente al antibiótico.

Bac

terio

logí

a y

Mic

olog

ía V

eter

inar

ia. M

. en

C. G

erar

do C

astil

lo S

osa.

Figura 3. Bomba de eflujo para resistencia a múltiples fármacos. (A) Bacteria sensible a antibióticos. Los antibióticos entran en la célula a través de diversos portales, incluyendo la porina OmpF. La expresión del gen marP produce la proteína reguladora, MarR. Esta proteína se une al promotor (rotulado como P) del operón de resistencia múltiple a los fármacos, inhibiendo la expresión de los genes marA y marB. (B) Bacteria resistente a los antibióticos. Una mutación de marR que reduce la actividad de MarR hace posible que el promotor funcione constitutivamente. Ahora se expresan marA y marB. Estas dos proteínas forman una bomba de eflujo, que transporta las moléculas de antibiótico fuera del citoplasma de la célula. MarM también se une al promotor (rotulado como P) y aumenta la velocidad de transcripción del operón, lo que aumenta la producción tanto de MarA como de MarB. Además, la producción de MarA reduce de forma indirecta la síntesis de la porina OmpF, con lo que se reduce la cantidad de estas porinas en la membrana, La combinación de un número inferior de porinaspara el transporte de un antibiótico al interior de la célula, y el aumento de la cantidad de bombas de eflujo que eliminan el antibiótico de la célula, proporciona a la bacteria una mayor tolerancia a diversos antibióticos

CREACIÓN DE UN PROCESO O ENZIMA ALTERNATIVA A LA INHIBIDA

Resistencia a trimetropin y a sulfametosaxol.�Sobreproducción de la enzima

dihidrofolato reductasa, lo que da lugar auna disminución de la sensibilidad alantibiótico (cromosómico).

� Plásmido (factor R) que codifica unanueva dihidrofolato reductasa altamenteresistente a la inhibición por el trimetoprimpor falta de fijación.

Resistentes a sulfonamidas� Las sulfonamidas compiten con el ácido

paraaminobenzoico en la fijación de la enzimadihidropteroato sintetasa, interrumpiendo así lageneración de pteridinas y ácidos nucleicos.

�Dos mecanismos:� sobreproducción de Acido p-amino benzoico

(PABA) que compite con la sulfamidas� producción de una dihidropteroato sintetasa

resistente a la fijación con estos antibióticos.Estos mecanismos son codificados a nivelcromosómico y plasmídico.

• Inactivación de fármacos a través de su modificación química– Hidrólisis del anillo β-lactamico por

betalactamasa o penicinilasa– Fosforilar o acetilar los aminoglucosidos

o acetilar el cloranfenicol

Mecanismos de resistencia a fármacos

Bac

terio

logí

a y

Mic

olog

ía V

eter

inar

ia. M

. en

C. G

erar

do C

astil

lo S

osa.

N

OHO

H2HN

NO

S

COOH

CH3

CH3

N

OHO

H2HN

NO

S

COOH

CH3

CH3

H2O

β-lactamasa

Ampicilina

Ampicilina inactiva

Bac

terio

logí

a y

Mic

olog

ía V

eter

inar

ia. M

. en

C. G

erar

do C

astil

lo S

osa.

• Genes de resistencia en el cromosoma y el plásmidos

• Plásmidos R• Mutaciones espontaneas• Uso prolongado de antibióticos puede

predisponer a sobrevivencia de mutantes resistentes

Origen y transmisión de la resistencia a fármacos

• Los genes de los plásmidos R codifican enzimas que destruyen o modifican los fármacos

• Una bacteria puede trasmitir un plásmido de resistencia: THG

Origen y transmisión de la resistencia a fármacos

Bac

terio

logí

a y

Mic

olog

ía V

eter

inar

ia. M

. en

C. G

erar

do C

astil

lo S

osa.

Adquisición material genético

Método de Kirby & Bauer

En el método de Kirby Bauer, elmicroorganismo es inoculado en lasuperficie de una placa de agar, sobre elcual se colocan discos impregnados conuna concentración conocida del antibiótico.Las placas se incuban por 16-18 horas a 35-37°C.

Bac

terio

logí

a y

Mic

olog

ía V

eter

inar

ia. M

. en

C. G

erar

do C

astil

lo S

osa.

Durante la incubación, el antibiótico difunde radialmente desde el disco através del agar, por lo que su concentración va disminuyendo a medida que sealeja del disco. En un punto determinado, la concentración del antibiótico en elmedio es incapaz de inhibir al germen en estudio.

El diámetro del área de inhibición alrededor del disco puede ser convertido a las categorías de sensible, intermedio o resistente (S, I, o R) de acuerdo a tablas publicadas por los organismos encargados del control de tales métodos, por ejemplo el Comité Nacional de Estandar de Laboratorios Clínicos de los Estados Unidos de Norteamérica (National Committee for Clinical Laboratories Standards).

Bac

terio

logí

a y

Mic

olog

ía V

eter

inar

ia. M

. en

C. G

erar

do C

astil

lo S

osa.

24 h

37 ºC

Agar MH

Bac

terio

logí

a y

Mic

olog

ía V

eter

inar

ia. M

. en

C. G

erar

do C

astil

lo S

osa.

• Se han desarrollado varios compuestos b-lactámicosque actúan como inhibidores de las b-lactamasas. Sus características son: – Estructura similar a los antibióticos b-lactámicos– No tienen actividad antibiótica o es muy baja. – Alta afinidad por las b-lactamasas. – Inhiben b-lactamasas plasmidicas pero no

cromosómicas. – Se usan asociados a los antibióticos b-lactámicos.

Actúan en forma sinérgica tanto contra Gram + como Gram -.

– Atraviesan con facilidad los canales porina de las G-

Inhibidores de las b-lactamasas

Bac

terio

logí

a y

Mic

olog

ía V

eter

inar

ia. M

. en

C. G

erar

do C

astil

lo S

osa.

Aumento de la resistencia de MRSA

Como prevenir la resistencia a los fármacos antimicrobianos

Como prevenir la resistencia a los fármacos antimicrobianos

• Inmunizarse para prevenir la aparición de enfermedades comunes

• Realizar pruebas de resistencia al patógeno• Actualizarse en el uso de antimicrobianos• Tratar la infección, no la contaminación• Tratar la infección, no la colonización• Tratar con el agente antimicrobiano menos

exótico• Hacer un seguimiento del uso de

antimicrobianos