estudio de suelos hojarasca

34
ESTUDIO DE SUELOS PROYECTO SANTA ISABEL DIAG. 37 CRAS 37 BIS Y 38 BARRIO SANTA ISABEL SANTIAGO DE CALI - JURI CONSTRUCTORES LTDA. JULIO 2012 12-07-18 CPS Carlos H. Parra & Asoc. Ingenieros Civiles

Upload: jminmobiliaria

Post on 08-Jul-2015

374 views

Category:

Real Estate


4 download

DESCRIPTION

Estudio de Suelos Proyecto Hojarasca Parque Residencial - Cali.

TRANSCRIPT

Page 1: Estudio de Suelos Hojarasca

ESTUDIO DE SUELOS

PROYECTO SANTA ISABEL

DIAG. 37 CRAS 37 BIS Y 38 BARRIO SANTA ISABEL

SANTIAGO DE CALI

- JURI CONSTRUCTORES LTDA. JULIO 2012 12-07-18

CPS Carlos H. Parra & Asoc.

Ingenieros Civiles

Page 2: Estudio de Suelos Hojarasca

1

Código. 12-07-18

INDICE

1. Introducción 2. Características del Proyecto

3. Investigación Geotécnica 3.1 Trabajos de Campo 3.2 Trabajos de Laboratorio

4. Geología 5. Estratigrafía y características del proyecto 6. Nivel freático

7. Capacidad Portante del suelo 7.1 Fundación mediante cimientos corridos 7.2 Fundación mediante losa rígida

8. Conclusiones

9. Recomendaciones 9.1 Recomendaciones de Fundación 9.2 Parámetros para diseño sísmico

9.3 Proceso Constructivo – Adecuación del Terreno

9.4 Muro de Contención

9.5 Pisos del Sótano 9.6 Otras Recomendaciones

10. Limitaciones

ANEXOS

Page 3: Estudio de Suelos Hojarasca

2 Código. 12-07-18

LISTA DE ANEXOS

Anexo No.1 Informe JLB Ingeniería y Geofísica

Anexo No.2 Registro Fotográfico

Anexo No.3 Registros de Perforación Ensayos de Laboratorio

Carta de Plasticidad

Anexo No.4 Figuras

Page 4: Estudio de Suelos Hojarasca

3 Código. 12-07-18

1. INTRODUCCION

Atendiendo la amable invitación formulada por la firma Juri Constructores Ltda esta oficina ha efectuado la presente

investigación geotécnica relativa al proyecto multifamiliar a desarrollar en el Barrio Santa Isabel, al occidente de esta ciudad, en un predio de 14.681 mt2 localizado entre la Diagonal 37 y la

Cra 37 Bis con Cras 38 B y 38. La localización del predio se muestra en el plano siguiente:

La investigación tiene como propósito evaluar las características geotécnicas y de fundación del subsuelo, así como el de establecer

las recomendaciones que permitan el diseño y construcción de la fundación requerida por la edificación proyectada. Se incluyen recomendaciones de tipo constructivo para adecuación del terreno,

muros de contención, etc.

LOCALIZACION DEL PREDIO OBJETO DE ESTUDIO

Page 5: Estudio de Suelos Hojarasca

4 Código. 12-07-18

2. CARACTERISTICAS DEL PROYECTO

El proyecto denominado Santa Isabel planea la ejecución de tres (3) Torres de Apartamentos de cinco (5) pisos y dos (2) Torres de ocho (8) pisos, destinadas a vivienda. El plano siguiente muestra

la implantación de las Torres en el predio:

Las Torres están previstas escalonadas en el talud, algunas, las ubicadas en la parte baja apoyadas sobre un gran relleno artificial, tal como se aprecia en el corte arquitectónico siguiente:

PLANO DE PLANTA DEL PROYECTO

Page 6: Estudio de Suelos Hojarasca

5 Código. 12-07-18

Las Torres ubicadas en la parte posterior están previstas en corte sobre el terreno natural, con una profundidad de corte del orden

de los 6.00 a 7.00 mts, generando un muro de contención en la base del talud de altura 2.50 mts aproximadamente, tendiendo el talud detrás de él, como se aprecia en el corte arquitectónico,

generando escalones con pequeños muros de contención. En la zona intermedia el área de parqueo está prevista parte en

corte y parte en relleno. Hacia la base del talud, donde van los edificios de mayor altura, y por lo tanto de mayor carga a nivel de fundación, se tiene previsto un relleno de altura entre 4.00 y 5.00 mts, confinado mediante muro de contención.

