estática - miel.unlam.edu.ar
Embed Size (px)
TRANSCRIPT
MECANICASegunda parte
Estática Un cuerpo está en equilibrio si la fuerza neta aplicada es CERO
( NO SE TRASLADA ) y la suma de los momentos también es CERO
( NO ROTA ).
Fx = ∑ Fix=0 Fy= ∑ Fiy=0
Mx = ∑ Mix=0 My= ∑ Miy=0
Palancas La palanca es una maquina simple, la cual esta compuesta
por una barra rígida y un punto de apoyo que le permite
girar. Esta se puede utilizar para amplificar una fuerza
mecánica aplicada a un objeto, o para incrementar la
distancia recorrida por un objeto en respuesta a la
aplicación de una fuerza.
potencia
Equilibrio
Velocidad
En la forma más común de uso de la palanca se considera
únicamente a dos fuerzas: una CARGA O RESISTENCIA,
que suele ser el peso de un objeto que se desea mover; y una
POTENCIA, que es la fuerza que se ejerce para causar el
movimiento. Por lo tanto Fp * Bp = Fr * Br
Fp y Fr son las fuerzas de potencia y resistencia,
respectivamente; y Bp y Br sus respectivos brazos de
palanca
Los huesos son los brazos de palancas
Las articulaciones serian las bisagras ,
las contracciones de los músculos conducen el movimiento (
potencia) de las uniones alrededor des sus centros de rotación,
La Resistencia , va estar dado por el peso de los segmentos,
objetos, , etc
Palancas de Primer Género:
En este tipo de palanca el punto de apoyo se encuentra
entre la potencia y la resistencia
En el cuerpo humano Este tipo de palanca se produce durante el balanceo de la
cabeza.
La palanca está representada por el cráneo. El fulcro lo
representan las articulaciones occipitoatloideas. El peso se
halla situado en la parte anterior, en la cara. El esfuerzo o la
fuerza sería realizada por la contracción de los músculos
posteriores del cuello, con su inserción en el hueso
occipital.
Palancas de Segundo Género La resistencia se encuentra entre el punto de apoyo y la potencia, en
este caso se sacrifica velocidad para ganar fuerza El principio de la
palanca afirma que una fuerza pequeña puede estar en equilibrio con
una fuerza grande si la proporción entre los brazos de palanca de
ambas fuerzas es la adecuada
Representada por los huesos tarsianos y metatarsianos se
estabilizan por la acción muscular para formar la palanca.
El fulcro: Se halla situado en la articulación
metatarsofalángica y el peso del cuerpo se transmite al
astrágalo a través de la articulación del tobillo. El esfuerzo
(o fuerza): Se aplica en la inserción del tendón de Aquiles
por la contracción de los músculos de la pantorrilla.
Palancas de Tercer Género Este tipo de palanca, en el que existe siempre una desventaja mecánica,
es la palanca de velocidad, en la que la pérdida de la ventaja mecánica
se compensa sobradamente por la ventaja que se logra por la rapidez y
amplitud del movimiento. En este caso la potencia se aplica entre el
punto de apoyo y la resistencia.
Cuando la palanca es el antebrazo, el fulcro se halla en
la articulación del codo, y cuando el esfuerzo es
realizado por el músculo bíceps y el peso es algún
objeto sostenido en la mano, podrá observarse que una
pequeña contracción muscular se traducirá en un
movimiento mucho más extenso y rápido de la mano.
A tener en cuenta en el cuerpo humano: estamos
trabajando en una tridimensión, por lo cual primero
debemos situar la posición de partida del
movimiento, cuales son las palancas óseas que
intervienen, cual es el peso a mover, fijar el punto de
apoyo o fulcro y determinar que musculatura es la que
mueve la palanca.