Estructuralmente las torres están previstas mediante muros de concreto reforzado (pantallas), vaciados en el sitio, que se

prolongan hasta el nivel de fundación.

CORTE ARQUITECTONICO

Page 7: Estudio de Suelos Hojarasca

6 Código. 12-07-18

3. INVESTIGACION GEOTECNICA

La investigación geotécnica requerida para evaluar las características del subsuelo y establecer de este los parámetros

básicos para el análisis se acometió de acuerdo con los requerimientos de la Norma NSR-10 (*). Las actividades desarrolladas son las siguientes:

3.1 Trabajos de Campo

Se efectuaron un total de cinco (5) sondeos denominados P-1

a P-5, distribuidos en el predio tal como se aprecia en el plano de localización de la figura No. 1 anexa, llevados hasta profundidades entre los 8.00 a 12.00 mts. Las fotografías

siguientes permiten apreciar aspectos de los sondeos efectuados y del predio investigado:

(*) Normas Colombianas de Diseño y Construcción Sismo-Resistente NSR-10. Decreto No.

926 del 19 de Marzo de 2010.

Page 8: Estudio de Suelos Hojarasca

7 Código. 12-07-18

A través de los sondeos se tomaron muestras del subsuelo, se describió la estratigrafía encontrada, se midió la posición del nivel freático y se hicieron pruebas en el sitio del tipo

penetración estándar (ASTM D1586). Sobre las muestras de suelos cohesivos obtenidas al abrir la cuchara del ensayo de penetración se tomaron lecturas de penetrometro (Pocket

Penetrometer), las cuales nos permitieron evaluar su consistencia y resistencia a la compresión inconfinada. El muestreo y las pruebas de penetración se llevaron a cabo a

intervalos de 1.00 a 1.50 mts de profundidad. Las fotografías siguientes permiten apreciar el tamaño de los orificios de los sondeos requerido para la obtención de las muestras del subsuelo:

Se aprecia en las fotografías aspectos del predio investigado y de los sondeos efectuados, labor que

fue desarrollada por personal y equipo de Carlos H. Parra & Asoc. Nótese la topografía ondulada del

predio.

Page 9: Estudio de Suelos Hojarasca

8 Código. 12-07-18

Las muestras del subsuelo se lograron aprovechando el recobro de la cuchara partida muestreadora (Split Spoon

Sampler).

Orificio de la perforación requerido para la obtención

de las muestras representativas del subsuelo.

Page 10: Estudio de Suelos Hojarasca

9 Código. 12-07-18

La prueba de penetración estándar consistió en hincar el

tomamuestra o cuchara partida mencionada mediante la acción dinámica de un martillo de 140 Lbs de peso cayendo desde una altura de 30 pulg, anotando el número de golpes

requerido para penetrarla en una longitud de 1 pie en el estrato investigado. A dicho número lo denominamos “N” y es el parámetro de interés en el ensayo. Este nos permitió

evaluar la consistencia de los suelos cohesivos, la compacidad de los suelos granulares y estimar la capacidad portante del suelo en general.

En los registros de perforación que se anexan al final de este informe aparece anotada la información colectada en las actividades desarrolladas a través de los sondeos.

La exploración directa anterior a través de sondeos se complementó mediante una prospección geofísica, realizando

dos (2) líneas de refracción sísmica, sistema este de investigación indirecta del subsuelo que permitió prospectarlo hasta los 30.00 mts de profundidad, dando cumplimiento de esta manera a los requerimientos de la Norma NS-10 en

cuanto a la profundidad de exploración se refiere, labor que fue llevada a cabo por la firma JLB Ingeniería y Geofísica, quien determinó además el espectro de respuesta del suelo

acorde con la Norma NSR-10, y los parámetros dinámicos del mismo. El informe presentado por ellos aparece consignado en el anexo No.1.

3.2 Trabajos de Laboratorio

Las muestras representativas obtenidas de los sondeos se las

sometió en el laboratorio a un programa de ensayos para determinar sus propiedades índices tales como determinación de su contenido de humedad, límites de Atterberg y gradación.

Todas ellas se las clasificó por el Sistema Unificado de Suelos (USCS).

Page 11: Estudio de Suelos Hojarasca

10 Código. 12-07-18

En el anexo No.2 se adjunta un registro fotográfico que permite apreciar aspectos del predio investigado y de algunas de las muestras del subsuelo obtenidas a través de los sondeo. En el

anexo No. 3 se consignan los registros de perforación de los sondeos mencionados, un cuadro resumen con los resultados de los ensayos de laboratorio y la carta de plasticidad.

4. GEOLOGIA

El predio objeto de estudio se localiza al borde oriental de la cordillera occidental, donde afloran fajas de rocas sedimentarias

de Edad Terciaria, que han desarrollado muy poco suelo, aunque están lógicamente meteorizadas en superficie, meteorización que va hasta profundidades entre los 5.00 a 8.00 mts, a partir de la

cual la roca está fresca. En términos generales puede afirmarse que en el área se

presenta el denominado Miembro Los Chorros de la formación Guachinte, conformado por intercalaciones de Arcillolitas, Limolitas , Shales Carbonosas y mantos de carbón. Predominan

en el predio las Arcillolitas y Areniscas de consistencia dura. Son rocas sedimentarias de Edad Eoceno Superior- Oligoceno.

No se observan en el predio afloramientos u “ojos” de agua. Tampoco se aprecian fenómenos de inestabilidad, ni potencial ni activa que puedan comprometer la seguridad de las edificaciones

proyectadas.

Page 12: Estudio de Suelos Hojarasca

11 Código. 12-07-18

5. ESTRATIGRAFIA Y CARACTERISTICAS DEL SUBSUELO

La estratificación del subsuelo aparece representada en forma gráfica en las figuras No. 2 y 3 anexas trazadas mediante la

interpolación de la información proporcionada por los sondeos y ensayos efectuados, hasta la máxima profundidad explorada en forma directa de 10.00 a 12.00 mts. Se aprecia en ellas, en

términos generales la siguiente secuencia con la profundidad: - Estrato A. Conformado por una capa vegetal superficial limo arcillosa de color café. Su espesor en los sitios de sondeo varía

entre 0.40 y 0.60 mts. - Estrato B. Corresponde al Saprolito o roca meteorizada,

conformada por limos con fragmentos de arenisca y limolita, encontrándose dentro de esta matriz limosa bloques de limolita. Este estrato se extiende hasta profundidades entre los 7.00 a

8.00 mts. La matriz limosa es de mediana a baja plasticidad, de los tipos ML y MH de la Clasificación Unificada, tal como se aprecia en la Carta de Plasticidad anexa. Presentan un contenido de humedad próximo o inferior a su límite plástico, indicando que

se trata de suelos muy preconsolidados (OCR > 6). Su resistencia a la penetración estándar (N) varía entre 12 y 42 golpes/pie, en términos generales en aumento con la profundidad. Son suelos

de comportamiento cohesivo, de consistencia firme a dura.

- Estrato C. Corresponde a la roca fresca limolita.

De acuerdo con la prospección geofísica, bajo el Saprolito y la roca meteorizada aparece la roca fresca, que se prolonga hasta

profundidades por debajo de los 10.00 mts, tal como se muestra en el corte estratigráfico siguiente trazado a través de la Línea Sísmica 1:

Page 13: Estudio de Suelos Hojarasca

12 Código. 12-07-18

Los suelos detectados no son susceptibles al fenómeno de licuación originado por cargas vibratorias o de sismo. Se descarta por lo tanto la posibilidad de falla de las fundaciones que se

proyecten debido a este fenómeno.

6. NIVEL FREATICO

El nivel freático no se lo detectó en la exploración directa hasta los

10.00 mts de profundidad. La exploración se llevó a cabo en el mes de Junio de 2012, en periodo de verano. Es probable que en periodo de invierno prolongado se presenten algunas filtraciones

sobre todo a través de la roca meteorizada.