Poleas Las poleas fijas permiten transmitir las intensidades de las
fuerzas modificando solamente su dirección. El valor de la fuerza
aplicada y la resultante son iguales, pero de sentido opuesto. No
presentan una ventaja mecánica sino que permiten realizar la
fuerza en una dirección más efectiva
Las poleas móviles permiten levantar pesos ejerciendo una
fuerza menor presentando una ventaja mecánica. Para un sola
polea se necesita la mitad de la fuerza para levantar el peso
Aparejo factorial y Aparejo potencial
Tfactorial = P/n x 2 Tpotencial = P / 2n
Un aparejo factorial y uno potencial con 4 poleas
móviles cada uno, se determinan de modo de levantar
un peso de 64N. ¿Qué fuerza debo realizar en cada
caso?
Tpotencial = P / 2n =64N/ 24=4N
Trabajo y energía
L = F . d ( trabajo = fuerza x distancia)
L = F × d × cos a ( es el ángulo formado entre la fuerza y la
velocidad que tiene el cuerpo.)
La fuerza la pongo siempre en Kilogramos fuerza o en
Newton. La distancia la puedo poner en metros. Así que las
unidades de trabajo que más se usan son:
[ L ] = Kgf × m Kilográmetro.
[ L ] = N × m Joule.
1 Kilográmetro equivaldrá a 9,8 Joule.
1 Joule es el trabajo que realiza una fuerza de 1
Newton cuando se desplaza 1 metro.
La fuerza es un vector, sin embargo el trabajo no
es un vector. No tiene dirección, sentido, módulo.
Energía cinética Cuando los objetos adquieren velocidad
Ec = ½ m v2
El objeto en su movimiento acelerado recorre una distancia d,
y el trabajo realizado por F vale L=F. d, teniendo en cuenta la
2° ley de Newton F = m.a queda F.d = m.a.d utilizando la
ecuación complementaria del MRUV : vf 2 –vo
2 = 2.a.d entonces
F .d = m. vf 2 –vo
2 .d F.d = ½ m.vf 2 - ½ m.vo
2
P =L/Δt
Si se tiene en cuenta la formula de trabajo se puede decir P =
F.v o P = F . v .cos α
P= joule/ seg o P= N.m/seg Watt
Es decir que si una fuerza de 1 N recorre una distancia de 1 m
en 1 seg, la potencia entregada será de 1 Watt.
(No confundir el Kw-h que es una unidad de energía, no de potencia, usada en electricidad.)
Fin
Estática Un cuerpo está en equilibrio si la fuerza neta aplicada es CERO
( NO SE TRASLADA ) y la suma de los momentos también es CERO
( NO ROTA ).
Fx = ∑ Fix=0 Fy= ∑ Fiy=0
Mx = ∑ Mix=0 My= ∑ Miy=0
Palancas La palanca es una maquina simple, la cual esta compuesta
por una barra rígida y un punto de apoyo que le permite
girar. Esta se puede utilizar para amplificar una fuerza
mecánica aplicada a un objeto, o para incrementar la
distancia recorrida por un objeto en respuesta a la
aplicación de una fuerza.
potencia
Equilibrio
Velocidad
En la forma más común de uso de la palanca se considera
únicamente a dos fuerzas: una CARGA O RESISTENCIA,
que suele ser el peso de un objeto que se desea mover; y una
POTENCIA, que es la fuerza que se ejerce para causar el
movimiento. Por lo tanto Fp * Bp = Fr * Br
Fp y Fr son las fuerzas de potencia y resistencia,
respectivamente; y Bp y Br sus respectivos brazos de
palanca
Los huesos son los brazos de palancas
Las articulaciones serian las bisagras ,
las contracciones de los músculos conducen el movimiento (
potencia) de las uniones alrededor des sus centros de rotación,
La Resistencia , va estar dado por el peso de los segmentos,
objetos, , etc
Palancas de Primer Género:
En este tipo de palanca el punto de apoyo se encuentra
entre la potencia y la resistencia
En el cuerpo humano Este tipo de palanca se produce durante el balanceo de la
cabeza.
La palanca está representada por el cráneo. El fulcro lo
representan las articulaciones occipitoatloideas. El peso se
halla situado en la parte anterior, en la cara. El esfuerzo o la
fuerza sería realizada por la contracción de los músculos
posteriores del cuello, con su inserción en el hueso
occipital.