Page 14: Estudio de Suelos Hojarasca

13 Código. 12-07-18

7. CAPACIDAD PORTANTE DEL SUELO

El estimativo de la capacidad portante del suelo se realizó para dos tipos de fundación, compatibles con el sistema estructural

adoptado (muros de carga de concreto reforzado), empleando dos métodos diferentes, basados en parámetros del suelo igualmente diferentes, así:

7.1 Fundación mediante cimientos corridos Consiste en el empleo de cimientos corridos colocados a una

profundidad mínima de 0.50 mts. a. Capacidad Portante. La capacidad portante del suelo se

evaluó por los siguientes dos métodos: - Mediante al método de Schmertmann (*) en función de su

resistencia a la penetración estandard (N) del tipo de

suelo, de la profundidad y del ancho (B) del cimiento. La tabla siguiente resume el estimativo realizado para diferentes anchos (B) de cimiento corrido:

TABLA No.1

CAPACIDAD PORTANTE DEL SUELO

METODO DE SCHMERTMANN FUNDACION SOBRE CIMIENTOS CORRIDOS

( D = 0.50 mts, N = 19 golpes/pie)

(1) B (mts) 0.50 0.75 1.00 1.50

(2) D/B 1.0 0.67 0.50 0.33

(3) qadm(Kg/cm2) 2.9 2.6 2.5 2.4

(1) Ancho del cimiento.

(2) Relación profundidad de cimentación a ancho del cimiento. (3) Capacidad Portante admisible.

(*) Schmertmann,J.H. “Guidelines for the use in the soil investigation and desing of

foundations”. Florida DOT. Bull 121 A.

Page 15: Estudio de Suelos Hojarasca

14

Código. 12-07-18

- Mediante la Teoría General de Capacidad de Carga

desarrollada por Terzaghi y Meyerhof, considerando el suelo de soporte como de comportamiento cohesivo,

debido a su matriz limosa, utilizando como parámetro su resistencia al corte en condición no drenada (Cu) la cual a su vez se estimó por correlación con la prueba de

penetración estándar. La expresión empleada en el estimativo es la siguiente:

qadm = Cu Nc / Fs + D

En donde: qadm : Capacidad Portante admisible para falla del suelo.

Cu : Resistencia al corte en condición no drenada.

Nc : Parámetro de capacidad portante según Skempton (*)

Fs : Factor de Seguridad ( Fs = 3.0)

D : Peso del suelo por encima del nivel de

fundación (D = 0)

En este caso el estimativo para diferentes anchos (B) de

cimiento corrido arroja los siguientes resultados:

(*) Skempton,A.W. “The Bearing Capacity of Clays” . Building Research Congress. Londres 1957.

Page 16: Estudio de Suelos Hojarasca

15 Código. 12-07-18

TABLA No.2 CAPACIDAD PORTANTE DEL SUELO

METODO DE TERZAGHI Y MEYERHOF

FUNDACION SOBRE CIMIENTOS CORRIDOS ( D = 0.50 mts, Cu = 0.80 Kg/cm2 )

B (mts) 0.50 0.75 1.00 1.50

D/B 1.0 0.67 0.50 0.33

Nc 6.4 6.1 5.9 5.6

Cu Nc (Kg/cm2) 5.12 4.88 4.72 4.48

qadm (Kg/cm2) 1.70 1.62 1.57 1.49

La gráfica siguiente muestra a manera comparativa los valores obtenidos por los métodos anteriores:

Page 17: Estudio de Suelos Hojarasca

16 Código. 12-07-18

Obsérvese que el método de Schmertmann da unos

valores relativamente superiores a los de Terzaghi y Meyerhof . Esto se debe a dos razones la primera a que el método de Schmertmann controla los asentamientos en un máximo de 2.5 cmts, y la segunda que el registro de la

prueba de penetración estándar en suelos que tienen fragmentos de roca, tiende a ser alto. Para efectos de diseño consideraremos un valor de capacidad portante del

suelo para este tipo de fundación de 2.0 Kg/cm2.

b. Asentamientos. Debido a que el suelo se encuentra muy preconsolidado (OCR > 6) los asentamientos que se esperan en él son de tipo elástico (inmediato). Estos se evaluaron mediante la siguiente expresión tomada de la Teoría de la

Elasticidad:

= q. B 1 - 2 . 1 . 2 Eu

En donde :

: Asentamiento estimado. q : Presión de contacto del cimiento. B : Ancho del cimiento.

: Coeficiente de Poisson ( = 0.40 )

1, 2 : Factores de corrección según Janbu (*) Eu : Módulo de Elasticidad no drenado.

(*) Janbu, N. “Settlement Analysis . Lecture No. 12” . Norwegian Geotech. Institute. Bulletin No. 16.

Page 18: Estudio de Suelos Hojarasca

17 Código. 12-07-18

El estimativo se realizó para fundación sobre cimiento corrido transmitiendo una presión de contacto de 2.0 Kg/cm2. Los resultados se resumen de la siguiente manera

para diferentes anchos (B) de cimiento corrido:

TABLA No.3 ASENTAMIENTOS ESTIMADOS

FUNDACION SOBRE CIMIENTOS CORRIDOS

( D = 0.50 mts, Eu = 160 Kg/cm2)

B (mts) 0.50 0.75 1.00 1.50

D/B 1.0 0.67 0.50 0.33

q (Kg/cm2) 2.0 2.0 2.0 2.0

1 - 2 (cmt2/Kg) Eu

5.25 x 10-3

1 (L/B = 10)

1.75 1.75 1.75 1.75

2 (L/B = 10)

0.88 0.92 0.94 0.97

(cmts) 0.81 1.26 1.72 2.26

Los asentamientos totales se estiman fluctúan entre 0.80 y

2.3 cmts, magnitud que se encuentra dentro de la máxima permitida por la Norma NSR-10.

7.2 Fundación mediante losa rígida

Consiste en el empleo de una losa rígida de fundación.

a. Capacidad Portante. Se emplearon los mismos dos métodos

anteriores:

Page 19: Estudio de Suelos Hojarasca

18 Código. 12-07-18

- Según Schmertmann:

D/B = 0 (superficial) N = 19 golpes/pie

qadm = 2.0 Kg/cm2

- Según Terzaghi y Meyerhof:

D/B = 0 (superficial)

D = 0 (superficial)

Fs = 3.0 Cu = 0.8 Kg/cm2 Nc = 5.14

qadm = 0.8 x 5.14 / 3.0 = 1.37 Kg/cm2

La capacidad portante para este tipo de fundación se estima entre 1.4 y 2.0 Kg/cm2. Para efectos de diseño

consideraremos un valor de 1.7 Kg/cm2.

b. Asentamientos. Los asentamientos son también de tipo

elástico (inmediato). Los asentamiento totales se estiman no serán superiores a 4.0 cmts, y los asentamientos diferenciales, debido a la rigidez de la losa y a su acción de

diafragma son bajos.

Page 20: Estudio de Suelos Hojarasca

19 Código. 12-07-18

8. CONCLUSIONES

La investigación geotécnica desarrollada en el predio donde se

planea la ejecución del proyecto denominado Santa Isabel permitió establecer la presencia de formaciones rocosas sedimentarias, que han meteorizado en suelos limo arcillosos que involucran bloques

y cantos de areniscas y arcillolitas. La parte meteorizada del depósito involucra el Saprolito, y la roca meteorizada propiamente dicha. Bajo ella aparece la roca fresca. En términos generales el Saprolito y la parte meteorizada presentan matriz

limo arcillosa de mediana a baja plasticidad. Es un depósito muy preconsolidado, de consistencia firme a dura, el cual se encuentra drenado, sin presencia de nivel freático, no susceptible

al fenómeno de licuación, originado por cargas vibratorias o de sismo.

La intervención del proyecto generará cortes hacia la parte posterior del predio, que son fácilmente confinables mediante muros de contención, tal como se señala en los planos

arquitectónicos. Hacia la parte media el área de parqueo involucra una zona de corte y relleno, para soportar la estructura de pavimento. Hacia la parte baja, donde está prevista la torre de

mayor altura, se prevén rellenos, que como se discutirá más adelante implican soluciones bien sea especiales de fundación, o modificación del proyecto arquitectónico, para evitar tener que

apoyar las torres sobre rellenos artificiales, cuya estabilidad a su vez depende de la estabilidad del muro de contención que confina el relleno.