Palancas de Segundo Género La resistencia se encuentra entre el punto de apoyo y la potencia, en
este caso se sacrifica velocidad para ganar fuerza El principio de la
palanca afirma que una fuerza pequeña puede estar en equilibrio con
una fuerza grande si la proporción entre los brazos de palanca de
ambas fuerzas es la adecuada
Representada por los huesos tarsianos y metatarsianos se
estabilizan por la acción muscular para formar la palanca.
El fulcro: Se halla situado en la articulación
metatarsofalángica y el peso del cuerpo se transmite al
astrágalo a través de la articulación del tobillo. El esfuerzo
(o fuerza): Se aplica en la inserción del tendón de Aquiles
por la contracción de los músculos de la pantorrilla.
Palancas de Tercer Género Este tipo de palanca, en el que existe siempre una desventaja mecánica,
es la palanca de velocidad, en la que la pérdida de la ventaja mecánica
se compensa sobradamente por la ventaja que se logra por la rapidez y
amplitud del movimiento. En este caso la potencia se aplica entre el
punto de apoyo y la resistencia.
Cuando la palanca es el antebrazo, el fulcro se halla en
la articulación del codo, y cuando el esfuerzo es
realizado por el músculo bíceps y el peso es algún
objeto sostenido en la mano, podrá observarse que una
pequeña contracción muscular se traducirá en un
movimiento mucho más extenso y rápido de la mano.
A tener en cuenta en el cuerpo humano: estamos
trabajando en una tridimensión, por lo cual primero
debemos situar la posición de partida del
movimiento, cuales son las palancas óseas que
intervienen, cual es el peso a mover, fijar el punto de
apoyo o fulcro y determinar que musculatura es la que
mueve la palanca.
Poleas Las poleas fijas permiten transmitir las intensidades de las
fuerzas modificando solamente su dirección. El valor de la fuerza
aplicada y la resultante son iguales, pero de sentido opuesto. No
presentan una ventaja mecánica sino que permiten realizar la
fuerza en una dirección más efectiva
Las poleas móviles permiten levantar pesos ejerciendo una
fuerza menor presentando una ventaja mecánica. Para un sola
polea se necesita la mitad de la fuerza para levantar el peso
Aparejo factorial y Aparejo potencial
Tfactorial = P/n x 2 Tpotencial = P / 2n
Un aparejo factorial y uno potencial con 4 poleas
móviles cada uno, se determinan de modo de levantar
un peso de 64N. ¿Qué fuerza debo realizar en cada
caso?
Tpotencial = P / 2n =64N/ 24=4N
Trabajo y energía
L = F . d ( trabajo = fuerza x distancia)
L = F × d × cos a ( es el ángulo formado entre la fuerza y la
velocidad que tiene el cuerpo.)
La fuerza la pongo siempre en Kilogramos fuerza o en
Newton. La distancia la puedo poner en metros. Así que las
unidades de trabajo que más se usan son:
[ L ] = Kgf × m Kilográmetro.
[ L ] = N × m Joule.
1 Kilográmetro equivaldrá a 9,8 Joule.
1 Joule es el trabajo que realiza una fuerza de 1
Newton cuando se desplaza 1 metro.
La fuerza es un vector, sin embargo el trabajo no
es un vector. No tiene dirección, sentido, módulo.
Energía cinética Cuando los objetos adquieren velocidad
Ec = ½ m v2
El objeto en su movimiento acelerado recorre una distancia d,
y el trabajo realizado por F vale L=F. d, teniendo en cuenta la
2° ley de Newton F = m.a queda F.d = m.a.d utilizando la
ecuación complementaria del MRUV : vf 2 –vo
2 = 2.a.d entonces
F .d = m. vf 2 –vo
2 .d F.d = ½ m.vf 2 - ½ m.vo
2
P =L/Δt
Si se tiene en cuenta la formula de trabajo se puede decir P =
F.v o P = F . v .cos α
P= joule/ seg o P= N.m/seg Watt
Es decir que si una fuerza de 1 N recorre una distancia de 1 m
en 1 seg, la potencia entregada será de 1 Watt.
(No confundir el Kw-h que es una unidad de energía, no de potencia, usada en electricidad.)
Fin