Page 21: Estudio de Suelos Hojarasca

20 Código. 12-07-18

9. RECOMENDACIONES

9.1 Recomendaciones de Fundación

Lo ideal es que las torres queden proyectadas en cortes sobre el terreno natural. Para las torres ubicadas en cortes sobre el terreno natural, de acuerdo con el análisis geotécnico efectuado se contemplan dos alternativas de fundación,

compatibles con el sistema estructural adoptado (muros de carga de concreto reforzado):

a. Fundación mediante cimientos corridos, diseñados para una capacidad del suelo de 2.0 Kg/cm2, colocados a una profundidad mínima de 0.80 mts por debajo del nivel de

piso. Esta profundidad es un poco mayor a la considerada en los estimativos de capacidad portante, y tiene por objeto mejorar el empotramiento de la fundación, sobre todo porque está ubicada sobre talud.

b. Fundación mediante losa rígida, que puede ser una losa

rígida aligerada mediante casetones, o una losa plana con

vigas descolgadas. La capacidad portante del suelo para este tipo de fundación es de 1.7 Kg/cm2. La losa debe quedar apoyada sobre un relleno en material granular

seleccionado (rocamuerta, IP < 12) de 0.50 mts de espesor, compactado al 95% de su Proctor Modificado. El relleno debe tener un sobreancho mínimo de 0.50 mts por fuera del paramento de la losa. La edificación debe distar un

mínimo de 2.00 mts del borde externo del talud en corte.

Para el caso particular de la torre que se encuentra apoyada

sobre relleno, su apoyo directo sobre rellenos granulares compactos no es lo más indicado, porque la estabilidad de estos, como se observa en el corte arquitectónico, dependerá

de la estabilidad del muro de contención. Para obviar esta dificultad se contemplan las siguientes soluciones:

Page 22: Estudio de Suelos Hojarasca

21 Código. 12-07-18

- Modificar el proyecto arquitectónico para bajar el nivel de

piso de la torre. Otra opción consiste en generar un sótano bajo ella que permita prolongar los muros de concreto hasta el nivel de sótano, de tal manera que se puedan apoyar en

forma directa sobre el terreno natural. En este caso la solución de fundación puede ser cualquiera de las alternativas indicadas para la torre en corte sobre el terreno natural.

- Mantener el diseño arquitectónico, con el relleno

proyectado. En este caso se recomienda apoyar la torre

mediante pilas o caissons de forma cilíndrica, de concreto reforzado, que trabajarán por soporte en la punta y fricción, apoyados por debajo del terreno natural. Los caissons o

pilas deben penetrar un mínimo de 5.00 mts bajo el nivel del terreno natural, como se señala en el esquema siguiente:

fap

fap

qap

5.00 mts

(mínimo)

5.00 mts

(mínimo)

Caisson o

Pila

RELLENO Muro de

Contención

Viga

Cabezal Muro de Carga de Concreto

TERRENO

NATURAL

Page 23: Estudio de Suelos Hojarasca

22 Código. 12-07-18

Para el dimensionamiento de los caissons se pueden

emplear los siguientes parámetros: * Capacidad Portante

Admisible por fricción (fap) : 0.30 Kg/cm2 (Fs = 2.0)

* Capacidad Portante Admisible en la punta (qap) : 8.0 Kg/cm2 (Fs = 3.0)

* Modulo de reacción horizontal (KH) : 3.0 Kg/cm2/cm

La resistencia neta por pila o caisson se determina de la

siguiente manera: Qn = Qp + Qf - W

En donde: Qn : Resistencia neta a compresión.

Qp : Resistencia en la punta. Qf : Resistencia por fricción. W : Peso de la pila o caisson.

Los valores anteriores se estiman en función de los valores de capacidad portante recomendados y de las dimensiones de la pila o caisson.

Esta solución de fundación presenta serias dificultades constructivas por la presencia de bloques y cantos de

roca arenisca y limolita en el subsuelo.

Page 24: Estudio de Suelos Hojarasca

23 Código. 12-07-18

9.2 Parámetros para diseño sísmico

Para efectos de evaluar las fuerzas sísmicas que actúan sobre las edificaciones proyectadas, de acuerdo con la Norma NSR-

10, teniendo en cuenta las características del subsuelo, el perfil del suelo corresponde al tipo “C” de la Norma, siendo por lo tanto los Coeficientes Fa = 1.15 y Fv = 1.55. Así

mismo debe tenerse en cuenta que, de acuerdo con la misma Norma la ciudad de Cali, se localiza en una zona de amenaza sísmica alta, debiendo considerarse por lo tanto que el Coeficiente de Aceleración (Aa) y Velocidad (Av) pico efectivos

son iguales a 0.25. La fundación debe amarrarse mediante vigas de acuerdo a lo

indicado por la Norma NSR-10 en su numeral A.3.6.4.2. En el anexo No.1, en el informe de JLB Ingeniería y Geofísica

aparecen los parámetros dinámicos del suelo para efectos de análisis de interacción suelo-estructura.

9.3 Proceso Constructivo – Adecuación del Terreno

El proceso constructivo para adecuación del terreno debe tener en cuenta las siguientes consideraciones geotécnicas:

a. Las excavaciones requeridas para adaptar el terreno a los

niveles arquitectónicos del proyecto (terraceo) se puede

efectuar en forma mecánica, dejando taludes de inclinación 1H a 2V, para alturas máximas de corte de 4.00 mts. Los taludes deben “champearse” con mortero 1:3, con el objeto de evitar su agrietamiento por resecamiento, y erosión en

caso de lluvia.

Page 25: Estudio de Suelos Hojarasca

24 Código. 12-07-18

b. La excavación general debe llevarse hasta la profundidad tal

que permita la cabida de la estructura de pavimento. Si se opta por la losa de fundación la excavación debe permitir la cabida de la placa y de su relleno de apoyo. Para el caso de

los cimientos corridos su excavación se puede efectuar a mano en cortes verticales.

c. Debe tenerse en cuenta en el proceso de excavación que se

presentarán bloques y cantos de arenisca, lo cual obligará a su fracturamiento mediante el empleo de martillos percutores, ciclos de calentamientos y enfriamiento súbito

usando quemadores de acetileno, el empleo de productos expansores colocados a través de perforaciones, o el empleo de cincel y porra.

d. Los taludes deben tenderse por detrás del paramento del

muro de contención con el propósito de que este pueda ser levantado en toda su altura sin que se originen empujes de

tierra sobre él, permitiendo su diseño apoyado en las losas de los niveles intermedios. De esta manera se permitirá también colocar el sistema de subdrenaje requerido por la Norma

NSR-10 entre el terreno y el muro de contención. En caso contrario el muro debe proyectarse para trabajar en voladizo.

Los rellenos entre el talud y el muro de contención se pueden efectuar con material del sitio (exceptuando la capa vegetal), eliminando los sobretamaños, compactado con pizón o “rana” al 90% de su Proctor Modificado.

e. No se espera que se presente nivel freático, sobre todo si la

excavación se acomete en periodo de verano. Es posible que

en periodo de invierno se presenten algunas filtraciones a través del talud, las cuales deben colectarse mediante zanjas de drenaje al pie de la excavación, para su disposición a la

red de alcantarillado pluvial perimetral al predio. Estas zanjas permitirán también drenar la excavación en caso de lluvia.

Page 26: Estudio de Suelos Hojarasca

25 Código. 12-07-18

f. Si se opta por la solución mediante caissons o pilas de

concreto pre-excavadas, su excavación se puede acometer a mano mediante la técnica de excavación con anillos vaciados en el sitio, tal como se señala en la figura No. 4 anexa.

Debe tenerse en cuenta que para excavación a mano por este sistema el diámetro mínimo constructivo es de 1.00 mt con el objeto de permitir la cabida del excavador. Los caissons

pueden presentar serias dificultades constructivas por la presencia de bloques y cantos de arenisca y limolita, que obligarán a su fracturamiento mediante las técnicas mencionadas anteriormente.

g. En la parte donde la torre de apartamentos está proyectada

en relleno sobre el terreno natural, se precisa el retiro de la capa vegetal superficial existente, para luego proceder a conformar el relleno empleando material granular

seleccionado (rocamuerta, IP < 12) compactado al 95% de su Proctor Modificado en capas preferiblemente de espesor no mayor a 0.30 mts. Antes de conformar el relleno se recomienda construir el muro de contención en la parte

baja para garantizar el confinamiento del relleno. Esta recomendación también es válida para el área de parqueo ubicada entre las torres, la cual está prevista parte en corte

y parte en relleno sobre el terreno natural.

9.4 Muros de Contención

Los muros de contención deben proyectase para soportar empujes de tierra evaluados con base en los siguientes

parámetros:

Page 27: Estudio de Suelos Hojarasca

26 Código. 12-07-18

H Pa W

H/3 Pp h

h/3

H Ka F h Kp

En donde:

Pa = 0.5 H2 Ka

Pp = 0.5 h2 Kp

F = . W

Siendo:

Ka = 0.40

= 1.9 ton/m3

Kp = 1/Ka = 2.5

= 0.35

Su fundación se puede efectuar mediante cimientos corridos colocados a una profundidad mínima de 0.50 mts, la cual

puede ser mayor si los análisis de estabilidad del muro así lo requieren. La capacidad portante del suelo para el diseño del cimiento corrido puede tomarse como 2.0 Kg/cm2.

Page 28: Estudio de Suelos Hojarasca

27 Código. 12-07-18

9.5 Pisos del sótano

Los pisos del sótano, así como la vía interna y parqueaderos externos estarán sujetos al tránsito y parqueo de vehículos

livianos (automóviles y camionetas). Se propone la siguiente estructura de pavimento:

Losa concreto f’c 3000 psi 12 cmts

Sub-base 20 cmts (rocamuerta, IP < 12), 95% P.M.

Sobre la subrasante se conforma un relleno en material granular seleccionado (rocamuerta, IP < 12), compactado al

95% de su Proctor Modificado, en un espesor de 0.20 mts. Sobre el relleno se realiza el vaciado de una placa de 0.12 mts

de espesor, en concreto de 3000 psi de resistencia a la compresión a los 28 días de curado, en paños preferiblemente no mayores a 3.00 x 4.00 mts, dejando juntas en los cuatro costado del tipo “plano debilitado”. En la

unión de la losa con muros y columnas debe dejarse una junta de dilatación rellena de icopor ( e = 1.0 cmt). Si la losa está proyectada fuera de áreas cubiertas, sujetas a cambios

de temperatura, se recomienda colocarle un refuerzo en malla electrosoldada a la mitad de la altura de placa, para tomar los esfuerzos por contracción y temperatura, evitándose de esta manera el agrietamiento prematuro de la losa.

Page 29: Estudio de Suelos Hojarasca

28 Código. 12-07-18

Si se opta por la solución sobre losa de fundación, esta, adecuadamente proyectada sirve de piso y pavimento.

9.6 Otras Recomendaciones

a. Se recomienda la construcción de zanjas de drenaje y

estructuras adecuadas de caída que permitan interceptar la escorrentía superficial y su disposición final a la red de

alcantarillado pluvial del proyecto, evitando de esta manera el efecto erosivo del agua en caso de lluvia.

b. Los taludes en relleno deben dejarse con inclinación a 45°

empradizándolos.

c. Los taludes en corte, que no sean confinados mediante

muros de contención, deben dejarse con inclinación 1H a

1.5V revegetalizándolos para evitar su erosión en caso de lluvia.

d. En la corona de todos los taludes debe construirse una

zanja de drenaje que intercepte el agua lluvia evitando que

esta drene hacia el talud.

Page 30: Estudio de Suelos Hojarasca

29 Código. 12-07-18

10. LIMITACIONES

Las conclusiones y recomendaciones dadas en este estudio se basaron en el análisis e interpretación de la información proporcionada por los sondeos y ensayos efectuados. Si durante

la etapa constructiva o de diseño se presentan variaciones en las características del subsuelo o del proyecto debe consultársenos sobre las recomendaciones adicionales necesarias.

CARLOS HUMBERTO PARRA S. Ingeniero Civil Consultor

Mat. 76202-05497

Cali, Julio de 2012.

Page 31: Estudio de Suelos Hojarasca

ANEXO No. 1 Informe JLB Ingeniería y Geofísica

Page 32: Estudio de Suelos Hojarasca

ANEXO No.2 Registro Fotográfico

Page 33: Estudio de Suelos Hojarasca

ANEXO No.3 Registros de Perforación

Ensayos de Laboratorio Carta de Plasticidad

Page 34: Estudio de Suelos Hojarasca

ANEXO No.4 Figuras